//===-- RISCVExpandAtomicPseudoInsts.cpp - Expand atomic pseudo instrs. ---===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains a pass that expands atomic pseudo instructions into // target instructions. This pass should be run at the last possible moment, // avoiding the possibility for other passes to break the requirements for // forward progress in the LR/SC block. // //===----------------------------------------------------------------------===// #include "RISCV.h" #include "RISCVInstrInfo.h" #include "RISCVTargetMachine.h" #include "llvm/CodeGen/LivePhysRegs.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" using namespace llvm; #define RISCV_EXPAND_ATOMIC_PSEUDO_NAME \ "RISC-V atomic pseudo instruction expansion pass" namespace { class RISCVExpandAtomicPseudo : public MachineFunctionPass { public: const RISCVInstrInfo *TII; static char ID; RISCVExpandAtomicPseudo() : MachineFunctionPass(ID) { initializeRISCVExpandAtomicPseudoPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return RISCV_EXPAND_ATOMIC_PSEUDO_NAME; } private: bool expandMBB(MachineBasicBlock &MBB); bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, MachineBasicBlock::iterator &NextMBBI); bool expandAtomicBinOp(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, AtomicRMWInst::BinOp, bool IsMasked, int Width, MachineBasicBlock::iterator &NextMBBI); bool expandAtomicMinMaxOp(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, AtomicRMWInst::BinOp, bool IsMasked, int Width, MachineBasicBlock::iterator &NextMBBI); bool expandAtomicCmpXchg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, bool IsMasked, int Width, MachineBasicBlock::iterator &NextMBBI); #ifndef NDEBUG unsigned getInstSizeInBytes(const MachineFunction &MF) const { unsigned Size = 0; for (auto &MBB : MF) for (auto &MI : MBB) Size += TII->getInstSizeInBytes(MI); return Size; } #endif }; char RISCVExpandAtomicPseudo::ID = 0; bool RISCVExpandAtomicPseudo::runOnMachineFunction(MachineFunction &MF) { TII = MF.getSubtarget().getInstrInfo(); #ifndef NDEBUG const unsigned OldSize = getInstSizeInBytes(MF); #endif bool Modified = false; for (auto &MBB : MF) Modified |= expandMBB(MBB); #ifndef NDEBUG const unsigned NewSize = getInstSizeInBytes(MF); assert(OldSize >= NewSize); #endif return Modified; } bool RISCVExpandAtomicPseudo::expandMBB(MachineBasicBlock &MBB) { bool Modified = false; MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); while (MBBI != E) { MachineBasicBlock::iterator NMBBI = std::next(MBBI); Modified |= expandMI(MBB, MBBI, NMBBI); MBBI = NMBBI; } return Modified; } bool RISCVExpandAtomicPseudo::expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, MachineBasicBlock::iterator &NextMBBI) { // RISCVInstrInfo::getInstSizeInBytes expects that the total size of the // expanded instructions for each pseudo is correct in the Size field of the // tablegen definition for the pseudo. switch (MBBI->getOpcode()) { case RISCV::PseudoAtomicLoadNand32: return expandAtomicBinOp(MBB, MBBI, AtomicRMWInst::Nand, false, 32, NextMBBI); case RISCV::PseudoAtomicLoadNand64: return expandAtomicBinOp(MBB, MBBI, AtomicRMWInst::Nand, false, 64, NextMBBI); case RISCV::PseudoMaskedAtomicSwap32: return expandAtomicBinOp(MBB, MBBI, AtomicRMWInst::Xchg, true, 32, NextMBBI); case RISCV::PseudoMaskedAtomicLoadAdd32: return expandAtomicBinOp(MBB, MBBI, AtomicRMWInst::Add, true, 32, NextMBBI); case RISCV::PseudoMaskedAtomicLoadSub32: return expandAtomicBinOp(MBB, MBBI, AtomicRMWInst::Sub, true, 32, NextMBBI); case RISCV::PseudoMaskedAtomicLoadNand32: return expandAtomicBinOp(MBB, MBBI, AtomicRMWInst::Nand, true, 32, NextMBBI); case RISCV::PseudoMaskedAtomicLoadMax32: return expandAtomicMinMaxOp(MBB, MBBI, AtomicRMWInst::Max, true, 32, NextMBBI); case RISCV::PseudoMaskedAtomicLoadMin32: return expandAtomicMinMaxOp(MBB, MBBI, AtomicRMWInst::Min, true, 32, NextMBBI); case RISCV::PseudoMaskedAtomicLoadUMax32: return expandAtomicMinMaxOp(MBB, MBBI, AtomicRMWInst::UMax, true, 32, NextMBBI); case RISCV::PseudoMaskedAtomicLoadUMin32: return expandAtomicMinMaxOp(MBB, MBBI, AtomicRMWInst::UMin, true, 32, NextMBBI); case RISCV::PseudoCmpXchg32: return expandAtomicCmpXchg(MBB, MBBI, false, 32, NextMBBI); case RISCV::PseudoCmpXchg64: return expandAtomicCmpXchg(MBB, MBBI, false, 64, NextMBBI); case RISCV::PseudoMaskedCmpXchg32: return expandAtomicCmpXchg(MBB, MBBI, true, 32, NextMBBI); } return false; } static unsigned getLRForRMW32(AtomicOrdering Ordering) { switch (Ordering) { default: llvm_unreachable("Unexpected AtomicOrdering"); case AtomicOrdering::Monotonic: return RISCV::LR_W; case AtomicOrdering::Acquire: return RISCV::LR_W_AQ; case AtomicOrdering::Release: return RISCV::LR_W; case AtomicOrdering::AcquireRelease: return RISCV::LR_W_AQ; case AtomicOrdering::SequentiallyConsistent: return RISCV::LR_W_AQ_RL; } } static unsigned getSCForRMW32(AtomicOrdering Ordering) { switch (Ordering) { default: llvm_unreachable("Unexpected AtomicOrdering"); case AtomicOrdering::Monotonic: return RISCV::SC_W; case AtomicOrdering::Acquire: return RISCV::SC_W; case AtomicOrdering::Release: return RISCV::SC_W_RL; case AtomicOrdering::AcquireRelease: return RISCV::SC_W_RL; case AtomicOrdering::SequentiallyConsistent: return RISCV::SC_W_RL; } } static unsigned getLRForRMW64(AtomicOrdering Ordering) { switch (Ordering) { default: llvm_unreachable("Unexpected AtomicOrdering"); case AtomicOrdering::Monotonic: return RISCV::LR_D; case AtomicOrdering::Acquire: return RISCV::LR_D_AQ; case AtomicOrdering::Release: return RISCV::LR_D; case AtomicOrdering::AcquireRelease: return RISCV::LR_D_AQ; case AtomicOrdering::SequentiallyConsistent: return RISCV::LR_D_AQ_RL; } } static unsigned getSCForRMW64(AtomicOrdering Ordering) { switch (Ordering) { default: llvm_unreachable("Unexpected AtomicOrdering"); case AtomicOrdering::Monotonic: return RISCV::SC_D; case AtomicOrdering::Acquire: return RISCV::SC_D; case AtomicOrdering::Release: return RISCV::SC_D_RL; case AtomicOrdering::AcquireRelease: return RISCV::SC_D_RL; case AtomicOrdering::SequentiallyConsistent: return RISCV::SC_D_RL; } } static unsigned getLRForRMW(AtomicOrdering Ordering, int