//===-- RISCVBaseInfo.h - Top level definitions for RISC-V MC ---*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains small standalone enum definitions for the RISC-V target // useful for the compiler back-end and the MC libraries. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_RISCV_MCTARGETDESC_RISCVBASEINFO_H #define LLVM_LIB_TARGET_RISCV_MCTARGETDESC_RISCVBASEINFO_H #include "MCTargetDesc/RISCVMCTargetDesc.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/Support/RISCVISAInfo.h" #include "llvm/TargetParser/SubtargetFeature.h" namespace llvm { // RISCVII - This namespace holds all of the target specific flags that // instruction info tracks. All definitions must match RISCVInstrFormats.td. namespace RISCVII { enum { InstFormatPseudo = 0, InstFormatR = 1, InstFormatR4 = 2, InstFormatI = 3, InstFormatS = 4, InstFormatB = 5, InstFormatU = 6, InstFormatJ = 7, InstFormatCR = 8, InstFormatCI = 9, InstFormatCSS = 10, InstFormatCIW = 11, InstFormatCL = 12, InstFormatCS = 13, InstFormatCA = 14, InstFormatCB = 15, InstFormatCJ = 16, InstFormatCU = 17, InstFormatCLB = 18, InstFormatCLH = 19, InstFormatCSB = 20, InstFormatCSH = 21, InstFormatOther = 22, InstFormatMask = 31, InstFormatShift = 0, ConstraintShift = InstFormatShift + 5, VS2Constraint = 0b001 << ConstraintShift, VS1Constraint = 0b010 << ConstraintShift, VMConstraint = 0b100 << ConstraintShift, ConstraintMask = 0b111 << ConstraintShift, VLMulShift = ConstraintShift + 3, VLMulMask = 0b111 << VLMulShift, // Force a tail agnostic policy even this instruction has a tied destination. ForceTailAgnosticShift = VLMulShift + 3, ForceTailAgnosticMask = 1 << ForceTailAgnosticShift, // Is this a _TIED vector pseudo instruction. For these instructions we // shouldn't skip the tied operand when converting to MC instructions. IsTiedPseudoShift = ForceTailAgnosticShift + 1, IsTiedPseudoMask = 1 << IsTiedPseudoShift, // Does this instruction have a SEW operand. It will be the last explicit // operand unless there is a vector policy operand. Used by RVV Pseudos. HasSEWOpShift = IsTiedPseudoShift + 1, HasSEWOpMask = 1 << HasSEWOpShift, // Does this instruction have a VL operand. It will be the second to last // explicit operand unless there is a vector policy operand. Used by RVV // Pseudos. HasVLOpShift = HasSEWOpShift + 1, HasVLOpMask = 1 << HasVLOpShift, // Does this instruction have a vector policy operand. It will be the last // explicit operand. Used by RVV Pseudos. HasVecPolicyOpShift = HasVLOpShift + 1, HasVecPolicyOpMask = 1 << HasVecPolicyOpShift, // Is this instruction a vector widening reduction instruction. Used by RVV // Pseudos. IsRVVWideningReductionShift = HasVecPolicyOpShift + 1, IsRVVWideningReductionMask = 1 << IsRVVWideningReductionShift, // Does this instruction care about mask policy. If it is not, the mask policy // could be either agnostic or undisturbed. For example, unmasked, store, and // reduction operations result would not be affected by mask policy, so // compiler has free to select either one. UsesMaskPolicyShift = IsRVVWideningReductionShift + 1, UsesMaskPolicyMask = 1 << UsesMaskPolicyShift, // Indicates that the result can be considered sign extended from bit 31. Some // instructions with this flag aren't W instructions, but are either sign // extended from a smaller size, always outputs a small integer, or put zeros // in bits 63:31. Used by the SExtWRemoval pass. IsSignExtendingOpWShift = UsesMaskPolicyShift + 1, IsSignExtendingOpWMask = 1ULL << IsSignExtendingOpWShift, HasRoundModeOpShift = IsSignExtendingOpWShift + 1, HasRoundModeOpMask = 1 << HasRoundModeOpShift, UsesVXRMShift = HasRoundModeOpShift + 1, UsesVXRMMask = 1 << UsesVXRMShift, // Indicates whether these instructions can partially overlap between source // registers and destination registers according to the vector spec. // 0 -> not a vector pseudo // 1 -> default value for vector pseudos. not widening or narrowing. // 2 -> narrowing case // 3 -> widening case TargetOverlapConstraintTypeShift = UsesVXRMShift + 1, TargetOverlapConstraintTypeMask = 3ULL << TargetOverlapConstraintTypeShift, }; enum VLMUL : uint8_t { LMUL_1 = 0, LMUL_2, LMUL_4, LMUL_8, LMUL_RESERVED, LMUL_F8, LMUL_F4, LMUL_F2 }; enum { TAIL_UNDISTURBED_MASK_UNDISTURBED = 0, TAIL_AGNOSTIC = 1, MASK_AGNOSTIC = 2, }; // Helper functions to read TSFlags. /// \returns the format of the instruction. static inline unsigned getFormat(uint64_t TSFlags) { return (TSFlags & InstFormatMask) >> InstFormatShift; } /// \returns the LMUL for the instruction. static inline VLMUL getLMul(uint64_t TSFlags) { return static_cast((TSFlags & VLMulMask) >> VLMulShift); } /// \returns true if tail agnostic is enforced for the instruction. static inline bool doesForceTailAgnostic(uint64_t TSFlags) { return TSFlags & ForceTailAgnosticMask; } /// \returns true if this a _TIED pseudo. static inline bool isTiedPseudo(uint64_t TSFlags) { return TSFlags & IsTiedPseudoMask; } /// \returns true if there is a SEW operand for the instruction. static inline bool hasSEWOp(uint64_t TSFlags) { return TSFlags & HasSEWOpMask; } /// \returns true if there is a VL operand for the instruction. static inline bool hasVLOp(uint64_t TSFlags) { return TSFlags & HasVLOpMask; } /// \returns true if there is a vector policy operand for this instruction. static inline bool hasVecPolicyOp(uint64_t TSFlags) { return TSFlags & HasVecPolicyOpMask; } /// \returns true if it is a vector widening reduction instruction. static inline bool isRVVWideningReduction(uint64_t TSFlags) { return TSFlags & IsRVVWideningReductionMask; } /// \returns true if mask policy is valid for the instruction. static inline bool usesMaskPolicy(uint64_t TSFlags) { return TSFlags & UsesMaskPolicyMask; } /// \returns true if there is a rounding mode operand for this instruction static inline bool hasRoundModeOp(uint64_t TSFlags) { return TSFlags & HasRoundModeOpMask; } /// \returns true if this instruction uses vxrm static inline bool usesVXRM(uint64_t TSFlags) { return TSFlags & UsesVXRMMask; } static inline unsigned getVLOpNum(const MCInstrDesc &Desc) { const uint64_t TSFlags = Desc.TSFlags; // This method is only called if we expect to have a VL operand, and all // instructions with VL also have SEW. assert(hasSEWOp(TSFlags) && hasVLOp(TSFlags)); unsigned Offset = 2; if (hasVecPolicyOp(TSFlags)) Offset = 3; return Desc.getNumOperands() - Offset; } static inline unsigned getSEWOpNum(const MCInstrDesc &Desc) { const uint64_t TSFlags = Desc.TSFlags; assert(hasSEWOp(TSFlags)); unsigned Offset = 1; if (hasVecPolicyOp(TSFlags)) Offset = 2; return Desc.getNumOperands() - Offset; } static inline unsigned getVecPolicyOpNum(const MCInstrDesc &Desc) { assert(hasVecPolicyOp(Desc.TSFlags)); return Desc.getNumOperands() - 1; } /// \returns the index to the rounding mode immediate value if any, otherwise /// returns -1. static inline int getFRMOpNum(const MCInstrDesc &Desc) { const uint64_t TSFlags = Desc.TSFlags; if (!hasRoundModeOp(TSFlags) || usesVXRM(TSFlags)) return -1; // The operand order // -------------------------------------- // | n-1 (if any) | n-2 | n-3 | n-4 | // | policy | sew | vl | frm | // -------------------------------------- return