//===------ PPCLoopInstrFormPrep.cpp - Loop Instr Form Prep Pass ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a pass to prepare loops for ppc preferred addressing // modes, leveraging different instruction form. (eg: DS/DQ form, D/DS form with // update) // Additional PHIs are created for loop induction variables used by load/store // instructions so that preferred addressing modes can be used. // // 1: DS/DQ form preparation, prepare the load/store instructions so that they // can satisfy the DS/DQ form displacement requirements. // Generically, this means transforming loops like this: // for (int i = 0; i < n; ++i) { // unsigned long x1 = *(unsigned long *)(p + i + 5); // unsigned long x2 = *(unsigned long *)(p + i + 9); // } // // to look like this: // // unsigned NewP = p + 5; // for (int i = 0; i < n; ++i) { // unsigned long x1 = *(unsigned long *)(i + NewP); // unsigned long x2 = *(unsigned long *)(i + NewP + 4); // } // // 2: D/DS form with update preparation, prepare the load/store instructions so // that we can use update form to do pre-increment. // Generically, this means transforming loops like this: // for (int i = 0; i < n; ++i) // array[i] = c; // // to look like this: // // T *p = array[-1]; // for (int i = 0; i < n; ++i) // *++p = c; //===----------------------------------------------------------------------===// #include "PPC.h" #include "PPCSubtarget.h" #include "PPCTargetMachine.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/IntrinsicsPowerPC.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" #include #include #include #define DEBUG_TYPE "ppc-loop-instr-form-prep" using namespace llvm; static cl::opt MaxVarsPrep("ppc-formprep-max-vars", cl::Hidden, cl::init(24), cl::desc("Potential common base number threshold per function for PPC loop " "prep")); static cl::opt PreferUpdateForm("ppc-formprep-prefer-update", cl::init(true), cl::Hidden, cl::desc("prefer update form when ds form is also a update form")); // Sum of following 3 per loop thresholds for all loops can not be larger // than MaxVarsPrep. // now the thresholds for each kind prep are exterimental values on Power9. static cl::opt MaxVarsUpdateForm("ppc-preinc-prep-max-vars", cl::Hidden, cl::init(3), cl::desc("Potential PHI threshold per loop for PPC loop prep of update " "form")); static cl::opt MaxVarsDSForm("ppc-dsprep-max-vars", cl::Hidden, cl::init(3), cl::desc("Potential PHI threshold per loop for PPC loop prep of DS form")); static cl::opt MaxVarsDQForm("ppc-dqprep-max-vars", cl::Hidden, cl::init(8), cl::desc("Potential PHI threshold per loop for PPC loop prep of DQ form")); // If would not be profitable if the common base has only one load/store, ISEL // should already be able to choose best load/store form based on offset for // single load/store. Set minimal profitable value default to 2 and make it as // an option. static cl::opt DispFormPrepMinThreshold("ppc-dispprep-min-threshold", cl::Hidden, cl::init(2), cl::desc("Minimal common base load/store instructions triggering DS/DQ form " "preparation")); STATISTIC(PHINodeAlreadyExistsUpdate, "PHI node already in pre-increment form"); STATISTIC(PHINodeAlreadyExistsDS, "PHI node already in DS form"); STATISTIC(PHINodeAlreadyExistsDQ, "PHI node already in DQ form"); STATISTIC(DSFormChainRewritten, "Num of DS form chain rewritten"); STATISTIC(DQFormChainRewritten, "Num of DQ form chain rewritten"); STATISTIC(UpdFormChainRewritten, "Num of update form chain rewritten"); namespace { struct BucketElement { BucketElement(const SCEVConstant *O, Instruction *I) : Offset(O), Instr(I) {} BucketElement(Instruction *I) : Offset(nullptr), Instr(I) {} const SCEVConstant *Offset; Instruction *Instr; }; struct Bucket { Bucket(const SCEV *B, Instruction *I) : BaseSCEV(B), Elements(1, BucketElement(I)) {} const SCEV *BaseSCEV; SmallVector Elements; }; // "UpdateForm" is not a real PPC instruction form, it stands for dform // load/store with update like ldu/stdu, or Prefetch intrinsic. // For DS form instructions, their displacements must be multiple of 4. // For DQ form instructions, their displacements must be multiple of 16. enum InstrForm { UpdateForm = 1, DSForm = 4, DQForm = 16 }; class PPCLoopInstrFormPrep : public FunctionPass { public: static char ID; // Pass ID, replacement for typeid PPCLoopInstrFormPrep() : FunctionPass(ID) { initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry()); } PPCLoopInstrFormPrep(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) { initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); } bool runOnFunction(Function &F) override; private: PPCTargetMachine *TM = nullptr; const PPCSubtarget *ST; DominatorTree *DT; LoopInfo *LI; ScalarEvolution *SE; bool PreserveLCSSA; /// Successful preparation number for Update/DS/DQ form in all inner most /// loops. One successful preparation will put one common base out of loop, /// this may leads to register presure like LICM does. /// Make sure total preparation number can be controlled by option. unsigned SuccPrepCount; bool runOnLoop(Loop *L); /// Check if required PHI node is already exist in Loop \p L. bool alreadyPrepared(Loop *L, Instruction* MemI, const SCEV *BasePtrStartSCEV, const SCEVConstant *BasePtrIncSCEV, InstrForm Form); /// Collect condition matched(\p isValidCandidate() returns true) /// candidates in Loop \p L. SmallVector collectCandidates( Loop *L, std::function isValidCandidate, unsigned MaxCandidateNum); /// Add a candidate to candidates \p Buckets. void addOneCandidate(Instruction *MemI, const SCEV *LSCEV, SmallVector &Buckets, unsigned MaxCandidateNum); /// Prepare all candidates in \p Buckets for update form. bool updateFormPrep(Loop *L, SmallVector &Buckets); /// Prepare all candidates in \p Buckets for displacement form, now for /// ds/dq. bool dispFormPrep(Loop *L, SmallVector &Buckets, InstrForm Form); /// Prepare for one chain \p BucketChain, find the best base element and /// update all other elements in \p BucketChain accordingly. /// \p Form is used to find the best base element. /// If success, best base element must be stored as the first element of /// \p BucketChain. /// Return false if no base element found, otherwise return true. bool prepareBaseForDispFormChain(Bucket &BucketChain, InstrForm Form); /// Prepare for one chain \p BucketChain, find the best base element and /// update all other elements in \p BucketChain accordingly. /// If success, best base element must be stored as the first element of /// \p BucketChain. /// Return false if no base element found, otherwise return true. bool prepareBaseForUpdateFormChain(Bucket &BucketChain); /// Rewrite load/store instructions in \p BucketChain according to /// preparation. bool rewriteLoadStores(Loop *L, Bucket &BucketChain, SmallSet &BBChanged, InstrForm Form); }; } // end anonymous namespace char PPCLoopInstrFormPrep::ID = 0; static const char *name = "Prepare loop for ppc preferred instruction forms"; INITIALIZE_PASS_BEGIN(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_END(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false) static constexpr StringRef PHINodeNameSuffix = ".phi"; static constexpr StringRef CastNodeNameSuffix = ".cast"; static constexpr StringRef GEPNodeIncNameSuffix = ".inc"; static constexpr StringRef GEPNodeOffNameSuffix = ".off"; FunctionPass *llvm::createPPCLoopInstrFormPrepPass(PPCTargetMachine &TM) { return new PPCLoopInstrFormPrep(TM); } static bool IsPtrInBounds(Value *BasePtr) { Value *StrippedBasePtr = BasePtr; while (BitCastInst *BC = dyn_cast(StrippedBasePtr)) StrippedBasePtr = BC->getOperand(0); if (GetElementPtrInst *GEP = dyn_cast(StrippedBasePtr)) return GEP->isInBounds(); return false; } static std::string getInstrName(const Value *I, StringRef Suffix) { assert(I && "Invalid paramater!"); if (I->hasName()) return (I->getName() + Suffix).str(); else return ""; } static Value *GetPointerOperand(Value *MemI) { if (LoadInst *LMemI = dyn_cast(MemI)) { return LMemI->getPointerOperand(); } else if (StoreInst *SMemI = dyn_cast(MemI)) { return SMemI->getPointerOperand(); } else if (IntrinsicInst *IMemI = dyn_cast(MemI)) { if (IMemI->getIntrinsicID() == Intrinsic::prefetch || IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) return IMemI->getArgOperand(0); if (IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp) return IMemI->getArgOperand(1); } return nullptr; } bool PPCLoopInstrFormPrep::runOnFunction(Function &F) { if (skipFunction(F)) return false; LI = &getAnalysis().getLoopInfo(); SE = &getAnalysis().getSE(); auto *DTWP = getAnalysisIfAvailable(); DT = DTWP ? &DTWP->getDomTree() : nullptr; PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); ST = TM ? TM->getSubtargetImpl(F) : nullptr; SuccPrepCount = 0; bool MadeChange = false; for (auto I = LI->begin(), IE = LI->end(); I != IE; ++I) for (auto L = df_begin(*I), LE = df_end(*I); L != LE; ++L) MadeChange |= runOnLoop(*L); return MadeChange; } void PPCLoopInstrFormPrep::addOneCandidate(Instruction *MemI, const SCEV *LSCEV, SmallVector &Buckets, unsigned MaxCandidateNum) { assert((MemI && GetPointerOperand(MemI)) && "Candidate should be a memory instruction."); assert(LSCEV && "Invalid SCEV for Ptr value."); bool FoundBucket = false; for (auto &B : Buckets) { const SCEV *Diff = SE->getMinusSCEV(LSCEV, B.BaseSCEV); if (const auto *CDiff = dyn_cast(Diff)) { B.Elements.push_back(BucketElement(CDiff, MemI)); FoundBucket = true; break; } } if (!FoundBucket) { if (Buckets.size() == MaxCandidateNum) return; Buckets.push_back(Bucket(LSCEV, MemI)); } } SmallVector PPCLoopInstrFormPrep::collectCandidates( Loop *L, std::function isValidCandidate, unsigned MaxCandidateNum) { SmallVector Buckets; for (const auto &BB : L->blocks()) for (auto &J : *BB) { Value *PtrValue; Type *PointerElementType; if (LoadInst *LMemI = dyn_cast(&J)) { PtrValue = LMemI->getPointerOperand(); PointerElementType = LMemI->getType(); } else if (StoreInst *SMemI = dyn_cast(&J)) { PtrValue = SMemI->getPointerOperand(); PointerElementType = SMemI->getValueOperand()->getType(); } else if (IntrinsicInst *IMemI = dyn_cast(&J)) { PointerElementType = Type::getInt8Ty(J.getContext()); if (IMemI->getIntrinsicID() == Intrinsic::prefetch || IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) { PtrValue = IMemI->getArgOperand(0); } else if (IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp) { PtrValue = IMemI->getArgOperand(1); } else continue; } else continue; unsigned PtrAddrSpace = PtrValue->getType()->getPointerAddressSpace(); if (PtrAddrSpace) continue; if (L->isLoopInvariant(PtrValue)) continue; const SCEV *LSCEV = SE->getSCEVAtScope(PtrValue, L); const SCEVAddRecExpr *LARSCEV = dyn_cast(LSCEV); if (!LARSCEV || LARSCEV->getLoop() != L) continue; if (isValidCandidate(&J, PtrValue, PointerElementType)) addOneCandidate(&J, LSCEV, Buckets, MaxCandidateNum); } return Buckets; } bool PPCLoopInstrFormPrep::prepareBaseForDispFormChain(Bucket &BucketChain, InstrForm Form) { // RemainderOffsetInfo details: // key: value of (Offset urem DispConstraint). For DSForm, it can // be [0, 4). // first of pair: the index of first BucketElement whose remainder is equal // to key. For key 0, this value must be 0. // second of pair: number of load/stores with the same remainder. DenseMap> RemainderOffsetInfo; for (unsigned j = 0, je = BucketChain.Elements.size(); j != je; ++j) { if (!BucketChain.Elements[j].Offset) RemainderOffsetInfo[0] = std::make_pair(0, 1); else { unsigned Remainder = BucketChain.Elements[j].Offset->getAPInt().urem(Form); if (RemainderOffsetInfo.find(Remainder) == RemainderOffsetInfo.end()) RemainderOffsetInfo[Remainder] = std::make_pair(j, 1); else RemainderOffsetInfo[Remainder].second++; } } // Currently we choose the most profitable base as the one which has the max // number of load/store with same remainder. // FIXME: adjust the base selection strategy according to load/store offset // distribution. // For example, if we have one candidate chain for DS form preparation, which // contains following load/stores with different remainders: // 1: 10 load/store whose remainder is 1; // 2: 9 load/store whose remainder is 2; // 3: 1 for remainder 3 and 0 for remainder 0; // Now we will choose the first load/store whose remainder is 1 as base and // adjust all other load/stores according to new base, so we will get 10 DS // form and 10 X form. // But we should be more clever, for this case we could use two bases, one for // remainder 1 and the other for remainder 2, thus we could get 19 DS form and 1 // X form. unsigned MaxCountRemainder = 0; for (unsigned j = 0; j < (unsigned)Form; j++) if ((RemainderOffsetInfo.find(j) != RemainderOffsetInfo.end()) && RemainderOffsetInfo[j].second > RemainderOffsetInfo[MaxCountRemainder].second) MaxCountRemainder = j; // Abort when there are too few insts with common base. if (RemainderOffsetInfo[MaxCountRemainder].second < DispFormPrepMinThreshold) return false; // If the first value is most profitable, no needed to adjust BucketChain // elements as they are substracted the first value when collecting. if (MaxCountRemainder == 0) return true; // Adjust load/store to the new chosen base. const SCEV *Offset = BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first].Offset; BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset); for (auto &E : BucketChain.Elements) { if (E.Offset) E.Offset = cast(SE->getMinusSCEV(E.Offset, Offset)); else E.Offset = cast(SE->getNegativeSCEV(Offset)); } std::swap(BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first], BucketChain.Elements[0]); return true; } // FIXME: implement a more clever base choosing policy. // Currently we always choose an exist load/store offset. This maybe lead to // suboptimal code sequences. For example, for one DS chain with offsets // {-32769, 2003, 2007, 2011}, we choose -32769 as base offset, and left disp // for load/stores are {0, 34772, 34776, 34780}. Though each offset now is a // multipler of 4, it cannot be represented by sint16. bool PPCLoopInstrFormPrep::prepareBaseForUpdateFormChain(Bucket &BucketChain) { // We have a choice now of which instruction's memory operand we use as the // base for the generated PHI. Always picking the first instruction in each // bucket does not work well, specifically because