//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines a pattern matching instruction selector for PowerPC, // converting from a legalized dag to a PPC dag. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/PPCMCTargetDesc.h" #include "MCTargetDesc/PPCPredicates.h" #include "PPC.h" #include "PPCISelLowering.h" #include "PPCMachineFunctionInfo.h" #include "PPCSubtarget.h" #include "PPCTargetMachine.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Module.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "ppc-codegen" STATISTIC(NumSextSetcc, "Number of (sext(setcc)) nodes expanded into GPR sequence."); STATISTIC(NumZextSetcc, "Number of (zext(setcc)) nodes expanded into GPR sequence."); STATISTIC(SignExtensionsAdded, "Number of sign extensions for compare inputs added."); STATISTIC(ZeroExtensionsAdded, "Number of zero extensions for compare inputs added."); STATISTIC(NumLogicOpsOnComparison, "Number of logical ops on i1 values calculated in GPR."); STATISTIC(OmittedForNonExtendUses, "Number of compares not eliminated as they have non-extending uses."); STATISTIC(NumP9Setb, "Number of compares lowered to setb."); // FIXME: Remove this once the bug has been fixed! cl::opt ANDIGlueBug("expose-ppc-andi-glue-bug", cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); static cl::opt UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true), cl::desc("use aggressive ppc isel for bit permutations"), cl::Hidden); static cl::opt BPermRewriterNoMasking( "ppc-bit-perm-rewriter-stress-rotates", cl::desc("stress rotate selection in aggressive ppc isel for " "bit permutations"), cl::Hidden); static cl::opt EnableBranchHint( "ppc-use-branch-hint", cl::init(true), cl::desc("Enable static hinting of branches on ppc"), cl::Hidden); static cl::opt EnableTLSOpt( "ppc-tls-opt", cl::init(true), cl::desc("Enable tls optimization peephole"), cl::Hidden); enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64, ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32, ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 }; static cl::opt CmpInGPR( "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All), cl::desc("Specify the types of comparisons to emit GPR-only code for."), cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."), clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."), clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."), clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."), clEnumValN(ICGPR_NonExtIn, "nonextin", "Only comparisons where inputs don't need [sz]ext."), clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."), clEnumValN(ICGPR_ZextI32, "zexti32", "Only i32 comparisons with zext result."), clEnumValN(ICGPR_ZextI64, "zexti64", "Only i64 comparisons with zext result."), clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."), clEnumValN(ICGPR_SextI32, "sexti32", "Only i32 comparisons with sext result."), clEnumValN(ICGPR_SextI64, "sexti64", "Only i64 comparisons with sext result."))); namespace { //===--------------------------------------------------------------------===// /// PPCDAGToDAGISel - PPC specific code to select PPC machine /// instructions for SelectionDAG operations. /// class PPCDAGToDAGISel : public SelectionDAGISel { const PPCTargetMachine &TM; const PPCSubtarget *PPCSubTarget; const PPCTargetLowering *PPCLowering; unsigned GlobalBaseReg; public: explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel) : SelectionDAGISel(tm, OptLevel), TM(tm) {} bool runOnMachineFunction(MachineFunction &MF) override { // Make sure we re-emit a set of the global base reg if necessary GlobalBaseReg = 0; PPCSubTarget = &MF.getSubtarget(); PPCLowering = PPCSubTarget->getTargetLowering(); SelectionDAGISel::runOnMachineFunction(MF); if (!PPCSubTarget->isSVR4ABI()) InsertVRSaveCode(MF); return true; } void PreprocessISelDAG() override; void PostprocessISelDAG() override; /// getI16Imm - Return a target constant with the specified value, of type /// i16. inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) { return CurDAG->getTargetConstant(Imm, dl, MVT::i16); } /// getI32Imm - Return a target constant with the specified value, of type /// i32. inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { return CurDAG->getTargetConstant(Imm, dl, MVT::i32); } /// getI64Imm - Return a target constant with the specified value, of type /// i64. inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) { return CurDAG->getTargetConstant(Imm, dl, MVT::i64); } /// getSmallIPtrImm - Return a target constant of pointer type. inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) { return CurDAG->getTargetConstant( Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout())); } /// isRotateAndMask - Returns true if Mask and Shift can be folded into a /// rotate and mask opcode and mask operation. static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, unsigned &SH, unsigned &MB, unsigned &ME); /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC /// base register. Return the virtual register that holds this value. SDNode *getGlobalBaseReg(); void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0); // Select - Convert the specified operand from a target-independent to a // target-specific node if it hasn't already been changed. void Select(SDNode *N) override; bool tryBitfieldInsert(SDNode *N); bool tryBitPermutation(SDNode *N); bool tryIntCompareInGPR(SDNode *N); // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into // an X-Form load instruction with the offset being a relocation coming from // the PPCISD::ADD_TLS. bool tryTLSXFormLoad(LoadSDNode *N); // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into // an X-Form store instruction with the offset being a relocation coming from // the PPCISD::ADD_TLS. bool tryTLSXFormStore(StoreSDNode *N); /// SelectCC - Select a comparison of the specified values with the /// specified condition code, returning the CR# of the expression. SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, const SDLoc &dl); /// SelectAddrImmOffs - Return true if the operand is valid for a preinc /// immediate field. Note that the operand at this point is already the /// result of a prior SelectAddressRegImm call. bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { if (N.getOpcode() == ISD::TargetConstant || N.getOpcode() == ISD::TargetGlobalAddress) { Out = N; return true; } return false; } /// SelectAddrIdx - Given the specified address, check to see if it can be /// represented as an indexed [r+r] operation. /// This is for xform instructions whose associated displacement form is D. /// The last parameter \p 0 means associated D form has no requirment for 16 /// bit signed displacement. /// Returns false if it can be represented by [r+imm], which are preferred. bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 0); } /// SelectAddrIdx4 - Given the specified address, check to see if it can be /// represented as an indexed [r+r] operation. /// This is for xform instructions whose associated displacement form is DS. /// The last parameter \p 4 means associated DS form 16 bit signed /// displacement must be a multiple of 4. /// Returns false if it can be represented by [r+imm], which are preferred. bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) { return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 4); } /// SelectAddrIdx16 - Given the specified address, check to see if it can be /// represented as an indexed [r+r] operation. /// This is for xform instructions whose associated displacement form is DQ. /// The last parameter \p 16 means associated DQ form 16 bit signed /// displacement must be a multiple of 16. /// Returns false if it can be represented by [r+imm], which are preferred. bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) { return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 16); } /// SelectAddrIdxOnly - Given the specified address, force it to be /// represented as an indexed [r+r] operation. bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG); } /// SelectAddrImm - Returns true if the address N can be represented by /// a base register plus a signed 16-bit displacement [r+imm]. /// The last parameter \p 0 means D form has no requirment for 16 bit signed /// displacement. bool SelectAddrImm(SDValue N, SDValue &Disp, SDValue &Base) { return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 0); } /// SelectAddrImmX4 - Returns true if the address N can be represented by /// a base register plus a signed 16-bit displacement that is a multiple of /// 4 (last parameter). Suitable for use by STD and friends. bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 4); } /// SelectAddrImmX16 - Returns true if the address N can be represented by /// a base register plus a signed 16-bit displacement that is a multiple of /// 16(last parameter). Suitable for use by STXV and friends. bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) { return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 16); } // Select an address into a single register. bool SelectAddr(SDValue N, SDValue &Base) { Base = N; return true; } /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for /// inline asm expressions. It is always correct to compute the value into /// a register. The case of adding a (possibly relocatable) constant to a /// register can be improved, but it is wrong to substitute Reg+Reg for /// Reg in an asm, because the load or store opcode would have to change. bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, std::vector &OutOps) override { switch(ConstraintID) { default: errs() << "ConstraintID: " << ConstraintID << "\n"; llvm_unreachable("Unexpected asm memory constraint"); case InlineAsm::Constraint_es: case InlineAsm::Constraint_i: case InlineAsm::Constraint_m: case InlineAsm::Constraint_o: case InlineAsm::Constraint_Q: case InlineAsm::Constraint_Z: case InlineAsm::Constraint_Zy: // We need to make sure that this one operand does not end up in r0 // (because we might end up lowering this as 0(%op)). const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo(); const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1); SDLoc dl(Op); SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32); SDValue NewOp = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, dl, Op.getValueType(), Op, RC), 0); OutOps.push_back(NewOp); return false; } return true; } void InsertVRSaveCode(MachineFunction &MF); StringRef getPassName() const override { return "PowerPC DAG->DAG Pattern Instruction Selection"; } // Include the pieces autogenerated from the target description. #include "PPCGenDAGISel.inc" private: bool trySETCC(SDNode *N); void PeepholePPC64(); void PeepholePPC64ZExt(); void PeepholeCROps(); SDValue combineToCMPB(SDNode *N); void foldBoolExts(SDValue &Res, SDNode *&N); bool AllUsersSelectZero(SDNode *N); void SwapAllSelectUsers(SDNode *N); bool isOffsetMultipleOf(SDNode *N, unsigned Val) const; void transferMemOperands(SDNode *N, SDNode *Result); }; } // end anonymous namespace /// InsertVRSaveCode - Once the entire function has been instruction selected, /// all virtual registers are created and all machine instructions are built, /// check to see if we need to save/restore VRSAVE. If so, do it. void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) { // Check to see if this function uses vector registers, which means we have to // save and restore the VRSAVE register and update it with the regs we use. // // In this case, there will be virtual registers of vector type created // by the scheduler. Detect them now. bool HasVectorVReg = false; for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) { HasVectorVReg = true; break; } } if (!HasVectorVReg) return; // nothing to do. // If we have a vector register, we want to emit code into the entry and exit // blocks to save and restore the VRSAVE register. We do this here (instead // of marking all vector instructions as clobbering VRSAVE) for two reasons: // // 1. This (trivially) reduces the load on the register allocator, by not // having to represent the live range of the VRSAVE register. // 2. This (more significantly) allows us to create a temporary virtual // register to hold the saved VRSAVE value, allowing this temporary to be // register allocated, instead of forcing it to be spilled to the stack. // Create two vregs - one to hold the VRSAVE register that is live-in to the // function and one for the value after having bits or'd into it. unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); MachineBasicBlock &EntryBB = *Fn.begin(); DebugLoc dl; // Emit the following code into the entry block: // InVRSAVE = MFVRSAVE // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE // MTVRSAVE UpdatedVRSAVE MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE); BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE), UpdatedVRSAVE).addReg(InVRSAVE); BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE); // Find all return blocks, outputting a restore in each epilog. for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { if (BB->isReturnBlock()) { IP = BB->end(); --IP; // Skip over all terminator instructions, which are part of the return // sequence. MachineBasicBlock::iterator I2 = IP; while (I2 != BB->begin() && (--I2)->isTerminator()) IP = I2; // Emit: MTVRSAVE InVRSave BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE); } } } /// getGlobalBaseReg - Output the instructions required to put the /// base address to use for accessing globals into a register. /// SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { if (!GlobalBaseReg) { const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); // Insert the set of GlobalBaseReg into the first MBB of the function MachineBasicBlock &FirstMBB = MF->front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); const Module *M = MF->getFunction().getParent(); DebugLoc dl; if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) { if (PPCSubTarget->isTargetELF()) { GlobalBaseReg = PPC::R30; if (!PPCSubTarget->isSecurePlt() && M->getPICLevel() == PICLevel::SmallPIC) { BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR)); BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); MF->getInfo()->setUsesPICBase(true); } else { BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::UpdateGBR), GlobalBaseReg) .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg); MF->getInfo()->setUsesPICBase(true); } } else { GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass); BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); } } else { // We must ensure that this sequence is dominated by the prologue. // FIXME: This is a bit of a big hammer since we don't get the benefits // of shrink-wrapping whenever we emit this instruction. Considering // this is used in any function where we emit a jump table, this may be // a significant limitation. We should consider inserting this in the // block where it is used and then commoning this sequence up if it // appears in multiple places. // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of // MovePCtoLR8. MF->getInfo()->setShrinkWrapDisabled(true); GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); } } return CurDAG->getRegister(GlobalBaseReg, PPCLowering->getPointerTy(CurDAG->getDataLayout())) .getNode(); } /// isInt32Immediate - This method tests to see if the node is a 32-bit constant /// operand. If so Imm will receive the 32-bit value. static bool isInt32Immediate(SDNode *N, unsigned &Imm) { if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { Imm = cast(N)->getZExtValue(); return true; } return false; } /// isInt64Immediate - This method tests to see if the node is a 64-bit constant /// operand. If so Imm will receive the 64-bit value. static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { Imm = cast(N)->getZExtValue(); return true; } return false; } // isInt32Immediate - This method tests to see if a constant operand. // If so Imm will receive the 32 bit value. static bool isInt32Immediate(SDValue N, unsigned &Imm) { return isInt32Immediate(N.getNode(), Imm); } /// isInt64Immediate - This method tests to see if the value is a 64-bit /// constant operand. If so Imm will receive the 64-bit value. static bool isInt64Immediate(SDValue N, uint64_t &Imm) { return isInt64Immediate(N.getNode(), Imm); } static unsigned getBranchHint(unsigned PCC, FunctionLoweringInfo *FuncInfo, const SDValue &DestMBB) { assert(isa(DestMBB)); if (!FuncInfo->BPI) return PPC::BR_NO_HINT; const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); const Instruction *BBTerm = BB->getTerminator(); if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT; const BasicBlock *TBB = BBTerm->getSuccessor(0); const BasicBlock *FBB = BBTerm->getSuccessor(1); auto TProb = FuncInfo->BPI->getEdgeProbability(BB, TBB); auto FProb = FuncInfo->BPI->getEdgeProbability(BB, FBB); // We only want to handle cases which are easy to predict at static time, e.g. // C++ throw statement, that is very likely not taken, or calling never // returned function, e.g. stdlib exit(). So we set Threshold to filter // unwanted cases. // // Below is LLVM branch weight table, we only want to handle case 1, 2 // // Case Taken:Nontaken Example // 1. Unreachable 1048575:1 C++ throw, stdlib exit(), // 2. Invoke-terminating 1:1048575 // 3. Coldblock 4:64 __builtin_expect // 4. Loop Branch 124:4 For loop // 5. PH/ZH/FPH 20:12 const uint32_t Threshold = 10000; if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb)) return PPC::BR_NO_HINT; LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo->Fn->getName() << "::" << BB->getName() << "'\n" << " -> " << TBB->getName() << ": " << TProb << "\n" << " -> " << FBB->getName() << ": " << FProb << "\n"); const BasicBlockSDNode *BBDN = cast(DestMBB); // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities, // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock if (BBDN->getBasicBlock()->getBasicBlock() != TBB) std::swap(TProb, FProb); return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT; } // isOpcWithIntImmediate - This method tests to see if the node is a specific // opcode and that it has a immediate integer right operand. // If so Imm will receive the 32 bit value. static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { return N->getOpcode() == Opc && isInt32Immediate(N->getOperand(1).getNode(), Imm); } void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) { SDLoc dl(SN); int FI = cast(N)->getIndex(); SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; if (SN->hasOneUse()) CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI, getSmallIPtrImm(Offset, dl)); else ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, getSmallIPtrImm(Offset, dl))); } bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, unsigned &SH, unsigned &MB, unsigned &ME) { // Don't even go down this path for i64, since different logic will be // necessary for rldicl/rldicr/rldimi. if (N->getValueType(0) != MVT::i32) return false; unsigned Shift = 32; unsigned Indeterminant = ~0; // bit mask marking indeterminant results unsigned Opcode = N->getOpcode(); if (N->getNumOperands() != 2 || !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) return false; if (Opcode == ISD::SHL) { // apply shift left to mask if it comes first if (isShiftMask) Mask = Mask << Shift; // determine which bits are made indeterminant by shift Indeterminant = ~(0xFFFFFFFFu << Shift); } else if (Opcode == ISD::SRL) { // apply shift right to mask if it comes first if (isShiftMask) Mask = Mask >> Shift; // determine which bits are made indeterminant by shift Indeterminant = ~(0xFFFFFFFFu >> Shift); // adjust for the left rotate Shift = 32 - Shift; } else if (Opcode == ISD::ROTL) { Indeterminant = 0; } else { return false; } // if the mask doesn't intersect any Indeterminant bits if (Mask && !