getVLOpNum(Desc) - 1; } /// \returns the index to the rounding mode immediate value if any, otherwise /// returns -1. static inline int getVXRMOpNum(const MCInstrDesc &Desc) { const uint64_t TSFlags = Desc.TSFlags; if (!hasRoundModeOp(TSFlags) || !usesVXRM(TSFlags)) return -1; // The operand order // -------------------------------------- // | n-1 (if any) | n-2 | n-3 | n-4 | // | policy | sew | vl | vxrm | // -------------------------------------- return getVLOpNum(Desc) - 1; } // Is the first def operand tied to the first use operand. This is true for // vector pseudo instructions that have a merge operand for tail/mask // undisturbed. It's also true for vector FMA instructions where one of the // operands is also the destination register. static inline bool isFirstDefTiedToFirstUse(const MCInstrDesc &Desc) { return Desc.getNumDefs() < Desc.getNumOperands() && Desc.getOperandConstraint(Desc.getNumDefs(), MCOI::TIED_TO) == 0; } // RISC-V Specific Machine Operand Flags enum { MO_None = 0, MO_CALL = 1, MO_LO = 3, MO_HI = 4, MO_PCREL_LO = 5, MO_PCREL_HI = 6, MO_GOT_HI = 7, MO_TPREL_LO = 8, MO_TPREL_HI = 9, MO_TPREL_ADD = 10, MO_TLS_GOT_HI = 11, MO_TLS_GD_HI = 12, // Used to differentiate between target-specific "direct" flags and "bitmask" // flags. A machine operand can only have one "direct" flag, but can have // multiple "bitmask" flags. MO_DIRECT_FLAG_MASK = 15 }; } // namespace RISCVII namespace RISCVOp { enum OperandType : unsigned { OPERAND_FIRST_RISCV_IMM = MCOI::OPERAND_FIRST_TARGET, OPERAND_UIMM1 = OPERAND_FIRST_RISCV_IMM, OPERAND_UIMM2, OPERAND_UIMM2_LSB0, OPERAND_UIMM3, OPERAND_UIMM4, OPERAND_UIMM5, OPERAND_UIMM6, OPERAND_UIMM7, OPERAND_UIMM7_LSB00, OPERAND_UIMM8_LSB00, OPERAND_UIMM8, OPERAND_UIMM8_LSB000, OPERAND_UIMM8_GE32, OPERAND_UIMM9_LSB000, OPERAND_UIMM10_LSB00_NONZERO, OPERAND_UIMM12, OPERAND_ZERO, OPERAND_SIMM5, OPERAND_SIMM5_PLUS1, OPERAND_SIMM6, OPERAND_SIMM6_NONZERO, OPERAND_SIMM10_LSB0000_NONZERO, OPERAND_SIMM12, OPERAND_SIMM12_LSB00000, OPERAND_UIMM20, OPERAND_UIMMLOG2XLEN, OPERAND_UIMMLOG2XLEN_NONZERO, OPERAND_CLUI_IMM, OPERAND_VTYPEI10, OPERAND_VTYPEI11, OPERAND_RVKRNUM, OPERAND_RVKRNUM_0_7, OPERAND_RVKRNUM_1_10, OPERAND_RVKRNUM_2_14, OPERAND_LAST_RISCV_IMM = OPERAND_RVKRNUM_2_14, // Operand is either a register or uimm5, this is used by V extension pseudo // instructions to represent a value that be passed as AVL to either vsetvli // or vsetivli. OPERAND_AVL, }; } // namespace RISCVOp // Describes the predecessor/successor bits used in the FENCE instruction. namespace RISCVFenceField { enum FenceField { I = 8, O = 4, R = 2, W = 1 }; } // Describes the supported floating point rounding mode encodings. namespace RISCVFPRndMode { enum RoundingMode { RNE = 0, RTZ = 1, RDN = 2, RUP = 3, RMM = 4, DYN = 7, Invalid }; inline static StringRef roundingModeToString(RoundingMode RndMode) { switch (RndMode) { default: llvm_unreachable("Unknown floating point rounding mode"); case RISCVFPRndMode::RNE: return "rne"; case RISCVFPRndMode::RTZ: return "rtz"; case RISCVFPRndMode::RDN: return "rdn"; case RISCVFPRndMode::RUP: return "rup"; case RISCVFPRndMode::RMM: return "rmm"; case RISCVFPRndMode::DYN: return "dyn"; } } inline static RoundingMode stringToRoundingMode(StringRef Str) { return StringSwitch(Str) .Case("rne", RISCVFPRndMode::RNE) .Case("rtz", RISCVFPRndMode::RTZ) .Case("rdn", RISCVFPRndMode::RDN) .Case("rup", RISCVFPRndMode::RUP) .Case("rmm", RISCVFPRndMode::RMM) .Case("dyn", RISCVFPRndMode::DYN) .Default(RISCVFPRndMode::Invalid); } inline static bool isValidRoundingMode(unsigned