that instruction might // be a prefetch (and there are no pre-increment dcbt variants). Otherwise, // the choice is somewhat arbitrary, because the backend will happily // generate direct offsets from both the pre-incremented and // post-incremented pointer values. Thus, we'll pick the first non-prefetch // instruction in each bucket, and adjust the recurrence and other offsets // accordingly. for (int j = 0, je = BucketChain.Elements.size(); j != je; ++j) { if (auto *II = dyn_cast(BucketChain.Elements[j].Instr)) if (II->getIntrinsicID() == Intrinsic::prefetch) continue; // If we'd otherwise pick the first element anyway, there's nothing to do. if (j == 0) break; // If our chosen element has no offset from the base pointer, there's // nothing to do. if (!BucketChain.Elements[j].Offset || BucketChain.Elements[j].Offset->isZero()) break; const SCEV *Offset = BucketChain.Elements[j].Offset; BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset); for (auto &E : BucketChain.Elements) { if (E.Offset) E.Offset = cast(SE->getMinusSCEV(E.Offset, Offset)); else E.Offset = cast(SE->getNegativeSCEV(Offset)); } std::swap(BucketChain.Elements[j], BucketChain.Elements[0]); break; } return true; } bool PPCLoopInstrFormPrep::rewriteLoadStores(Loop *L, Bucket &BucketChain, SmallSet &BBChanged, InstrForm Form) { bool MadeChange = false; const SCEVAddRecExpr *BasePtrSCEV = cast(BucketChain.BaseSCEV); if (!BasePtrSCEV->isAffine()) return MadeChange; LLVM_DEBUG(dbgs() << "PIP: Transforming: " << *BasePtrSCEV << "\n"); assert(BasePtrSCEV->getLoop() == L && "AddRec for the wrong loop?"); // The instruction corresponding to the Bucket's BaseSCEV must be the first // in the vector of elements. Instruction *MemI = BucketChain.Elements.begin()->Instr; Value *BasePtr = GetPointerOperand(MemI); assert(BasePtr && "No pointer operand"); Type *I8Ty = Type::getInt8Ty(MemI->getParent()->getContext()); Type *I8PtrTy = Type::getInt8PtrTy(MemI->getParent()->getContext(), BasePtr->getType()->getPointerAddressSpace()); if (!SE->isLoopInvariant(BasePtrSCEV->getStart(), L)) return MadeChange; const SCEVConstant *BasePtrIncSCEV = dyn_cast(BasePtrSCEV->getStepRecurrence(*SE)); if (!BasePtrIncSCEV) return MadeChange; // For some DS form load/store instructions, it can also be an update form, // if the stride is a multipler of 4. Use update form if prefer it. bool CanPreInc = (Form == UpdateForm || ((Form == DSForm) && !BasePtrIncSCEV->getAPInt().urem(4) && PreferUpdateForm)); const SCEV *BasePtrStartSCEV = nullptr; if (CanPreInc) BasePtrStartSCEV = SE->getMinusSCEV(BasePtrSCEV->getStart(), BasePtrIncSCEV); else BasePtrStartSCEV = BasePtrSCEV->getStart(); if (!isSafeToExpand(BasePtrStartSCEV, *SE)) return MadeChange; if (alreadyPrepared(L, MemI, BasePtrStartSCEV, BasePtrIncSCEV, Form)) return MadeChange; LLVM_DEBUG(dbgs() << "PIP: New start is: " << *BasePtrStartSCEV << "\n"); BasicBlock *Header = L->getHeader(); unsigned HeaderLoopPredCount = pred_size(Header); BasicBlock *LoopPredecessor = L->getLoopPredecessor(); PHINode *NewPHI = PHINode::Create(I8PtrTy, HeaderLoopPredCount, getInstrName(MemI, PHINodeNameSuffix), Header->getFirstNonPHI()); SCEVExpander SCEVE(*SE, Header->getModule()->getDataLayout(), "pistart"); Value *BasePtrStart = SCEVE.expandCodeFor(BasePtrStartSCEV, I8PtrTy, LoopPredecessor->getTerminator()); // Note that LoopPredecessor might occur in the predecessor list multiple // times, and we need to add it the right number of times. for (auto PI : predecessors(Header)) { if (PI != LoopPredecessor) continue; NewPHI->addIncoming(BasePtrStart, LoopPredecessor); } Instruction *PtrInc = nullptr; Instruction *NewBasePtr = nullptr; if (CanPreInc) { Instruction *InsPoint = &*Header->getFirstInsertionPt(); PtrInc = GetElementPtrInst::Create( I8Ty, NewPHI, BasePtrIncSCEV->getValue(), getInstrName(MemI, GEPNodeIncNameSuffix), InsPoint); cast(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr)); for (auto PI : predecessors(Header)) { if (PI == LoopPredecessor) continue; NewPHI->addIncoming(PtrInc, PI); } if (PtrInc->getType() != BasePtr->getType()) NewBasePtr = new BitCastInst( PtrInc, BasePtr->getType(), getInstrName(PtrInc, CastNodeNameSuffix), InsPoint); else NewBasePtr = PtrInc; } else { // Note that LoopPredecessor might occur in the predecessor list multiple // times, and we need to make sure no more incoming value for them in PHI. for (auto PI : predecessors(Header)) { if (PI == LoopPredecessor) continue; // For the latch predecessor, we need to insert a GEP just before the // terminator to increase the address. BasicBlock *BB = PI; Instruction *InsPoint = BB->getTerminator(); PtrInc = GetElementPtrInst::Create( I8Ty, NewPHI, BasePtrIncSCEV->getValue(), getInstrName(MemI, GEPNodeIncNameSuffix), InsPoint); cast(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr)); NewPHI->addIncoming(PtrInc, PI); } PtrInc = NewPHI; if (NewPHI->getType() != BasePtr->getType()) NewBasePtr = new BitCastInst(NewPHI, BasePtr->getType(), getInstrName(NewPHI, CastNodeNameSuffix), &*Header->getFirstInsertionPt()); else NewBasePtr = NewPHI; } // Clear the rewriter cache, because values that are in the rewriter's cache // can be deleted below, causing the AssertingVH in the cache to trigger. SCEVE.clear(); if (Instruction *IDel = dyn_cast(BasePtr)) BBChanged.insert(IDel->getParent()); BasePtr->replaceAllUsesWith(NewBasePtr); RecursivelyDeleteTriviallyDeadInstructions(BasePtr); // Keep track of the replacement pointer values we've inserted so that we // don't generate more pointer values than necessary. SmallPtrSet NewPtrs; NewPtrs.insert(NewBasePtr); for (auto I = std::next(BucketChain.Elements.begin()), IE = BucketChain.Elements.end(); I != IE; ++I) { Value *Ptr = GetPointerOperand(I->Instr); assert(Ptr && "No pointer operand"); if (NewPtrs.count(Ptr)) continue; Instruction *RealNewPtr; if (!I->Offset || I->Offset->getValue()->isZero()) { RealNewPtr = NewBasePtr; } else { Instruction *PtrIP = dyn_cast(Ptr); if (PtrIP && isa(NewBasePtr) && cast(NewBasePtr)->getParent() == PtrIP->getParent()) PtrIP = nullptr; else if (PtrIP && isa(PtrIP)) PtrIP = &*PtrIP->getParent()->getFirstInsertionPt(); else if (!PtrIP) PtrIP = I->Instr; GetElementPtrInst *NewPtr = GetElementPtrInst::Create( I8Ty, PtrInc, I->Offset->getValue(), getInstrName(I->Instr, GEPNodeOffNameSuffix), PtrIP); if (!PtrIP) NewPtr->insertAfter(cast(PtrInc)); NewPtr->setIsInBounds(IsPtrInBounds(Ptr)); RealNewPtr = NewPtr; } if (Instruction *IDel = dyn_cast(Ptr)) BBChanged.insert(IDel->getParent()); Instruction *ReplNewPtr; if (Ptr->getType() != RealNewPtr->getType()) { ReplNewPtr = new BitCastInst(RealNewPtr, Ptr->getType(), getInstrName(Ptr, CastNodeNameSuffix)); ReplNewPtr->insertAfter(RealNewPtr); } else ReplNewPtr = RealNewPtr; Ptr->replaceAllUsesWith(ReplNewPtr); RecursivelyDeleteTriviallyDeadInstructions(Ptr); NewPtrs.insert(RealNewPtr); } MadeChange = true; SuccPrepCount++; if (Form == DSForm && !CanPreInc) DSFormChainRewritten++; else if (Form == DQForm) DQFormChainRewritten++; else if (Form == UpdateForm || (Form == DSForm && CanPreInc)) UpdFormChainRewritten++; return MadeChange; } bool