//===-- RISCVBaseInfo.h - Top level definitions for RISCV MC ----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains small standalone enum definitions for the RISCV target // useful for the compiler back-end and the MC libraries. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_RISCV_MCTARGETDESC_RISCVBASEINFO_H #define LLVM_LIB_TARGET_RISCV_MCTARGETDESC_RISCVBASEINFO_H #include "MCTargetDesc/RISCVMCTargetDesc.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/SubtargetFeature.h" namespace llvm { // RISCVII - This namespace holds all of the target specific flags that // instruction info tracks. All definitions must match RISCVInstrFormats.td. namespace RISCVII { enum { InstFormatPseudo = 0, InstFormatR = 1, InstFormatR4 = 2, InstFormatI = 3, InstFormatS = 4, InstFormatB = 5, InstFormatU = 6, InstFormatJ = 7, InstFormatCR = 8, InstFormatCI = 9, InstFormatCSS = 10, InstFormatCIW = 11, InstFormatCL = 12, InstFormatCS = 13, InstFormatCA = 14, InstFormatCB = 15, InstFormatCJ = 16, InstFormatOther = 17, InstFormatMask = 31, InstFormatShift = 0, ConstraintShift = InstFormatShift + 5, ConstraintMask = 0b111 << ConstraintShift, VLMulShift = ConstraintShift + 3, VLMulMask = 0b111 << VLMulShift, // Do we need to add a dummy mask op when converting RVV Pseudo to MCInst. HasDummyMaskOpShift = VLMulShift + 3, HasDummyMaskOpMask = 1 << HasDummyMaskOpShift, // Force a tail agnostic policy even this instruction has a tied destination. ForceTailAgnosticShift = HasDummyMaskOpShift + 1, ForceTailAgnosticMask = 1 << ForceTailAgnosticShift, // Does this instruction have a merge operand that must be removed when // converting to MCInst. It will be the first explicit use operand. Used by // RVV Pseudos. HasMergeOpShift = ForceTailAgnosticShift + 1, HasMergeOpMask = 1 << HasMergeOpShift, // Does this instruction have a SEW operand. It will be the last explicit // operand. Used by RVV Pseudos. HasSEWOpShift = HasMergeOpShift + 1, HasSEWOpMask = 1 << HasSEWOpShift, // Does this instruction have a VL operand. It will be the second to last // explicit operand. Used by RVV Pseudos. HasVLOpShift = HasSEWOpShift + 1, HasVLOpMask = 1 << HasVLOpShift, }; // Match with the definitions in RISCVInstrFormatsV.td enum VConstraintType { NoConstraint = 0, VS2Constraint = 0b001, VS1Constraint = 0b010, VMConstraint = 0b100, }; enum VLMUL : uint8_t { LMUL_1 = 0, LMUL_2, LMUL_4, LMUL_8, LMUL_RESERVED, LMUL_F8, LMUL_F4, LMUL_F2 }; // Helper functions to read TSFlags. /// \returns the format of the instruction. static inline unsigned getFormat(uint64_t TSFlags) { return (TSFlags & InstFormatMask) >> InstFormatShift; } /// \returns the constraint for the instruction. static inline VConstraintType getConstraint(uint64_t TSFlags) { return static_cast ((TSFlags & ConstraintMask) >> ConstraintShift); } /// \returns the LMUL for the instruction. static inline VLMUL getLMul(uint64_t TSFlags) { return static_cast((TSFlags & VLMulMask) >> VLMulShift); } /// \returns true if there is a dummy mask operand for the instruction. static inline bool hasDummyMaskOp(uint64_t TSFlags) { return TSFlags & HasDummyMaskOpMask; } /// \returns true if tail agnostic is enforced for the instruction. static inline bool doesForceTailAgnostic(uint64_t TSFlags) { return TSFlags & ForceTailAgnosticMask; } /// \returns true if there is a merge operand for the instruction. static inline bool hasMergeOp(uint64_t TSFlags) { return TSFlags & HasMergeOpMask; } /// \returns true if there is a SEW operand for the instruction. static inline bool hasSEWOp(uint64_t TSFlags) { return TSFlags & HasSEWOpMask; } /// \returns true if there is a VL operand for the instruction. static inline bool hasVLOp(uint64_t TSFlags) { return TSFlags & HasVLOpMask; } // RISC-V Specific Machine Operand Flags enum { MO_None = 0, MO_CALL = 1, MO_PLT = 2, MO_LO = 3, MO_HI = 4, MO_PCREL_LO = 5, MO_PCREL_HI = 6, MO_GOT_HI = 7, MO_TPREL_LO = 8, MO_TPREL_HI = 9, MO_TPREL_ADD = 10, MO_TLS_GOT_HI = 11, MO_TLS_GD_HI = 12, // Used to differentiate between target-specific "direct" flags and "bitmask" // flags. A machine operand can only have one "direct" flag, but can have // multiple "bitmask" flags. MO_DIRECT_FLAG_MASK = 15 }; } // namespace RISCVII namespace RISCVOp { enum OperandType : unsigned { OPERAND_FIRST_RISCV_IMM = MCOI::OPERAND_FIRST_TARGET, OPERAND_UIMM4 = OPERAND_FIRST_RISCV_IMM, OPERAND_UIMM5, OPERAND_UIMM12, OPERAND_SIMM12, OPERAND_UIMM20, OPERAND_UIMMLOG2XLEN, OPERAND_LAST_RISCV_IMM = OPERAND_UIMMLOG2XLEN, // Operand