//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the interfaces that PPC uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H #include "PPCInstrInfo.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Function.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Type.h" #include "llvm/Support/MachineValueType.h" #include namespace llvm { namespace PPCISD { // When adding a NEW PPCISD node please add it to the correct position in // the enum. The order of elements in this enum matters! // Values that are added after this entry: // STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE // are considered memory opcodes and are treated differently than entries // that come before it. For example, ADD or MUL should be placed before // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come // after it. enum NodeType : unsigned { // Start the numbering where the builtin ops and target ops leave off. FIRST_NUMBER = ISD::BUILTIN_OP_END, /// FSEL - Traditional three-operand fsel node. /// FSEL, /// XSMAXCDP, XSMINCDP - C-type min/max instructions. XSMAXCDP, XSMINCDP, /// FCFID - The FCFID instruction, taking an f64 operand and producing /// and f64 value containing the FP representation of the integer that /// was temporarily in the f64 operand. FCFID, /// Newer FCFID[US] integer-to-floating-point conversion instructions for /// unsigned integers and single-precision outputs. FCFIDU, FCFIDS, FCFIDUS, /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64 /// operand, producing an f64 value containing the integer representation /// of that FP value. FCTIDZ, FCTIWZ, /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for /// unsigned integers with round toward zero. FCTIDUZ, FCTIWUZ, /// Floating-point-to-interger conversion instructions FP_TO_UINT_IN_VSR, FP_TO_SINT_IN_VSR, /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer. VEXTS, /// Reciprocal estimate instructions (unary FP ops). FRE, FRSQRTE, /// Test instruction for software square root. FTSQRT, /// Square root instruction. FSQRT, /// VPERM - The PPC VPERM Instruction. /// VPERM, /// XXSPLT - The PPC VSX splat instructions /// XXSPLT, /// XXSPLTI_SP_TO_DP - The PPC VSX splat instructions for immediates for /// converting immediate single precision numbers to double precision /// vector or scalar. XXSPLTI_SP_TO_DP, /// XXSPLTI32DX - The PPC XXSPLTI32DX instruction. /// XXSPLTI32DX, /// VECINSERT - The PPC vector insert instruction /// VECINSERT, /// VECSHL - The PPC vector shift left instruction /// VECSHL, /// XXPERMDI - The PPC XXPERMDI instruction /// XXPERMDI, /// The CMPB instruction (takes two operands of i32 or i64). CMPB, /// Hi/Lo - These represent the high and low 16-bit parts of a global /// address respectively. These nodes have two operands, the first of /// which must be a TargetGlobalAddress, and the second of which must be a /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C', /// though these are usually folded into other nodes. Hi, Lo, /// The following two target-specific nodes are used for calls through /// function pointers in the 64-bit SVR4 ABI. /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX) /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to /// compute an allocation on the stack. DYNALLOC, /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to /// compute an offset from native SP to the address of the most recent /// dynamic alloca. DYNAREAOFFSET, /// To avoid stack clash, allocation is performed by block and each block is /// probed. PROBED_ALLOCA, /// The result of the mflr at function entry, used for PIC code. GlobalBaseReg, /// These nodes represent PPC shifts. /// /// For scalar types, only the last `n + 1` bits of the shift amounts /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc. /// for exact behaviors. /// /// For vector types, only the last n bits are used. See vsld. SRL, SRA, SHL, /// FNMSUB - Negated multiply-subtract instruction. FNMSUB, /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign /// word and shift left immediate. EXTSWSLI, /// The combination of sra[wd]i and addze used to implemented signed /// integer division by a power of 2. The first operand is the dividend, /// and the second is the constant shift amount (representing the /// divisor). SRA_ADDZE, /// CALL - A direct function call. /// CALL_NOP is a call with the special NOP which follows 64-bit /// CALL_NOTOC the caller does not use the TOC. /// SVR4 calls and 32-bit/64-bit AIX calls. CALL, CALL_NOP, CALL_NOTOC, /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a /// MTCTR instruction. MTCTR, /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a /// BCTRL instruction. BCTRL, /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl /// instruction and the TOC reload required on 64-bit ELF, 32-bit AIX /// and 64-bit AIX. BCTRL_LOAD_TOC, /// Return with a flag operand, matched by 'blr' RET_FLAG, /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction. /// This copies the bits corresponding to the specified CRREG into