Mode) { switch (Mode) { default: return false; case RISCVFPRndMode::RNE: case RISCVFPRndMode::RTZ: case RISCVFPRndMode::RDN: case RISCVFPRndMode::RUP: case RISCVFPRndMode::RMM: case RISCVFPRndMode::DYN: return true; } } } // namespace RISCVFPRndMode //===----------------------------------------------------------------------===// // Floating-point Immediates // namespace RISCVLoadFPImm { float getFPImm(unsigned Imm); /// getLoadFPImm - Return a 5-bit binary encoding of the floating-point /// immediate value. If the value cannot be represented as a 5-bit binary /// encoding, then return -1. int getLoadFPImm(APFloat FPImm); } // namespace RISCVLoadFPImm namespace RISCVSysReg { struct SysReg { const char *Name; const char *AltName; const char *DeprecatedName; unsigned Encoding; // FIXME: add these additional fields when needed. // Privilege Access: Read, Write, Read-Only. // unsigned ReadWrite; // Privilege Mode: User, System or Machine. // unsigned Mode; // Check field name. // unsigned Extra; // Register number without the privilege bits. // unsigned Number; FeatureBitset FeaturesRequired; bool isRV32Only; bool haveRequiredFeatures(const FeatureBitset &ActiveFeatures) const { // Not in 32-bit mode. if (isRV32Only && ActiveFeatures[RISCV::Feature64Bit]) return false; // No required feature associated with the system register. if (FeaturesRequired.none()) return true; return (FeaturesRequired & ActiveFeatures) == FeaturesRequired; } }; #define GET_SysRegsList_DECL #include "RISCVGenSearchableTables.inc" } // end namespace RISCVSysReg namespace RISCVInsnOpcode { struct RISCVOpcode { const char *Name; unsigned Value; }; #define GET_RISCVOpcodesList_DECL #include "RISCVGenSearchableTables.inc" } // end namespace RISCVInsnOpcode namespace RISCVABI { enum ABI { ABI_ILP32, ABI_ILP32F, ABI_ILP32D, ABI_ILP32E, ABI_LP64, ABI_LP64F, ABI_LP64D, ABI_LP64E, ABI_Unknown }; // Returns the target ABI, or else a StringError if the requested ABIName is // not supported for the given TT and FeatureBits combination. ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits, StringRef ABIName); ABI getTargetABI(StringRef ABIName); // Returns the register used to hold the stack pointer after realignment. MCRegister getBPReg(); // Returns the register holding shadow call stack pointer. MCRegister getSCSPReg(); } // namespace RISCVABI namespace RISCVFeatures { // Validates if the given combination of features are valid for the target // triple. Exits with report_fatal_error if not. void validate(const Triple &TT, const FeatureBitset &FeatureBits); llvm::Expected> parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits); } // namespace RISCVFeatures namespace RISCVVType { // Is this a SEW value that can be encoded into the VTYPE format. inline static bool isValidSEW(unsigned SEW) { return isPowerOf2_32(SEW) && SEW >= 8 && SEW <= 1024; } // Is this a LMUL value that can be encoded into the VTYPE format. inline static bool isValidLMUL(unsigned LMUL, bool Fractional) { return isPowerOf2_32(LMUL) && LMUL <= 8 && (!Fractional || LMUL != 1); } unsigned encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW, bool TailAgnostic, bool MaskAgnostic); inline static RISCVII::VLMUL getVLMUL(unsigned VType) { unsigned VLMUL = VType & 0x7; return static_cast(VLMUL); } // Decode VLMUL into 1,2,4,8 and fractional indicator. std::pair decodeVLMUL(RISCVII::VLMUL VLMUL); inline static RISCVII::VLMUL encodeLMUL(unsigned LMUL, bool Fractional) { assert(isValidLMUL(LMUL, Fractional) && "Unsupported LMUL"); unsigned LmulLog2 = Log2_32(LMUL); return static_cast(Fractional ? 