//===-- RISCVBaseInfo.cpp - Top level definitions for RISCV MC ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains small standalone enum definitions for the RISCV target // useful for the compiler back-end and the MC libraries. // //===----------------------------------------------------------------------===// #include "RISCVBaseInfo.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/Triple.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/RISCVISAInfo.h" #include "llvm/Support/TargetParser.h" #include "llvm/Support/raw_ostream.h" namespace llvm { extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures]; namespace RISCVSysReg { #define GET_SysRegsList_IMPL #include "RISCVGenSearchableTables.inc" } // namespace RISCVSysReg namespace RISCVInsnOpcode { #define GET_RISCVOpcodesList_IMPL #include "RISCVGenSearchableTables.inc" } // namespace RISCVInsnOpcode namespace RISCVABI { ABI computeTargetABI(const Triple &TT, FeatureBitset FeatureBits, StringRef ABIName) { auto TargetABI = getTargetABI(ABIName); bool IsRV64 = TT.isArch64Bit(); bool IsRV32E = FeatureBits[RISCV::FeatureRV32E]; if (!ABIName.empty() && TargetABI == ABI_Unknown) { errs() << "'" << ABIName << "' is not a recognized ABI for this target (ignoring target-abi)\n"; } else if (ABIName.startswith("ilp32") && IsRV64) { errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring " "target-abi)\n"; TargetABI = ABI_Unknown; } else if (ABIName.startswith("lp64") && !IsRV64) { errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring " "target-abi)\n"; TargetABI = ABI_Unknown; } else if (IsRV32E && TargetABI != ABI_ILP32E && TargetABI != ABI_Unknown) { // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser errs() << "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n"; TargetABI = ABI_Unknown; } if (TargetABI != ABI_Unknown) return TargetABI; // If no explicit ABI is given, try to compute the default ABI. auto ISAInfo = RISCVFeatures::parseFeatureBits(IsRV64, FeatureBits); if (!ISAInfo) report_fatal_error(ISAInfo.takeError()); return getTargetABI((*ISAInfo)->computeDefaultABI()); } ABI getTargetABI(StringRef ABIName) { auto TargetABI = StringSwitch(ABIName) .Case("ilp32", ABI_ILP32) .Case("ilp32f", ABI_ILP32F) .Case("ilp32d", ABI_ILP32D) .Case("ilp32e", ABI_ILP32E) .Case("lp64", ABI_LP64) .Case("lp64f", ABI_LP64F) .Case("lp64d", ABI_LP64D) .Default(ABI_Unknown); return TargetABI; } // To avoid the BP value clobbered by a function call, we need to choose a // callee saved register to save the value. RV32E only has X8 and X9 as callee // saved registers and X8 will be used as fp. So we choose X9 as bp. MCRegister getBPReg() { return RISCV::X9; } // Returns the register holding shadow call stack pointer. MCRegister getSCSPReg() { return RISCV::X18; } } // namespace RISCVABI namespace RISCVFeatures { void validate(const Triple &TT, const FeatureBitset &FeatureBits) { if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit]) report_fatal_error("RV64 target requires an RV64 CPU"); if (!TT.isArch64Bit() && FeatureBits[RISCV::Feature64Bit]) report_fatal_error("RV32 target requires an RV32 CPU"); if (TT.isArch64Bit() && FeatureBits[RISCV::FeatureRV32E]) report_fatal_error("RV32E can't be enabled for an RV64 target"); } llvm::Expected> parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits) { unsigned XLen = IsRV64 ? 64 : 32; std::vector FeatureVector; // Convert FeatureBitset to FeatureVector. for (auto Feature : RISCVFeatureKV) { if (FeatureBits[Feature.Value] && llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key)) FeatureVector.push_back(std::string("+") + Feature.Key); } return llvm::RISCVISAInfo::parseFeatures(XLen, FeatureVector); } } // namespace RISCVFeatures // Encode VTYPE into the binary format used by the the VSETVLI instruction which // is used by our MC layer representation. // // Bits | Name | Description // -----+------------+------------------------------------------------ // 7 | vma | Vector mask agnostic // 6 | vta | Vector tail agnostic // 5:3 | vsew[2:0] | Standard element width (SEW) setting // 2:0 | vlmul[2:0] | Vector register group multiplier (LMUL) setting unsigned RISCVVType::encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW, bool TailAgnostic, bool MaskAgnostic) { assert(isValidSEW(SEW) && "Invalid SEW"); unsigned VLMULBits = static_cast(VLMUL); unsigned VSEWBits = encodeSEW(SEW); unsigned VTypeI = (VSEWBits << 3) | (VLMULBits & 0x7); if (TailAgnostic) VTypeI |= 0x40; if (MaskAgnostic) VTypeI |= 0x80; return VTypeI; } std::pair RISCVVType::decodeVLMUL(RISCVII::VLMUL VLMUL) { switch (VLMUL) { default: llvm_unreachable("Unexpected LMUL value!"); case RISCVII::VLMUL::LMUL_1: case RISCVII::VLMUL::LMUL_2: case RISCVII::VLMUL::LMUL_4: case RISCVII::VLMUL::LMUL_8: return std::make_pair(1 << static_cast(VLMUL), false); case RISCVII::VLMUL::LMUL_F2: case RISCVII::VLMUL::LMUL_F4: case RISCVII::VLMUL::LMUL_F8: return std::make_pair(1 << (8 - static_cast(VLMUL)), true); } } void RISCVVType::printVType(unsigned VType, raw_ostream &OS) { unsigned Sew = getSEW(VType); OS << "e" << Sew; unsigned LMul; bool Fractional; std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType)); if (Fractional) OS << ", mf"; else OS << ", m"; OS << LMul; if (isTailAgnostic(VType)) OS << ", ta"; else OS << ", tu"; if (isMaskAgnostic(VType)) OS << ", ma"; else OS << ", mu"; } } // namespace llvm