the /// resultant GPR. Bits corresponding to other CR regs are undefined. MFOCRF, /// Direct move from a VSX register to a GPR MFVSR, /// Direct move from a GPR to a VSX register (algebraic) MTVSRA, /// Direct move from a GPR to a VSX register (zero) MTVSRZ, /// Direct move of 2 consecutive GPR to a VSX register. BUILD_FP128, /// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and /// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is /// unsupported for this target. /// Merge 2 GPRs to a single SPE register. BUILD_SPE64, /// Extract SPE register component, second argument is high or low. EXTRACT_SPE, /// Extract a subvector from signed integer vector and convert to FP. /// It is primarily used to convert a (widened) illegal integer vector /// type to a legal floating point vector type. /// For example v2i32 -> widened to v4i32 -> v2f64 SINT_VEC_TO_FP, /// Extract a subvector from unsigned integer vector and convert to FP. /// As with SINT_VEC_TO_FP, used for converting illegal types. UINT_VEC_TO_FP, /// PowerPC instructions that have SCALAR_TO_VECTOR semantics tend to /// place the value into the least significant element of the most /// significant doubleword in the vector. This is not element zero for /// anything smaller than a doubleword on either endianness. This node has /// the same semantics as SCALAR_TO_VECTOR except that the value remains in /// the aforementioned location in the vector register. SCALAR_TO_VECTOR_PERMUTED, // FIXME: Remove these once the ANDI glue bug is fixed: /// i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the /// eq or gt bit of CR0 after executing andi. x, 1. This is used to /// implement truncation of i32 or i64 to i1. ANDI_rec_1_EQ_BIT, ANDI_rec_1_GT_BIT, // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit // target (returns (Lo, Hi)). It takes a chain operand. READ_TIME_BASE, // EH_SJLJ_SETJMP - SjLj exception handling setjmp. EH_SJLJ_SETJMP, // EH_SJLJ_LONGJMP - SjLj exception handling longjmp. EH_SJLJ_LONGJMP, /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP* /// instructions. For lack of better number, we use the opcode number /// encoding for the OPC field to identify the compare. For example, 838 /// is VCMPGTSH. VCMP, /// RESVEC, OUTFLAG = VCMP_rec(LHS, RHS, OPC) - Represents one of the /// altivec VCMP*_rec instructions. For lack of better number, we use the /// opcode number encoding for the OPC field to identify the compare. For /// example, 838 is VCMPGTSH. VCMP_rec, /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the /// condition register to branch on, OPC is the branch opcode to use (e.g. /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is /// an optional input flag argument. COND_BRANCH, /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based /// loops. BDNZ, BDZ, /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding /// towards zero. Used only as part of the long double-to-int /// conversion sequence. FADDRTZ, /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register. MFFS, /// TC_RETURN - A tail call return. /// operand #0 chain /// operand #1 callee (register or absolute) /// operand #2 stack adjustment /// operand #3 optional in flag TC_RETURN, /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls CR6SET, CR6UNSET, /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS /// for non-position independent code on PPC32. PPC32_GOT, /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and /// local dynamic TLS and position indendepent code on PPC32. PPC32_PICGOT, /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec /// TLS model, produces an ADDIS8 instruction that adds the GOT /// base to sym\@got\@tprel\@ha. ADDIS_GOT_TPREL_HA, /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec /// TLS model, produces a LD instruction with base register G8RReg /// and offset sym\@got\@tprel\@l. This completes the addition that /// finds the offset of "sym" relative to the thread pointer. LD_GOT_TPREL_L, /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS /// model, produces an ADD instruction that adds the contents of /// G8RReg to the thread pointer. Symbol contains a relocation /// sym\@tls which is to be replaced by the thread pointer and /// identifies to the linker that the instruction is part of a /// TLS sequence. ADD_TLS, /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS /// model, produces an ADDIS8 instruction that adds the GOT base /// register to sym\@got\@tlsgd\@ha. ADDIS_TLSGD_HA, /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS /// model, produces an ADDI8 instruction that adds G8RReg to /// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by /// ADDIS_TLSGD_L_ADDR until after register assignment. ADDI_TLSGD_L, /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS /// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by /// ADDIS_TLSGD_L_ADDR until after register assignment. GET_TLS_ADDR, /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following /// register