8 - LmulLog2 : LmulLog2); } inline static unsigned decodeVSEW(unsigned VSEW) { assert(VSEW < 8 && "Unexpected VSEW value"); return 1 << (VSEW + 3); } inline static unsigned encodeSEW(unsigned SEW) { assert(isValidSEW(SEW) && "Unexpected SEW value"); return Log2_32(SEW) - 3; } inline static unsigned getSEW(unsigned VType) { unsigned VSEW = (VType >> 3) & 0x7; return decodeVSEW(VSEW); } inline static bool isTailAgnostic(unsigned VType) { return VType & 0x40; } inline static bool isMaskAgnostic(unsigned VType) { return VType & 0x80; } void printVType(unsigned VType, raw_ostream &OS); unsigned getSEWLMULRatio(unsigned SEW, RISCVII::VLMUL VLMul); std::optional getSameRatioLMUL(unsigned SEW, RISCVII::VLMUL VLMUL, unsigned EEW); } // namespace RISCVVType namespace RISCVRVC { bool compress(MCInst &OutInst, const MCInst &MI, const MCSubtargetInfo &STI); bool uncompress(MCInst &OutInst, const MCInst &MI, const MCSubtargetInfo &STI); } // namespace RISCVRVC namespace RISCVZC { enum RLISTENCODE { RA = 4, RA_S0, RA_S0_S1, RA_S0_S2, RA_S0_S3, RA_S0_S4, RA_S0_S5, RA_S0_S6, RA_S0_S7, RA_S0_S8, RA_S0_S9, // note - to include s10, s11 must also be included RA_S0_S11, INVALID_RLIST, }; inline unsigned encodeRlist(MCRegister EndReg, bool IsRV32E = false) { assert((!IsRV32E || EndReg <= RISCV::X9) && "Invalid Rlist for RV32E"); switch (EndReg) { case RISCV::X1: return RLISTENCODE::RA; case RISCV::X8: return RLISTENCODE::RA_S0; case RISCV::X9: return RLISTENCODE::RA_S0_S1; case RISCV::X18: return RLISTENCODE::RA_S0_S2; case RISCV::X19: return RLISTENCODE::RA_S0_S3; case RISCV::X20: return RLISTENCODE::RA_S0_S4; case RISCV::X21: return RLISTENCODE::RA_S0_S5; case RISCV::X22: return RLISTENCODE::RA_S0_S6; case RISCV::X23: return RLISTENCODE::RA_S0_S7; case RISCV::X24: return RLISTENCODE::RA_S0_S8; case RISCV::X25: return RLISTENCODE::RA_S0_S9; case RISCV::X26: return RLISTENCODE::INVALID_RLIST; case RISCV::X27: return RLISTENCODE::RA_S0_S11; default: llvm_unreachable("Undefined input."); } } inline static unsigned getStackAdjBase(unsigned RlistVal, bool IsRV64, bool IsEABI) { assert(RlistVal != RLISTENCODE::INVALID_RLIST && "{ra, s0-s10} is not supported, s11 must be included."); if (IsEABI) return 16; if (!IsRV64) { switch (RlistVal) { case RLISTENCODE::RA: case RLISTENCODE::RA_S0: case RLISTENCODE::RA_S0_S1: case RLISTENCODE::RA_S0_S2: return 16; case RLISTENCODE::RA_S0_S3: case RLISTENCODE::RA_S0_S4: case RLISTENCODE::RA_S0_S5: case RLISTENCODE::RA_S0_S6: return 32; case RLISTENCODE::RA_S0_S7: case RLISTENCODE::RA_S0_S8: case RLISTENCODE::RA_S0_S9: return 48; case RLISTENCODE::RA_S0_S11: return 64; } } else { switch (RlistVal) { case RLISTENCODE::RA: case RLISTENCODE::RA_S0: return 16; case RLISTENCODE::RA_S0_S1: case RLISTENCODE::RA_S0_S2: return 32; case RLISTENCODE::RA_S0_S3: case RLISTENCODE::RA_S0_S4: return 48; case RLISTENCODE::RA_S0_S5: case RLISTENCODE::RA_S0_S6: return 64; case RLISTENCODE::RA_S0_S7: case RLISTENCODE::RA_S0_S8: return 80; case RLISTENCODE::RA_S0_S9: return 96; case RLISTENCODE::RA_S0_S11: return 112; } } llvm_unreachable("Unexpected RlistVal"); } inline static bool getSpimm(unsigned RlistVal, unsigned &SpimmVal, int64_t StackAdjustment, bool IsRV64, bool IsEABI) { if (RlistVal == RLISTENCODE::INVALID_RLIST) return false; unsigned stackAdj = getStackAdjBase(RlistVal, IsRV64, IsEABI); SpimmVal = (StackAdjustment - stackAdj) / 16; if (SpimmVal > 3) return false; return true; } void printRlist(unsigned SlistEncode, raw_ostream &OS); void printSpimm(int64_t Spimm, raw_ostream &OS); } // namespace RISCVZC } // namespace llvm #endif