//===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "RISCVMatInt.h" #include "MCTargetDesc/RISCVMCTargetDesc.h" #include "llvm/ADT/APInt.h" #include "llvm/Support/MathExtras.h" using namespace llvm; static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) { if (!HasRVC) return Res.size(); int Cost = 0; for (auto Instr : Res) { // Assume instructions that aren't listed aren't compressible. bool Compressed = false; switch (Instr.getOpcode()) { case RISCV::SLLI: case RISCV::SRLI: Compressed = true; break; case RISCV::ADDI: case RISCV::ADDIW: case RISCV::LUI: Compressed = isInt<6>(Instr.getImm()); break; } // Two RVC instructions take the same space as one RVI instruction, but // can take longer to execute than the single RVI instruction. Thus, we // consider that two RVC instruction are slightly more costly than one // RVI instruction. For longer sequences of RVC instructions the space // savings can be worth it, though. The costs below try to model that. if (!Compressed) Cost += 100; // Baseline cost of one RVI instruction: 100%. else Cost += 70; // 70% cost of baseline. } return Cost; } // Recursively generate a sequence for materializing an integer. static void generateInstSeqImpl(int64_t Val, const MCSubtargetInfo &STI, RISCVMatInt::InstSeq &Res) { bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit); // Use BSETI for a single bit that can't be expressed by a single LUI or ADDI. if (STI.hasFeature(RISCV::FeatureStdExtZbs) && isPowerOf2_64(Val) && (!isInt<32>(Val) || Val == 0x800)) { Res.emplace_back(RISCV::BSETI, Log2_64(Val)); return; } if (isInt<32>(Val)) { // Depending on the active bits in the immediate Value v, the following // instruction sequences are emitted: // // v == 0 : ADDI // v[0,12) != 0 && v[12,32) == 0 : ADDI // v[0,12) == 0 && v[12,32) != 0 : LUI // v[0,32) != 0 : LUI+ADDI(W) int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF; int64_t Lo12 = SignExtend64<12>(Val); if (Hi20) Res.emplace_back(RISCV::LUI, Hi20); if (Lo12 || Hi20 == 0) { unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI; Res.emplace_back(AddiOpc, Lo12); } return; } assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target"); // In the worst case, for a full 64-bit constant, a sequence of 8 instructions // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits // while the following ADDI instructions contribute up to 12 bits each. // // On the first glance, implementing this seems to be possible by simply // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the // fact that ADDI performs a sign extended addition, doing it like that would // only be possible when at most 11 bits of the ADDI instructions are used. // Using all 12 bits of the ADDI instructions, like done by GAS, actually // requires that the constant is processed starting with the least significant // bit. // // In the following, constants are processed from LSB to MSB but instruction // emission is performed from MSB to LSB by recursively calling // generateInstSeq. In each recursion, first the lowest 12 bits are removed // from the constant and the optimal shift amount, which can be greater than // 12 bits if the constant is sparse, is determined. Then, the shifted // remaining constant is processed recursively and gets emitted as soon as it // fits into 32 bits. The emission of the shifts and additions is subsequently // performed when the recursion returns. int64_t Lo12 = SignExtend64<12>(Val); Val = (uint64_t)Val - (uint64_t)Lo12; int ShiftAmount = 0; bool Unsigned = false; // Val might now be valid for LUI without needing a shift. if (!isInt<32>(Val)) { ShiftAmount = llvm::countr_zero((uint64_t)Val); Val >>= ShiftAmount; // If the remaining bits don't fit in 12 bits, we might be able to reduce the // shift amount in order to use LUI which will zero the lower 12 bits. if (ShiftAmount > 12 && !isInt<12>(Val)) { if (isInt<32>((uint64_t)Val << 12)) { // Reduce the shift amount and add zeros to the LSBs so it will match LUI. ShiftAmount -= 12; Val = (uint64_t)Val << 12; } else if (isUInt<32>((uint64_t)Val << 12) && STI.hasFeature(RISCV::FeatureStdExtZba)) { // Reduce the