assignment. ADDI_TLSGD_L_ADDR, /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS /// model, produces an ADDIS8 instruction that adds the GOT base /// register to sym\@got\@tlsld\@ha. ADDIS_TLSLD_HA, /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS /// model, produces an ADDI8 instruction that adds G8RReg to /// sym\@got\@tlsld\@l and stores the result in X3. Hidden by /// ADDIS_TLSLD_L_ADDR until after register assignment. ADDI_TLSLD_L, /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS /// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by /// ADDIS_TLSLD_L_ADDR until after register assignment. GET_TLSLD_ADDR, /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion /// following register assignment. ADDI_TLSLD_L_ADDR, /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS /// model, produces an ADDIS8 instruction that adds X3 to /// sym\@dtprel\@ha. ADDIS_DTPREL_HA, /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS /// model, produces an ADDI8 instruction that adds G8RReg to /// sym\@got\@dtprel\@l. ADDI_DTPREL_L, /// G8RC = PADDI_DTPREL %x3, Symbol - For the pc-rel based local-dynamic TLS /// model, produces a PADDI8 instruction that adds X3 to sym\@dtprel. PADDI_DTPREL, /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded /// during instruction selection to optimize a BUILD_VECTOR into /// operations on splats. This is necessary to avoid losing these /// optimizations due to constant folding. VADD_SPLAT, /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned /// operand identifies the operating system entry point. SC, /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer. CLRBHRB, /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch /// history rolling buffer entry. MFBHRBE, /// CHAIN = RFEBB CHAIN, State - Return from event-based branch. RFEBB, /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little /// endian. Maps to an xxswapd instruction that corrects an lxvd2x /// or stxvd2x instruction. The chain is necessary because the /// sequence replaces a load and needs to provide the same number /// of outputs. XXSWAPD, /// An SDNode for swaps that are not associated with any loads/stores /// and thereby have no chain. SWAP_NO_CHAIN, /// An SDNode for Power9 vector absolute value difference. /// operand #0 vector /// operand #1 vector /// operand #2 constant i32 0 or 1, to indicate whether needs to patch /// the most significant bit for signed i32 /// /// Power9 VABSD* instructions are designed to support unsigned integer /// vectors (byte/halfword/word), if we want to make use of them for signed /// integer vectors, we have to flip their sign bits first. To flip sign bit /// for byte/halfword integer vector would become inefficient, but for word /// integer vector, we can leverage XVNEGSP to make it efficiently. eg: /// abs(sub(a,b)) => VABSDUW(a+0x80000000, b+0x80000000) /// => VABSDUW((XVNEGSP a), (XVNEGSP b)) VABSD, /// FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or /// lower (IDX=1) half of v4f32 to v2f64. FP_EXTEND_HALF, /// MAT_PCREL_ADDR = Materialize a PC Relative address. This can be done /// either through an add like PADDI or through a PC Relative load like /// PLD. MAT_PCREL_ADDR, /// TLS_DYNAMIC_MAT_PCREL_ADDR = Materialize a PC Relative address for /// TLS global address when using dynamic access models. This can be done /// through an add like PADDI. TLS_DYNAMIC_MAT_PCREL_ADDR, /// TLS_LOCAL_EXEC_MAT_ADDR = Materialize an address for TLS global address /// when using local exec access models, and when prefixed instructions are /// available. This is used with ADD_TLS to produce an add like PADDI. TLS_LOCAL_EXEC_MAT_ADDR, /// ACC_BUILD = Build an accumulator register from 4 VSX registers. ACC_BUILD, /// PAIR_BUILD = Build a vector pair register from 2 VSX registers. PAIR_BUILD, /// EXTRACT_VSX_REG = Extract one of the underlying vsx registers of /// an accumulator or pair register. This node is needed because /// EXTRACT_SUBVECTOR expects the input and output vectors to have the same /// element type. EXTRACT_VSX_REG, /// XXMFACC = This corresponds to the xxmfacc instruction. XXMFACC, // Constrained conversion from floating point to int STRICT_FCTIDZ = ISD::FIRST_TARGET_STRICTFP_OPCODE, STRICT_FCTIWZ, STRICT_FCTIDUZ, STRICT_FCTIWUZ, /// Constrained integer-to-floating-point conversion instructions. STRICT_FCFID, STRICT_FCFIDU, STRICT_FCFIDS, STRICT_FCFIDUS, /// Constrained floating point add in round-to-zero mode. STRICT_FADDRTZ, /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a /// byte-swapping store instruction. It byte-swaps the low "Type" bits of /// the GPRC input, then stores it through Ptr. Type can be either i16 or /// i32. STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE, /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a /// byte-swapping load instruction. It loads "Type" bits, byte swaps it, /// then puts it in the bottom bits of the GPRC. TYPE can be either i16 /// or i32. LBRX, /// STFIWX - The STFIWX instruction. The first operand is an input token /// chain, then an f64 value to store, then an address to store it to. STFIWX, /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point /// load which sign-extends from a 32-bit integer value into the /// destination 64-bit register. LFIWAX, /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point /// load which zero-extends from a 32-bit integer value into the /// destination 64-bit register. LFIWZX, /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an /// integer smaller than 64 bits into a VSR. The integer is zero-extended. /// This can be used for converting loaded integers to floating point. LXSIZX, /// STXSIX - The STXSI[bh]X instruction. The first operand is an input /// chain, then an f64 value to store, then an address to store it to, /// followed by a byte-width for the store. STXSIX, /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian. /// Maps directly to an lxvd2x instruction that will be followed by /// an xxswapd. LXVD2X, /// LXVRZX - Load VSX Vector Rightmost and Zero Extend /// This node represents v1i128 BUILD_VECTOR of a zero extending load /// instruction from to i128. /// Allows utilization of the Load VSX Vector Rightmost Instructions. LXVRZX, /// VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian. /// Maps directly to one of lxvd2x/lxvw4x/lxvh8x/lxvb16x depending on /// the vector type to load vector in big-endian element order. LOAD_VEC_BE, /// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a /// v2f32 value into the lower half of a VSR register. LD_VSX_LH, /// VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory /// instructions such as LXVDSX, LXVWSX. LD_SPLAT, /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian. /// Maps directly to an stxvd2x instruction that will be preceded by /// an xxswapd. STXVD2X, /// CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian. /// Maps directly to one of stxvd2x/stxvw4x/stxvh8x/stxvb16x depending on /// the vector type to store vector in big-endian element order. STORE_VEC_BE, /// Store scalar integers from VSR. ST_VSR_SCAL_INT, /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes /// except they ensure that the compare input is zero-extended for /// sub-word versions because the atomic loads zero-extend. ATOMIC_CMP_SWAP_8, ATOMIC_CMP_SWAP_16, /// GPRC = TOC_ENTRY GA, TOC /// Loads the entry for GA from the TOC, where the TOC base is given by /// the last operand. TOC_ENTRY }; } // end namespace PPCISD /// Define some predicates that are used for node matching. namespace PPC { /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUHUM instruction. bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG); /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUWUM instruction. bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG); /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUDUM instruction. bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG); /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, unsigned ShuffleKind, SelectionDAG &DAG); /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, unsigned ShuffleKind, SelectionDAG &DAG); /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for /// a VMRGEW or VMRGOW instruction bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, unsigned ShuffleKind, SelectionDAG &DAG); /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable /// for a XXSLDWI instruction. bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, bool &Swap, bool IsLE); /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable /// for a XXBRH instruction. bool isXXBRHShuffleMask(ShuffleVectorSDNode *N); /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable /// for a XXBRW instruction. bool isXXBRWShuffleMask(ShuffleVectorSDNode *N); /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable /// for a XXBRD instruction. bool isXXBRDShuffleMask(ShuffleVectorSDNode *N); /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable /// for a XXBRQ instruction. bool isXXBRQShuffleMask(ShuffleVectorSDNode *N); /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable /// for a XXPERMDI instruction. bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, bool &Swap, bool IsLE); /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the /// shift amount, otherwise return -1. int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, SelectionDAG &DAG); /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a splat of a single element that is suitable for input to /// VSPLTB/VSPLTH/VSPLTW. bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize); /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any /// shuffle of v4f32/v4i32 vectors that just inserts one element from one /// vector into the other. This function will also set a couple of /// output parameters for how much the source vector needs to be shifted and /// what byte number needs to be specified for the instruction to put the /// element in the desired location of the target vector. bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, unsigned &InsertAtByte, bool &Swap, bool IsLE); /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is /// appropriate for PPC mnemonics (which have a big endian bias - namely /// elements are counted from the left of the vector register). unsigned getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, SelectionDAG &DAG); /// get_VSPLTI_elt - If this is a build_vector of constants which can be /// formed by using a vspltis[bhw] instruction of the specified element /// size, return the constant being splatted. The ByteSize field indicates /// the number of bytes of each element [124] -> [bhw]. SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG); } // end namespace PPC class PPCTargetLowering : public TargetLowering { const PPCSubtarget &Subtarget; public: explicit PPCTargetLowering(const PPCTargetMachine &TM, const PPCSubtarget &STI); /// getTargetNodeName() - This method returns the name of a target specific /// DAG node. const char *getTargetNodeName(unsigned Opcode) const override; bool isSelectSupported(SelectSupportKind Kind) const override { // PowerPC does not support scalar condition selects on vectors. return (Kind != SelectSupportKind::ScalarCondVectorVal); } /// getPreferredVectorAction - The code we generate when vector types are /// legalized by promoting the integer element type is often much worse /// than code we generate if we widen the type for applicable vector types. /// The issue with promoting is that the vector is scalaraized, individual /// elements promoted and then the vector is rebuilt. So say we load a pair /// of v4i8's and shuffle them. This will turn into a mess of 8 extending /// loads, moves back into VSR's (or memory ops if we don't have moves) and /// then the VPERM for the shuffle. All in all a very slow sequence. TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const override { if (VT.getVectorNumElements() != 1 && VT.getScalarSizeInBits() % 8 == 0) return TypeWidenVector; return TargetLoweringBase::getPreferredVectorAction(VT); } bool useSoftFloat() const override; bool hasSPE() const; MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override { return MVT::i32; } bool isCheapToSpeculateCttz() const override { return true; } bool isCheapToSpeculateCtlz() const override { return true; } bool isCtlzFast() const override { return true; } bool isEqualityCmpFoldedWithSignedCmp() const override { return false; } bool hasAndNotCompare(SDValue) const override { return true; } bool preferIncOfAddToSubOfNot(EVT VT) const override; bool convertSetCCLogicToBitwiseLogic(EVT VT) const override { return VT.isScalarInteger(); } SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth = 0) const override; /// getSetCCResultType - Return the ISD::SETCC ValueType EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override; /// Return true if target always beneficiates from combining into FMA for a /// given value type. This must typically return false on targets where FMA /// takes more cycles to execute than FADD. bool enableAggressiveFMAFusion(EVT VT) const override; /// getPreIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const override; /// SelectAddressEVXRegReg - Given the specified addressed, check to see if /// it can be more efficiently represented as [r+imm]. bool SelectAddressEVXRegReg(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const; /// SelectAddressRegReg - Given the specified addressed, check to see if it /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment /// is non-zero, only accept displacement which is not suitable for [r+imm]. /// Returns false if it can be represented by [r+imm], which are preferred. bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, MaybeAlign EncodingAlignment = None) const; /// SelectAddressRegImm - Returns true if the address N can be represented /// by a base register plus a signed 16-bit displacement [r+imm], and if it /// is not better represented as reg+reg. If \p EncodingAlignment is /// non-zero, only accept displacements suitable for instruction encoding /// requirement, i.e. multiples of 4 for DS form. bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, MaybeAlign EncodingAlignment) const; bool SelectAddressRegImm34(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG) const; /// SelectAddressRegRegOnly - Given the specified addressed, force it to be /// represented as an indexed [r+r] operation. bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const; /// SelectAddressPCRel - Represent the specified address as pc relative to /// be represented as [pc+imm] bool SelectAddressPCRel(SDValue N, SDValue &Base) const; Sched::Preference getSchedulingPreference(SDNode *N) const override; /// LowerOperation - Provide custom lowering hooks for some operations. /// SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; /// ReplaceNodeResults - Replace the results of node with an illegal result /// type with new values built out of custom code. /// void ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG) const override; SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const; SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const; SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl &Created) const override; Register getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const override; void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth = 0) const override; Align getPrefLoopAlignment(MachineLoop *ML) const override; bool shouldInsertFencesForAtomic(const Instruction *I) const override { return true; } Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst, AtomicOrdering Ord) const override; Instruction *emitTrailingFence(IRBuilder<> &Builder, Instruction *Inst, AtomicOrdering Ord) const override; MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const override; MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *MBB, unsigned AtomicSize, unsigned BinOpcode, unsigned CmpOpcode = 0, unsigned CmpPred = 0) const; MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI, MachineBasicBlock *MBB, bool is8bit, unsigned Opcode, unsigned CmpOpcode = 0, unsigned CmpPred = 0) const; MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI, MachineBasicBlock *MBB) const; MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI, MachineBasicBlock *MBB) const; MachineBasicBlock *emitProbedAlloca(MachineInstr &MI, MachineBasicBlock *MBB) const; bool hasInlineStackProbe(MachineFunction &MF) const override; unsigned getStackProbeSize(MachineFunction &MF) const; ConstraintType getConstraintType(StringRef Constraint) const override; /// Examine constraint string and operand type and determine a weight value. /// The operand object must already have been set up with the operand type. ConstraintWeight getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const override; std::pair getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override; /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. This is the actual /// alignment, not its logarithm. unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const override; /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const override; unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override { if (ConstraintCode == "es") return InlineAsm::Constraint_es; else if (ConstraintCode == "o") return InlineAsm::Constraint_o; else if (ConstraintCode == "Q") return InlineAsm::Constraint_Q; else if (ConstraintCode == "Z") return InlineAsm::Constraint_Z; else if (ConstraintCode == "Zy") return InlineAsm::Constraint_Zy; return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); } /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I = nullptr) const override; /// isLegalICmpImmediate - Return true if the specified immediate is legal /// icmp immediate, that is the target has icmp instructions which can /// compare a register against the immediate without having to materialize /// the immediate into a register. bool isLegalICmpImmediate(int64_t Imm) const override; /// isLegalAddImmediate - Return true if the specified immediate is legal /// add immediate, that is the target has add instructions which can /// add a register and the immediate without having to materialize /// the immediate into a register. bool isLegalAddImmediate(int64_t Imm) const override; /// isTruncateFree - Return true if it's free to truncate a value of /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in /// register X1 to i32 by referencing its sub-register R1. bool isTruncateFree(Type *Ty1, Type *Ty2) const override; bool isTruncateFree(EVT VT1, EVT VT2) const override; bool isZExtFree(SDValue Val, EVT VT2) const override; bool isFPExtFree(EVT DestVT, EVT SrcVT) const override; /// Returns true if it is beneficial to convert a load of a constant /// to just the constant itself. bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const override; bool convertSelectOfConstantsToMath(EVT VT) const override { return true; } bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const override; bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const override { // Only handle float load/store pair because float(fpr) load/store // instruction has more cycles than integer(gpr) load/store in PPC. if (Opc != ISD::LOAD && Opc != ISD::STORE) return false; if (VT != MVT::f32 && VT != MVT::f64) return false; return true; } // Returns true if the address of the global is stored in TOC entry. bool isAccessedAsGotIndirect(SDValue N) const; bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override; bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override; /// It returns EVT::Other if the type should be determined using generic /// target-independent logic. EVT getOptimalMemOpType(const MemOp &Op, const AttributeList &FuncAttributes) const override; /// Is unaligned memory access allowed for the given type, and is it fast /// relative to software emulation. bool allowsMisalignedMemoryAccesses( EVT VT, unsigned AddrSpace, unsigned Align = 1, MachineMemOperand::Flags Flags = MachineMemOperand::MONone, bool *Fast = nullptr) const override; /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be /// expanded to FMAs when this method returns true, otherwise fmuladd is /// expanded to fmul + fadd. bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override; bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const override; /// isProfitableToHoist - Check if it is profitable to hoist instruction /// \p I to its dominator block. /// For example, it is not profitable if \p I and it's only user can form a /// FMA instruction, because Powerpc prefers FMADD. bool isProfitableToHoist(Instruction *I) const override; const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override; // Should we expand the build vector with shuffles? bool shouldExpandBuildVectorWithShuffles(EVT VT, unsigned DefinedValues) const override; // Keep the zero-extensions for arguments to libcalls. bool shouldKeepZExtForFP16Conv() const override { return true; } /// createFastISel - This method returns a target-specific FastISel object, /// or null if the target does not support "fast" instruction selection. FastISel *createFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const override; /// Returns true if an argument of type Ty needs to be passed in a /// contiguous block of registers in calling convention CallConv. bool functionArgumentNeedsConsecutiveRegisters( Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override { // We support any array type as "consecutive" block in the parameter // save area. The element type defines the alignment requirement and // whether the argument should go in GPRs, FPRs, or VRs if available. // // Note that clang uses this capability both to implement the ELFv2 // homogeneous float/vector aggregate ABI, and to avoid having to use // "byval" when passing aggregates that might fully fit in registers. return Ty->isArrayTy(); } /// If a physical register, this returns the register that receives the /// exception address on entry to an EH pad. Register getExceptionPointerRegister(const Constant *PersonalityFn) const override; /// If a physical register, this returns the register that receives the /// exception typeid on entry to a landing pad. Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override; /// Override to support customized stack guard loading. bool useLoadStackGuardNode() const override; void insertSSPDeclarations(Module &M) const override; bool isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize) const override; unsigned getJumpTableEncoding() const override; bool isJumpTableRelative() const override; SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const override; const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const override; /// Structure that collects some common arguments that get passed around /// between the functions for call lowering. struct CallFlags { const CallingConv::ID CallConv; const bool IsTailCall : 1; const bool IsVarArg : 1; const bool IsPatchPoint : 1; const bool IsIndirect : 1; const bool HasNest : 1; const bool NoMerge : 1; CallFlags(CallingConv::ID CC, bool IsTailCall, bool IsVarArg, bool IsPatchPoint, bool IsIndirect, bool HasNest, bool NoMerge) : CallConv(CC), IsTailCall(IsTailCall), IsVarArg(IsVarArg), IsPatchPoint(IsPatchPoint), IsIndirect(IsIndirect), HasNest(HasNest), NoMerge(NoMerge) {} }; private: struct ReuseLoadInfo { SDValue Ptr; SDValue Chain; SDValue ResChain; MachinePointerInfo MPI; bool IsDereferenceable = false; bool IsInvariant = false; Align Alignment; AAMDNodes AAInfo; const MDNode *Ranges = nullptr; ReuseLoadInfo() = default; MachineMemOperand::Flags MMOFlags() const { MachineMemOperand::Flags F = MachineMemOperand::MONone; if (IsDereferenceable) F |= MachineMemOperand::MODereferenceable; if (IsInvariant) F |= MachineMemOperand::MOInvariant; return F; } }; bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI, SelectionDAG &DAG, ISD::LoadExtType ET = ISD::NON_EXTLOAD) const; void spliceIntoChain(SDValue ResChain, SDValue NewResChain, SelectionDAG &DAG) const; void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, SelectionDAG &DAG, const SDLoc &dl) const; SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG, const SDLoc &dl) const; bool directMoveIsProfitable(const SDValue &Op) const; SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG, const SDLoc &dl) const; SDValue LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, const SDLoc &dl) const; SDValue LowerTRUNCATEVector(SDValue Op, SelectionDAG &DAG) const; SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const; SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const; bool IsEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, const SmallVectorImpl &Ins, SelectionDAG& DAG) const; bool IsEligibleForTailCallOptimization_64SVR4( SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &Ins, SelectionDAG &DAG) const; SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, SDValue &FPOpOut, const SDLoc &dl) const; SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, SDValue