(Mask & Indeterminant)) { SH = Shift & 31; // make sure the mask is still a mask (wrap arounds may not be) return isRunOfOnes(Mask, MB, ME); } return false; } bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) { SDValue Base = ST->getBasePtr(); if (Base.getOpcode() != PPCISD::ADD_TLS) return false; SDValue Offset = ST->getOffset(); if (!Offset.isUndef()) return false; SDLoc dl(ST); EVT MemVT = ST->getMemoryVT(); EVT RegVT = ST->getValue().getValueType(); unsigned Opcode; switch (MemVT.getSimpleVT().SimpleTy) { default: return false; case MVT::i8: { Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS; break; } case MVT::i16: { Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS; break; } case MVT::i32: { Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS; break; } case MVT::i64: { Opcode = PPC::STDXTLS; break; } } SDValue Chain = ST->getChain(); SDVTList VTs = ST->getVTList(); SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1), Chain}; SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); transferMemOperands(ST, MN); ReplaceNode(ST, MN); return true; } bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) { SDValue Base = LD->getBasePtr(); if (Base.getOpcode() != PPCISD::ADD_TLS) return false; SDValue Offset = LD->getOffset(); if (!Offset.isUndef()) return false; SDLoc dl(LD); EVT MemVT = LD->getMemoryVT(); EVT RegVT = LD->getValueType(0); unsigned Opcode; switch (MemVT.getSimpleVT().SimpleTy) { default: return false; case MVT::i8: { Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS; break; } case MVT::i16: { Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS; break; } case MVT::i32: { Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS; break; } case MVT::i64: { Opcode = PPC::LDXTLS; break; } } SDValue Chain = LD->getChain(); SDVTList VTs = LD->getVTList(); SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain}; SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); transferMemOperands(LD, MN); ReplaceNode(LD, MN); return true; } /// Turn an or of two masked values into the rotate left word immediate then /// mask insert (rlwimi) instruction. bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) { SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); SDLoc dl(N); KnownBits LKnown = CurDAG->computeKnownBits(Op0); KnownBits RKnown = CurDAG->computeKnownBits(Op1); unsigned TargetMask = LKnown.Zero.getZExtValue(); unsigned InsertMask = RKnown.Zero.getZExtValue(); if ((TargetMask | InsertMask) == 0xFFFFFFFF) { unsigned Op0Opc = Op0.getOpcode(); unsigned Op1Opc = Op1.getOpcode(); unsigned Value, SH = 0; TargetMask = ~TargetMask; InsertMask = ~InsertMask; // If the LHS has a foldable shift and the RHS does not, then swap it to the // RHS so that we can fold the shift into the insert. if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { if (Op0.getOperand(0).getOpcode() == ISD::SHL || Op0.getOperand(0).getOpcode() == ISD::SRL) { if (Op1.getOperand(0).getOpcode() != ISD::SHL && Op1.getOperand(0).getOpcode() != ISD::SRL) { std::swap(Op0, Op1); std::swap(Op0Opc, Op1Opc); std::swap(TargetMask, InsertMask); } } } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && Op1.getOperand(0).getOpcode() != ISD::SRL) { std::swap(Op0, Op1); std::swap(Op0Opc, Op1Opc); std::swap(TargetMask, InsertMask); } } unsigned MB, ME; if (isRunOfOnes(InsertMask, MB, ME)) { if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && isInt32Immediate(Op1.getOperand(1), Value)) { Op1 = Op1.getOperand(0); SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; } if (Op1Opc == ISD::AND) { // The AND mask might not be a constant, and we need to make sure that // if we're going to fold the masking with the insert, all bits not // know to be zero in the mask are known to be one. KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1)); bool CanFoldMask = InsertMask == MKnown.One.getZExtValue(); unsigned SHOpc = Op1.getOperand(0).getOpcode(); if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { // Note that Value must be in range here (less than 32) because // otherwise there would not be any bits set in InsertMask. Op1 = Op1.getOperand(0).getOperand(0); SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; } } SH &= 31; SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl), getI32Imm(ME, dl) }; ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); return true; } } return false; } // Predict the number of instructions that would be generated by calling // selectI64Imm(N). static unsigned selectI64ImmInstrCountDirect(int64_t Imm) { // Assume no remaining bits. unsigned Remainder = 0; // Assume no shift required. unsigned Shift = 0; // If it can't be represented as a 32 bit value. if (!isInt<32>(Imm)) { Shift = countTrailingZeros(Imm); int64_t ImmSh = static_cast(Imm) >> Shift; // If the shifted value fits 32 bits. if (isInt<32>(ImmSh)) { // Go with the shifted value. Imm = ImmSh; } else { // Still stuck with a 64 bit value. Remainder = Imm; Shift = 32; Imm >>= 32; } } // Intermediate operand. unsigned Result = 0; // Handle first 32 bits. unsigned Lo = Imm & 0xFFFF; // Simple value. if (isInt<16>(Imm)) { // Just the Lo bits. ++Result; } else if (Lo) { // Handle the Hi bits and Lo bits. Result += 2; } else { // Just the Hi bits. ++Result; } // If no shift, we're done. if (!Shift) return Result; // If Hi word == Lo word, // we can use rldimi to insert the Lo word into Hi word. if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) { ++Result; return Result; } // Shift for next step if the upper 32-bits were not zero. if (Imm) ++Result; // Add in the last bits as required. if ((Remainder >> 16) & 0xFFFF) ++Result; if (Remainder & 0xFFFF) ++Result; return Result; } static uint64_t Rot64(uint64_t Imm, unsigned R) { return (Imm << R) | (Imm >> (64 - R)); } static unsigned selectI64ImmInstrCount(int64_t Imm) { unsigned Count = selectI64ImmInstrCountDirect(Imm); // If the instruction count is 1 or 2, we do not need further analysis // since rotate + load constant requires at least 2 instructions. if (Count <= 2) return Count; for (unsigned r = 1; r < 63; ++r) { uint64_t RImm = Rot64(Imm, r); unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1; Count = std::min(Count, RCount); // See comments in selectI64Imm for an explanation of the logic below. unsigned LS = findLastSet(RImm); if (LS != r-1) continue; uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); uint64_t RImmWithOnes = RImm | OnesMask; RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1; Count = std::min(Count, RCount); } return Count; } // Select a 64-bit constant. For cost-modeling purposes, selectI64ImmInstrCount // (above) needs to be kept in sync with this function. static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl, int64_t Imm) { // Assume no remaining bits. unsigned Remainder = 0; // Assume no shift required. unsigned Shift = 0; // If it can't be represented as a 32 bit value. if (!isInt<32>(Imm)) { Shift = countTrailingZeros(Imm); int64_t ImmSh = static_cast(Imm) >> Shift; // If the shifted value fits 32 bits. if (isInt<32>(ImmSh)) { // Go with the shifted value. Imm = ImmSh; } else { // Still stuck with a 64 bit value. Remainder = Imm; Shift = 32; Imm >>= 32; } } // Intermediate operand. SDNode *Result; // Handle first 32 bits. unsigned Lo = Imm & 0xFFFF; unsigned Hi = (Imm >> 16) & 0xFFFF; auto getI32Imm = [CurDAG, dl](unsigned Imm) { return CurDAG->getTargetConstant(Imm, dl, MVT::i32); }; // Simple value. if (isInt<16>(Imm)) { uint64_t SextImm = SignExtend64(Lo, 16); SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); // Just the Lo bits. Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); } else if (Lo) { // Handle the Hi bits. unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8; Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi)); // And Lo bits. Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), getI32Imm(Lo)); } else { // Just the Hi bits. Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi)); } // If no shift, we're done. if (!Shift) return Result; // If Hi word == Lo word, // we can use rldimi to insert the Lo word into Hi word. if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) { SDValue Ops[] = { SDValue(Result, 0), SDValue(Result, 0), getI32Imm(Shift), getI32Imm(0)}; return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); } // Shift for next step if the upper 32-bits were not zero. if (Imm) { Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, SDValue(Result, 0), getI32Imm(Shift), getI32Imm(63 - Shift)); } // Add in the last bits as required. if ((Hi = (Remainder >> 16) & 0xFFFF)) { Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0), getI32Imm(Hi)); } if ((Lo = Remainder & 0xFFFF)) { Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), getI32Imm(Lo)); } return Result; } static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, int64_t Imm) { unsigned Count = selectI64ImmInstrCountDirect(Imm); // If the instruction count is 1 or 2, we do not need further analysis // since rotate + load constant requires at least 2 instructions. if (Count <= 2) return selectI64ImmDirect(CurDAG, dl, Imm); unsigned RMin = 0; int64_t MatImm; unsigned MaskEnd; for (unsigned r = 1; r < 63; ++r) { uint64_t RImm = Rot64(Imm, r); unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1; if (RCount < Count) { Count = RCount; RMin = r; MatImm = RImm; MaskEnd = 63; } // If the immediate to generate has many trailing zeros, it might be // worthwhile to generate a rotated value with too many leading ones // (because that's free with li/lis's sign-extension semantics), and then // mask them off after rotation. unsigned LS = findLastSet(RImm); // We're adding (63-LS) higher-order ones, and we expect to mask them off // after performing the inverse rotation by (64-r). So we need that: // 63-LS == 64-r => LS == r-1 if (LS != r-1) continue; uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); uint64_t RImmWithOnes = RImm | OnesMask; RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1; if (RCount < Count) { Count = RCount; RMin = r; MatImm = RImmWithOnes; MaskEnd = LS; } } if (!RMin) return selectI64ImmDirect(CurDAG, dl, Imm); auto getI32Imm = [CurDAG, dl](unsigned Imm) { return CurDAG->getTargetConstant(Imm, dl, MVT::i32); }; SDValue Val = SDValue(selectI64ImmDirect(CurDAG, dl, MatImm), 0); return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val, getI32Imm(64 - RMin), getI32Imm(MaskEnd)); } static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) { unsigned MaxTruncation = 0; // Cannot use range-based for loop here as we need the actual use (i.e. we // need the operand number corresponding to the use). A range-based for // will unbox the use and provide an SDNode*. for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end(); Use != UseEnd; ++Use) { unsigned Opc = Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode(); switch (Opc) { default: return 0; case ISD::TRUNCATE: if (Use->isMachineOpcode()) return 0; MaxTruncation = std::max(MaxTruncation, Use->getValueType(0).getSizeInBits()); continue; case ISD::STORE: { if (Use->isMachineOpcode()) return 0; StoreSDNode *STN = cast(*Use); unsigned MemVTSize = STN->getMemoryVT().getSizeInBits(); if (MemVTSize == 64 || Use.getOperandNo() != 0) return 0; MaxTruncation = std::max(MaxTruncation, MemVTSize); continue; } case PPC::STW8: case PPC::STWX8: case PPC::STWU8: case PPC::STWUX8: if (Use.getOperandNo() != 0) return 0; MaxTruncation = std::max(MaxTruncation, 32u); continue; case PPC::STH8: case PPC::STHX8: case PPC::STHU8: case PPC::STHUX8: if (Use.getOperandNo() != 0) return 0; MaxTruncation = std::max(MaxTruncation, 16u); continue; case PPC::STB8: case PPC::STBX8: case PPC::STBU8: case PPC::STBUX8: if (Use.getOperandNo() != 0) return 0; MaxTruncation = std::max(MaxTruncation, 8u); continue; } } return MaxTruncation; } // Select a 64-bit constant. static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) { SDLoc dl(N); // Get 64 bit value. int64_t Imm = cast(N)->getZExtValue(); if (unsigned MinSize = allUsesTruncate(CurDAG, N)) { uint64_t SextImm = SignExtend64(Imm, MinSize); SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); if (isInt<16>(SextImm)) return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); } return selectI64Imm(CurDAG, dl, Imm); } namespace { class BitPermutationSelector { struct ValueBit { SDValue V; // The bit number in the value, using a convention where bit 0 is the // lowest-order bit. unsigned Idx; // ConstZero means a bit we need to mask off. // Variable is a bit comes from an input variable. // VariableKnownToBeZero is also a bit comes from an input variable, // but it is known to be already zero. So we do not need to mask them. enum Kind { ConstZero, Variable, VariableKnownToBeZero } K; ValueBit(SDValue V, unsigned I, Kind K = Variable) : V(V), Idx(I), K(K) {} ValueBit(Kind K = Variable) : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {} bool isZero() const { return K == ConstZero || K == VariableKnownToBeZero; } bool hasValue() const { return K == Variable || K == VariableKnownToBeZero; } SDValue getValue() const { assert(hasValue() && "Cannot get the value of a constant bit"); return V; } unsigned getValueBitIndex() const { assert(hasValue() && "Cannot get the value bit index of a constant bit"); return Idx; } }; // A bit group has the same underlying value and the same rotate factor. struct BitGroup { SDValue V; unsigned RLAmt; unsigned StartIdx, EndIdx; // This rotation amount assumes that the lower 32 bits of the quantity are // replicated in the high 32 bits by the rotation operator (which is done // by rlwinm and friends in 64-bit mode). bool Repl32; // Did converting to Repl32 == true change the rotation factor? If it did, // it decreased it by 32. bool Repl32CR; // Was this group coalesced after setting Repl32 to true? bool Repl32Coalesced; BitGroup(SDValue V, unsigned R, unsigned S, unsigned E) : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false), Repl32Coalesced(false) { LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R << " [" << S << ", " << E << "]\n"); } }; // Information on each (Value, RLAmt) pair (like the number of groups // associated with each) used to choose the lowering method. struct ValueRotInfo { SDValue V; unsigned RLAmt = std::numeric_limits::max(); unsigned NumGroups = 0; unsigned FirstGroupStartIdx = std::numeric_limits::max(); bool Repl32 = false; ValueRotInfo() = default; // For sorting (in reverse order) by NumGroups, and then by // FirstGroupStartIdx. bool operator < (const ValueRotInfo &Other) const { // We need to sort so that the non-Repl32 come first because, when we're // doing masking, the Repl32 bit groups might be subsumed into the 64-bit // masking operation. if (Repl32 < Other.Repl32) return true; else if (Repl32 > Other.Repl32) return false; else if (NumGroups > Other.NumGroups) return true; else if (NumGroups < Other.NumGroups) return false; else if (RLAmt == 0 && Other.RLAmt != 0) return true; else if (RLAmt != 0 && Other.RLAmt == 0) return false; else if (FirstGroupStartIdx < Other.FirstGroupStartIdx) return true; return false; } }; using ValueBitsMemoizedValue = std::pair>; using ValueBitsMemoizer = DenseMap>; ValueBitsMemoizer Memoizer; // Return a pair of bool and a SmallVector pointer to a memoization entry. // The bool is true if something interesting was deduced, otherwise if we're // providing only a generic representation of V (or something else likewise // uninteresting for instruction selection) through the SmallVector. std::pair *> getValueBits(SDValue V, unsigned NumBits) { auto &ValueEntry = Memoizer[V]; if (ValueEntry) return std::make_pair(ValueEntry->first, &ValueEntry->second); ValueEntry.reset(new ValueBitsMemoizedValue()); bool &Interesting = ValueEntry->first; SmallVector &Bits = ValueEntry->second; Bits.resize(NumBits); switch (V.getOpcode()) { default: break; case ISD::ROTL: if (isa(V.getOperand(1))) { unsigned RotAmt = V.getConstantOperandVal(1); const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; for (unsigned i = 0; i < NumBits; ++i) Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt]; return std::make_pair(Interesting = true, &Bits); } break; case ISD::SHL: if (isa(V.getOperand(1))) { unsigned ShiftAmt = V.getConstantOperandVal(1); const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; for (unsigned i = ShiftAmt; i < NumBits; ++i) Bits[i] = LHSBits[i - ShiftAmt]; for (unsigned i = 0; i < ShiftAmt; ++i) Bits[i] = ValueBit(ValueBit::ConstZero); return std::make_pair(Interesting = true, &Bits); } break; case ISD::SRL: if (isa(V.getOperand(1))) { unsigned ShiftAmt = V.getConstantOperandVal(1); const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; for (unsigned i = 0; i < NumBits - ShiftAmt; ++i) Bits[i] = LHSBits[i + ShiftAmt]; for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i) Bits[i] = ValueBit(ValueBit::ConstZero); return std::make_pair(Interesting = true, &Bits); } break; case ISD::AND: if (isa(V.getOperand(1))) { uint64_t Mask = V.getConstantOperandVal(1); const SmallVector *LHSBits; // Mark this as interesting, only if the LHS was also interesting. This // prevents the overall procedure from matching a single immediate 'and' // (which is non-optimal because such an and might be folded with other // things if we don't select it here). std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits); for (unsigned i = 0; i < NumBits; ++i) if (((Mask >> i) & 1) == 1) Bits[i] = (*LHSBits)[i]; else { // AND instruction masks this bit. If the input is already zero, // we have nothing to do here. Otherwise, make the bit ConstZero. if ((*LHSBits)[i].isZero()) Bits[i] = (*LHSBits)[i]; else Bits[i] = ValueBit(ValueBit::ConstZero); } return std::make_pair(Interesting, &Bits); } break; case ISD::OR: { const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second; bool AllDisjoint = true; SDValue LastVal = SDValue(); unsigned LastIdx = 0; for (unsigned i = 0; i < NumBits; ++i) { if (LHSBits[i].isZero() && RHSBits[i].isZero()) { // If both inputs are known to be zero and one is ConstZero and // another is VariableKnownToBeZero, we can select whichever // we like. To minimize the number of bit groups, we select // VariableKnownToBeZero if this bit is the next bit of the same // input variable from the previous bit. Otherwise, we select // ConstZero. if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal && LHSBits[i].getValueBitIndex() == LastIdx + 1) Bits[i] = LHSBits[i]; else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal && RHSBits[i].getValueBitIndex() == LastIdx + 1) Bits[i] = RHSBits[i]; else Bits[i] = ValueBit(ValueBit::ConstZero); } else if (LHSBits[i].isZero()) Bits[i] = RHSBits[i]; else if (RHSBits[i].isZero()) Bits[i] = LHSBits[i]; else { AllDisjoint = false; break; } // We remember the value and bit index of this bit. if (Bits[i].hasValue()) { LastVal = Bits[i].getValue(); LastIdx = Bits[i].getValueBitIndex(); } else { if (LastVal) LastVal = SDValue(); LastIdx = 0; } } if (!AllDisjoint) break; return std::make_pair(Interesting = true, &Bits); } case ISD::ZERO_EXTEND: { // We support only the case with zero extension from i32 to i64 so far. if (V.getValueType() != MVT::i64 || V.getOperand(0).getValueType() != MVT::i32) break; const SmallVector *LHSBits; const unsigned NumOperandBits = 32; std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumOperandBits); for (unsigned i = 0; i < NumOperandBits; ++i) Bits[i] = (*LHSBits)[i]; for (unsigned i = NumOperandBits; i < NumBits; ++i) Bits[i] = ValueBit(ValueBit::ConstZero); return std::make_pair(Interesting, &Bits); } case ISD::TRUNCATE: { EVT FromType = V.getOperand(0).getValueType(); EVT ToType = V.getValueType(); // We support only the case with truncate from i64 to i32. if (FromType != MVT::i64 || ToType != MVT::i32) break; const unsigned NumAllBits = FromType.getSizeInBits(); SmallVector *InBits; std::tie(Interesting, InBits) = getValueBits(V.getOperand(0), NumAllBits); const unsigned NumValidBits = ToType.getSizeInBits(); // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value. // So, we cannot include this truncate. bool UseUpper32bit = false; for (unsigned i = 0; i < NumValidBits; ++i) if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) { UseUpper32bit = true; break; } if (UseUpper32bit) break; for (unsigned i = 0; i < NumValidBits; ++i) Bits[i] = (*InBits)[i]; return std::make_pair(Interesting, &Bits); } case ISD::AssertZext: { // For AssertZext, we look through the operand and // mark the bits known to be zero. const SmallVector *LHSBits; std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits); EVT FromType = cast(V.getOperand(1))->getVT(); const unsigned NumValidBits = FromType.getSizeInBits(); for (unsigned i = 0; i < NumValidBits; ++i) Bits[i] = (*LHSBits)[i]; // These bits are known to be zero. for (unsigned i = NumValidBits; i < NumBits; ++i) Bits[i] = ValueBit((*LHSBits)[i].getValue(), (*LHSBits)[i].getValueBitIndex(), ValueBit::VariableKnownToBeZero); return std::make_pair(Interesting, &Bits); } case ISD::LOAD: LoadSDNode *LD = cast(V); if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) { EVT VT = LD->getMemoryVT(); const unsigned NumValidBits = VT.getSizeInBits(); for (unsigned i = 0; i < NumValidBits; ++i) Bits[i] = ValueBit(V, i); // These bits are known to be zero. for (unsigned i = NumValidBits; i < NumBits; ++i) Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero); // Zero-extending load itself cannot be optimized. So, it is not // interesting by itself though it gives useful information. return std::make_pair(Interesting = false, &Bits); } break; } for (unsigned i = 0; i < NumBits; ++i) Bits[i] = ValueBit(V, i); return std::make_pair(Interesting = false, &Bits); } // For each value (except the constant ones), compute the left-rotate amount // to get it from its original to final position. void computeRotationAmounts() { NeedMask = false; RLAmt.resize(Bits.size()); for (unsigned i = 0; i < Bits.size(); ++i) if (Bits[i].hasValue()) { unsigned VBI = Bits[i].getValueBitIndex(); if (i >= VBI) RLAmt[i] = i - VBI; else RLAmt[i] = Bits.size() - (VBI - i); } else if (Bits[i].isZero()) { NeedMask = true; RLAmt[i] = UINT32_MAX; } else { llvm_unreachable("Unknown value bit type"); } } // Collect groups of consecutive bits with the same underlying value and // rotation factor. If we're doing late masking, we ignore zeros, otherwise // they break up groups. void collectBitGroups(bool LateMask) { BitGroups.clear(); unsigned LastRLAmt = RLAmt[0]; SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue(); unsigned LastGroupStartIdx = 0; bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); for (unsigned i = 1; i < Bits.size(); ++i) { unsigned ThisRLAmt = RLAmt[i]; SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue(); if (LateMask && !ThisValue) { ThisValue = LastValue; ThisRLAmt = LastRLAmt; // If we're doing late masking, then the first bit group always starts // at zero (even if the first bits were zero). if (BitGroups.empty()) LastGroupStartIdx = 0; } // If this bit is known to be zero and the current group is a bit group // of zeros, we do not need to terminate the current bit group even the // Value or RLAmt does not match here. Instead, we terminate this group // when the first non-zero bit appears later. if (IsGroupOfZeros && Bits[i].isZero()) continue; // If this bit has the same underlying value and the same rotate factor as // the last one, then they're part of the same group. if (ThisRLAmt == LastRLAmt && ThisValue == LastValue) // We cannot continue the current group if this bits is not known to // be zero in a bit group of zeros. if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero())) continue; if (LastValue.getNode()) BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, i-1)); LastRLAmt = ThisRLAmt; LastValue = ThisValue; LastGroupStartIdx = i; IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); } if (LastValue.getNode()) BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, Bits.size()-1)); if (BitGroups.empty()) return; // We might be able to combine the first and last groups. if (BitGroups.size() > 1) { // If the first and last groups are the same, then remove the first group // in favor of the last group, making the ending index of the last group // equal to the ending index of the to-be-removed first group. if (BitGroups[0].StartIdx == 0 && BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 && BitGroups[0].V == BitGroups[BitGroups.size()-1].V && BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) { LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n"); BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx; BitGroups.erase(BitGroups.begin()); } } } // Take all (SDValue, RLAmt) pairs and sort them by the number of groups // associated with each. If the number of groups are same, we prefer a group // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate // instruction. If there is a degeneracy, pick the one that occurs // first (in the final value). void collectValueRotInfo() { ValueRots.clear(); for (auto &BG : BitGroups) { unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0); ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)]; VRI.V = BG.V; VRI.RLAmt = BG.RLAmt; VRI.Repl32 = BG.Repl32; VRI.NumGroups += 1; VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx); } // Now that we've collected the various ValueRotInfo instances, we need to // sort them. ValueRotsVec.clear(); for (auto &I : ValueRots) { ValueRotsVec.push_back(I.second); } llvm::sort(ValueRotsVec); } // In 64-bit mode, rlwinm and friends have a rotation operator that // replicates the low-order 32 bits into the high-order 32-bits. The mask // indices of these instructions can only be in the lower 32 bits, so they // can only represent some 64-bit bit groups. However, when they can be used, // the 32-bit replication can be used to represent, as a single bit group, // otherwise separate bit groups. We'll convert to replicated-32-bit bit // groups when possible. Returns true if any of the bit groups were // converted. void assignRepl32BitGroups() { // If we have bits like this: // // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 // Groups: | RLAmt = 8 | RLAmt = 40 | // // But, making use of a 32-bit operation that replicates the low-order 32 // bits into the high-order 32 bits, this can be one bit group with a RLAmt // of 8. auto IsAllLow32 = [this](BitGroup & BG) { if (BG.StartIdx <= BG.EndIdx) { for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) { if (!Bits[i].hasValue()) continue; if (Bits[i].getValueBitIndex() >= 32) return false; } } else { for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) { if (!Bits[i].hasValue()) continue; if (Bits[i].getValueBitIndex() >= 32) return false; } for (unsigned i = 0; i <= BG.EndIdx; ++i) { if (!Bits[i].hasValue()) continue; if (Bits[i].getValueBitIndex() >= 32) return false; } } return true; }; for (auto &BG : BitGroups) { // If this bit group has RLAmt of 0 and will not be merged with // another bit group, we don't benefit from Repl32. We don't mark // such group to give more freedom for later instruction selection. if (BG.RLAmt == 0) { auto PotentiallyMerged = [this](BitGroup & BG) { for (auto &BG2 : BitGroups) if (&BG != &BG2 && BG.V == BG2.V && (BG2.RLAmt == 0 || BG2.RLAmt == 32)) return true; return false; }; if (!PotentiallyMerged(BG)) continue; } if (BG.StartIdx < 32 && BG.EndIdx < 32) { if (IsAllLow32(BG)) { if (BG.RLAmt >= 32) { BG.RLAmt -= 32; BG.Repl32CR = true; } BG.Repl32 = true; LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for " << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n"); } } } // Now walk through the bit groups, consolidating where possible. for (auto I = BitGroups.begin(); I != BitGroups.end();) { // We might want to remove this bit group by merging it with the previous // group (which might be the ending group). auto IP = (I == BitGroups.begin()) ? std::prev(BitGroups.end()) : std::prev(I); if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt && I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) { LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with group with range [" << IP->StartIdx << ", " << IP->EndIdx << "]\n"); IP->EndIdx = I->EndIdx; IP->Repl32CR = IP->Repl32CR || I->Repl32CR; IP->Repl32Coalesced = true; I = BitGroups.erase(I); continue; } else { // There is a special case worth handling: If there is a single group // covering the entire upper 32 bits, and it can be merged with both // the next and previous groups (which might be the same group), then // do so. If it is the same group (so there will be only one group in // total), then we need to reverse the order of the range so that it // covers the entire 64 bits. if (I->StartIdx == 32 && I->EndIdx == 63) { assert(std::next(I) == BitGroups.end() && "bit group ends at index 63 but there is another?"); auto IN = BitGroups.begin(); if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt && IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP && IsAllLow32(*I)) { LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with 32-bit replicated groups with ranges [" << IP->StartIdx << ", " << IP->EndIdx << "] and [" << IN->StartIdx << ", " << IN->EndIdx << "]\n"); if (IP == IN) { // There is only one other group; change it to cover the whole // range (backward, so that it can still be Repl32 but cover the // whole 64-bit range). IP->StartIdx = 31; IP->EndIdx = 30; IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32; IP->Repl32Coalesced = true; I = BitGroups.erase(I); } else { // There are two separate groups, one before this group and one // after us (at the beginning). We're going to remove this group, // but also the group at the very beginning. IP->EndIdx = IN->EndIdx; IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32; IP->Repl32Coalesced = true; I = BitGroups.erase(I); BitGroups.erase(BitGroups.begin()); } // This must be the last group in the vector (and we might have // just invalidated the iterator above), so break here. break; } } } ++I; } } SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { return CurDAG->getTargetConstant(Imm, dl, MVT::i32); } uint64_t getZerosMask() { uint64_t Mask = 0; for (unsigned i = 0; i < Bits.size(); ++i) { if (Bits[i].hasValue()) continue; Mask |= (UINT64_C(1) << i); } return ~Mask; } // This method extends an input value to 64 bit if input is 32-bit integer. // While selecting instructions in BitPermutationSelector in 64-bit mode, // an input value can be a 32-bit integer if a ZERO_EXTEND node is included. // In such case, we extend it to 64 bit to be consistent with other values. SDValue ExtendToInt64(SDValue V, const SDLoc &dl) { if (V.getValueSizeInBits() == 64) return V; assert(V.getValueSizeInBits() == 32); SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0); SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64, ImDef, V, SubRegIdx), 0); return ExtVal; } SDValue TruncateToInt32(SDValue V, const SDLoc &dl) { if (V.getValueSizeInBits() == 32) return V; assert(V.getValueSizeInBits() == 64); SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32, V, SubRegIdx), 0); return SubVal; } // Depending on the number of groups for a particular value, it might be // better to rotate, mask explicitly (using andi/andis), and then or the // result. Select this part of the result first. void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { if (BPermRewriterNoMasking) return; for (ValueRotInfo &VRI : ValueRotsVec) { unsigned Mask = 0; for (unsigned i = 0; i < Bits.size(); ++i) { if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V) continue; if (RLAmt[i] != VRI.RLAmt) continue; Mask |= (1u << i); } // Compute the masks for andi/andis that would be necessary. unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; assert((ANDIMask != 0 || ANDISMask != 0) && "No set bits in mask for value bit groups"); bool NeedsRotate = VRI.RLAmt != 0; // We're trying to minimize the number of instructions. If we have one // group, using one of andi/andis can break even. If we have three // groups, we can use both andi and andis and break even (to use both // andi and andis we also need to or the results together). We need four // groups if we also need to rotate. To use andi/andis we need to do more // than break even because rotate-and-mask instructions tend to be easier // to schedule. // FIXME: We've biased here against using andi/andis, which is right for // POWER cores, but not optimal everywhere. For example, on the A2, // andi/andis have single-cycle latency whereas the rotate-and-mask // instructions take two cycles, and it would be better to bias toward // andi/andis in break-even cases. unsigned NumAndInsts = (unsigned) NeedsRotate + (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + (unsigned) (ANDIMask != 0 && ANDISMask != 0) + (unsigned) (bool) Res; LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << ":" << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << VRI.NumGroups << "\n"); if (NumAndInsts >= VRI.NumGroups) continue; LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); if (InstCnt) *InstCnt += NumAndInsts; SDValue VRot; if (VRI.RLAmt) { SDValue Ops[] = { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl), getI32Imm(31, dl) }; VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); } else { VRot = TruncateToInt32(VRI.V, dl); } SDValue ANDIVal, ANDISVal; if (ANDIMask != 0) ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32, VRot, getI32Imm(ANDIMask, dl)), 0); if (ANDISMask != 0) ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32, VRot, getI32Imm(ANDISMask, dl)), 0); SDValue TotalVal; if (!ANDIVal) TotalVal = ANDISVal; else if (!ANDISVal) TotalVal = ANDIVal; else TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, ANDIVal, ANDISVal), 0); if (!Res) Res = TotalVal; else Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, Res, TotalVal), 0); // Now, remove all groups with this underlying value and rotation // factor. eraseMatchingBitGroups([VRI](const BitGroup &BG) { return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; }); } } // Instruction selection for the 32-bit case. SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) { SDLoc dl(N); SDValue Res; if (InstCnt) *InstCnt = 0; // Take care of cases that should use andi/andis first. SelectAndParts32(dl, Res, InstCnt); // If we've not yet selected a 'starting' instruction, and we have no zeros // to fill in, select the (Value, RLAmt) with the highest priority (largest // number of groups), and start with this rotated value. if ((!NeedMask || LateMask) && !Res) { ValueRotInfo &VRI = ValueRotsVec[0]; if (VRI.RLAmt) { if (InstCnt) *InstCnt += 1; SDValue Ops[] = { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl), getI32Imm(31, dl) }; Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); } else { Res = TruncateToInt32(VRI.V, dl); } // Now, remove all groups with this underlying value and rotation factor. eraseMatchingBitGroups([VRI](const BitGroup &BG) { return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; }); } if (InstCnt) *InstCnt += BitGroups.size(); // Insert the other groups (one at a time). for (auto &BG : BitGroups) { if (!Res) { SDValue Ops[] = { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), getI32Imm(Bits.size() - BG.EndIdx - 1, dl), getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); } else { SDValue Ops[] = { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), getI32Imm(Bits.size() - BG.EndIdx - 1, dl), getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0); } } if (LateMask) { unsigned Mask = (unsigned) getZerosMask(); unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; assert((ANDIMask != 0 || ANDISMask != 0) && "No set bits in zeros mask?"); if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + (unsigned) (ANDIMask != 0 && ANDISMask != 0); SDValue ANDIVal, ANDISVal; if (ANDIMask != 0) ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32, Res, getI32Imm(ANDIMask, dl)), 0); if (ANDISMask != 0) ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32, Res, getI32Imm(ANDISMask, dl)), 0); if (!ANDIVal) Res = ANDISVal; else if (!ANDISVal) Res = ANDIVal; else Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, ANDIVal, ANDISVal), 0); } return Res.getNode(); } unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32, unsigned MaskStart, unsigned MaskEnd, bool IsIns) { // In the notation used by the instructions, 'start' and 'end' are reversed // because bits are counted from high to low order. unsigned InstMaskStart = 64 - MaskEnd - 1, InstMaskEnd = 64 - MaskStart - 1; if (Repl32) return 1; if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) || InstMaskEnd == 63 - RLAmt) return 1; return 2; } // For 64-bit values, not all combinations of rotates and masks are // available. Produce one if it is available. SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt, bool Repl32, unsigned MaskStart, unsigned MaskEnd, unsigned *InstCnt = nullptr) { // In the notation used by the instructions, 'start' and 'end' are reversed // because bits are counted from high to low order. unsigned InstMaskStart = 64 - MaskEnd - 1, InstMaskEnd = 64 - MaskStart - 1; if (InstCnt) *InstCnt += 1; if (Repl32) { // This rotation amount assumes that the lower 32 bits of the quantity // are replicated in the high 32 bits by the rotation operator (which is // done by rlwinm and friends). assert(InstMaskStart >= 32 && "Mask cannot start out of range"); assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); SDValue Ops[] = { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64, Ops), 0); } if (InstMaskEnd == 63) { SDValue Ops[] = { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) }; return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0); } if (InstMaskStart == 0) { SDValue Ops[] = { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), getI32Imm(InstMaskEnd, dl) }; return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0); } if (InstMaskEnd == 63 - RLAmt) { SDValue Ops[] = { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) }; return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0); } // We cannot do this with a single instruction, so we'll use two. The // problem is that we're not free to choose both a rotation amount and mask // start and end independently. We can choose an arbitrary mask start and // end, but then the rotation amount is fixed. Rotation, however, can be // inverted, and so by applying an "inverse" rotation first, we can get the // desired result. if (InstCnt) *InstCnt += 1; // The rotation mask for the second instruction must be MaskStart. unsigned RLAmt2 = MaskStart; // The first instruction must rotate V so that the overall rotation amount // is RLAmt. unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; if (RLAmt1) V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd); } // For 64-bit values, not all combinations of rotates and masks are // available. Produce a rotate-mask-and-insert if one is available. SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl, unsigned RLAmt, bool Repl32, unsigned MaskStart, unsigned MaskEnd, unsigned *InstCnt = nullptr) { // In the notation used by the instructions, 'start' and 'end' are reversed // because bits are counted from high to low order. unsigned InstMaskStart = 64 - MaskEnd - 1, InstMaskEnd = 64 - MaskStart - 1; if (InstCnt) *InstCnt += 1; if (Repl32) { // This rotation amount assumes that the lower 32 bits of the quantity // are replicated in the high 32 bits by the rotation operator (which is // done by rlwinm and friends). assert(InstMaskStart >= 32 && "Mask cannot start out of range"); assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); SDValue Ops[] = { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops), 0); } if (InstMaskEnd == 63 - RLAmt) { SDValue Ops[] = { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) }; return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0); } // We cannot do this with a single instruction, so we'll use two. The // problem is that we're not free to choose both a rotation amount and mask // start and end independently. We can choose an arbitrary mask start and // end, but then the rotation amount is fixed. Rotation, however, can be // inverted, and so by applying an "inverse" rotation first, we can get the // desired result. if (InstCnt) *InstCnt += 1; // The rotation mask for the second instruction must be MaskStart. unsigned RLAmt2 = MaskStart; // The first instruction must rotate V so that the overall rotation amount // is RLAmt. unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; if (RLAmt1) V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd); } void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { if (BPermRewriterNoMasking) return; // The idea here is the same as in the 32-bit version, but with additional // complications from the fact that Repl32 might be true. Because we // aggressively convert bit groups to Repl32 form (which, for small // rotation factors, involves no other change), and then coalesce, it might // be the case that a single 64-bit masking operation could handle both // some Repl32 groups and some non-Repl32 groups. If converting to Repl32 // form allowed coalescing, then we must use a 32-bit rotaton in order to // completely capture the new combined bit group. for (ValueRotInfo &VRI : ValueRotsVec) { uint64_t Mask = 0; // We need to add to the mask all bits from the associated bit groups. // If Repl32 is false, we need to add bits from bit groups that have // Repl32 true, but are trivially convertable to Repl32 false. Such a // group is trivially convertable if it overlaps only with the lower 32 // bits, and the group has not been coalesced. auto MatchingBG = [VRI](const BitGroup &BG) { if (VRI.V != BG.V) return false; unsigned EffRLAmt = BG.RLAmt; if (!VRI.Repl32 && BG.Repl32) { if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx && !BG.Repl32Coalesced) { if (BG.Repl32CR) EffRLAmt += 32; } else { return false; } } else if (VRI.Repl32 != BG.Repl32) { return false; } return VRI.RLAmt == EffRLAmt; }; for (auto &BG : BitGroups) { if (!MatchingBG(BG)) continue; if (BG.StartIdx <= BG.EndIdx) { for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) Mask |= (UINT64_C(1) << i); } else { for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) Mask |= (UINT64_C(1) << i); for (unsigned i = 0; i <= BG.EndIdx; ++i) Mask |= (UINT64_C(1) << i); } } // We can use the 32-bit andi/andis technique if the mask does not // require any higher-order bits. This can save an instruction compared // to always using the general 64-bit technique. bool Use32BitInsts = isUInt<32>(Mask); // Compute the masks for andi/andis that would be necessary. unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = (Mask >> 16) & UINT16_MAX; bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)); unsigned NumAndInsts = (unsigned) NeedsRotate + (unsigned) (bool) Res; if (Use32BitInsts) NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + (unsigned) (ANDIMask != 0 && ANDISMask != 0); else NumAndInsts += selectI64ImmInstrCount(Mask) + /* and */ 1; unsigned NumRLInsts = 0; bool FirstBG = true; bool MoreBG = false; for (auto &BG : BitGroups) { if (!MatchingBG(BG)) { MoreBG = true; continue; } NumRLInsts += SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, !FirstBG); FirstBG = false; } LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << NumRLInsts << "\n"); // When we'd use andi/andis, we bias toward using the rotates (andi only // has a record form, and is cracked on POWER cores). However, when using // general 64-bit constant formation, bias toward the constant form, // because that exposes more opportunities for CSE. if (NumAndInsts > NumRLInsts) continue; // When merging multiple bit groups, instruction or is used. // But when rotate is used, rldimi can inert the rotated value into any // register, so instruction or can be avoided. if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts) continue; LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); if (InstCnt) *InstCnt += NumAndInsts; SDValue VRot; // We actually need to generate a rotation if we have a non-zero rotation // factor or, in the Repl32 case, if we care about any of the // higher-order replicated bits. In the latter case, we generate a mask // backward so that it actually includes the entire 64 bits. if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask))) VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63); else VRot = VRI.V; SDValue TotalVal; if (Use32BitInsts) { assert((ANDIMask != 0 || ANDISMask != 0) && "No set bits in mask when using 32-bit ands for 64-bit value"); SDValue ANDIVal, ANDISVal; if (ANDIMask != 0) ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64, ExtendToInt64(VRot, dl), getI32Imm(ANDIMask, dl)), 0); if (ANDISMask != 0) ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64, ExtendToInt64(VRot, dl), getI32Imm(ANDISMask, dl)), 0); if (!ANDIVal) TotalVal = ANDISVal; else if (!ANDISVal) TotalVal = ANDIVal; else TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, ExtendToInt64(ANDIVal, dl), ANDISVal), 0); } else { TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); TotalVal = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, ExtendToInt64(VRot, dl), TotalVal), 0); } if (!Res) Res = TotalVal; else Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, ExtendToInt64(Res, dl), TotalVal), 0); // Now, remove all groups with this underlying value and rotation // factor. eraseMatchingBitGroups(MatchingBG); } } // Instruction selection for the 64-bit case. SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) { SDLoc dl(N); SDValue Res; if (InstCnt) *InstCnt = 0; // Take care of cases that should use andi/andis first. SelectAndParts64(dl, Res, InstCnt); // If we've not yet selected a 'starting' instruction, and we have no zeros // to fill in, select the (Value, RLAmt) with the highest priority (largest // number of groups), and start with this rotated value. if ((!NeedMask || LateMask) && !Res) { // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32 // groups will come first, and so the VRI representing the largest number // of groups might not be first (it might be the first Repl32 groups). unsigned MaxGroupsIdx = 0; if (!ValueRotsVec[0].Repl32) { for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i) if (ValueRotsVec[i].Repl32) { if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups) MaxGroupsIdx = i; break; } } ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx]; bool NeedsRotate = false; if (VRI.RLAmt) { NeedsRotate = true; } else if (VRI.Repl32) { for (auto &BG : BitGroups) { if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt || BG.Repl32 != VRI.Repl32) continue; // We don't need a rotate if the bit group is confined to the lower // 32 bits. if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx) continue; NeedsRotate = true; break; } } if (NeedsRotate) Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63, InstCnt); else Res = VRI.V; // Now, remove all groups with this underlying value and rotation factor. if (Res) eraseMatchingBitGroups([VRI](const BitGroup &BG) { return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt && BG.Repl32 == VRI.Repl32; }); } // Because 64-bit rotates are more flexible than inserts, we might have a // preference regarding which one we do first (to save one instruction). if (!Res) for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) { if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, false) < SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, true)) { if (I != BitGroups.begin()) { BitGroup