Width) { if (Width == 32) return getLRForRMW32(Ordering); if (Width == 64) return getLRForRMW64(Ordering); llvm_unreachable("Unexpected LR width\n"); } static unsigned getSCForRMW(AtomicOrdering Ordering, int Width) { if (Width == 32) return getSCForRMW32(Ordering); if (Width == 64) return getSCForRMW64(Ordering); llvm_unreachable("Unexpected SC width\n"); } static void doAtomicBinOpExpansion(const RISCVInstrInfo *TII, MachineInstr &MI, DebugLoc DL, MachineBasicBlock *ThisMBB, MachineBasicBlock *LoopMBB, MachineBasicBlock *DoneMBB, AtomicRMWInst::BinOp BinOp, int Width) { Register DestReg = MI.getOperand(0).getReg(); Register ScratchReg = MI.getOperand(1).getReg(); Register AddrReg = MI.getOperand(2).getReg(); Register IncrReg = MI.getOperand(3).getReg(); AtomicOrdering Ordering = static_cast(MI.getOperand(4).getImm()); // .loop: // lr.[w|d] dest, (addr) // binop scratch, dest, val // sc.[w|d] scratch, scratch, (addr) // bnez scratch, loop BuildMI(LoopMBB, DL, TII->get(getLRForRMW(Ordering, Width)), DestReg) .addReg(AddrReg); switch (BinOp) { default: llvm_unreachable("Unexpected AtomicRMW BinOp"); case AtomicRMWInst::Nand: BuildMI(LoopMBB, DL, TII->get(RISCV::AND), ScratchReg) .addReg(DestReg) .addReg(IncrReg); BuildMI(LoopMBB, DL, TII->get(RISCV::XORI), ScratchReg) .addReg(ScratchReg) .addImm(-1); break; } BuildMI(LoopMBB, DL, TII->get(getSCForRMW(Ordering, Width)), ScratchReg) .addReg(AddrReg) .addReg(ScratchReg); BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) .addReg(ScratchReg) .addReg(RISCV::X0) .addMBB(LoopMBB); } static void insertMaskedMerge(const RISCVInstrInfo *TII, DebugLoc DL, MachineBasicBlock *MBB, Register DestReg, Register OldValReg, Register NewValReg, Register MaskReg, Register ScratchReg) { assert(OldValReg != ScratchReg && "OldValReg and ScratchReg must be unique"); assert(OldValReg != MaskReg && "OldValReg and MaskReg must be unique"); assert(ScratchReg != MaskReg && "ScratchReg and MaskReg must be unique"); // We select bits from newval and oldval using: // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge // r = oldval ^ ((oldval ^ newval) & masktargetdata); BuildMI(MBB, DL, TII->get(RISCV::XOR), ScratchReg) .addReg(OldValReg) .addReg(NewValReg); BuildMI(MBB, DL, TII->get(RISCV::AND), ScratchReg) .addReg(ScratchReg) .addReg(MaskReg); BuildMI(MBB, DL, TII->get(RISCV::XOR), DestReg) .addReg(OldValReg) .addReg(ScratchReg); } static void doMaskedAtomicBinOpExpansion( const RISCVInstrInfo *TII, MachineInstr &MI, DebugLoc DL, MachineBasicBlock *ThisMBB, MachineBasicBlock *LoopMBB, MachineBasicBlock *DoneMBB, AtomicRMWInst::BinOp BinOp, int Width) { assert(Width == 32 && "Should never need to expand masked 64-bit operations"); Register DestReg = MI.getOperand(0).getReg(); Register ScratchReg = MI.getOperand(1).getReg(); Register AddrReg = MI.getOperand(2).getReg(); Register IncrReg = MI.getOperand(3).getReg(); Register MaskReg = MI.getOperand(4).getReg(); AtomicOrdering Ordering = static_cast(MI.getOperand(5).getImm()); // .loop: // lr.w destreg, (alignedaddr) // binop scratch, destreg, incr // xor scratch, destreg, scratch // and scratch, scratch, masktargetdata // xor scratch, destreg, scratch // sc.w scratch, scratch, (alignedaddr) // bnez scratch, loop BuildMI(LoopMBB, DL, TII->get(getLRForRMW32(Ordering)), DestReg) .addReg(AddrReg); switch (BinOp) { default: llvm_unreachable("Unexpected AtomicRMW BinOp"); case AtomicRMWInst::Xchg: BuildMI(LoopMBB, DL, TII->get(RISCV::ADDI), ScratchReg) .addReg(IncrReg) .addImm(0); break; case AtomicRMWInst::Add: BuildMI(LoopMBB, DL, TII->get(RISCV::ADD), ScratchReg) .addReg(DestReg) .addReg(IncrReg); break; case AtomicRMWInst::Sub: BuildMI(LoopMBB, DL, TII->get(RISCV::SUB), ScratchReg) .addReg(DestReg) .addReg(IncrReg); break; case AtomicRMWInst::Nand: BuildMI(LoopMBB, DL, TII->get(RISCV::AND), ScratchReg) .addReg(DestReg) .addReg(IncrReg); BuildMI(LoopMBB, DL, TII->get(RISCV::XORI), ScratchReg) .addReg(ScratchReg) .addImm(-1); break; } insertMaskedMerge(TII, DL, LoopMBB, ScratchReg, DestReg, ScratchReg, MaskReg, ScratchReg); BuildMI(LoopMBB, DL, TII->get(getSCForRMW32(Ordering)), ScratchReg) .addReg(AddrReg) .addReg(ScratchReg); BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) .addReg(ScratchReg) .addReg(RISCV::X0) .addMBB(LoopMBB); } bool RISCVExpandAtomicPseudo::expandAtomicBinOp( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, AtomicRMWInst::BinOp BinOp, bool IsMasked, int Width, MachineBasicBlock::iterator &NextMBBI) { MachineInstr &MI = *MBBI; DebugLoc DL = MI.getDebugLoc(); MachineFunction *MF = MBB.getParent(); auto LoopMBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); auto DoneMBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); // Insert new MBBs. MF->insert(++MBB.getIterator(), LoopMBB); MF->insert(++LoopMBB->getIterator(), DoneMBB); // Set up successors and transfer remaining instructions to DoneMBB. LoopMBB->addSuccessor(LoopMBB); LoopMBB->addSuccessor(DoneMBB); DoneMBB->splice(DoneMBB->end(), &MBB, MI, MBB.end()); DoneMBB->transferSuccessors(&MBB); MBB.addSuccessor(LoopMBB); if (!IsMasked) doAtomicBinOpExpansion(TII, MI, DL, &MBB, LoopMBB, DoneMBB, BinOp, Width); else doMaskedAtomicBinOpExpansion(TII, MI, DL, &MBB, LoopMBB, DoneMBB, BinOp, Width); NextMBBI = MBB.end(); MI.eraseFromParent(); LivePhysRegs LiveRegs; computeAndAddLiveIns(LiveRegs, *LoopMBB); computeAndAddLiveIns(LiveRegs, *DoneMBB); return true; } static void insertSext(const RISCVInstrInfo *TII, DebugLoc DL, MachineBasicBlock *MBB, Register ValReg, Register ShamtReg) { BuildMI(MBB, DL, TII->get(RISCV::SLL), ValReg) .addReg(ValReg) .addReg(ShamtReg); BuildMI(MBB, DL, TII->get(RISCV::SRA), ValReg) .addReg(ValReg) .addReg(ShamtReg); } bool RISCVExpandAtomicPseudo::expandAtomicMinMaxOp( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, AtomicRMWInst::BinOp BinOp, bool IsMasked, int Width, MachineBasicBlock::iterator &NextMBBI) { assert(IsMasked == true && "Should only need to expand masked atomic max/min"); assert(Width == 32 && "Should never need to expand masked 64-bit operations"); MachineInstr &MI = *MBBI; DebugLoc DL = MI.getDebugLoc(); MachineFunction *MF = MBB.getParent(); auto LoopHeadMBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); auto LoopIfBodyMBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); auto LoopTailMBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); auto DoneMBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); // Insert new MBBs. MF->insert(++MBB.getIterator(), LoopHeadMBB); MF->insert(++LoopHeadMBB->getIterator(), LoopIfBodyMBB); MF->insert(++LoopIfBodyMBB->getIterator(), LoopTailMBB); MF->insert(++LoopTailMBB->getIterator(), DoneMBB); // Set up successors and transfer remaining instructions to DoneMBB. LoopHeadMBB->addSuccessor(LoopIfBodyMBB); LoopHeadMBB->addSuccessor(LoopTailMBB); LoopIfBodyMBB->addSuccessor(LoopTailMBB); LoopTailMBB->addSuccessor(LoopHeadMBB); LoopTailMBB->addSuccessor(DoneMBB); DoneMBB->splice(DoneMBB->end(), &MBB, MI, MBB.end()); DoneMBB->transferSuccessors(&MBB); MBB.addSuccessor(LoopHeadMBB); Register DestReg = MI.getOperand(0).getReg(); Register Scratch1Reg = MI.getOperand(1).getReg(); Register Scratch2Reg = MI.getOperand(2).getReg(); Register AddrReg = MI.getOperand(3).getReg(); Register IncrReg = MI.getOperand(4).getReg(); Register MaskReg = MI.getOperand(5).getReg(); bool IsSigned = BinOp == AtomicRMWInst::Min || BinOp == AtomicRMWInst::Max; AtomicOrdering Ordering = static_cast(MI.getOperand(IsSigned ? 7 : 6).getImm()); // // .loophead: // lr.w destreg, (alignedaddr) // and scratch2, destreg, mask // mv scratch1, destreg // [sext scratch2 if signed min/max] // ifnochangeneeded scratch2, incr, .looptail BuildMI(LoopHeadMBB, DL, TII->get(getLRForRMW32(Ordering)), DestReg) .addReg(AddrReg); BuildMI(LoopHeadMBB, DL, TII->get(RISCV::AND), Scratch2Reg) .addReg(DestReg) .addReg(MaskReg); BuildMI(LoopHeadMBB, DL, TII->get(RISCV::ADDI), Scratch1Reg) .addReg(DestReg) .addImm(0); switch (BinOp) { default: llvm_unreachable("Unexpected AtomicRMW BinOp"); case AtomicRMWInst::Max: { insertSext(TII, DL, LoopHeadMBB, Scratch2Reg, MI.getOperand(6).getReg()); BuildMI(LoopHeadMBB, DL, TII->get(RISCV::BGE)) .addReg(Scratch2Reg) .addReg(IncrReg) .addMBB(LoopTailMBB); break; } case AtomicRMWInst::Min: { insertSext(TII, DL, LoopHeadMBB, Scratch2Reg, MI.getOperand(6).getReg()); BuildMI(LoopHeadMBB, DL, TII->get(RISCV::BGE)) .addReg(IncrReg) .addReg(Scratch2Reg) .addMBB(LoopTailMBB); break; } case AtomicRMWInst::UMax: BuildMI(LoopHeadMBB, DL, TII->get(RISCV::BGEU)) .addReg(Scratch2Reg) .addReg(IncrReg) .addMBB(LoopTailMBB); break; case AtomicRMWInst::UMin: BuildMI(LoopHeadMBB, DL, TII->get(RISCV::BGEU)) .addReg(IncrReg) .addReg(Scratch2Reg) .addMBB(LoopTailMBB); break; } // .loopifbody: // xor scratch1, destreg, incr // and scratch1, scratch1, mask // xor scratch1, destreg, scratch1 insertMaskedMerge(TII, DL, LoopIfBodyMBB, Scratch1Reg, DestReg, IncrReg, MaskReg, Scratch1Reg); // .looptail: // sc.w scratch1, scratch1, (addr) // bnez scratch1, loop BuildMI(LoopTailMBB, DL, TII->get(getSCForRMW32(Ordering)), Scratch1Reg) .addReg(AddrReg) .addReg(Scratch1Reg); BuildMI(LoopTailMBB, DL, TII->get(RISCV::BNE)) .addReg(Scratch1Reg) .addReg(RISCV::X0) .addMBB(LoopHeadMBB); NextMBBI = MBB.end(); MI.eraseFromParent(); LivePhysRegs LiveRegs; computeAndAddLiveIns(LiveRegs, *LoopHeadMBB); computeAndAddLiveIns(LiveRegs, *LoopIfBodyMBB); computeAndAddLiveIns(LiveRegs, *LoopTailMBB); computeAndAddLiveIns(LiveRegs, *DoneMBB); return true; } // If a BNE on the cmpxchg comparison result immediately follows the cmpxchg // operation, it can be folded into the cmpxchg expansion by // modifying the branch within 'LoopHead' (which performs the same // comparison). This is a valid transformation because after altering the // LoopHead's BNE destination, the BNE following the cmpxchg becomes // redundant and and be deleted. In the case of a masked cmpxchg, an // appropriate AND and BNE must be matched. // // On success, returns true and deletes the matching BNE or AND+BNE, sets the // LoopHeadBNETarget argument to the target that should be used within the // loop head, and removes that block as a successor to MBB. bool tryToFoldBNEOnCmpXchgResult(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg, Register CmpValReg, Register MaskReg, MachineBasicBlock *&LoopHeadBNETarget) { SmallVector ToErase; auto E = MBB.end(); if (MBBI == E) return false; MBBI = skipDebugInstructionsForward(MBBI, E); // If we have a masked cmpxchg, match AND dst, DestReg, MaskReg. if (MaskReg.isValid()) { if (MBBI == E || MBBI->getOpcode() != RISCV::AND) return false; Register ANDOp1 = MBBI->getOperand(1).getReg(); Register ANDOp2 = MBBI->getOperand(2).getReg(); if (!(ANDOp1 == DestReg && ANDOp2 == MaskReg) && !(ANDOp1 == MaskReg && ANDOp2 == DestReg)) return false; // We now expect the BNE to use the result of the AND as an operand. DestReg = MBBI->getOperand(0).getReg(); ToErase.push_back(&*MBBI); MBBI = skipDebugInstructionsForward(std::next(MBBI), E); } // Match BNE DestReg, MaskReg. if (MBBI == E || MBBI->getOpcode() != RISCV::BNE) return false; Register BNEOp0 = MBBI->getOperand(0).getReg(); Register BNEOp1 = MBBI->getOperand(1).getReg(); if (!(BNEOp0 == DestReg && BNEOp1 == CmpValReg) && !(BNEOp0 == CmpValReg && BNEOp1 == DestReg)) return false; // Make sure the branch is the only user of the AND. if (MaskReg.isValid()) { if (BNEOp0 == DestReg && !MBBI->getOperand(0).isKill()) return false; if (BNEOp1 == DestReg && !MBBI->getOperand(1).isKill()) return false; } ToErase.push_back(&*MBBI); LoopHeadBNETarget = MBBI->getOperand(2).getMBB(); MBBI = skipDebugInstructionsForward(std::next(MBBI), E); if (MBBI != E) return false; MBB.removeSuccessor(LoopHeadBNETarget); for (auto *MI : ToErase) MI->eraseFromParent(); return true; } bool RISCVExpandAtomicPseudo::expandAtomicCmpXchg( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, bool IsMasked, int Width, MachineBasicBlock::iterator &NextMBBI) { MachineInstr &MI = *MBBI; DebugLoc DL = MI.getDebugLoc(); MachineFunction *MF = MBB.getParent(); auto LoopHeadMBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); auto LoopTailMBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); auto DoneMBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); Register