is either a register or uimm5, this is used by V extension pseudo // instructions to represent a value that be passed as AVL to either vsetvli // or vsetivli. OPERAND_AVL, }; } // namespace RISCVOp // Describes the predecessor/successor bits used in the FENCE instruction. namespace RISCVFenceField { enum FenceField { I = 8, O = 4, R = 2, W = 1 }; } // Describes the supported floating point rounding mode encodings. namespace RISCVFPRndMode { enum RoundingMode { RNE = 0, RTZ = 1, RDN = 2, RUP = 3, RMM = 4, DYN = 7, Invalid }; inline static StringRef roundingModeToString(RoundingMode RndMode) { switch (RndMode) { default: llvm_unreachable("Unknown floating point rounding mode"); case RISCVFPRndMode::RNE: return "rne"; case RISCVFPRndMode::RTZ: return "rtz"; case RISCVFPRndMode::RDN: return "rdn"; case RISCVFPRndMode::RUP: return "rup"; case RISCVFPRndMode::RMM: return "rmm"; case RISCVFPRndMode::DYN: return "dyn"; } } inline static RoundingMode stringToRoundingMode(StringRef Str) { return StringSwitch(Str) .Case("rne", RISCVFPRndMode::RNE) .Case("rtz", RISCVFPRndMode::RTZ) .Case("rdn", RISCVFPRndMode::RDN) .Case("rup", RISCVFPRndMode::RUP) .Case("rmm", RISCVFPRndMode::RMM) .Case("dyn", RISCVFPRndMode::DYN) .Default(RISCVFPRndMode::Invalid); } inline static bool isValidRoundingMode(unsigned Mode) { switch (Mode) { default: return false; case RISCVFPRndMode::RNE: case RISCVFPRndMode::RTZ: case RISCVFPRndMode::RDN: case RISCVFPRndMode::RUP: case RISCVFPRndMode::RMM: case RISCVFPRndMode::DYN: return true; } } } // namespace RISCVFPRndMode namespace RISCVSysReg { struct SysReg { const char *Name; const char *AltName; const char *DeprecatedName; unsigned Encoding; // FIXME: add these additional fields when needed. // Privilege Access: Read, Write, Read-Only. // unsigned ReadWrite; // Privilege Mode: User, System or Machine. // unsigned Mode; // Check field name. // unsigned Extra; // Register number without the privilege bits. // unsigned Number; FeatureBitset FeaturesRequired; bool isRV32Only; bool haveRequiredFeatures(const FeatureBitset &ActiveFeatures) const { // Not in 32-bit mode. if (isRV32Only && ActiveFeatures[RISCV::Feature64Bit]) return false; // No required feature associated with the system register. if (FeaturesRequired.none()) return true; return (FeaturesRequired & ActiveFeatures) == FeaturesRequired; } }; #define GET_SysRegsList_DECL #include "RISCVGenSearchableTables.inc" } // end namespace RISCVSysReg namespace RISCVABI { enum ABI { ABI_ILP32, ABI_ILP32F, ABI_ILP32D, ABI_ILP32E, ABI_LP64, ABI_LP64F, ABI_LP64D, ABI_Unknown }; // Returns the target ABI, or else a StringError if the requested ABIName is // not supported for the given TT and FeatureBits combination. ABI computeTargetABI(const Triple &TT, FeatureBitset FeatureBits, StringRef ABIName); ABI getTargetABI(StringRef ABIName); // Returns the register used to hold the stack pointer after realignment. MCRegister getBPReg(); // Returns the register holding shadow call stack pointer. MCRegister getSCSPReg(); } // namespace RISCVABI namespace RISCVFeatures { // Validates if the given combination of features are valid for the target // triple. Exits with report_fatal_error if not. void validate(const Triple &TT, const FeatureBitset &FeatureBits); } // namespace RISCVFeatures namespace RISCVVType { // Is this a SEW value that can be encoded into the VTYPE format. inline static bool isValidSEW(unsigned SEW) { return isPowerOf2_32(SEW) && SEW >= 8 && SEW <= 1024; } // Is this a LMUL value that can be encoded into the VTYPE format. inline static bool isValidLMUL(unsigned LMUL, bool Fractional) { return isPowerOf2_32(LMUL) && LMUL <= 8 && (!Fractional || LMUL != 1); } unsigned encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW, bool TailAgnostic, bool MaskAgnostic); inline static RISCVII::VLMUL getVLMUL(unsigned VType) { unsigned VLMUL = VType & 0x7; return static_cast(VLMUL); } // Decode VLMUL into 1,2,4,8 and fractional indicator. std::pair decodeVLMUL(RISCVII::VLMUL VLMUL); inline static unsigned decodeVSEW(unsigned VSEW) { assert(VSEW < 8 && "Unexpected VSEW value"); return 1 << (VSEW + 3); } inline static unsigned getSEW(unsigned VType) { unsigned VSEW = (VType >> 3) & 0x7; return decodeVSEW(VSEW); } inline static bool isTailAgnostic(unsigned VType) { return VType & 0x40; } inline static bool isMaskAgnostic(unsigned VType) { return VType & 0x80; } void printVType(unsigned VType, raw_ostream &OS); } // namespace RISCVVType } // namespace llvm #endif