GA) const; SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const; SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const; SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, const SDLoc &dl) const; SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFunnelShift(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerROTL(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const; SDValue LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; SDValue FinishCall(CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, SmallVector, 8> &RegsToPass, SDValue InFlag, SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, unsigned NumBytes, const SmallVectorImpl &Ins, SmallVectorImpl &InVals, const CallBase *CB) const; SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const override; SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const override; bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const override; SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &dl, SelectionDAG &DAG) const override; SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG, SDValue ArgVal, const SDLoc &dl) const; SDValue LowerFormalArguments_AIX( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; SDValue LowerFormalArguments_64SVR4( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; SDValue LowerFormalArguments_32SVR4( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, const SDLoc &dl) const; SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals, const CallBase *CB) const; SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals, const CallBase *CB) const; SDValue LowerCall_AIX(SDValue Chain, SDValue Callee, CallFlags CFlags, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals, const CallBase *CB) const; SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const; SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const; SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const; SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const; SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineMUL(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineADD(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineFMALike(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineTRUNCATE(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineSetCC(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineABS(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineVSelect(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineVectorShuffle(ShuffleVectorSDNode *SVN, SelectionDAG &DAG) const; SDValue combineVReverseMemOP(ShuffleVectorSDNode *SVN, LSBaseSDNode *LSBase, DAGCombinerInfo &DCI) const; /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces /// SETCC with integer subtraction when (1) there is a legal way of doing it /// (2) keeping the result of comparison in GPR has performance benefit. SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const; SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const override; SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const override; SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG, const DenormalMode &Mode) const override; SDValue getSqrtResultForDenormInput(SDValue Operand, SelectionDAG &DAG) const override; unsigned combineRepeatedFPDivisors() const override; SDValue combineElementTruncationToVectorTruncation(SDNode *N, DAGCombinerInfo &DCI) const; /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be /// handled by the VINSERTH instruction introduced in ISA 3.0. This is /// essentially any shuffle of v8i16 vectors that just inserts one element /// from one vector into the other. SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const; /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be /// handled by the VINSERTB instruction introduced in ISA 3.0. This is /// essentially v16i8 vector version of VINSERTH. SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const; /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1. SDValue lowerToXXSPLTI32DX(ShuffleVectorSDNode *N, SelectionDAG &DAG) const; // Return whether the call instruction can potentially be optimized to a // tail call. This will cause the optimizers to attempt to move, or // duplicate return instructions to help enable tail call optimizations. bool mayBeEmittedAsTailCall(const CallInst *CI) const override; bool hasBitPreservingFPLogic(EVT VT) const override; bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override; }; // end class PPCTargetLowering namespace PPC { FastISel *createFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo); } // end namespace PPC bool isIntS16Immediate(SDNode *N, int16_t &Imm); bool isIntS16Immediate(SDValue Op, int16_t &Imm); bool isIntS34Immediate(SDNode *N, int64_t &Imm); bool isIntS34Immediate(SDValue Op, int64_t &Imm); bool convertToNonDenormSingle(APInt &ArgAPInt); bool convertToNonDenormSingle(APFloat &ArgAPFloat); } // end namespace llvm #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H