//===----- RISCVCodeGenPrepare.cpp ----------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This is a RISC-V specific version of CodeGenPrepare. // It munges the code in the input function to better prepare it for // SelectionDAG-based code generation. This works around limitations in it's // basic-block-at-a-time approach. // //===----------------------------------------------------------------------===// #include "RISCV.h" #include "RISCVTargetMachine.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/PatternMatch.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" using namespace llvm; #define DEBUG_TYPE "riscv-codegenprepare" #define PASS_NAME "RISC-V CodeGenPrepare" namespace { class RISCVCodeGenPrepare : public FunctionPass, public InstVisitor { const DataLayout *DL; const RISCVSubtarget *ST; public: static char ID; RISCVCodeGenPrepare() : FunctionPass(ID) {} bool runOnFunction(Function &F) override; StringRef getPassName() const override { return PASS_NAME; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); } bool visitInstruction(Instruction &I) { return false; } bool visitAnd(BinaryOperator &BO); bool visitIntrinsicInst(IntrinsicInst &I); }; } // end anonymous namespace // Try to optimize (i64 (and (zext/sext (i32 X), C1))) if C1 has bit 31 set, // but bits 63:32 are zero. If we know that bit 31 of X is 0, we can fill // the upper 32 bits with ones. bool RISCVCodeGenPrepare::visitAnd(BinaryOperator &BO) { if (!ST->is64Bit()) return false; if (!BO.getType()->isIntegerTy(64)) return false; using namespace PatternMatch; // Left hand side should be a zext nneg. Value *LHSSrc; if (!match(BO.getOperand(0), m_NNegZExt(m_Value(LHSSrc)))) return false; if (!LHSSrc->getType()->isIntegerTy(32)) return false; // Right hand side should be a constant. Value *RHS = BO.getOperand(1); auto *CI = dyn_cast(RHS); if (!CI) return false; uint64_t C = CI->getZExtValue(); // Look for constants that fit in 32 bits but not simm12, and can be made // into simm12 by sign extending bit 31. This will allow use of ANDI. // TODO: Is worth making simm32? if (!isUInt<32>(C) || isInt<12>(C) || !isInt<12>(SignExtend64<32>(C))) return false; // Sign extend the constant and replace the And operand. C = SignExtend64<32>(C); BO.setOperand(1, ConstantInt::get(RHS->getType(), C)); return true; } // LLVM vector reduction intrinsics return a scalar result, but on RISC-V vector // reduction instructions write the result in the first element of a vector // register. So when a reduction in a loop uses a scalar phi, we end up with // unnecessary scalar moves: // // loop: // vfmv.s.f v10, fa0 // vfredosum.vs v8, v8, v10 // vfmv.f.s fa0, v8 // // This mainly affects ordered fadd reductions, since other types of reduction // typically use element-wise vectorisation in the loop body. This tries to // vectorize any scalar phis that feed into a fadd reduction: // // loop: // %phi = phi [ ..., %entry ], [ %acc, %loop ] // %acc = call float @llvm.vector.reduce.fadd.nxv4f32(float %phi, %vec) // // -> // // loop: // %phi = phi [ ..., %entry ], [ %acc.vec, %loop ] // %phi.scalar = extractelement %phi, i64 0 // %acc = call float @llvm.vector.reduce.fadd.nxv4f32(float %x, %vec) // %acc.vec = insertelement poison, float %acc.next, i64 0 // // Which eliminates the scalar -> vector -> scalar crossing during instruction // selection. bool RISCVCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { if (I.getIntrinsicID() != Intrinsic::vector_reduce_fadd) return false; auto *PHI = dyn_cast(I.getOperand(0)); if (!PHI || !PHI->hasOneUse() || !llvm::is_contained(PHI->incoming_values(), &I)) return false; Type *VecTy = I.getOperand(1)->getType(); IRBuilder<> Builder(PHI); auto *VecPHI = Builder.CreatePHI(VecTy, PHI->getNumIncomingValues()); for (auto *BB : PHI->blocks()) { Builder.SetInsertPoint(BB->getTerminator()); Value *InsertElt = Builder.CreateInsertElement( VecTy, PHI->getIncomingValueForBlock(BB), (uint64_t)0); VecPHI->addIncoming(InsertElt, BB); } Builder.SetInsertPoint(&I); I.setOperand(0, Builder.CreateExtractElement(VecPHI, (uint64_t)0)); PHI->eraseFromParent(); return true; } bool RISCVCodeGenPrepare::runOnFunction(Function &F) { if (skipFunction(F)) return false; auto &TPC = getAnalysis(); auto &TM = TPC.getTM(); ST = &TM.getSubtarget(F); DL = &F.getParent()->getDataLayout(); bool MadeChange = false; for (auto &BB : F) for (Instruction &I : llvm::make_early_inc_range(BB)) MadeChange |= visit(I); return MadeChange; } INITIALIZE_PASS_BEGIN(RISCVCodeGenPrepare, DEBUG_TYPE, PASS_NAME, false, false) INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) INITIALIZE_PASS_END(RISCVCodeGenPrepare, DEBUG_TYPE, PASS_NAME, false, false) char RISCVCodeGenPrepare::ID = 0; FunctionPass *llvm::createRISCVCodeGenPreparePass() { return new RISCVCodeGenPrepare(); }