PPCLoopInstrFormPrep::updateFormPrep(Loop *L, SmallVector &Buckets) { bool MadeChange = false; if (Buckets.empty()) return MadeChange; SmallSet BBChanged; for (auto &Bucket : Buckets) // The base address of each bucket is transformed into a phi and the others // are rewritten based on new base. if (prepareBaseForUpdateFormChain(Bucket)) MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, UpdateForm); if (MadeChange) for (auto &BB : L->blocks()) if (BBChanged.count(BB)) DeleteDeadPHIs(BB); return MadeChange; } bool PPCLoopInstrFormPrep::dispFormPrep(Loop *L, SmallVector &Buckets, InstrForm Form) { bool MadeChange = false; if (Buckets.empty()) return MadeChange; SmallSet BBChanged; for (auto &Bucket : Buckets) { if (Bucket.Elements.size() < DispFormPrepMinThreshold) continue; if (prepareBaseForDispFormChain(Bucket, Form)) MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, Form); } if (MadeChange) for (auto &BB : L->blocks()) if (BBChanged.count(BB)) DeleteDeadPHIs(BB); return MadeChange; } // In order to prepare for the preferred instruction form, a PHI is added. // This function will check to see if that PHI already exists and will return // true if it found an existing PHI with the matched start and increment as the // one we wanted to create. bool PPCLoopInstrFormPrep::alreadyPrepared(Loop *L, Instruction* MemI, const SCEV *BasePtrStartSCEV, const SCEVConstant *BasePtrIncSCEV, InstrForm Form) { BasicBlock *BB = MemI->getParent(); if (!BB) return false; BasicBlock *PredBB = L->getLoopPredecessor(); BasicBlock *LatchBB = L->getLoopLatch(); if (!PredBB || !LatchBB) return false; // Run through the PHIs and see if we have some that looks like a preparation iterator_range PHIIter = BB->phis(); for (auto & CurrentPHI : PHIIter) { PHINode *CurrentPHINode = dyn_cast(&CurrentPHI); if (!CurrentPHINode) continue; if (!SE->isSCEVable(CurrentPHINode->getType())) continue; const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L); const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast(PHISCEV); if (!PHIBasePtrSCEV) continue; const SCEVConstant *PHIBasePtrIncSCEV = dyn_cast(PHIBasePtrSCEV->getStepRecurrence(*SE)); if (!PHIBasePtrIncSCEV) continue; if (CurrentPHINode->getNumIncomingValues() == 2) { if ((CurrentPHINode->getIncomingBlock(0) == LatchBB && CurrentPHINode->getIncomingBlock(1) == PredBB) || (CurrentPHINode->getIncomingBlock(1) == LatchBB && CurrentPHINode->getIncomingBlock(0) == PredBB)) { if (PHIBasePtrIncSCEV == BasePtrIncSCEV) { // The existing PHI (CurrentPHINode) has the same start and increment // as the PHI that we wanted to create. if (Form == UpdateForm && PHIBasePtrSCEV->getStart() == BasePtrStartSCEV) { ++PHINodeAlreadyExistsUpdate; return true; } if (Form == DSForm || Form == DQForm) { const SCEVConstant *Diff = dyn_cast( SE->getMinusSCEV(PHIBasePtrSCEV->getStart(), BasePtrStartSCEV)); if (Diff && !Diff->getAPInt().urem(Form)) { if (Form == DSForm) ++PHINodeAlreadyExistsDS; else ++PHINodeAlreadyExistsDQ; return true; } } } } } } return false; } bool PPCLoopInstrFormPrep::runOnLoop(Loop *L) { bool MadeChange = false; // Only prep. the inner-most loop if (!L->isInnermost()) return MadeChange; // Return if already done enough preparation. if (SuccPrepCount >= MaxVarsPrep) return MadeChange; LLVM_DEBUG(dbgs() << "PIP: Examining: " << *L << "\n"); BasicBlock *LoopPredecessor = L->getLoopPredecessor(); // If there is no loop predecessor, or the loop predecessor's terminator // returns a value (which might contribute to determining the loop's // iteration space), insert a new preheader for the loop. if (!LoopPredecessor || !LoopPredecessor->getTerminator()->getType()->isVoidTy()) { LoopPredecessor = InsertPreheaderForLoop(L, DT, LI, nullptr, PreserveLCSSA); if (LoopPredecessor) MadeChange = true; } if (!LoopPredecessor) { LLVM_DEBUG(dbgs() << "PIP fails since no predecessor for current loop.