BG = *I; BitGroups.erase(I); BitGroups.insert(BitGroups.begin(), BG); } break; } } // Insert the other groups (one at a time). for (auto &BG : BitGroups) { if (!Res) Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, InstCnt); else Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, InstCnt); } if (LateMask) { uint64_t Mask = getZerosMask(); // We can use the 32-bit andi/andis technique if the mask does not // require any higher-order bits. This can save an instruction compared // to always using the general 64-bit technique. bool Use32BitInsts = isUInt<32>(Mask); // Compute the masks for andi/andis that would be necessary. unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = (Mask >> 16) & UINT16_MAX; if (Use32BitInsts) { assert((ANDIMask != 0 || ANDISMask != 0) && "No set bits in mask when using 32-bit ands for 64-bit value"); if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + (unsigned) (ANDIMask != 0 && ANDISMask != 0); SDValue ANDIVal, ANDISVal; if (ANDIMask != 0) ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64, ExtendToInt64(Res, dl), getI32Imm(ANDIMask, dl)), 0); if (ANDISMask != 0) ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64, ExtendToInt64(Res, dl), getI32Imm(ANDISMask, dl)), 0); if (!ANDIVal) Res = ANDISVal; else if (!ANDISVal) Res = ANDIVal; else Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, ExtendToInt64(ANDIVal, dl), ANDISVal), 0); } else { if (InstCnt) *InstCnt += selectI64ImmInstrCount(Mask) + /* and */ 1; SDValue MaskVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, ExtendToInt64(Res, dl), MaskVal), 0); } } return Res.getNode(); } SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) { // Fill in BitGroups. collectBitGroups(LateMask); if (BitGroups.empty()) return nullptr; // For 64-bit values, figure out when we can use 32-bit instructions. if (Bits.size() == 64) assignRepl32BitGroups(); // Fill in ValueRotsVec. collectValueRotInfo(); if (Bits.size() == 32) { return Select32(N, LateMask, InstCnt); } else { assert(Bits.size() == 64 && "Not 64 bits here?"); return Select64(N, LateMask, InstCnt); } return nullptr; } void eraseMatchingBitGroups(function_ref F) { BitGroups.erase(remove_if(BitGroups, F), BitGroups.end()); } SmallVector Bits; bool NeedMask; SmallVector RLAmt; SmallVector BitGroups; DenseMap, ValueRotInfo> ValueRots; SmallVector ValueRotsVec; SelectionDAG *CurDAG; public: BitPermutationSelector(SelectionDAG *DAG) : CurDAG(DAG) {} // Here we try to match complex bit permutations into a set of // rotate-and-shift/shift/and/or instructions, using a set of heuristics // known to produce optimal code for common cases (like i32 byte swapping). SDNode *Select(SDNode *N) { Memoizer.clear(); auto Result = getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits()); if (!Result.first) return nullptr; Bits = std::move(*Result.second); LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction" " selection for: "); LLVM_DEBUG(N->dump(CurDAG)); // Fill it RLAmt and set NeedMask. computeRotationAmounts(); if (!NeedMask) return Select(N, false); // We currently have two techniques for handling results with zeros: early // masking (the default) and late masking. Late masking is sometimes more // efficient, but because the structure of the bit groups is different, it // is hard to tell without generating both and comparing the results. With // late masking, we ignore zeros in the resulting value when inserting each // set of bit groups, and then mask in the zeros at the end. With early // masking, we only insert the non-zero parts of the result at every step. unsigned InstCnt = 0, InstCntLateMask = 0; LLVM_DEBUG(dbgs() << "\tEarly masking:\n"); SDNode *RN = Select(N, false, &InstCnt); LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n"); LLVM_DEBUG(dbgs() << "\tLate masking:\n"); SDNode *RNLM = Select(N, true, &InstCntLateMask); LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask << " instructions\n"); if (InstCnt <= InstCntLateMask) { LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n"); return RN; } LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n"); return RNLM; } }; class IntegerCompareEliminator { SelectionDAG *CurDAG; PPCDAGToDAGISel *S; // Conversion type for interpreting results of a 32-bit instruction as // a 64-bit value or vice versa. enum ExtOrTruncConversion { Ext, Trunc }; // Modifiers to guide how an ISD::SETCC node's result is to be computed // in a GPR. // ZExtOrig - use the original condition code, zero-extend value // ZExtInvert - invert the condition code, zero-extend value // SExtOrig - use the original condition code, sign-extend value // SExtInvert - invert the condition code, sign-extend value enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert }; // Comparisons against zero to emit GPR code sequences for. Each of these // sequences may need to be emitted for two or more equivalent patterns. // For example (a >= 0) == (a > -1). The direction of the comparison () // matters as well as the extension type: sext (-1/0), zext (1/0). // GEZExt - (zext (LHS >= 0)) // GESExt - (sext (LHS >= 0)) // LEZExt - (zext (LHS <= 0)) // LESExt - (sext (LHS <= 0)) enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt }; SDNode *tryEXTEND(SDNode *N); SDNode *tryLogicOpOfCompares(SDNode *N); SDValue computeLogicOpInGPR(SDValue LogicOp); SDValue signExtendInputIfNeeded(SDValue Input); SDValue zeroExtendInputIfNeeded(SDValue Input); SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv); SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, ZeroCompare CmpTy); SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, int64_t RHSValue, SDLoc dl); SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, int64_t RHSValue, SDLoc dl); SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, int64_t RHSValue, SDLoc dl); SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, int64_t RHSValue, SDLoc dl); SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts); public: IntegerCompareEliminator(SelectionDAG *DAG, PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) { assert(CurDAG->getTargetLoweringInfo() .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && "Only expecting to use this on 64 bit targets."); } SDNode *Select(SDNode *N) { if (CmpInGPR == ICGPR_None) return nullptr; switch (N->getOpcode()) { default: break; case ISD::ZERO_EXTEND: if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 || CmpInGPR == ICGPR_SextI64) return nullptr; LLVM_FALLTHROUGH; case ISD::SIGN_EXTEND: if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_ZextI64) return nullptr; return tryEXTEND(N); case ISD::AND: case ISD::OR: case ISD::XOR: return tryLogicOpOfCompares(N); } return nullptr; } }; static bool isLogicOp(unsigned Opc) { return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR; } // The obvious case for wanting to keep the value in a GPR. Namely, the // result of the comparison is actually needed in a GPR. SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) { assert((N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && "Expecting a zero/sign extend node!"); SDValue WideRes; // If we are zero-extending the result of a logical operation on i1 // values, we can keep the values in GPRs. if (isLogicOp(N->getOperand(0).getOpcode()) && N->getOperand(0).getValueType() == MVT::i1 && N->getOpcode() == ISD::ZERO_EXTEND) WideRes = computeLogicOpInGPR(N->getOperand(0)); else if (N->getOperand(0).getOpcode() != ISD::SETCC) return nullptr; else WideRes = getSETCCInGPR(N->getOperand(0), N->getOpcode() == ISD::SIGN_EXTEND ? SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig); if (!WideRes) return nullptr; SDLoc dl(N); bool Input32Bit = WideRes.getValueType() == MVT::i32; bool Output32Bit = N->getValueType(0) == MVT::i32; NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0; NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1; SDValue ConvOp = WideRes; if (Input32Bit != Output32Bit) ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext : ExtOrTruncConversion::Trunc); return ConvOp.getNode(); } // Attempt to perform logical operations on the results of comparisons while // keeping the values in GPRs. Without doing so, these would end up being // lowered to CR-logical operations which suffer from significant latency and // low ILP. SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) { if (N->getValueType(0) != MVT::i1) return nullptr; assert(isLogicOp(N->getOpcode()) && "Expected a logic operation on setcc results."); SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0)); if (!LoweredLogical) return nullptr; SDLoc dl(N); bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8; unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt; SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); SDValue LHS = LoweredLogical.getOperand(0); SDValue RHS = LoweredLogical.getOperand(1); SDValue WideOp; SDValue OpToConvToRecForm; // Look through any 32-bit to 64-bit implicit extend nodes to find the // opcode that is input to the XORI. if (IsBitwiseNegate && LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG) OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1); else if (IsBitwiseNegate) // If the input to the XORI isn't an extension, that's what we're after. OpToConvToRecForm = LoweredLogical.getOperand(0); else // If this is not an XORI, it is a reg-reg logical op and we can convert // it to record-form. OpToConvToRecForm = LoweredLogical; // Get the record-form version of the node we're looking to use to get the // CR result from. uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode(); int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc); // Convert the right node to record-form. This is either the logical we're // looking at or it is the input node to the negation (if we're looking at // a bitwise negation). if (NewOpc != -1 && IsBitwiseNegate) { // The input to the XORI has a record-form. Use it. assert(LoweredLogical.getConstantOperandVal(1) == 1 && "Expected a PPC::XORI8 only for bitwise negation."); // Emit the record-form instruction. std::vector Ops; for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++) Ops.push_back(OpToConvToRecForm.getOperand(i)); WideOp = SDValue(CurDAG->getMachineNode(NewOpc, dl, OpToConvToRecForm.getValueType(), MVT::Glue, Ops), 0); } else { assert((NewOpc != -1 || !IsBitwiseNegate) && "No record form available for AND8/OR8/XOR8?"); WideOp = SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDIo8 : NewOpc, dl, MVT::i64, MVT::Glue, LHS, RHS), 0); } // Select this node to a single bit from CR0 set by the record-form node // just created. For bitwise negation, use the EQ bit which is the equivalent // of negating the result (i.e. it is a bit set when the result of the // operation is zero). SDValue SRIdxVal = CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32); SDValue CRBit = SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1, CR0Reg, SRIdxVal, WideOp.getValue(1)), 0); return CRBit.getNode(); } // Lower a logical operation on i1 values into a GPR sequence if possible. // The result can be kept in a GPR if requested. // Three types of inputs can be handled: // - SETCC // - TRUNCATE // - Logical operation (AND/OR/XOR) // There is also a special case that is handled (namely a complement operation // achieved with xor %a, -1). SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) { assert(isLogicOp(LogicOp.getOpcode()) && "Can only handle logic operations here."); assert(LogicOp.getValueType() == MVT::i1 && "Can only handle logic operations on i1 values here."); SDLoc dl(LogicOp); SDValue LHS, RHS; // Special case: xor %a, -1 bool IsBitwiseNegation = isBitwiseNot(LogicOp); // Produces a GPR sequence for each operand of the binary logic operation. // For SETCC, it produces the respective comparison, for TRUNCATE it truncates // the value in a GPR and for logic operations, it will recursively produce // a GPR sequence for the operation. auto getLogicOperand = [&] (SDValue Operand) -> SDValue { unsigned OperandOpcode = Operand.getOpcode(); if (OperandOpcode == ISD::SETCC) return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig); else if (OperandOpcode == ISD::TRUNCATE) { SDValue InputOp = Operand.getOperand(0); EVT InVT = InputOp.getValueType(); return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 : PPC::RLDICL, dl, InVT, InputOp, S->getI64Imm(0, dl), S->getI64Imm(63, dl)), 0); } else if (isLogicOp(OperandOpcode)) return computeLogicOpInGPR(Operand); return SDValue(); }; LHS = getLogicOperand(LogicOp.getOperand(0)); RHS = getLogicOperand(LogicOp.getOperand(1)); // If a GPR sequence can't be produced for the LHS we can't proceed. // Not producing a GPR sequence for the RHS is only a problem if this isn't // a bitwise negation operation. if (!LHS || (!RHS && !IsBitwiseNegation)) return SDValue(); NumLogicOpsOnComparison++; // We will use the inputs as 64-bit values. if (LHS.getValueType() == MVT::i32) LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext); if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32) RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext); unsigned NewOpc; switch (LogicOp.getOpcode()) { default: llvm_unreachable("Unknown logic operation."); case ISD::AND: NewOpc = PPC::AND8; break; case ISD::OR: NewOpc = PPC::OR8; break; case ISD::XOR: NewOpc = PPC::XOR8; break; } if (IsBitwiseNegation) { RHS = S->getI64Imm(1, dl); NewOpc = PPC::XORI8; } return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0); } /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it. /// Otherwise just reinterpret it as a 64-bit value. /// Useful when emitting comparison code for 32-bit values without using /// the compare instruction (which only considers the lower 32-bits). SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) { assert(Input.getValueType() == MVT::i32 && "Can only sign-extend 32-bit values here."); unsigned Opc = Input.getOpcode(); // The value was sign extended and then truncated to 32-bits. No need to // sign extend it again. if (Opc == ISD::TRUNCATE && (Input.getOperand(0).getOpcode() == ISD::AssertSext || Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND)) return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); LoadSDNode *InputLoad = dyn_cast(Input); // The input is a sign-extending load. All ppc sign-extending loads // sign-extend to the full 64-bits. if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD) return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); ConstantSDNode *InputConst = dyn_cast(Input); // We don't sign-extend constants. if (InputConst) return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); SDLoc dl(Input); SignExtensionsAdded++; return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl, MVT::i64, Input), 0); } /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it. /// Otherwise just reinterpret it as a 64-bit value. /// Useful when emitting comparison code for 32-bit values without using /// the compare instruction (which only considers the lower 32-bits). SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) { assert(Input.getValueType() == MVT::i32 && "Can only zero-extend 32-bit values here."); unsigned Opc = Input.getOpcode(); // The only condition under which we can omit the actual extend instruction: // - The value is a positive constant // - The value comes from a load that isn't a sign-extending load // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext. bool IsTruncateOfZExt = Opc == ISD::TRUNCATE && (Input.getOperand(0).getOpcode() == ISD::AssertZext || Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND); if (IsTruncateOfZExt) return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); ConstantSDNode *InputConst = dyn_cast(Input); if (InputConst && InputConst->getSExtValue() >= 0) return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); LoadSDNode *InputLoad = dyn_cast(Input); // The input is a load that doesn't sign-extend (it will be zero-extended). if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD) return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); // None of the above, need to zero-extend. SDLoc dl(Input); ZeroExtensionsAdded++; return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input, S->getI64Imm(0, dl), S->getI64Imm(32, dl)), 0); } // Handle a 32-bit value in a 64-bit register and vice-versa. These are of // course not actual zero/sign extensions that will generate machine code, // they're just a way to reinterpret a 32 bit value in a register as a // 64 bit value and vice-versa. SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv) { SDLoc dl(NatWidthRes); // For reinterpreting 32-bit values as 64 bit values, we generate // INSERT_SUBREG IMPLICIT_DEF:i64, , TargetConstant:i32<1> if (Conv == ExtOrTruncConversion::Ext) { SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0); SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64, ImDef, NatWidthRes, SubRegIdx), 0); } assert(Conv == ExtOrTruncConversion::Trunc && "Unknown convertion between 32 and 64 bit values."); // For reinterpreting 64-bit values as 32-bit values, we just need to // EXTRACT_SUBREG (i.e. extract the low word). SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32, NatWidthRes, SubRegIdx), 0); } // Produce a GPR sequence for compound comparisons (<=, >=) against zero. // Handle both zero-extensions and sign-extensions. SDValue IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, ZeroCompare CmpTy) { EVT InVT = LHS.getValueType(); bool Is32Bit = InVT == MVT::i32; SDValue ToExtend; // Produce the value that needs to be either zero or sign extended. switch (CmpTy) { case ZeroCompare::GEZExt: case ZeroCompare::GESExt: ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8, dl, InVT, LHS, LHS), 0); break; case ZeroCompare::LEZExt: case ZeroCompare::LESExt: { if (Is32Bit) { // Upper 32 bits cannot be undefined for this sequence. LHS = signExtendInputIfNeeded(LHS); SDValue Neg = SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); ToExtend = SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Neg, S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 0); } else { SDValue Addi = SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, S->getI64Imm(~0ULL, dl)), 0); ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, Addi, LHS), 0); } break; } } // For 64-bit sequences, the extensions are the same for the GE/LE cases. if (!Is32Bit && (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt)) return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, ToExtend, S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 0); if (!Is32Bit && (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt)) return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend, S->getI64Imm(63, dl)), 0); assert(Is32Bit && "Should have handled the 32-bit sequences above."); // For 32-bit sequences, the extensions differ between GE/LE cases. switch (CmpTy) { case ZeroCompare::GEZExt: { SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl), S->getI32Imm(31, dl) }; return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); } case ZeroCompare::GESExt: return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend, S->getI32Imm(31, dl)), 0); case ZeroCompare::LEZExt: return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend, S->getI32Imm(1, dl)), 0); case ZeroCompare::LESExt: return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend, S->getI32Imm(-1, dl)), 0); } // The above case covers all the enumerators so it can't have a default clause // to avoid compiler warnings. llvm_unreachable("Unknown zero-comparison type."); } /// Produces a zero-extended result of comparing two 32-bit values according to /// the passed condition code. SDValue IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, int64_t RHSValue, SDLoc dl) { if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext) return SDValue(); bool IsRHSZero = RHSValue == 0; bool IsRHSOne = RHSValue == 1; bool IsRHSNegOne = RHSValue == -1LL; switch (CC) { default: return SDValue(); case ISD::SETEQ: { // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5) // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5) SDValue Xor = IsRHSZero ? LHS : SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); SDValue Clz = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); } case ISD::SETNE: { // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1) // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1) SDValue Xor = IsRHSZero ? LHS : SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); SDValue Clz = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; SDValue Shift = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, S->getI32Imm(1, dl)), 0); } case ISD::SETGE: { // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1) // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31) if(IsRHSZero) return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) // by swapping inputs and falling through. std::swap(LHS, RHS); ConstantSDNode *RHSConst = dyn_cast(RHS); IsRHSZero = RHSConst && RHSConst->isNullValue(); LLVM_FALLTHROUGH; } case ISD::SETLE: { if (CmpInGPR == ICGPR_NonExtIn) return SDValue(); // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1) // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1) if(IsRHSZero) { if (CmpInGPR == ICGPR_NonExtIn) return SDValue(); return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); } // The upper 32-bits of the register can't be undefined for this sequence. LHS = signExtendInputIfNeeded(LHS); RHS = signExtendInputIfNeeded(RHS); SDValue Sub = SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); SDValue Shift = SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub, S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 0); return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, Shift, S->getI32Imm(1, dl)), 0); } case ISD::SETGT: { // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63) // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31) // (zext (setcc %a, 0, setgt)) -> (lshr (- %a), 63) // Handle SETLT -1 (which is equivalent to SETGE 0). if (IsRHSNegOne) return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); if (IsRHSZero) { if (CmpInGPR == ICGPR_NonExtIn) return SDValue(); // The upper 32-bits of the register can't be undefined for this sequence. LHS = signExtendInputIfNeeded(LHS); RHS = signExtendInputIfNeeded(RHS); SDValue Neg = SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0); } // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as // (%b < %a) by swapping inputs and falling through. std::swap(LHS, RHS); ConstantSDNode *RHSConst = dyn_cast(RHS); IsRHSZero = RHSConst && RHSConst->isNullValue(); IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; LLVM_FALLTHROUGH; } case ISD::SETLT: { // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63) // (zext (setcc %a, 1, setlt)) -> (xor (lshr (- %a), 63), 1) // (zext (setcc %a, 0, setlt)) -> (lshr %a, 31) // Handle SETLT 1 (which is equivalent to SETLE 0). if (IsRHSOne) { if (CmpInGPR == ICGPR_NonExtIn) return SDValue(); return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); } if (IsRHSZero) { SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl), S->getI32Imm(31, dl) }; return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); } if (CmpInGPR == ICGPR_NonExtIn) return SDValue(); // The upper 32-bits of the register can't be undefined for this sequence. LHS = signExtendInputIfNeeded(LHS); RHS = signExtendInputIfNeeded(RHS); SDValue SUBFNode = SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SUBFNode, S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 0); } case ISD::SETUGE: // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1) // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1) std::swap(LHS, RHS); LLVM_FALLTHROUGH; case ISD::SETULE: { if (CmpInGPR == ICGPR_NonExtIn) return SDValue(); // The upper 32-bits of the register can't be undefined for this sequence. LHS = zeroExtendInputIfNeeded(LHS); RHS = zeroExtendInputIfNeeded(RHS); SDValue Subtract = SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); SDValue SrdiNode = SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract, S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 0); return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode, S->getI32Imm(1, dl)), 0); } case ISD::SETUGT: // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63) // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63) std::swap(LHS, RHS); LLVM_FALLTHROUGH; case ISD::SETULT: { if (CmpInGPR == ICGPR_NonExtIn) return SDValue(); // The upper 32-bits of the register can't be undefined for this sequence. LHS = zeroExtendInputIfNeeded(LHS); RHS = zeroExtendInputIfNeeded(RHS); SDValue Subtract = SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract, S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 0); } } } /// Produces a sign-extended result of comparing two 32-bit values according to /// the passed condition code. SDValue IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, int64_t RHSValue, SDLoc dl) { if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext) return SDValue(); bool IsRHSZero = RHSValue == 0; bool IsRHSOne = RHSValue == 1; bool IsRHSNegOne = RHSValue == -1LL; switch (CC) { default: return SDValue(); case ISD::SETEQ: { // (sext (setcc %a, %b, seteq)) -> // (ashr (shl (ctlz (xor %a, %b)), 58), 63) // (sext (setcc %a, 0, seteq)) -> // (ashr (shl (ctlz %a), 58), 63) SDValue CountInput = IsRHSZero ? LHS : SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); SDValue Cntlzw = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0); SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; SDValue Slwi = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0); return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0); } case ISD::SETNE: { // Bitwise xor the operands, count leading zeros, shift right by 5 bits and // flip the bit, finally take 2's complement. // (sext (setcc %a, %b, setne)) -> // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1)) // Same as above, but the first xor is not needed. // (sext (setcc %a, 0, setne)) -> // (neg (xor (lshr (ctlz %a), 5), 1)) SDValue Xor = IsRHSZero ? LHS : SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); SDValue Clz = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; SDValue Shift = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); SDValue Xori = SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, S->getI32Imm(1, dl)), 0); return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0); } case ISD::SETGE: { // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1) // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31) if (IsRHSZero) return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) // by swapping inputs and falling through. std::swap(LHS, RHS); ConstantSDNode *RHSConst = dyn_cast(RHS); IsRHSZero = RHSConst && RHSConst->isNullValue(); LLVM_FALLTHROUGH; } case ISD::SETLE: { if (CmpInGPR == ICGPR_NonExtIn) return SDValue(); // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1) // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1) if (IsRHSZero) return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); // The upper 32-bits of the register can't be undefined for this sequence. LHS = signExtendInputIfNeeded(LHS); RHS = signExtendInputIfNeeded(RHS); SDValue SUBFNode = SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue, LHS, RHS), 0); SDValue Srdi = SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SUBFNode, S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 0); return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi, S->getI32Imm(-1, dl)), 0); } case ISD::SETGT: { // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63) // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31) // (sext (setcc %a, 0, setgt)) -> (ashr (- %a), 63) if (IsRHSNegOne) return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); if (IsRHSZero) { if (CmpInGPR == ICGPR_NonExtIn) return SDValue(); // The upper 32-bits of the register can't be undefined for this sequence. LHS = signExtendInputIfNeeded(LHS); RHS = signExtendInputIfNeeded(RHS); SDValue Neg = SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg, S->getI64Imm(63, dl)), 0); } // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as // (%b < %a) by swapping inputs and falling through. std::swap(LHS, RHS); ConstantSDNode *RHSConst = dyn_cast(RHS); IsRHSZero = RHSConst && RHSConst->isNullValue(); IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; LLVM_FALLTHROUGH; } case ISD::SETLT: { // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63) // (sext (setcc %a, 1, setgt)) -> (add (lshr (- %a), 63), -1) // (sext (setcc %a, 0, setgt)) -> (ashr %a, 31) if (IsRHSOne) { if (CmpInGPR == ICGPR_NonExtIn) return SDValue(); return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); } if (IsRHSZero) return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS, S->getI32Imm(31, dl)), 0); if (CmpInGPR == ICGPR_NonExtIn) return SDValue(); // The upper 32-bits of the register can't be undefined for this sequence. LHS = signExtendInputIfNeeded(LHS); RHS = signExtendInputIfNeeded(RHS); SDValue SUBFNode = SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, SUBFNode, S->getI64Imm(63, dl)), 0); } case ISD::SETUGE: // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1) // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1) std::swap(LHS, RHS); LLVM_FALLTHROUGH; case ISD::SETULE: { if (CmpInGPR == ICGPR_NonExtIn) return SDValue(); // The upper 32-bits of the register can't be undefined for this sequence. LHS = zeroExtendInputIfNeeded(LHS); RHS = zeroExtendInputIfNeeded(RHS); SDValue Subtract = SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); SDValue Shift = SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract, S->getI32Imm(1, dl), S->getI32Imm(63,dl)), 0); return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift, S->getI32Imm(-1, dl)), 0); } case ISD::SETUGT: // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63) // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63) std::swap(LHS, RHS); LLVM_FALLTHROUGH; case ISD::SETULT: { if (CmpInGPR == ICGPR_NonExtIn) return SDValue(); // The upper 32-bits of the register can't be undefined for this sequence. LHS = zeroExtendInputIfNeeded(LHS); RHS = zeroExtendInputIfNeeded(RHS); SDValue Subtract = SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Subtract, S->getI64Imm(63, dl)), 0); } } } /// Produces a zero-extended result of comparing two 64-bit values according to /// the passed condition code. SDValue IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, int64_t RHSValue, SDLoc dl) { if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext) return SDValue(); bool IsRHSZero = RHSValue == 0; bool IsRHSOne = RHSValue == 1; bool IsRHSNegOne = RHSValue == -1LL; switch (CC) { default: return SDValue(); case ISD::SETEQ: { // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6) // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6) SDValue Xor = IsRHSZero ? LHS : SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); SDValue Clz = SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0); return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz, S->getI64Imm(58, dl), S->getI64Imm(63, dl)), 0); } case ISD::SETNE: { // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA) // {addcz.reg, addcz.CA} = (addcarry %a, -1) // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA) SDValue Xor = IsRHSZero ? LHS : SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); SDValue AC = SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, Xor, S->getI32Imm(~0U, dl)), 0); return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC, Xor, AC.getValue(1)), 0); } case ISD::SETGE: { // {subc.reg, subc.CA} = (subcarry %a, %b) // (zext (setcc %a, %b, setge)) -> // (adde (lshr %b, 63), (ashr %a, 63), subc.CA) // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63) if (IsRHSZero) return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); std::swap(LHS, RHS); ConstantSDNode *RHSConst = dyn_cast(RHS); IsRHSZero = RHSConst && RHSConst->isNullValue(); LLVM_FALLTHROUGH; } case ISD::SETLE: { // {subc.reg, subc.CA} = (subcarry %b, %a) // (zext (setcc %a, %b, setge)) -> // (adde (lshr %a, 63), (ashr %b, 63), subc.CA) // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63) if (IsRHSZero) return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); SDValue ShiftL = SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 0); SDValue ShiftR = SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, S->getI64Imm(63, dl)), 0); SDValue SubtractCarry = SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, LHS, RHS), 1); return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, ShiftR, ShiftL, SubtractCarry), 0); } case ISD::SETGT: { // {subc.reg, subc.CA} = (subcarry %b, %a) // (zext (setcc %a, %b, setgt)) -> // (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63) if (IsRHSNegOne) return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); if (IsRHSZero) { SDValue Addi = SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, S->getI64Imm(~0ULL, dl)), 0); SDValue Nor = SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0); return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor, S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 0); } std::swap(LHS, RHS); ConstantSDNode *RHSConst = dyn_cast(RHS); IsRHSZero = RHSConst && RHSConst->isNullValue(); IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; LLVM_FALLTHROUGH; } case ISD::SETLT: { // {subc.reg, subc.CA} = (subcarry %a, %b) // (zext (setcc %a, %b, setlt)) -> // (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63) if (IsRHSOne) return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); if (IsRHSZero) return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 0); SDValue SRADINode = SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS, S->getI64Imm(63, dl)), 0); SDValue SRDINode = SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, RHS, S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 0); SDValue SUBFC8Carry = SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, RHS, LHS), 1); SDValue ADDE8Node = SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, SRDINode, SRADINode, SUBFC8Carry), 0); return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ADDE8Node, S->getI64Imm(1, dl)), 0); } case ISD::SETUGE: // {subc.reg, subc.CA} = (subcarry %a, %b) // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1) std::swap(LHS, RHS); LLVM_FALLTHROUGH; case ISD::SETULE: { // {subc.reg, subc.CA} = (subcarry %b, %a) // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1) SDValue SUBFC8Carry = SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, LHS, RHS), 1); SDValue SUBFE8Node = SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS, LHS, SUBFC8Carry), 0); return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, SUBFE8Node, S->getI64Imm(1, dl)), 0); } case ISD::SETUGT: // {subc.reg, subc.CA} = (subcarry %b, %a) // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA) std::swap(LHS, RHS); LLVM_FALLTHROUGH; case ISD::SETULT: { // {subc.reg, subc.CA} = (subcarry %a, %b) // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA) SDValue SubtractCarry = SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, RHS, LHS), 1); SDValue ExtSub = SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, LHS, LHS, SubtractCarry), 0); return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, ExtSub), 0); } } } /// Produces a sign-extended result of comparing two 64-bit values according to /// the passed condition code. SDValue IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, int64_t RHSValue, SDLoc dl) { if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext) return SDValue(); bool IsRHSZero = RHSValue == 0; bool IsRHSOne = RHSValue == 1; bool IsRHSNegOne = RHSValue == -1LL; switch (CC) { default: return SDValue(); case ISD::SETEQ: { // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA) // {addcz.reg, addcz.CA} = (addcarry %a, -1) // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA) SDValue AddInput = IsRHSZero ? LHS : SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); SDValue Addic = SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, AddInput, S->getI32Imm(~0U, dl)), 0); return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic, Addic, Addic.getValue(1)), 0); } case ISD::SETNE: { // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b)) // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA) // {subfcz.reg, subfcz.CA} = (subcarry 0, %a) // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA) SDValue Xor = IsRHSZero ? LHS : SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); SDValue SC = SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue, Xor, S->getI32Imm(0, dl)), 0); return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC, SC, SC.getValue(1)), 0); } case ISD::SETGE: { // {subc.reg, subc.CA} = (subcarry %a, %b) // (zext (setcc %a, %b, setge)) -> // (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA)) // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63)) if (IsRHSZero) return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); std::swap(LHS, RHS); ConstantSDNode *RHSConst = dyn_cast(RHS); IsRHSZero = RHSConst && RHSConst->isNullValue(); LLVM_FALLTHROUGH; } case ISD::SETLE: { // {subc.reg, subc.CA} = (subcarry %b, %a) // (zext (setcc %a, %b, setge)) -> // (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA)) // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63) if (IsRHSZero) return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); SDValue ShiftR = SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, S->getI64Imm(63, dl)), 0); SDValue ShiftL = SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 0); SDValue SubtractCarry = SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, LHS, RHS), 1); SDValue Adde = SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, ShiftR, ShiftL, SubtractCarry), 0); return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0); } case ISD::SETGT: { // {subc.reg, subc.CA} = (subcarry %b, %a) // (zext (setcc %a, %b, setgt)) -> // -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63) if (IsRHSNegOne) return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); if (IsRHSZero) { SDValue Add = SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, S->getI64Imm(-1, dl)), 0); SDValue Nor = SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0); return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor, S->getI64Imm(63, dl)), 0); } std::swap(LHS, RHS); ConstantSDNode *RHSConst = dyn_cast(RHS); IsRHSZero = RHSConst && RHSConst->isNullValue(); IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; LLVM_FALLTHROUGH; } case ISD::SETLT: { // {subc.reg, subc.CA} = (subcarry %a, %b) // (zext (setcc %a, %b, setlt)) -> // -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63) if (IsRHSOne) return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); if (IsRHSZero) { return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS, S->getI64Imm(63, dl)), 0); } SDValue SRADINode = SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS, S->getI64Imm(63, dl)), 0); SDValue SRDINode = SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, RHS, S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 0); SDValue SUBFC8Carry = SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, RHS, LHS), 1); SDValue ADDE8Node = SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, SRDINode, SRADINode, SUBFC8Carry), 0); SDValue XORI8Node = SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ADDE8Node, S->getI64Imm(1, dl)), 0); return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, XORI8Node), 0); } case ISD::SETUGE: // {subc.reg, subc.CA} = (subcarry %a, %b) // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA) std::swap(LHS, RHS); LLVM_FALLTHROUGH; case ISD::SETULE: { // {subc.reg, subc.CA} = (subcarry %b, %a) // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA) SDValue SubtractCarry = SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, LHS, RHS), 1); SDValue ExtSub = SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS, LHS, SubtractCarry), 0); return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, ExtSub, ExtSub), 0); } case ISD::SETUGT: // {subc.reg, subc.CA} = (subcarry %b, %a) // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA) std::swap(LHS, RHS); LLVM_FALLTHROUGH; case ISD::SETULT: { // {subc.reg, subc.CA} = (subcarry %a, %b) // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA) SDValue SubCarry = SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, RHS, LHS), 1); return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, LHS, LHS, SubCarry), 0); } } } /// Do all uses of this SDValue need the result in a GPR? /// This is meant to be used on values that have type i1 since /// it is somewhat meaningless to ask if values of other types /// should be kept in GPR's. static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) { assert(Compare.getOpcode() == ISD::SETCC && "An ISD::SETCC node required here."); // For values that have a single use, the caller should obviously already have // checked if that use is an extending use. We check the other uses here. if (Compare.hasOneUse()) return true; // We want the value in a GPR if it is being extended, used for a select, or // used in logical operations. for (auto CompareUse : Compare.getNode()->uses()) if (CompareUse->getOpcode() != ISD::SIGN_EXTEND && CompareUse->getOpcode() != ISD::ZERO_EXTEND && CompareUse->getOpcode() != ISD::SELECT && !isLogicOp(CompareUse->getOpcode())) { OmittedForNonExtendUses++; return false; } return true; } /// Returns an equivalent of a SETCC node but with the result the same width as /// the inputs. This can also be used for SELECT_CC if either the true or false /// values is a power of two while the other is zero. SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts) { assert((Compare.getOpcode() == ISD::SETCC || Compare.getOpcode() == ISD::SELECT_CC) && "An ISD::SETCC node required here."); // Don't convert this comparison to a GPR sequence because there are uses // of the i1 result (i.e. uses that require the result in the CR). if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG)) return SDValue(); SDValue LHS = Compare.getOperand(0); SDValue RHS = Compare.getOperand(1); // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC. int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2; ISD::CondCode CC = cast(Compare.getOperand(CCOpNum))->get(); EVT InputVT = LHS.getValueType(); if (InputVT != MVT::i32 && InputVT != MVT::i64) return SDValue(); if (ConvOpts == SetccInGPROpts::ZExtInvert || ConvOpts == SetccInGPROpts::SExtInvert) CC = ISD::getSetCCInverse(CC, true); bool Inputs32Bit = InputVT == MVT::i32; SDLoc dl(Compare); ConstantSDNode *RHSConst = dyn_cast(RHS); int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX; bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig || ConvOpts == SetccInGPROpts::SExtInvert; if (IsSext && Inputs32Bit) return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl); else if (Inputs32Bit) return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl); else if (IsSext) return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl); return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl); } } // end anonymous namespace bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) { if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64) return false; // This optimization will emit code that assumes 64-bit registers // so we don't want to run it in 32-bit mode. Also don't run it // on functions that are not to be optimized. if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64()) return false; switch (N->getOpcode()) { default: break; case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND: case ISD::AND: case ISD::OR: case ISD::XOR: { IntegerCompareEliminator ICmpElim(CurDAG, this); if (SDNode *New = ICmpElim.Select(N)) { ReplaceNode(N, New); return true; } } } return false; } bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) { if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64) return false; if (!UseBitPermRewriter) return false; switch (N->getOpcode()) { default: break; case ISD::ROTL: case ISD::SHL: case ISD::SRL: case ISD::AND: case ISD::OR: { BitPermutationSelector BPS(CurDAG); if (SDNode *New = BPS.Select(N)) { ReplaceNode(N, New); return true; } return false; } } return false; } /// SelectCC - Select a comparison of the specified values with the specified /// condition code, returning the CR# of the expression. SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, const SDLoc &dl) { // Always select the LHS. unsigned Opc; if (LHS.getValueType() == MVT::i32) { unsigned Imm; if (CC == ISD::SETEQ || CC == ISD::SETNE) { if (isInt32Immediate(RHS, Imm)) { // SETEQ/SETNE comparison