//===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "RISCVMatInt.h" #include "MCTargetDesc/RISCVMCTargetDesc.h" #include "llvm/ADT/APInt.h" #include "llvm/Support/MathExtras.h" using namespace llvm; static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) { if (!HasRVC) return Res.size(); int Cost = 0; for (auto Instr : Res) { // Assume instructions that aren't listed aren't compressible. bool Compressed = false; switch (Instr.Opc) { case RISCV::SLLI: case RISCV::SRLI: Compressed = true; break; case RISCV::ADDI: case RISCV::ADDIW: case RISCV::LUI: Compressed = isInt<6>(Instr.Imm); break; } // Two RVC instructions take the same space as one RVI instruction, but // can take longer to execute than the single RVI instruction. Thus, we // consider that two RVC instruction are slightly more costly than one // RVI instruction. For longer sequences of RVC instructions the space // savings can be worth it, though. The costs below try to model that. if (!Compressed) Cost += 100; // Baseline cost of one RVI instruction: 100%. else Cost += 70; // 70% cost of baseline. } return Cost; } // Recursively generate a sequence for materializing an integer. static void generateInstSeqImpl(int64_t Val, const FeatureBitset &ActiveFeatures, RISCVMatInt::InstSeq &Res) { bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit]; if (isInt<32>(Val)) { // Depending on the active bits in the immediate Value v, the following // instruction sequences are emitted: // // v == 0 : ADDI // v[0,12) != 0 && v[12,32) == 0 : ADDI // v[0,12) == 0 && v[12,32) != 0 : LUI // v[0,32) != 0 : LUI+ADDI(W) int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF; int64_t Lo12 = SignExtend64<12>(Val); if (Hi20) Res.push_back(RISCVMatInt::Inst(RISCV::LUI, Hi20)); if (Lo12 || Hi20 == 0) { unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI; Res.push_back(RISCVMatInt::Inst(AddiOpc, Lo12)); } return; } assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target"); // Use BSETI for a single bit. if (ActiveFeatures[RISCV::FeatureStdExtZbs] && isPowerOf2_64(Val)) { Res.push_back(RISCVMatInt::Inst(RISCV::BSETI, Log2_64(Val))); return; } // In the worst case, for a full 64-bit constant, a sequence of 8 instructions // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits // while the following ADDI instructions contribute up to 12 bits each. // // On the first glance, implementing this seems to be possible by simply // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the // fact that ADDI performs a sign extended addition, doing it like that would // only be possible when at most 11 bits of the ADDI instructions are used. // Using all 12 bits of the ADDI instructions, like done by GAS, actually // requires that the constant is processed starting with the least significant // bit. // // In the following, constants are processed from LSB to MSB but instruction // emission is performed from MSB to LSB by recursively calling // generateInstSeq. In each recursion, first the lowest 12 bits are removed // from the constant and the optimal shift amount, which can be greater than // 12 bits if the constant is sparse, is determined. Then, the shifted // remaining constant is processed recursively and gets emitted as soon as it // fits into 32 bits. The emission of the shifts and additions is subsequently // performed when the recursion returns. int64_t Lo12 = SignExtend64<12>(Val); Val = (uint64_t)Val - (uint64_t)Lo12; int ShiftAmount = 0; bool Unsigned = false; // Val might now be valid for LUI without needing a shift. if (!isInt<32>(Val)) { ShiftAmount = findFirstSet((uint64_t)Val); Val >>= ShiftAmount; // If the remaining bits don't fit in 12 bits, we might be able to reduce the // shift amount in order to use LUI which will zero the lower 12 bits. if (ShiftAmount > 12 && !isInt<12>(Val)) { if (isInt<32>((uint64_t)Val << 12)) { // Reduce the shift amount and add zeros to the LSBs so it will match LUI. ShiftAmount -= 12; Val = (uint64_t)Val << 12; } else if (isUInt<32>((uint64_t)Val << 12) && ActiveFeatures[RISCV::FeatureStdExtZba]) { // Reduce the shift amount and add zeros to the LSBs so it will match // LUI, then shift left with SLLI.UW to clear the upper 32 set bits. ShiftAmount -= 12; Val = ((uint64_t)Val << 12) | (0xffffffffull << 32); Unsigned = true; } } // Try to use SLLI_UW for Val when it is uint32 but not int32. if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) && ActiveFeatures[RISCV::FeatureStdExtZba]) { // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with // SLLI_UW. Val = ((uint64_t)Val) | (0xffffffffull << 32); Unsigned = true; } } generateInstSeqImpl(Val, ActiveFeatures, Res); // Skip shift if we were able to use LUI directly. if (ShiftAmount) { if (Unsigned) Res.push_back(RISCVMatInt::Inst(RISCV::SLLI_UW, ShiftAmount)); else Res.push_back(RISCVMatInt::Inst(RISCV::SLLI, ShiftAmount)); } if (Lo12) Res.