\n"); return MadeChange; } // Check if a load/store has update form. This lambda is used by function // collectCandidates which can collect candidates for types defined by lambda. auto isUpdateFormCandidate = [&](const Instruction *I, const Value *PtrValue, const Type *PointerElementType) { assert((PtrValue && I) && "Invalid parameter!"); // There are no update forms for Altivec vector load/stores. if (ST && ST->hasAltivec() && PointerElementType->isVectorTy()) return false; // There are no update forms for P10 lxvp/stxvp intrinsic. auto *II = dyn_cast(I); if (II && ((II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) || II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp)) return false; // See getPreIndexedAddressParts, the displacement for LDU/STDU has to // be 4's multiple (DS-form). For i64 loads/stores when the displacement // fits in a 16-bit signed field but isn't a multiple of 4, it will be // useless and possible to break some original well-form addressing mode // to make this pre-inc prep for it. if (PointerElementType->isIntegerTy(64)) { const SCEV *LSCEV = SE->getSCEVAtScope(const_cast(PtrValue), L); const SCEVAddRecExpr *LARSCEV = dyn_cast(LSCEV); if (!LARSCEV || LARSCEV->getLoop() != L) return false; if (const SCEVConstant *StepConst = dyn_cast(LARSCEV->getStepRecurrence(*SE))) { const APInt &ConstInt = StepConst->getValue()->getValue(); if (ConstInt.isSignedIntN(16) && ConstInt.srem(4) != 0) return false; } } return true; }; // Check if a load/store has DS form. auto isDSFormCandidate = [](const Instruction *I, const Value *PtrValue, const Type *PointerElementType) { assert((PtrValue && I) && "Invalid parameter!"); if (isa(I)) return false; return (PointerElementType->isIntegerTy(64)) || (PointerElementType->isFloatTy()) || (PointerElementType->isDoubleTy()) || (PointerElementType->isIntegerTy(32) && llvm::any_of(I->users(), [](const User *U) { return isa(U); })); }; // Check if a load/store has DQ form. auto isDQFormCandidate = [&](const Instruction *I, const Value *PtrValue, const Type *PointerElementType) { assert((PtrValue && I) && "Invalid parameter!"); // Check if it is a P10 lxvp/stxvp intrinsic. auto *II = dyn_cast(I); if (II) return II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp || II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp; // Check if it is a P9 vector load/store. return ST && ST->hasP9Vector() && (PointerElementType->isVectorTy()); }; // intrinsic for update form. SmallVector UpdateFormBuckets = collectCandidates(L, isUpdateFormCandidate, MaxVarsUpdateForm); // Prepare for update form. if (!UpdateFormBuckets.empty()) MadeChange |= updateFormPrep(L, UpdateFormBuckets); // Collect buckets of comparable addresses used by loads and stores for DS // form. SmallVector DSFormBuckets = collectCandidates(L, isDSFormCandidate, MaxVarsDSForm); // Prepare for DS form. if (!DSFormBuckets.empty()) MadeChange |= dispFormPrep(L, DSFormBuckets, DSForm); // Collect buckets of comparable addresses used by loads and stores for DQ // form. SmallVector DQFormBuckets = collectCandidates(L, isDQFormCandidate, MaxVarsDQForm); // Prepare for DQ form. if (!DQFormBuckets.empty()) MadeChange |= dispFormPrep(L, DQFormBuckets, DQForm); return MadeChange; }