DestReg = MI.getOperand(0).getReg(); Register ScratchReg = MI.getOperand(1).getReg(); Register AddrReg = MI.getOperand(2).getReg(); Register CmpValReg = MI.getOperand(3).getReg(); Register NewValReg = MI.getOperand(4).getReg(); Register MaskReg = IsMasked ? MI.getOperand(5).getReg() : Register(); MachineBasicBlock *LoopHeadBNETarget = DoneMBB; tryToFoldBNEOnCmpXchgResult(MBB, std::next(MBBI), DestReg, CmpValReg, MaskReg, LoopHeadBNETarget); // Insert new MBBs. MF->insert(++MBB.getIterator(), LoopHeadMBB); MF->insert(++LoopHeadMBB->getIterator(), LoopTailMBB); MF->insert(++LoopTailMBB->getIterator(), DoneMBB); // Set up successors and transfer remaining instructions to DoneMBB. LoopHeadMBB->addSuccessor(LoopTailMBB); LoopHeadMBB->addSuccessor(LoopHeadBNETarget); LoopTailMBB->addSuccessor(DoneMBB); LoopTailMBB->addSuccessor(LoopHeadMBB); DoneMBB->splice(DoneMBB->end(), &MBB, MI, MBB.end()); DoneMBB->transferSuccessors(&MBB); MBB.addSuccessor(LoopHeadMBB); AtomicOrdering Ordering = static_cast(MI.getOperand(IsMasked ? 6 : 5).getImm()); if (!IsMasked) { // .loophead: // lr.[w|d] dest, (addr) // bne dest, cmpval, done BuildMI(LoopHeadMBB, DL, TII->get(getLRForRMW(Ordering, Width)), DestReg) .addReg(AddrReg); BuildMI(LoopHeadMBB, DL, TII->get(RISCV::BNE)) .addReg(DestReg) .addReg(CmpValReg) .addMBB(LoopHeadBNETarget); // .looptail: // sc.[w|d] scratch, newval, (addr) // bnez scratch, loophead BuildMI(LoopTailMBB, DL, TII->get(getSCForRMW(Ordering, Width)), ScratchReg) .addReg(AddrReg) .addReg(NewValReg); BuildMI(LoopTailMBB, DL, TII->get(RISCV::BNE)) .addReg(ScratchReg) .addReg(RISCV::X0) .addMBB(LoopHeadMBB); } else { // .loophead: // lr.w dest, (addr) // and scratch, dest, mask // bne scratch, cmpval, done Register MaskReg = MI.getOperand(5).getReg(); BuildMI(LoopHeadMBB, DL, TII->get(getLRForRMW(Ordering, Width)), DestReg) .addReg(AddrReg); BuildMI(LoopHeadMBB, DL, TII->get(RISCV::AND), ScratchReg) .addReg(DestReg) .addReg(MaskReg); BuildMI(LoopHeadMBB, DL, TII->get(RISCV::BNE)) .addReg(ScratchReg) .addReg(CmpValReg) .addMBB(LoopHeadBNETarget); // .looptail: // xor scratch, dest, newval // and scratch, scratch, mask // xor scratch, dest, scratch // sc.w scratch, scratch, (adrr) // bnez scratch, loophead insertMaskedMerge(TII, DL, LoopTailMBB, ScratchReg, DestReg, NewValReg, MaskReg, ScratchReg); BuildMI(LoopTailMBB, DL, TII->get(getSCForRMW(Ordering, Width)), ScratchReg) .addReg(AddrReg) .addReg(ScratchReg); BuildMI(LoopTailMBB, DL, TII->get(RISCV::BNE)) .addReg(ScratchReg) .addReg(RISCV::X0) .addMBB(LoopHeadMBB); } NextMBBI = MBB.end(); MI.eraseFromParent(); LivePhysRegs LiveRegs; computeAndAddLiveIns(LiveRegs, *LoopHeadMBB); computeAndAddLiveIns(LiveRegs, *LoopTailMBB); computeAndAddLiveIns(LiveRegs, *DoneMBB); return true; } } // end of anonymous namespace INITIALIZE_PASS(RISCVExpandAtomicPseudo, "riscv-expand-atomic-pseudo", RISCV_EXPAND_ATOMIC_PSEUDO_NAME, false, false) namespace llvm { FunctionPass *createRISCVExpandAtomicPseudoPass() { return new RISCVExpandAtomicPseudo(); } } // end of namespace llvm