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12)); } static unsigned extractRotateInfo(int64_t Val) { // for case: 0b111..1..xxxxxx1..1.. unsigned LeadingOnes = countLeadingOnes((uint64_t)Val); unsigned TrailingOnes = countTrailingOnes((uint64_t)Val); if (TrailingOnes > 0 && TrailingOnes < 64 && (LeadingOnes + TrailingOnes) > (64 - 12)) return 64 - TrailingOnes; // for case: 0bxxx1..1..1...xxx unsigned UpperTrailingOnes = countTrailingOnes(Hi_32(Val)); unsigned LowerLeadingOnes = countLeadingOnes(Lo_32(Val)); if (UpperTrailingOnes < 32 && (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12)) return 32 - UpperTrailingOnes; return 0; } namespace llvm { namespace RISCVMatInt { InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) { RISCVMatInt::InstSeq Res; generateInstSeqImpl(Val, ActiveFeatures, Res); // If there are trailing zeros, try generating a sign extended constant with // no trailing zeros and use a final SLLI to restore them. if ((Val & 1) == 0 && Res.size() > 2) { unsigned TrailingZeros = countTrailingZeros((uint64_t)Val); int64_t ShiftedVal = Val >> TrailingZeros; RISCVMatInt::InstSeq TmpSeq; generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SLLI, TrailingZeros)); // Keep the new sequence if it is an improvement. if (TmpSeq.size() < Res.size()) { Res = TmpSeq; // A 2 instruction sequence is the best we can do. if (Res.size() <= 2) return Res; } } // If the constant is positive we might be able to generate a shifted constant // with no leading zeros and use a final SRLI to restore them. if (Val > 0 && Res.size() > 2) { assert(ActiveFeatures[RISCV::Feature64Bit] && "Expected RV32 to only need 2 instructions"); unsigned LeadingZeros = countLeadingZeros((uint64_t)Val); uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros; // Fill in the bits that will be shifted out with 1s. An example where this // helps is trailing one masks with 32 or more ones. This will generate // ADDI -1 and an SRLI. ShiftedVal |= maskTrailingOnes(LeadingZeros); RISCVMatInt::InstSeq TmpSeq; generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros)); // Keep the new sequence if it is an improvement. if (TmpSeq.size() < Res.size()) { Res = TmpSeq; // A 2 instruction sequence is the best we can do. if (Res.size() <= 2) return Res; } // Some cases can benefit from filling the lower bits with zeros instead. ShiftedVal &= maskTrailingZeros(LeadingZeros); TmpSeq.clear(); generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros)); // Keep the new sequence if it is an improvement. if (TmpSeq.size() < Res.size()) { Res = TmpSeq; // A 2 instruction sequence is the best we can do. if (Res.size() <= 2) return Res; } // If we have exactly 32 leading zeros and Zba, we can try using zext.w at // the end of the sequence. if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureStdExtZba]) { // Try replacing upper bits with 1. uint64_t LeadingOnesVal = Val | maskLeadingOnes(LeadingZeros); TmpSeq.clear(); generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq); TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADD_UW, 0)); // Keep the new sequence if it is an improvement. if (TmpSeq.size() < Res.size()) { Res = TmpSeq; // A 2 instruction sequence is the best we can do. if (Res.size() <= 2) return Res; } } } // Perform optimization with BCLRI/BSETI in the Zbs extension. if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbs]) { assert(ActiveFeatures[RISCV::Feature64Bit] && "Expected RV32 to only need 2 instructions"); // 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000, // call generateInstSeqImpl with Val|0x80000000 (which is expected be // an int32), then emit (BCLRI r, 31). // 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl // with Val&~0x80000000 (which is expected to be an int32), then // emit (BSETI r, 31). int64_t NewVal; unsigned Opc; if (Val < 0) { Opc = RISCV::BCLRI; NewVal = Val | 0x80000000ll; } else { Opc = RISCV::BSETI; NewVal = Val & ~0x80000000ll; } if (isInt<32>(NewVal)) { RISCVMatInt::InstSeq TmpSeq; generateInstSeqImpl(NewVal, ActiveFeatures, TmpSeq); TmpSeq.push_back(RISCVMatInt::Inst(Opc, 31)); if (TmpSeq.size() < Res.size()) Res = TmpSeq; } // Try to use BCLRI for upper 32 bits if the original lower 32 bits are // negative int32, or use BSETI for upper 32 bits if the original lower // 32 bits are positive int32. int32_t Lo = Val; uint32_t Hi = Val >> 32; Opc = 0; RISCVMatInt::InstSeq TmpSeq; generateInstSeqImpl(Lo, ActiveFeatures, TmpSeq); // Check if it is profitable to use BCLRI/BSETI. if (Lo > 0 && TmpSeq.size() + countPopulation(Hi) < Res.size()) { Opc = RISCV::BSETI; } else if (Lo < 0 && TmpSeq.size() + countPopulation(~Hi) < Res.size()) { Opc = RISCV::BCLRI; Hi = ~Hi; } // Search for each bit and build corresponding BCLRI/BSETI. if (Opc > 0) { while (Hi != 0) { unsigned Bit = countTrailingZeros(Hi); TmpSeq.push_back(RISCVMatInt::Inst(Opc, Bit + 32)); Hi &= ~(1 << Bit); } if (TmpSeq.size() < Res.size()) Res = TmpSeq; } } // Perform optimization with SH*ADD in the Zba extension. if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZba]) { assert(ActiveFeatures[RISCV::Feature64Bit] && "Expected RV32 to only need 2 instructions"); int64_t Div = 0; unsigned Opc = 0; RISCVMatInt::InstSeq TmpSeq; // Select the opcode and divisor. if ((Val % 3) == 0 && isInt<32>(Val / 3)) { Div = 3; Opc = RISCV::SH1ADD; } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) { Div = 5; Opc = RISCV::SH2ADD; } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) { Div = 9; Opc = RISCV::SH3ADD; } // Build the new instruction sequence. if (Div > 0) { generateInstSeqImpl(Val / Div, ActiveFeatures, TmpSeq); TmpSeq.push_back(RISCVMatInt::Inst(Opc, 0)); if (TmpSeq.size() < Res.size()) Res = TmpSeq; } else { // Try to use LUI+SH*ADD+ADDI. int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull; int64_t Lo12 = SignExtend64<12>(Val); Div = 0; if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) { Div = 3; Opc = RISCV::SH1ADD; } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) { Div = 5; Opc = RISCV::SH2ADD; } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) { Div = 9; Opc = RISCV::SH3ADD; } // Build the new instruction sequence. if (Div > 0) { // For Val that has zero Lo12 (implies Val equals to Hi52) should has // already been processed to LUI+SH*ADD by previous optimization. assert(Lo12 != 0 && "unexpected instruction sequence for immediate materialisation"); assert(TmpSeq.empty() && "Expected empty TmpSeq"); generateInstSeqImpl(Hi52 / Div, ActiveFeatures, TmpSeq); TmpSeq.push_back(RISCVMatInt::Inst(Opc, 0)); TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12)); if (TmpSeq.size() < Res.size()) Res = TmpSeq; } } } // Perform optimization with rori in the Zbb extension. if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbb]) { if (unsigned Rotate = extractRotateInfo(Val)) { RISCVMatInt::InstSeq TmpSeq; uint64_t NegImm12 = ((uint64_t)Val >> (64 - Rotate)) | ((uint64_t)Val << Rotate); assert(isInt<12>(NegImm12)); TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDI, NegImm12)); TmpSeq.push_back(RISCVMatInt::Inst(RISCV::RORI, Rotate)); Res = TmpSeq; } } return Res; } int getIntMatCost(const APInt &Val, unsigned Size, const FeatureBitset &ActiveFeatures, bool CompressionCost) { bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit]; bool HasRVC = CompressionCost && ActiveFeatures[RISCV::FeatureStdExtC]; int PlatRegSize = IsRV64 ? 64 : 32; // Split the constant into platform register sized chunks, and calculate cost // of each chunk. int Cost = 0; for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) { APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize); InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures); Cost += getInstSeqCost(MatSeq, HasRVC); } return std::max(1, Cost); } OpndKind Inst::getOpndKind() const { switch (Opc) { default: llvm_unreachable("Unexpected opcode!"); case RISCV::LUI: return RISCVMatInt::Imm; case RISCV::ADD_UW: return RISCVMatInt::RegX0; case RISCV::SH1ADD: case RISCV::SH2ADD: case RISCV::SH3ADD: return RISCVMatInt::RegReg; case RISCV::ADDI: case RISCV::ADDIW: case RISCV::SLLI: case RISCV::SRLI: case RISCV::SLLI_UW: case RISCV::RORI: case RISCV::BSETI: case RISCV::BCLRI: return RISCVMatInt::RegImm; } } } // namespace RISCVMatInt } // namespace llvm