shift amount and add zeros to the LSBs so it will match // LUI, then shift left with SLLI.UW to clear the upper 32 set bits. ShiftAmount -= 12; Val = ((uint64_t)Val << 12) | (0xffffffffull << 32); Unsigned = true; } } // Try to use SLLI_UW for Val when it is uint32 but not int32. if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) && STI.hasFeature(RISCV::FeatureStdExtZba)) { // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with // SLLI_UW. Val = ((uint64_t)Val) | (0xffffffffull << 32); Unsigned = true; } } generateInstSeqImpl(Val, STI, Res); // Skip shift if we were able to use LUI directly. if (ShiftAmount) { unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI; Res.emplace_back(Opc, ShiftAmount); } if (Lo12) Res.emplace_back(RISCV::ADDI, Lo12); } static unsigned extractRotateInfo(int64_t Val) { // for case: 0b111..1..xxxxxx1..1.. unsigned LeadingOnes = llvm::countl_one((uint64_t)Val); unsigned TrailingOnes = llvm::countr_one((uint64_t)Val); if (TrailingOnes > 0 && TrailingOnes < 64 && (LeadingOnes + TrailingOnes) > (64 - 12)) return 64 - TrailingOnes; // for case: 0bxxx1..1..1...xxx unsigned UpperTrailingOnes = llvm::countr_one(Hi_32(Val)); unsigned LowerLeadingOnes = llvm::countl_one(Lo_32(Val)); if (UpperTrailingOnes < 32 && (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12)) return 32 - UpperTrailingOnes; return 0; } static void generateInstSeqLeadingZeros(int64_t Val, const MCSubtargetInfo &STI, RISCVMatInt::InstSeq &Res) { assert(Val > 0 && "Expected postive val"); unsigned LeadingZeros = llvm::countl_zero((uint64_t)Val); uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros; // Fill in the bits that will be shifted out with 1s. An example where this // helps is trailing one masks with 32 or more ones. This will generate // ADDI -1 and an SRLI. ShiftedVal |= maskTrailingOnes(LeadingZeros); RISCVMatInt::InstSeq TmpSeq; generateInstSeqImpl(ShiftedVal, STI, TmpSeq); // Keep the new sequence if it is an improvement or the original is empty. if ((TmpSeq.size() + 1) < Res.size() || (Res.empty() && TmpSeq.size() < 8)) { TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros); Res = TmpSeq; } // Some cases can benefit from filling the lower bits with zeros instead. ShiftedVal &= maskTrailingZeros(LeadingZeros); TmpSeq.clear(); generateInstSeqImpl(ShiftedVal, STI, TmpSeq); // Keep the new sequence if it is an improvement or the original is empty. if ((TmpSeq.size() + 1) < Res.size() || (Res.empty() && TmpSeq.size() < 8)) { TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros); Res = TmpSeq; } // If we have exactly 32 leading zeros and Zba, we can try using zext.w at // the end of the sequence. if (LeadingZeros == 32 && STI.hasFeature(RISCV::FeatureStdExtZba)) { // Try replacing upper bits with 1. uint64_t LeadingOnesVal = Val | maskLeadingOnes(LeadingZeros); TmpSeq.clear(); generateInstSeqImpl(LeadingOnesVal, STI, TmpSeq); // Keep the new sequence if it is an improvement. if ((TmpSeq.size() + 1) < Res.size() || (Res.empty() && TmpSeq.size() < 8)) { TmpSeq.emplace_back(RISCV::ADD_UW, 0); Res = TmpSeq; } } } namespace llvm::RISCVMatInt { InstSeq generateInstSeq(int64_t Val, const MCSubtargetInfo &STI) { RISCVMatInt::InstSeq Res; generateInstSeqImpl(Val, STI, Res); // If the low 12 bits are non-zero, the first expansion may end with an ADDI // or ADDIW. If there are trailing zeros, try generating a sign extended // constant with no trailing zeros and use a final SLLI to restore them. if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) { unsigned TrailingZeros = llvm::countr_zero((uint64_t)Val); int64_t ShiftedVal = Val >> TrailingZeros; // If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since // its more compressible. But only if LUI+ADDI(W) isn't fusable. // NOTE: We don't check for C extension to minimize differences in generated // code. bool IsShiftedCompressible = isInt<6>(ShiftedVal) && !STI.hasFeature(RISCV::TuneLUIADDIFusion); RISCVMatInt::InstSeq TmpSeq; generateInstSeqImpl(ShiftedVal, STI, TmpSeq); // Keep the new sequence if it is an improvement. if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) { TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros); Res = TmpSeq; } } // If we have a 1 or 2 instruction sequence this is the best we can do. This // will always be true for RV32 and will often be true for RV64. if (Res.size() <= 2) return Res; assert(STI.hasFeature(RISCV::Feature64Bit) && "Expected RV32 to only need 2 instructions"); // If the lower 13 bits are something like 0x17ff, try to add 1 to change the // lower 13 bits to 0x1800. We can restore this with an ADDI of -1 at the end // of the sequence. Call generateInstSeqImpl on the new constant which may // subtract 0xfffffffffffff800 to create another ADDI. This will leave a // constant with more than 12 trailing zeros for the next recursive step. if ((Val & 0xfff) != 0 && (Val & 0x1800) == 0x1000) { int64_t Imm12 = -(0x800 - (Val & 0xfff)); int64_t AdjustedVal = Val - Imm12; RISCVMatInt::InstSeq TmpSeq; generateInstSeqImpl(AdjustedVal, STI, TmpSeq); // Keep the new sequence if it is an improvement. if ((TmpSeq.size() + 1) < Res.size()) { TmpSeq.emplace_back(RISCV::ADDI, Imm12); Res = TmpSeq; } } // If the constant is positive we might be able to generate a shifted constant // with no leading zeros and use a final SRLI to restore them. if (Val > 0 && Res.size() > 2) { generateInstSeqLeadingZeros(Val, STI, Res); } // If the constant is negative, trying inverting and using our trailing zero // optimizations. Use an xori to invert the final value. if (Val < 0 && Res.size() > 3) { uint64_t InvertedVal = ~(uint64_t)Val; RISCVMatInt::InstSeq TmpSeq; generateInstSeqLeadingZeros(InvertedVal, STI, TmpSeq); // Keep it if we found a sequence that is smaller after inverting. if (!TmpSeq.empty() && (TmpSeq.size() + 1) < Res.size()) { TmpSeq.emplace_back(RISCV::XORI, -1); Res = TmpSeq; } } // If the Low and High halves are the same, use pack. The pack instruction // packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the // lower half and rs2 in the upper half. if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbkb)) { int64_t LoVal = SignExtend64<32>(Val); int64_t HiVal = SignExtend64<32>(Val >> 32); if (LoVal == HiVal) { RISCVMatInt::InstSeq TmpSeq; generateInstSeqImpl(LoVal, STI, TmpSeq); if ((TmpSeq.size() + 1) < Res.size()) { TmpSeq.emplace_back(RISCV::PACK, 0); Res = TmpSeq; } } } // Perform optimization with BCLRI/BSETI in the Zbs extension. if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) { // 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000, // call generateInstSeqImpl with Val|0x80000000 (which is expected be // an int32), then emit (BCLRI r, 31). // 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl // with Val&~0x80000000 (which is expected to be an int32), then // emit (BSETI r, 31). int64_t NewVal; unsigned Opc; if (Val < 0) { Opc = RISCV::BCLRI; NewVal = Val | 0x80000000ll; } else { Opc = RISCV::BSETI; NewVal = Val & ~0x80000000ll; } if (isInt<32>(NewVal)) { RISCVMatInt::InstSeq TmpSeq; generateInstSeqImpl(NewVal, STI, TmpSeq); if ((TmpSeq.size() + 1) < Res.size()) { TmpSeq.emplace_back(Opc, 31); Res = TmpSeq; } } // Try to use BCLRI for upper 32 bits if the original lower 32 bits are // negative int32, or use BSETI for upper 32 bits if the original lower // 32 bits are positive int32. int32_t Lo = Lo_32(Val); uint32_t Hi = Hi_32(Val); Opc = 0; RISCVMatInt::InstSeq TmpSeq; generateInstSeqImpl(Lo, STI, TmpSeq); // Check if it is profitable to use BCLRI/BSETI. if (Lo > 0 && TmpSeq.size() + llvm::popcount(Hi) < Res.size()) { Opc = RISCV::BSETI; } else if (Lo < 0 && TmpSeq.size() + llvm::popcount(~Hi) < Res.size()) { Opc = RISCV::BCLRI; Hi = ~Hi; } // Search for each bit and build corresponding BCLRI/BSETI. if (Opc > 0) { while (Hi != 0) { unsigned Bit = llvm::countr_zero(Hi); TmpSeq.emplace_back(Opc, Bit + 32); Hi &= (Hi - 1); // Clear lowest set bit. } if (TmpSeq.size() < Res.size()) Res = TmpSeq; } } // Perform optimization with SH*ADD in the Zba extension. if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZba)) { int64_t Div = 0; unsigned Opc = 0; RISCVMatInt::InstSeq TmpSeq; // Select the opcode and divisor. if ((Val % 3) == 0 && isInt<32>(Val / 3)) { Div = 3; Opc = RISCV::SH1ADD; } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) { Div = 5; Opc = RISCV::SH2ADD; } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) { Div = 9; Opc = RISCV::SH3ADD; } // Build the new instruction sequence. if (Div > 0) { generateInstSeqImpl(Val / Div, STI, TmpSeq); if ((TmpSeq.size() + 1) < Res.size()) { TmpSeq.emplace_back(Opc, 0); Res = TmpSeq; } } else { // Try to use LUI+SH*ADD+ADDI. int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull; int64_t Lo12 = SignExtend64<12>(Val); Div = 0; if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) { Div = 3; Opc = RISCV::SH1ADD; } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) { Div = 5; Opc = RISCV::SH2ADD; } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) { Div = 9; Opc = RISCV::SH3ADD; } // Build the new instruction sequence. if (Div > 0) { // For Val that has zero Lo12 (implies Val equals to Hi52) should has // already been processed to LUI+SH*ADD by previous optimization. assert(Lo12 != 0 && "unexpected instruction sequence for immediate materialisation"); assert(TmpSeq.empty() && "Expected empty TmpSeq"); generateInstSeqImpl(Hi52 / Div, STI, TmpSeq); if ((TmpSeq.size() + 2) < Res.size()) { TmpSeq.emplace_back(Opc, 0); TmpSeq.emplace_back(RISCV::ADDI, Lo12); Res = TmpSeq; } } } } // Perform optimization with rori in the Zbb and th.srri in the XTheadBb // extension. if (Res.size() > 2 && (STI.hasFeature(RISCV::FeatureStdExtZbb) || STI.hasFeature(RISCV::FeatureVendorXTHeadBb))) { if (unsigned Rotate = extractRotateInfo(Val)) { RISCVMatInt::InstSeq TmpSeq; uint64_t NegImm12 = llvm::rotl(Val, Rotate); assert(isInt<12>(NegImm12)); TmpSeq.emplace_back(RISCV::ADDI, NegImm12); TmpSeq.emplace_back(STI.hasFeature(RISCV::FeatureStdExtZbb) ? RISCV::RORI : RISCV::TH_SRRI, Rotate); Res = TmpSeq; } } return Res; } InstSeq generateTwoRegInstSeq(int64_t Val, const MCSubtargetInfo &STI, unsigned &ShiftAmt, unsigned &AddOpc) { int64_t LoVal = SignExtend64<32>(Val); if (LoVal == 0) return RISCVMatInt::InstSeq(); // Subtract the LoVal to emulate the effect of the final ADD. uint64_t Tmp = (uint64_t)Val - (uint64_t)LoVal; assert(Tmp != 0); // Use trailing zero counts to figure how far we need to shift LoVal to line // up with the remaining constant. // TODO: This algorithm assumes all non-zero bits in the low 32 bits of the // final constant come from LoVal. unsigned TzLo = llvm::countr_zero((uint64_t)LoVal); unsigned TzHi = llvm::countr_zero(Tmp); assert(TzLo < 32 && TzHi >= 32); ShiftAmt = TzHi - TzLo; AddOpc = RISCV::ADD; if (Tmp == ((uint64_t)LoVal << ShiftAmt)) return RISCVMatInt::generateInstSeq(LoVal, STI); // If we have Zba, we can use (ADD_UW X, (SLLI X, 32)). if (STI.hasFeature(RISCV::FeatureStdExtZba) && Lo_32(Val) == Hi_32(Val)) { ShiftAmt = 32; AddOpc = RISCV::ADD_UW; return RISCVMatInt::generateInstSeq(LoVal, STI); } return RISCVMatInt::InstSeq(); } int getIntMatCost(const APInt &Val, unsigned Size, const MCSubtargetInfo &STI, bool CompressionCost) { bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit); bool HasRVC = CompressionCost && (STI.hasFeature(RISCV::FeatureStdExtC) || STI.hasFeature(RISCV::FeatureStdExtZca)); int PlatRegSize = IsRV64 ? 64 : 32; // Split the constant into platform register sized chunks, and calculate cost // of each chunk. int Cost = 0; for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) { APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize); InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), STI); Cost += getInstSeqCost(MatSeq, HasRVC); } return std::max(1, Cost); } OpndKind Inst::getOpndKind() const { switch (Opc) { default: llvm_unreachable("Unexpected opcode!"); case RISCV::LUI: return RISCVMatInt::Imm; case RISCV::ADD_UW: return RISCVMatInt::RegX0; case RISCV::SH1ADD: case RISCV::SH2ADD: case RISCV::SH3ADD: case RISCV::PACK: return RISCVMatInt::RegReg; case RISCV::ADDI: case RISCV::ADDIW: case RISCV::XORI: case RISCV::SLLI: case RISCV::SRLI: case RISCV::SLLI_UW: case RISCV::RORI: case RISCV::BSETI: case RISCV::BCLRI: case RISCV::TH_SRRI: return RISCVMatInt::RegImm; } } } // namespace llvm::RISCVMatInt