with 16-bit immediate, fold it. if (isUInt<16>(Imm)) return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, getI32Imm(Imm & 0xFFFF, dl)), 0); // If this is a 16-bit signed immediate, fold it. if (isInt<16>((int)Imm)) return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, getI32Imm(Imm & 0xFFFF, dl)), 0); // For non-equality comparisons, the default code would materialize the // constant, then compare against it, like this: // lis r2, 4660 // ori r2, r2, 22136 // cmpw cr0, r3, r2 // Since we are just comparing for equality, we can emit this instead: // xoris r0,r3,0x1234 // cmplwi cr0,r0,0x5678 // beq cr0,L6 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, getI32Imm(Imm >> 16, dl)), 0); return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, getI32Imm(Imm & 0xFFFF, dl)), 0); } Opc = PPC::CMPLW; } else if (ISD::isUnsignedIntSetCC(CC)) { if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, getI32Imm(Imm & 0xFFFF, dl)), 0); Opc = PPC::CMPLW; } else { int16_t SImm; if (isIntS16Immediate(RHS, SImm)) return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, getI32Imm((int)SImm & 0xFFFF, dl)), 0); Opc = PPC::CMPW; } } else if (LHS.getValueType() == MVT::i64) { uint64_t Imm; if (CC == ISD::SETEQ || CC == ISD::SETNE) { if (isInt64Immediate(RHS.getNode(), Imm)) { // SETEQ/SETNE comparison with 16-bit immediate, fold it. if (isUInt<16>(Imm)) return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, getI32Imm(Imm & 0xFFFF, dl)), 0); // If this is a 16-bit signed immediate, fold it. if (isInt<16>(Imm)) return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, getI32Imm(Imm & 0xFFFF, dl)), 0); // For non-equality comparisons, the default code would materialize the // constant, then compare against it, like this: // lis r2, 4660 // ori r2, r2, 22136 // cmpd cr0, r3, r2 // Since we are just comparing for equality, we can emit this instead: // xoris r0,r3,0x1234 // cmpldi cr0,r0,0x5678 // beq cr0,L6 if (isUInt<32>(Imm)) { SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, getI64Imm(Imm >> 16, dl)), 0); return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, getI64Imm(Imm & 0xFFFF, dl)), 0); } } Opc = PPC::CMPLD; } else if (ISD::isUnsignedIntSetCC(CC)) { if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, getI64Imm(Imm & 0xFFFF, dl)), 0); Opc = PPC::CMPLD; } else { int16_t SImm; if (isIntS16Immediate(RHS, SImm)) return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, getI64Imm(SImm & 0xFFFF, dl)), 0); Opc = PPC::CMPD; } } else if (LHS.getValueType() == MVT::f32) { if (PPCSubTarget->hasSPE()) { switch (CC) { default: case ISD::SETEQ: case ISD::SETNE: Opc = PPC::EFSCMPEQ; break; case ISD::SETLT: case ISD::SETGE: case ISD::SETOLT: case ISD::SETOGE: case ISD::SETULT: case ISD::SETUGE: Opc = PPC::EFSCMPLT; break; case ISD::SETGT: case ISD::SETLE: case ISD::SETOGT: case ISD::SETOLE: case ISD::SETUGT: case ISD::SETULE: Opc = PPC::EFSCMPGT; break; } } else Opc = PPC::FCMPUS; } else if (LHS.getValueType() == MVT::f64) { if (PPCSubTarget->hasSPE()) { switch (CC) { default: case ISD::SETEQ: case ISD::SETNE: Opc = PPC::EFDCMPEQ; break; case ISD::SETLT: case ISD::SETGE: case ISD::SETOLT: case ISD::SETOGE: case ISD::SETULT: case ISD::SETUGE: Opc = PPC::EFDCMPLT; break; case ISD::SETGT: case ISD::SETLE: case ISD::SETOGT: case ISD::SETOLE: case ISD::SETUGT: case ISD::SETULE: Opc = PPC::EFDCMPGT; break; } } else Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; } else { assert(LHS.getValueType() == MVT::f128 && "Unknown vt!"); assert(PPCSubTarget->hasVSX() && "__float128 requires VSX"); Opc = PPC::XSCMPUQP; } return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); } static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) { switch (CC) { case ISD::SETUEQ: case ISD::SETONE: case ISD::SETOLE: case ISD::SETOGE: llvm_unreachable("Should be lowered by legalize!"); default: llvm_unreachable("Unknown condition!"); case ISD::SETOEQ: case ISD::SETEQ: return PPC::PRED_EQ; case ISD::SETUNE: case ISD::SETNE: return PPC::PRED_NE; case ISD::SETOLT: case ISD::SETLT: return PPC::PRED_LT; case ISD::SETULE: case ISD::SETLE: return PPC::PRED_LE; case ISD::SETOGT: case ISD::SETGT: return PPC::PRED_GT; case ISD::SETUGE: case ISD::SETGE: return PPC::PRED_GE; case ISD::SETO: return PPC::PRED_NU; case ISD::SETUO: return PPC::PRED_UN; // These two are invalid for floating point. Assume we have int. case ISD::SETULT: return PPC::PRED_LT; case ISD::SETUGT: return PPC::PRED_GT; } } /// getCRIdxForSetCC - Return the index of the condition register field /// associated with the SetCC condition, and whether or not the field is /// treated as inverted. That is, lt = 0; ge = 0 inverted. static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { Invert = false; switch (CC) { default: llvm_unreachable("Unknown condition!"); case ISD::SETOLT: case ISD::SETLT: return 0; // Bit #0 = SETOLT case ISD::SETOGT: case ISD::SETGT: return 1; // Bit #1 = SETOGT case ISD::SETOEQ: case ISD::SETEQ: return 2; // Bit #2 = SETOEQ case ISD::SETUO: return 3; // Bit #3 = SETUO case ISD::SETUGE: case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE case ISD::SETULE: case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE case ISD::SETUNE: case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO case ISD::SETUEQ: case ISD::SETOGE: case ISD::SETOLE: case ISD::SETONE: llvm_unreachable("Invalid branch code: should be expanded by legalize"); // These are invalid for floating point. Assume integer. case ISD::SETULT: return 0; case ISD::SETUGT: return 1; } } // getVCmpInst: return the vector compare instruction for the specified // vector type and condition code. Since this is for altivec specific code, // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32). static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC, bool HasVSX, bool &Swap, bool &Negate) { Swap = false; Negate = false; if (VecVT.isFloatingPoint()) { /* Handle some cases by swapping input operands. */ switch (CC) { case ISD::SETLE: CC = ISD::SETGE; Swap = true; break; case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break; case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break; case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break; default: break; } /* Handle some cases by negating the result. */ switch (CC) { case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break; case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break; case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break; default: break; } /* We have instructions implementing the remaining cases. */ switch (CC) { case ISD::SETEQ: case ISD::SETOEQ: if (VecVT == MVT::v4f32) return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; else if (VecVT == MVT::v2f64) return PPC::XVCMPEQDP; break; case ISD::SETGT: case ISD::SETOGT: if (VecVT == MVT::v4f32) return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; else if (VecVT == MVT::v2f64) return PPC::XVCMPGTDP; break; case ISD::SETGE: case ISD::SETOGE: if (VecVT == MVT::v4f32) return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; else if (VecVT == MVT::v2f64) return PPC::XVCMPGEDP; break; default: break; } llvm_unreachable("Invalid floating-point vector compare condition"); } else { /* Handle some cases by swapping input operands. */ switch (CC) { case ISD::SETGE: CC = ISD::SETLE; Swap = true; break; case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break; default: break; } /* Handle some cases by negating the result. */ switch (CC) { case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break; case ISD::SETLE: CC = ISD::SETGT; Negate = true; break; case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break; default: break; } /* We have instructions implementing the remaining cases. */ switch (CC) { case ISD::SETEQ: case ISD::SETUEQ: if (VecVT == MVT::v16i8) return PPC::VCMPEQUB; else if (VecVT == MVT::v8i16) return PPC::VCMPEQUH; else if (VecVT == MVT::v4i32) return PPC::VCMPEQUW; else if (VecVT == MVT::v2i64) return PPC::VCMPEQUD; break; case ISD::SETGT: if (VecVT == MVT::v16i8) return PPC::VCMPGTSB; else if (VecVT == MVT::v8i16) return PPC::VCMPGTSH; else if (VecVT == MVT::v4i32) return PPC::VCMPGTSW; else if (VecVT == MVT::v2i64) return PPC::VCMPGTSD; break; case ISD::SETUGT: if (VecVT == MVT::v16i8) return PPC::VCMPGTUB; else if (VecVT == MVT::v8i16) return PPC::VCMPGTUH; else if (VecVT == MVT::v4i32) return PPC::VCMPGTUW; else if (VecVT == MVT::v2i64) return PPC::VCMPGTUD; break; default: break; } llvm_unreachable("Invalid integer vector compare condition"); } } bool PPCDAGToDAGISel::trySETCC(SDNode *N) { SDLoc dl(N); unsigned Imm; ISD::CondCode CC = cast(N->getOperand(2))->get(); EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); bool isPPC64 = (PtrVT == MVT::i64); if (!PPCSubTarget->useCRBits() && isInt32Immediate(N->getOperand(1), Imm)) { // We can codegen setcc op, imm very efficiently compared to a brcond. // Check for those cases here. // setcc op, 0 if (Imm == 0) { SDValue Op = N->getOperand(0); switch (CC) { default: break; case ISD::SETEQ: { Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl), getI32Imm(31, dl) }; CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); return true; } case ISD::SETNE: { if (isPPC64) break; SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, Op, getI32Imm(~0U, dl)), 0); CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); return true; } case ISD::SETLT: { SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), getI32Imm(31, dl) }; CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); return true; } case ISD::SETGT: { SDValue T = SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl), getI32Imm(31, dl) }; CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); return true; } } } else if (Imm == ~0U) { // setcc op, -1 SDValue Op = N->getOperand(0); switch (CC) { default: break; case ISD::SETEQ: if (isPPC64) break; Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, Op, getI32Imm(1, dl)), 0); CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(CurDAG->getMachineNode(PPC::LI, dl, MVT::i32, getI32Imm(0, dl)), 0), Op.getValue(1)); return true; case ISD::SETNE: { if (isPPC64) break; Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, Op, getI32Imm(~0U, dl)); CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op, SDValue(AD, 1)); return true; } case ISD::SETLT: { SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, getI32Imm(1, dl)), 0); SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, Op), 0); SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl), getI32Imm(31, dl) }; CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); return true; } case ISD::SETGT: { SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), getI32Imm(31, dl) }; Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl)); return true; } } } } SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // Altivec Vector compare instructions do not set any CR register by default and // vector compare operations return the same type as the operands. if (LHS.getValueType().isVector()) { if (PPCSubTarget->hasQPX() || PPCSubTarget->hasSPE()) return false; EVT VecVT = LHS.getValueType(); bool Swap, Negate; unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC, PPCSubTarget->hasVSX(), Swap, Negate); if (Swap) std::swap(LHS, RHS); EVT ResVT = VecVT.changeVectorElementTypeToInteger(); if (Negate) { SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0); CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR, ResVT, VCmp, VCmp); return true; } CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS); return true; } if (PPCSubTarget->useCRBits()) return false; bool Inv; unsigned Idx = getCRIdxForSetCC(CC, Inv); SDValue CCReg = SelectCC(LHS, RHS, CC, dl); SDValue IntCR; // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that // The correct compare instruction is already set by SelectCC() if (PPCSubTarget->hasSPE() && LHS.getValueType().isFloatingPoint()) { Idx = 1; } // Force the ccreg into CR7. SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); SDValue InFlag(nullptr, 0); // Null incoming flag value. CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, InFlag).getValue(1); IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, CCReg), 0); SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl), getI32Imm(31, dl), getI32Imm(31, dl) }; if (!Inv) { CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); return true; } // Get the specified bit. SDValue Tmp = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl)); return true; } /// Does this node represent a load/store node whose address can be represented /// with a register plus an immediate that's a multiple of \p Val: bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const { LoadSDNode *LDN = dyn_cast(N); StoreSDNode *STN = dyn_cast(N); SDValue AddrOp; if (LDN) AddrOp = LDN->getOperand(1); else if (STN) AddrOp = STN->getOperand(2); // If the address points a frame object or a frame object with an offset, // we need to check the object alignment. short Imm = 0; if (FrameIndexSDNode *FI = dyn_cast( AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) : AddrOp)) { // If op0 is a frame index that is under aligned, we can't do it either, // because it is translated to r31 or r1 + slot + offset. We won't know the // slot number until the stack frame is finalized. const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo(); unsigned SlotAlign = MFI.getObjectAlignment(FI->getIndex()); if ((SlotAlign % Val) != 0) return false; // If we have an offset, we need further check on the offset. if (AddrOp.getOpcode() != ISD::ADD) return true; } if (AddrOp.getOpcode() == ISD::ADD) return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val); // If the address comes from the outside, the offset will be zero. return AddrOp.getOpcode() == ISD::CopyFromReg; } void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { // Transfer memoperands. MachineMemOperand *MemOp = cast(N)->getMemOperand(); CurDAG->setNodeMemRefs(cast(Result), {MemOp}); } static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG, bool &NeedSwapOps, bool &IsUnCmp) { assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here."); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); SDValue TrueRes = N->getOperand(2); SDValue FalseRes = N->getOperand(3); ConstantSDNode *TrueConst = dyn_cast(TrueRes); if (!TrueConst) return false; assert((N->getSimpleValueType(0) == MVT::i64 || N->getSimpleValueType(0) == MVT::i32) && "Expecting either i64 or i32 here."); // We are looking for any of: // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1) // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1) // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, 1, -1, cc2), seteq) // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, -1, 1, cc2), seteq) int64_t TrueResVal = TrueConst->getSExtValue(); if ((TrueResVal < -1 || TrueResVal > 1) || (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) || (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) || (TrueResVal == 0 && (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ))) return false; bool InnerIsSel = FalseRes.getOpcode() == ISD::SELECT_CC; SDValue SetOrSelCC = InnerIsSel ? FalseRes : FalseRes.getOperand(0); if (SetOrSelCC.getOpcode() != ISD::SETCC && SetOrSelCC.getOpcode() != ISD::SELECT_CC) return false; // Without this setb optimization, the outer SELECT_CC will be manually // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass // transforms pseudo instruction to isel instruction. When there are more than // one use for result like zext/sext, with current optimization we only see // isel is replaced by setb but can't see any significant gain. Since // setb has longer latency than original isel, we should avoid this. Another // point is that setb requires comparison always kept, it can break the // opportunity to get the comparison away if we have in future. if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse())) return false; SDValue InnerLHS = SetOrSelCC.getOperand(0); SDValue InnerRHS = SetOrSelCC.getOperand(1); ISD::CondCode InnerCC = cast(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get(); // If the inner comparison is a select_cc, make sure the true/false values are // 1/-1 and canonicalize it if needed. if (InnerIsSel) { ConstantSDNode *SelCCTrueConst = dyn_cast(SetOrSelCC.getOperand(2)); ConstantSDNode *SelCCFalseConst = dyn_cast(SetOrSelCC.getOperand(3)); if (!SelCCTrueConst || !SelCCFalseConst) return false; int64_t SelCCTVal = SelCCTrueConst->getSExtValue(); int64_t SelCCFVal = SelCCFalseConst->getSExtValue(); // The values must be -1/1 (requiring a swap) or 1/-1. if (SelCCTVal == -1 && SelCCFVal == 1) { std::swap(InnerLHS, InnerRHS); } else if (SelCCTVal != 1 || SelCCFVal != -1) return false; } // Canonicalize unsigned case if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) { IsUnCmp = true; InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT; } bool InnerSwapped = false; if (LHS == InnerRHS && RHS == InnerLHS) InnerSwapped = true; else if (LHS != InnerLHS || RHS != InnerRHS) return false; switch (CC) { // (select_cc lhs, rhs, 0, \ // (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq) case ISD::SETEQ: if (!InnerIsSel) return false; if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT) return false; NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped; break; // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt) // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt) // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt) // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt) // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt) // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt) case ISD::SETULT: if (!IsUnCmp && InnerCC != ISD::SETNE) return false; IsUnCmp = true; LLVM_FALLTHROUGH; case ISD::SETLT: if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) || (InnerCC == ISD::SETLT && InnerSwapped)) NeedSwapOps = (TrueResVal == 1); else return false; break; // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt) // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt) // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt) // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt) // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt) // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt) case ISD::SETUGT: if (!IsUnCmp && InnerCC != ISD::SETNE) return false; IsUnCmp = true; LLVM_FALLTHROUGH; case ISD::SETGT: if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) || (InnerCC == ISD::SETGT && InnerSwapped)) NeedSwapOps = (TrueResVal == -1); else return false; break; default: return false; } LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: "); LLVM_DEBUG(N->dump()); return true; } // Select - Convert the specified operand from a target-independent to a // target-specific node if it hasn't already been changed. void PPCDAGToDAGISel::Select(SDNode *N) { SDLoc dl(N); if (N->isMachineOpcode()) { N->setNodeId(-1); return; // Already selected. } // In case any misguided DAG-level optimizations form an ADD with a // TargetConstant operand, crash here instead of miscompiling (by selecting // an r+r add instead of some kind of r+i add). if (N->getOpcode() == ISD::ADD && N->getOperand(1).getOpcode() == ISD::TargetConstant) llvm_unreachable("Invalid ADD with TargetConstant operand"); // Try matching complex bit permutations before doing anything else. if (tryBitPermutation(N)) return; // Try to emit integer compares as GPR-only sequences (i.e. no use of CR). if (tryIntCompareInGPR(N)) return; switch (N->getOpcode()) { default: break; case ISD::Constant: if (N->getValueType(0) == MVT::i64) { ReplaceNode(N, selectI64Imm(CurDAG, N)); return; } break; case ISD::SETCC: if (trySETCC(N)) return; break; // These nodes will be transformed into GETtlsADDR32 node, which // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT case PPCISD::ADDI_TLSLD_L_ADDR: case PPCISD::ADDI_TLSGD_L_ADDR: { const Module *Mod = MF->getFunction().getParent(); if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || !PPCSubTarget->isSecurePlt() || !PPCSubTarget->isTargetELF() || Mod->getPICLevel() == PICLevel::SmallPIC) break; // Attach global base pointer on GETtlsADDR32 node in order to // generate secure plt code for TLS symbols. getGlobalBaseReg(); } break; case PPCISD::CALL: { if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || !TM.isPositionIndependent() || !PPCSubTarget->isSecurePlt() || !PPCSubTarget->isTargetELF()) break; SDValue Op = N->getOperand(1); if (GlobalAddressSDNode *GA = dyn_cast(Op)) { if (GA->getTargetFlags() == PPCII::MO_PLT) getGlobalBaseReg(); } else if (ExternalSymbolSDNode *ES = dyn_cast(Op)) { if (ES->getTargetFlags() == PPCII::MO_PLT) getGlobalBaseReg(); } } break; case PPCISD::GlobalBaseReg: ReplaceNode(N, getGlobalBaseReg()); return; case ISD::FrameIndex: selectFrameIndex(N, N); return; case PPCISD::MFOCRF: { SDValue InFlag = N->getOperand(1); ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, N->getOperand(0), InFlag)); return; } case PPCISD::READ_TIME_BASE: ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32, MVT::Other, N->getOperand(0))); return; case PPCISD::SRA_ADDZE: { SDValue N0 = N->getOperand(0); SDValue ShiftAmt = CurDAG->getTargetConstant(*cast(N->getOperand(1))-> getConstantIntValue(), dl, N->getValueType(0)); if (N->getValueType(0) == MVT::i64) { SDNode *Op = CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue, N0, ShiftAmt); CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0), SDValue(Op, 1)); return; } else { assert(N->getValueType(0) == MVT::i32 && "Expecting i64 or i32 in PPCISD::SRA_ADDZE"); SDNode *Op = CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, N0, ShiftAmt); CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0), SDValue(Op, 1)); return; } } case ISD::STORE: { // Change TLS initial-exec D-form stores to X-form stores. StoreSDNode *ST = cast(N); if (EnableTLSOpt && PPCSubTarget->isELFv2ABI() && ST->getAddressingMode() != ISD::PRE_INC) if (tryTLSXFormStore(ST)) return; break; } case ISD::LOAD: { // Handle preincrement loads. LoadSDNode *LD = cast(N); EVT LoadedVT = LD->getMemoryVT(); // Normal loads are handled by code generated from the .td file. if (LD->getAddressingMode() != ISD::PRE_INC) { // Change TLS initial-exec D-form loads to X-form loads. if (EnableTLSOpt && PPCSubTarget->isELFv2ABI()) if (tryTLSXFormLoad(LD)) return; break; } SDValue Offset = LD->getOffset(); if (Offset.getOpcode() == ISD::TargetConstant || Offset.getOpcode() == ISD::TargetGlobalAddress) { unsigned Opcode; bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; if (LD->getValueType(0) != MVT::i64) { // Handle PPC32 integer and normal FP loads. assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); switch (LoadedVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Invalid PPC load type!"); case MVT::f64: Opcode = PPC::LFDU; break; case MVT::f32: Opcode = PPC::LFSU; break; case MVT::i32: Opcode = PPC::LWZU; break; case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; case MVT::i1: case MVT::i8: Opcode = PPC::LBZU; break; } } else { assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); switch (LoadedVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Invalid PPC load type!"); case MVT::i64: Opcode = PPC::LDU; break; case MVT::i32: Opcode = PPC::LWZU8; break; case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; case MVT::i1: case MVT::i8: Opcode = PPC::LBZU8; break; } } SDValue Chain = LD->getChain(); SDValue Base = LD->getBasePtr(); SDValue Ops[] = { Offset, Base, Chain }; SDNode *MN = CurDAG->getMachineNode( Opcode, dl, LD->getValueType(0), PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); transferMemOperands(N, MN); ReplaceNode(N, MN); return; } else { unsigned Opcode; bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; if (LD->getValueType(0) != MVT::i64) { // Handle PPC32 integer and normal FP loads. assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); switch (LoadedVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Invalid PPC load type!"); case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX case MVT::f64: Opcode = PPC::LFDUX; break; case MVT::f32: Opcode = PPC::LFSUX; break; case MVT::i32: Opcode = PPC::LWZUX; break; case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; case MVT::i1: case MVT::i8: Opcode = PPC::LBZUX; break; } } else { assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && "Invalid sext update load"); switch (LoadedVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Invalid PPC load type!"); case MVT::i64: Opcode = PPC::LDUX; break; case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; case MVT::i1: case MVT::i8: Opcode = PPC::LBZUX8; break; } } SDValue Chain = LD->getChain(); SDValue Base = LD->getBasePtr(); SDValue Ops[] = { Base, Offset, Chain }; SDNode *MN = CurDAG->getMachineNode( Opcode, dl, LD->getValueType(0), PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); transferMemOperands(N, MN); ReplaceNode(N, MN); return; } } case ISD::AND: { unsigned Imm, Imm2, SH, MB, ME; uint64_t Imm64; // If this is an and of a value rotated between 0 and 31 bits and then and'd // with a mask, emit rlwinm if (isInt32Immediate(N->getOperand(1), Imm) && isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) { SDValue Val = N->getOperand(0).getOperand(0); SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl), getI32Imm(ME, dl) }; CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); return; } // If this is just a masked value where the input is not handled above, and // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm if (isInt32Immediate(N->getOperand(1), Imm) && isRunOfOnes(Imm, MB, ME) && N->getOperand(0).getOpcode() != ISD::ROTL) { SDValue Val = N->getOperand(0); SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl), getI32Imm(ME, dl) }; CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); return; } // If this is a 64-bit zero-extension mask, emit rldicl. if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) && isMask_64(Imm64)) { SDValue Val = N->getOperand(0); MB = 64 - countTrailingOnes(Imm64); SH = 0; if (Val.getOpcode() == ISD::ANY_EXTEND) { auto Op0 = Val.getOperand(0); if ( Op0.getOpcode() == ISD::SRL && isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) { auto ResultType = Val.getNode()->getValueType(0); auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType); SDValue IDVal (ImDef, 0); Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType, IDVal, Op0.getOperand(0), getI32Imm(1, dl)), 0); SH = 64 - Imm; } } // If the operand is a logical right shift, we can fold it into this // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) // for n <= mb. The right shift is really a left rotate followed by a // mask, and this mask is a more-restrictive sub-mask of the mask implied // by the shift. if (Val.getOpcode() == ISD::SRL && isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { assert(Imm < 64 && "Illegal shift amount"); Val = Val.getOperand(0); SH = 64 - Imm; } SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) }; CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); return; } // If this is a negated 64-bit zero-extension mask, // i.e. the immediate is a sequence of ones from most significant side // and all zero for reminder, we should use rldicr. if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) && isMask_64(~Imm64)) { SDValue Val = N->getOperand(0); MB = 63 - countTrailingOnes(~Imm64); SH = 0; SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) }; CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops); return; } // AND X, 0 -> 0, not "rlwinm 32". if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) { ReplaceUses(SDValue(N, 0), N->getOperand(1)); return; } // ISD::OR doesn't get all the bitfield insertion fun. // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a // bitfield insert. if (isInt32Immediate(N->getOperand(1), Imm) && N->getOperand(0).getOpcode() == ISD::OR && isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) { // The idea here is to check whether this is equivalent to: // (c1 & m) | (x & ~m) // where m is a run-of-ones mask. The logic here is that, for each bit in // c1 and c2: // - if both are 1, then the output will be 1. // - if both are 0, then the output will be 0. // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will // come from x. // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will // be 0. // If that last condition is never the case, then we can form m from the // bits that are the same between c1 and c2. unsigned MB, ME; if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) { SDValue Ops[] = { N->getOperand(0).getOperand(0), N->getOperand(0).getOperand(1), getI32Imm(0, dl), getI32Imm(MB, dl), getI32Imm(ME, dl) }; ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); return; } } // Other cases are autogenerated. break; } case ISD::OR: { if (N->getValueType(0) == MVT::i32) if (tryBitfieldInsert(N)) return; int16_t Imm; if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && isIntS16Immediate(N->getOperand(1), Imm)) { KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0)); // If this is equivalent to an add, then we can fold it with the // FrameIndex calculation. if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) { selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); return; } } // OR with a 32-bit immediate can be handled by ori + oris // without creating an immediate in a GPR. uint64_t Imm64 = 0; bool IsPPC64 = PPCSubTarget->isPPC64(); if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && (Imm64 & ~0xFFFFFFFFuLL) == 0) { // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later. uint64_t ImmHi = Imm64 >> 16; uint64_t ImmLo = Imm64 & 0xFFFF; if (ImmHi != 0 && ImmLo != 0) { SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, N->getOperand(0), getI16Imm(ImmLo, dl)); SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1); return; } } // Other cases are autogenerated. break; } case ISD::XOR: { // XOR with a 32-bit immediate can be handled by xori + xoris // without creating an immediate in a GPR. uint64_t Imm64 = 0; bool IsPPC64 = PPCSubTarget->isPPC64(); if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && (Imm64 & ~0xFFFFFFFFuLL) == 0) { // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later. uint64_t ImmHi = Imm64 >> 16; uint64_t ImmLo = Imm64 & 0xFFFF; if (ImmHi != 0 && ImmLo != 0) { SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, N->getOperand(0), getI16Imm(ImmLo, dl)); SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1); return; } } break; } case ISD::ADD: { int16_t Imm; if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && isIntS16Immediate(N->getOperand(1), Imm)) { selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); return; } break; } case ISD::SHL: { unsigned Imm, SH, MB, ME; if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && isRotateAndMask(N, Imm, true, SH, MB, ME)) { SDValue Ops[] = { N->getOperand(0).getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl), getI32Imm(ME, dl) }; CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); return; } // Other cases are autogenerated. break; } case ISD::SRL: { unsigned Imm, SH, MB, ME; if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && isRotateAndMask(N, Imm, true, SH, MB, ME)) { SDValue Ops[] = { N->getOperand(0).getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl), getI32Imm(ME, dl) }; CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); return; } // Other cases are autogenerated. break; } // FIXME: Remove this once the ANDI glue bug is fixed: case PPCISD::ANDIo_1_EQ_BIT: case PPCISD::ANDIo_1_GT_BIT: { if (!ANDIGlueBug) break; EVT InVT = N->getOperand(0).getValueType(); assert((InVT == MVT::i64 || InVT == MVT::i32) && "Invalid input type for ANDIo_1_EQ_BIT"); unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo; SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, N->getOperand(0), CurDAG->getTargetConstant(1, dl, InVT)), 0); SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); SDValue SRIdxVal = CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt, dl, MVT::i32); CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg, SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */); return; } case ISD::SELECT_CC: { ISD::CondCode CC = cast(N->getOperand(4))->get(); EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); bool isPPC64 = (PtrVT == MVT::i64); // If this is a select of i1 operands, we'll pattern match it. if (PPCSubTarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1) break; if (PPCSubTarget->isISA3_0() && PPCSubTarget->isPPC64()) { bool NeedSwapOps = false; bool IsUnCmp = false; if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) { SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if (NeedSwapOps) std::swap(LHS, RHS); // Make use of SelectCC to generate the comparison to set CR bits, for // equality comparisons having one literal operand, SelectCC probably // doesn't need to materialize the whole literal and just use xoris to // check it first, it leads the following comparison result can't // exactly represent GT/LT relationship. So to avoid this we specify // SETGT/SETUGT here instead of SETEQ. SDValue GenCC = SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl); CurDAG->SelectNodeTo( N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB, N->getValueType(0), GenCC); NumP9Setb++; return; } } // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc if (!isPPC64) if (ConstantSDNode *N1C = dyn_cast(N->getOperand(1))) if (ConstantSDNode *N2C = dyn_cast(N->getOperand(2))) if (ConstantSDNode *N3C = dyn_cast(N->getOperand(3))) if (N1C->isNullValue() && N3C->isNullValue() && N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && // FIXME: Implement this optzn for PPC64. N->getValueType(0) == MVT::i32) { SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, N->getOperand(0), getI32Imm(~0U, dl)); CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0), N->getOperand(0), SDValue(Tmp, 1)); return; } SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); if (N->getValueType(0) == MVT::i1) { // An i1 select is: (c & t) | (!c & f). bool Inv; unsigned Idx = getCRIdxForSetCC(CC, Inv); unsigned SRI; switch (Idx) { default: llvm_unreachable("Invalid CC index"); case 0: SRI = PPC::sub_lt; break; case 1: SRI = PPC::sub_gt; break; case 2: SRI = PPC::sub_eq; break; case 3: SRI = PPC::sub_un; break; } SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg); SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1, CCBit, CCBit), 0); SDValue C = Inv ? NotCCBit : CCBit, NotC = Inv ? CCBit : NotCCBit; SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, C, N->getOperand(2)), 0); SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, NotC, N->getOperand(3)), 0); CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF); return; } unsigned BROpc = getPredicateForSetCC(CC); unsigned SelectCCOp; if (N->getValueType(0) == MVT::i32) SelectCCOp = PPC::SELECT_CC_I4; else if (N->getValueType(0) == MVT::i64) SelectCCOp = PPC::SELECT_CC_I8; else if (N->getValueType(0) == MVT::f32) { if (PPCSubTarget->hasP8Vector()) SelectCCOp = PPC::SELECT_CC_VSSRC; else if (PPCSubTarget->hasSPE()) SelectCCOp = PPC::SELECT_CC_SPE4; else SelectCCOp = PPC::SELECT_CC_F4; } else if (N->getValueType(0) == MVT::f64) { if (PPCSubTarget->hasVSX()) SelectCCOp = PPC::SELECT_CC_VSFRC; else if (PPCSubTarget->hasSPE()) SelectCCOp = PPC::SELECT_CC_SPE; else SelectCCOp = PPC::SELECT_CC_F8; } else if (N->getValueType(0) == MVT::f128) SelectCCOp = PPC::SELECT_CC_F16; else if (PPCSubTarget->hasSPE()) SelectCCOp = PPC::SELECT_CC_SPE; else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64) SelectCCOp = PPC::SELECT_CC_QFRC; else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32) SelectCCOp = PPC::SELECT_CC_QSRC; else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1) SelectCCOp = PPC::SELECT_CC_QBRC; else if (N->getValueType(0) == MVT::v2f64 || N->getValueType(0) == MVT::v2i64) SelectCCOp = PPC::SELECT_CC_VSRC; else SelectCCOp = PPC::SELECT_CC_VRRC; SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), getI32Imm(BROpc, dl) }; CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops); return; } case ISD::VECTOR_SHUFFLE: if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 || N->getValueType(0) == MVT::v2i64)) { ShuffleVectorSDNode *SVN = cast(N); SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1), Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1); unsigned DM[2]; for (int i = 0; i < 2; ++i) if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2) DM[i] = 0; else DM[i] = 1; if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 && Op1.getOpcode() == ISD::SCALAR_TO_VECTOR && isa(Op1.getOperand(0))) { LoadSDNode *LD = cast(Op1.getOperand(0)); SDValue Base, Offset; if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() && (LD->getMemoryVT() == MVT::f64 || LD->getMemoryVT() == MVT::i64) && SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) { SDValue Chain = LD->getChain(); SDValue Ops[] = { Base, Offset, Chain }; MachineMemOperand *MemOp = LD->getMemOperand(); SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX, N->getValueType(0), Ops); CurDAG->setNodeMemRefs(cast(NewN), {MemOp}); return; } } // For little endian, we must swap the input operands and adjust // the mask elements (reverse and invert them). if (PPCSubTarget->isLittleEndian()) { std::swap(Op1, Op2); unsigned tmp = DM[0]; DM[0] = 1 - DM[1]; DM[1] = 1 - tmp; } SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl, MVT::i32); SDValue Ops[] = { Op1, Op2, DMV }; CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops); return; } break; case PPCISD::BDNZ: case PPCISD::BDZ: { bool IsPPC64 = PPCSubTarget->isPPC64(); SDValue Ops[] = { N->getOperand(1), N->getOperand(0) }; CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ), MVT::Other, Ops); return; } case PPCISD::COND_BRANCH: { // Op #0 is the Chain. // Op #1 is the PPC::PRED_* number. // Op #2 is the CR# // Op #3 is the Dest MBB // Op #4 is the Flag. // Prevent PPC::PRED_* from being selected into LI. unsigned PCC = cast(N->getOperand(1))->getZExtValue(); if (EnableBranchHint) PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(3)); SDValue Pred = getI32Imm(PCC, dl); SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), N->getOperand(0), N->getOperand(4) }; CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); return; } case ISD::BR_CC: { ISD::CondCode CC = cast(N->getOperand(1))->get(); unsigned PCC = getPredicateForSetCC(CC); if (N->getOperand(2).getValueType() == MVT::i1) { unsigned Opc; bool Swap; switch (PCC) { default: llvm_unreachable("Unexpected Boolean-operand predicate"); case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break; case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break; case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break; case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break; case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break; case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break; } // A signed comparison of i1 values produces the opposite result to an // unsigned one if the condition code includes less-than or greater-than. // This is because 1 is the most negative signed i1 number and the most // positive unsigned i1 number. The CR-logical operations used for such // comparisons are non-commutative so for signed comparisons vs. unsigned // ones, the input operands just need to be swapped. if (ISD::isSignedIntSetCC(CC)) Swap = !Swap; SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1, N->getOperand(Swap ? 3 : 2), N->getOperand(Swap ? 2 : 3)), 0); CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4), N->getOperand(0)); return; } if (EnableBranchHint) PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(4)); SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); SDValue Ops[] = { getI32Imm(PCC, dl), CondCode, N->getOperand(4), N->getOperand(0) }; CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); return; } case ISD::BRIND: { // FIXME: Should custom lower this. SDValue Chain = N->getOperand(0); SDValue Target = N->getOperand(1); unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, Chain), 0); CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); return; } case PPCISD::TOC_ENTRY: { assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) && "Only supported for 64-bit ABI and 32-bit SVR4"); if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) { SDValue GA = N->getOperand(0); SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA, N->getOperand(1)); transferMemOperands(N, MN); ReplaceNode(N, MN); return; } // For medium and large code model, we generate two instructions as // described below. Otherwise we allow SelectCodeCommon to handle this, // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. CodeModel::Model CModel = TM.getCodeModel(); if (CModel != CodeModel::Medium && CModel != CodeModel::Large) break; // The first source operand is a TargetGlobalAddress or a TargetJumpTable. // If it must be toc-referenced according to PPCSubTarget, we generate: // LDtocL(@sym, ADDIStocHA(%x2, @sym)) // Otherwise we generate: // ADDItocL(ADDIStocHA(%x2, @sym), @sym) SDValue GA = N->getOperand(0); SDValue TOCbase = N->getOperand(1); SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64, TOCbase, GA); if (PPCLowering->isAccessedAsGotIndirect(GA)) { // If it is access as got-indirect, we need an extra LD to load // the address. SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA, SDValue(Tmp, 0)); transferMemOperands(N, MN); ReplaceNode(N, MN); return; } // Build the address relative to the TOC-pointer.. ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, SDValue(Tmp, 0), GA)); return; } case PPCISD::PPC32_PICGOT: // Generate a PIC-safe GOT reference. assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() && "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4"); CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::i32); return; case PPCISD::VADD_SPLAT: { // This expands into one of three sequences, depending on whether // the first operand is odd or even, positive or negative. assert(isa(N->getOperand(0)) && isa(N->getOperand(1)) && "Invalid operand on VADD_SPLAT!"); int Elt = N->getConstantOperandVal(0); int EltSize = N->getConstantOperandVal(1); unsigned Opc1, Opc2, Opc3; EVT VT; if (EltSize == 1) { Opc1 = PPC::VSPLTISB; Opc2 = PPC::VADDUBM; Opc3 = PPC::VSUBUBM; VT = MVT::v16i8; } else if (EltSize == 2) { Opc1 = PPC::VSPLTISH; Opc2 = PPC::VADDUHM; Opc3 = PPC::VSUBUHM; VT = MVT::v8i16; } else { assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); Opc1 = PPC::VSPLTISW; Opc2 = PPC::VADDUWM; Opc3 = PPC::VSUBUWM; VT = MVT::v4i32; } if ((Elt & 1) == 0) { // Elt is even, in the range [-32,-18] + [16,30]. // // Convert: VADD_SPLAT elt, size // Into: tmp = VSPLTIS[BHW] elt // VADDU[BHW]M tmp, tmp // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4 SDValue EltVal = getI32Imm(Elt >> 1, dl); SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); SDValue TmpVal = SDValue(Tmp, 0); ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal)); return; } else if (Elt > 0) { // Elt is odd and positive, in the range [17,31]. // // Convert: VADD_SPLAT elt, size // Into: tmp1 = VSPLTIS[BHW] elt-16 // tmp2 = VSPLTIS[BHW] -16 // VSUBU[BHW]M tmp1, tmp2 SDValue EltVal = getI32Imm(Elt - 16, dl); SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); EltVal = getI32Imm(-16, dl); SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), SDValue(Tmp2, 0))); return; } else { // Elt is odd and negative, in the range [-31,-17]. // // Convert: VADD_SPLAT elt, size // Into: tmp1 = VSPLTIS[BHW] elt+16 // tmp2 = VSPLTIS[BHW] -16 // VADDU[BHW]M tmp1, tmp2 SDValue EltVal = getI32Imm(Elt + 16, dl); SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); EltVal = getI32Imm(-16, dl); SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), SDValue(Tmp2, 0))); return; } } } SelectCode(N); } // If the target supports the cmpb instruction, do the idiom recognition here. // We don't do this as a DAG combine because we don't want to do it as nodes // are being combined (because we might miss part of the eventual idiom). We // don't want to do it during instruction selection because we want to reuse // the logic for lowering the masking operations already part of the // instruction selector. SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) { SDLoc dl(N); assert(N->getOpcode() == ISD::OR && "Only OR nodes are supported for CMPB"); SDValue Res; if (!PPCSubTarget->hasCMPB()) return Res; if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64) return Res; EVT VT = N->getValueType(0); SDValue RHS, LHS; bool BytesFound[8] = {false, false, false, false, false, false, false, false}; uint64_t Mask = 0, Alt = 0; auto IsByteSelectCC = [this](SDValue O, unsigned &b, uint64_t &Mask, uint64_t &Alt, SDValue &LHS, SDValue &RHS) { if (O.getOpcode() != ISD::SELECT_CC) return false; ISD::CondCode CC = cast(O.getOperand(4))->get(); if (!isa(O.getOperand(2)) || !isa(O.getOperand(3))) return false; uint64_t PM = O.getConstantOperandVal(2); uint64_t PAlt = O.getConstantOperandVal(3); for (b = 0; b < 8; ++b) { uint64_t Mask = UINT64_C(0xFF) << (8*b); if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt) break; } if (b == 8) return false; Mask |= PM; Alt |= PAlt; if (!isa(O.getOperand(1)) || O.getConstantOperandVal(1) != 0) { SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1); if (Op0.getOpcode() == ISD::TRUNCATE) Op0 = Op0.getOperand(0); if (Op1.getOpcode() == ISD::TRUNCATE) Op1 = Op1.getOperand(0); if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL && Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ && isa(Op0.getOperand(1))) { unsigned Bits = Op0.getValueSizeInBits(); if (b != Bits/8-1) return false; if (Op0.getConstantOperandVal(1) != Bits-8) return false; LHS = Op0.getOperand(0); RHS = Op1.getOperand(0); return true; } // When we have small integers (i16 to be specific), the form present // post-legalization uses SETULT in the SELECT_CC for the // higher-order byte, depending on the fact that the // even-higher-order bytes are known to all be zero, for example: // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult // (so when the second byte is the same, because all higher-order // bits from bytes 3 and 4 are known to be zero, the result of the // xor can be at most 255) if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT && isa(O.getOperand(1))) { uint64_t ULim = O.getConstantOperandVal(1); if (ULim != (UINT64_C(1) << b*8)) return false; // Now we need to make sure that the upper bytes are known to be // zero. unsigned Bits = Op0.getValueSizeInBits(); if (!CurDAG->MaskedValueIsZero( Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8))) return false; LHS = Op0.getOperand(0); RHS = Op0.getOperand(1); return true; } return false; } if (CC != ISD::SETEQ) return false; SDValue Op = O.getOperand(0); if (Op.getOpcode() == ISD::AND) { if (!isa(Op.getOperand(1))) return false; if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b))) return false; SDValue XOR = Op.getOperand(0); if (XOR.getOpcode() == ISD::TRUNCATE) XOR = XOR.getOperand(0); if (XOR.getOpcode() != ISD::XOR) return false; LHS = XOR.getOperand(0); RHS = XOR.getOperand(1); return true; } else if (Op.getOpcode() == ISD::SRL) { if (!isa(Op.getOperand(1))) return false; unsigned Bits = Op.getValueSizeInBits(); if (b != Bits/8-1) return false; if (Op.getConstantOperandVal(1) != Bits-8) return false; SDValue XOR = Op.getOperand(0); if (XOR.getOpcode() == ISD::TRUNCATE) XOR = XOR.getOperand(0); if (XOR.getOpcode() != ISD::XOR) return false; LHS = XOR.getOperand(0); RHS = XOR.getOperand(1); return true; } return false; }; SmallVector Queue(1, SDValue(N, 0)); while (!Queue.empty()) { SDValue V = Queue.pop_back_val(); for (const SDValue &O : V.getNode()->ops()) { unsigned b = 0; uint64_t M = 0, A = 0; SDValue OLHS, ORHS; if (O.getOpcode() == ISD::OR) { Queue.push_back(O); } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) { if (!LHS) { LHS = OLHS; RHS = ORHS; BytesFound[b] = true; Mask |= M; Alt |= A; } else if ((LHS == ORHS && RHS == OLHS) || (RHS == ORHS && LHS == OLHS)) { BytesFound[b] = true; Mask |= M; Alt |= A; } else { return Res; } } else { return Res; } } } unsigned LastB = 0, BCnt = 0; for (unsigned i = 0; i < 8; ++i) if (BytesFound[LastB]) { ++BCnt; LastB = i; } if (!LastB || BCnt < 2) return Res; // Because we'll be zero-extending the output anyway if don't have a specific // value for each input byte (via the Mask), we can 'anyext' the inputs. if (LHS.getValueType() != VT) { LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT); RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT); } Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS); bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1); if (NonTrivialMask && !Alt) { // Res = Mask & CMPB Res = CurDAG->getNode(ISD::AND, dl, VT, Res, CurDAG->getConstant(Mask, dl, VT)); } else if (Alt) { // Res = (CMPB & Mask) | (~CMPB & Alt) // Which, as suggested here: // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge // can be written as: // Res = Alt ^ ((Alt ^ Mask) & CMPB) // useful because the (Alt ^ Mask) can be pre-computed. Res = CurDAG->getNode(ISD::AND, dl, VT, Res, CurDAG->getConstant(Mask ^ Alt, dl, VT)); Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, CurDAG->getConstant(Alt, dl, VT)); } return Res; } // When CR bit registers are enabled, an extension of an i1 variable to a i32 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus // involves constant materialization of a 0 or a 1 or both. If the result of // the extension is then operated upon by some operator that can be constant // folded with a constant 0 or 1, and that constant can be materialized using // only one instruction (like a zero or one), then we should fold in those // operations with the select. void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) { if (!PPCSubTarget->useCRBits()) return; if (N->getOpcode() != ISD::ZERO_EXTEND && N->getOpcode() != ISD::SIGN_EXTEND && N->getOpcode() != ISD::ANY_EXTEND) return; if (N->getOperand(0).getValueType() != MVT::i1) return; if (!N->hasOneUse()) return; SDLoc dl(N); EVT VT = N->getValueType(0); SDValue Cond = N->getOperand(0); SDValue ConstTrue = CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT); SDValue ConstFalse = CurDAG->getConstant(0, dl, VT); do { SDNode *User = *N->use_begin(); if (User->getNumOperands() != 2) break; auto TryFold = [this, N, User, dl](SDValue Val) { SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1); SDValue O0 = UserO0.getNode() == N ? Val : UserO0; SDValue O1 = UserO1.getNode() == N ? Val : UserO1; return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl, User->getValueType(0), O0.getNode(), O1.getNode()); }; // FIXME: When the semantics of the interaction between select and undef // are clearly defined, it may turn out to be unnecessary to break here. SDValue TrueRes = TryFold(ConstTrue); if (!TrueRes || TrueRes.isUndef()) break; SDValue FalseRes = TryFold(ConstFalse); if (!FalseRes || FalseRes.isUndef()) break; // For us to materialize these using one instruction, we must be able to // represent them as signed 16-bit integers. uint64_t True = cast(TrueRes)->getZExtValue(), False = cast(FalseRes)->getZExtValue(); if (!isInt<16>(True) || !isInt<16>(False)) break; // We can replace User with a new SELECT node, and try again to see if we // can fold the select with its user. Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes); N = User; ConstTrue = TrueRes; ConstFalse = FalseRes; } while (N->hasOneUse()); } void PPCDAGToDAGISel::PreprocessISelDAG() { SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); bool MadeChange = false; while (Position != CurDAG->allnodes_begin()) { SDNode *N = &*--Position; if (N->use_empty()) continue; SDValue Res; switch (N->getOpcode()) { default: break; case ISD::OR: Res = combineToCMPB(N); break; } if (!Res) foldBoolExts(Res, N); if (Res) { LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: "); LLVM_DEBUG(N->dump(CurDAG)); LLVM_DEBUG(dbgs() << "\nNew: "); LLVM_DEBUG(Res.getNode()->dump(CurDAG)); LLVM_DEBUG(dbgs() << "\n"); CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); MadeChange = true; } } if (MadeChange) CurDAG->RemoveDeadNodes(); } /// PostprocessISelDAG - Perform some late peephole optimizations /// on the DAG representation. void PPCDAGToDAGISel::PostprocessISelDAG() { // Skip peepholes at -O0. if (TM.getOptLevel() == CodeGenOpt::None) return; PeepholePPC64(); PeepholeCROps(); PeepholePPC64ZExt(); } // Check if all users of this node will become isel where the second operand // is the constant zero. If this is so, and if we can negate the condition, // then we can flip the true and false operands. This will allow the zero to // be folded with the isel so that we don't need to materialize a register // containing zero. bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) { for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (!User->isMachineOpcode()) return false; if (User->getMachineOpcode() != PPC::SELECT_I4 && User->getMachineOpcode() != PPC::SELECT_I8) return false; SDNode *Op2 = User->getOperand(2).getNode(); if (!Op2->isMachineOpcode()) return false; if (Op2->getMachineOpcode() != PPC::LI && Op2->getMachineOpcode() != PPC::LI8) return false; ConstantSDNode *C = dyn_cast(Op2->getOperand(0)); if (!C) return false; if (!C->isNullValue()) return false; } return true; } void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) { SmallVector ToReplace; for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) { SDNode *User = *UI; assert((User->getMachineOpcode() == PPC::SELECT_I4 || User->getMachineOpcode() == PPC::SELECT_I8) && "Must have all select users"); ToReplace.push_back(User); } for (SmallVector::iterator UI = ToReplace.begin(), UE = ToReplace.end(); UI != UE; ++UI) { SDNode *User = *UI; SDNode *ResNode = CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User), User->getValueType(0), User->getOperand(0), User->getOperand(2), User->getOperand(1)); LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); LLVM_DEBUG(User->dump(CurDAG)); LLVM_DEBUG(dbgs() << "\nNew: "); LLVM_DEBUG(ResNode->dump(CurDAG)); LLVM_DEBUG(dbgs() << "\n"); ReplaceUses(User, ResNode); } } void PPCDAGToDAGISel::PeepholeCROps() { bool IsModified; do { IsModified = false; for (SDNode &Node : CurDAG->allnodes()) { MachineSDNode *MachineNode = dyn_cast(&Node); if (!MachineNode || MachineNode->use_empty()) continue; SDNode *ResNode = MachineNode; bool Op1Set = false, Op1Unset = false, Op1Not = false, Op2Set = false, Op2Unset = false, Op2Not = false; unsigned Opcode = MachineNode->getMachineOpcode(); switch (Opcode) { default: break; case PPC::CRAND: case PPC::CRNAND: case PPC::CROR: case PPC::CRXOR: case PPC::CRNOR: case PPC::CREQV: case PPC::CRANDC: case PPC::CRORC: { SDValue Op = MachineNode->getOperand(1); if (Op.isMachineOpcode()) { if (Op.getMachineOpcode() == PPC::CRSET) Op2Set = true; else if (Op.getMachineOpcode() == PPC::CRUNSET) Op2Unset = true; else if (Op.getMachineOpcode() == PPC::CRNOR && Op.getOperand(0) == Op.getOperand(1)) Op2Not = true; } LLVM_FALLTHROUGH; } case PPC::BC: case PPC::BCn: case PPC::SELECT_I4: case PPC::SELECT_I8: case PPC::SELECT_F4: case PPC::SELECT_F8: case PPC::SELECT_QFRC: case PPC::SELECT_QSRC: case PPC::SELECT_QBRC: case PPC::SELECT_SPE: case PPC::SELECT_SPE4: case PPC::SELECT_VRRC: case PPC::SELECT_VSFRC: case PPC::SELECT_VSSRC: case PPC::SELECT_VSRC: { SDValue Op = MachineNode->getOperand(0); if (Op.isMachineOpcode()) { if (Op.getMachineOpcode() == PPC::CRSET) Op1Set = true; else if (Op.getMachineOpcode() == PPC::CRUNSET) Op1Unset = true; else if (Op.getMachineOpcode() == PPC::CRNOR && Op.getOperand(0) == Op.getOperand(1)) Op1Not = true; } } break; } bool SelectSwap = false; switch (Opcode) { default: break; case PPC::CRAND: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // x & x = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Set) // 1 & y = y ResNode = MachineNode->getOperand(1).getNode(); else if (Op2Set) // x & 1 = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Unset || Op2Unset) // x & 0 = 0 & y = 0 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), MVT::i1); else if (Op1Not) // ~x & y = andc(y, x) ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(0). getOperand(0)); else if (Op2Not) // x & ~y = andc(x, y) ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1). getOperand(0)); else if (AllUsersSelectZero(MachineNode)) { ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1)); SelectSwap = true; } break; case PPC::CRNAND: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // nand(x, x) -> nor(x, x) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(0)); else if (Op1Set) // nand(1, y) -> nor(y, y) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(1)); else if (Op2Set) // nand(x, 1) -> nor(x, x) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(0)); else if (Op1Unset || Op2Unset) // nand(x, 0) = nand(0, y) = 1 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), MVT::i1); else if (Op1Not) // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y) ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1)); else if (Op2Not) // nand(x, ~y) = ~x | y = orc(y, x) ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1). getOperand(0), MachineNode->getOperand(0)); else if (AllUsersSelectZero(MachineNode)) { ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1)); SelectSwap = true; } break; case PPC::CROR: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // x | x = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Set || Op2Set) // x | 1 = 1 | y = 1 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), MVT::i1); else if (Op1Unset) // 0 | y = y ResNode = MachineNode->getOperand(1).getNode(); else if (Op2Unset) // x | 0 = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Not) // ~x | y = orc(y, x) ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(0). getOperand(0)); else if (Op2Not) // x | ~y = orc(x, y) ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1). getOperand(0)); else if (AllUsersSelectZero(MachineNode)) { ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1)); SelectSwap = true; } break; case PPC::CRXOR: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // xor(x, x) = 0 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), MVT::i1); else if (Op1Set) // xor(1, y) -> nor(y, y) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(1)); else if (Op2Set) // xor(x, 1) -> nor(x, x) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(0)); else if (Op1Unset) // xor(0, y) = y ResNode = MachineNode->getOperand(1).getNode(); else if (Op2Unset) // xor(x, 0) = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Not) // xor(~x, y) = eqv(x, y) ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1)); else if (Op2Not) // xor(x, ~y) = eqv(x, y) ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1). getOperand(0)); else if (AllUsersSelectZero(MachineNode)) { ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1)); SelectSwap = true; } break; case PPC::CRNOR: if (Op1Set || Op2Set) // nor(1, y) -> 0 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), MVT::i1); else if (Op1Unset) // nor(0, y) = ~y -> nor(y, y) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(1)); else if (Op2Unset) // nor(x, 0) = ~x ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(0)); else if (Op1Not) // nor(~x, y) = andc(x, y) ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1)); else if (Op2Not) // nor(x, ~y) = andc(y, x) ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1). getOperand(0), MachineNode->getOperand(0)); else if (AllUsersSelectZero(MachineNode)) { ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1)); SelectSwap = true; } break; case PPC::CREQV: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // eqv(x, x) = 1 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), MVT::i1); else if (Op1Set) // eqv(1, y) = y ResNode = MachineNode->getOperand(1).getNode(); else if (Op2Set) // eqv(x, 1) = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Unset) // eqv(0, y) = ~y -> nor(y, y) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(1)); else if (Op2Unset) // eqv(x, 0) = ~x ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(0)); else if (Op1Not) // eqv(~x, y) = xor(x, y) ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1)); else if (Op2Not) // eqv(x, ~y) = xor(x, y) ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1). getOperand(0)); else if (AllUsersSelectZero(MachineNode)) { ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1)); SelectSwap = true; } break; case PPC::CRANDC: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // andc(x, x) = 0 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), MVT::i1); else if (Op1Set) // andc(1, y) = ~y ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(1)); else if (Op1Unset || Op2Set) // andc(0, y) = andc(x, 1) = 0 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), MVT::i1); else if (Op2Unset) // andc(x, 0) = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Not) // andc(~x, y) = ~(x | y) = nor(x, y) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1)); else if (Op2Not) // andc(x, ~y) = x & y ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1). getOperand(0)); else if (AllUsersSelectZero(MachineNode)) { ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(0)); SelectSwap = true; } break; case PPC::CRORC: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // orc(x, x) = 1 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), MVT::i1); else if (Op1Set || Op2Unset) // orc(1, y) = orc(x, 0) = 1 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), MVT::i1); else if (Op2Set) // orc(x, 1) = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Unset) // orc(0, y) = ~y ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(1)); else if (Op1Not) // orc(~x, y) = ~(x & y) = nand(x, y) ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1)); else if (Op2Not) // orc(x, ~y) = x | y ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1). getOperand(0)); else if (AllUsersSelectZero(MachineNode)) { ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(0)); SelectSwap = true; } break; case PPC::SELECT_I4: case PPC::SELECT_I8: case PPC::SELECT_F4: case PPC::SELECT_F8: case PPC::SELECT_QFRC: case PPC::SELECT_QSRC: case PPC::SELECT_QBRC: case PPC::SELECT_SPE: case PPC::SELECT_SPE4: case PPC::SELECT_VRRC: case PPC::SELECT_VSFRC: case PPC::SELECT_VSSRC: case PPC::SELECT_VSRC: if (Op1Set) ResNode = MachineNode->getOperand(1).getNode(); else if (Op1Unset) ResNode = MachineNode->getOperand(2).getNode(); else if (Op1Not) ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(), SDLoc(MachineNode), MachineNode->getValueType(0), MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(2), MachineNode->getOperand(1)); break; case PPC::BC: case PPC::BCn: if (Op1Not) ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn : PPC::BC, SDLoc(MachineNode), MVT::Other, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1), MachineNode->getOperand(2)); // FIXME: Handle Op1Set, Op1Unset here too. break; } // If we're inverting this node because it is used only by selects that // we'd like to swap, then swap the selects before the node replacement. if (SelectSwap) SwapAllSelectUsers(MachineNode); if (ResNode != MachineNode) { LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); LLVM_DEBUG(MachineNode->dump(CurDAG)); LLVM_DEBUG(dbgs() << "\nNew: "); LLVM_DEBUG(ResNode->dump(CurDAG)); LLVM_DEBUG(dbgs() << "\n"); ReplaceUses(MachineNode, ResNode); IsModified = true; } } if (IsModified) CurDAG->RemoveDeadNodes(); } while (IsModified); } // Gather the set of 32-bit operations that are known to have their // higher-order 32 bits zero, where ToPromote contains all such operations. static bool PeepholePPC64ZExtGather(SDValue Op32, SmallPtrSetImpl &ToPromote) { if (!Op32.isMachineOpcode()) return false; // First, check for the "frontier" instructions (those that will clear the // higher-order 32 bits. // For RLWINM and RLWNM, we need to make sure that the mask does not wrap // around. If it does not, then these instructions will clear the // higher-order bits. if ((Op32.getMachineOpcode() == PPC::RLWINM || Op32.getMachineOpcode() == PPC::RLWNM) && Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) { ToPromote.insert(Op32.getNode()); return true; } // SLW and SRW always clear the higher-order bits. if (Op32.getMachineOpcode() == PPC::SLW || Op32.getMachineOpcode() == PPC::SRW) { ToPromote.insert(Op32.getNode()); return true; } // For LI and LIS, we need the immediate to be positive (so that it is not // sign extended). if (Op32.getMachineOpcode() == PPC::LI || Op32.getMachineOpcode() == PPC::LIS) { if (!isUInt<15>(Op32.getConstantOperandVal(0))) return false; ToPromote.insert(Op32.getNode()); return true; } // LHBRX and LWBRX always clear the higher-order bits. if (Op32.getMachineOpcode() == PPC::LHBRX || Op32.getMachineOpcode() == PPC::LWBRX) { ToPromote.insert(Op32.getNode()); return true; } // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended. if (Op32.getMachineOpcode() == PPC::CNTLZW || Op32.getMachineOpcode() == PPC::CNTTZW) { ToPromote.insert(Op32.getNode()); return true; } // Next, check for those instructions we can look through. // Assuming the mask does not wrap around, then the higher-order bits are // taken directly from the first operand. if (Op32.getMachineOpcode() == PPC::RLWIMI && Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) { SmallPtrSet ToPromote1; if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) return false; ToPromote.insert(Op32.getNode()); ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); return true; } // For OR, the higher-order bits are zero if that is true for both operands. // For SELECT_I4, the same is true (but the relevant operand numbers are // shifted by 1). if (Op32.getMachineOpcode() == PPC::OR || Op32.getMachineOpcode() == PPC::SELECT_I4) { unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0; SmallPtrSet ToPromote1; if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1)) return false; if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1)) return false; ToPromote.insert(Op32.getNode()); ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); return true; } // For ORI and ORIS, we need the higher-order bits of the first operand to be // zero, and also for the constant to be positive (so that it is not sign // extended). if (Op32.getMachineOpcode() == PPC::ORI || Op32.getMachineOpcode() == PPC::ORIS) { SmallPtrSet ToPromote1; if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) return false; if (!isUInt<15>(Op32.getConstantOperandVal(1))) return false; ToPromote.insert(Op32.getNode()); ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); return true; } // The higher-order bits of AND are zero if that is true for at least one of // the operands. if (Op32.getMachineOpcode() == PPC::AND) { SmallPtrSet ToPromote1, ToPromote2; bool Op0OK = PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); bool Op1OK = PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2); if (!Op0OK && !Op1OK) return false; ToPromote.insert(Op32.getNode()); if (Op0OK) ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); if (Op1OK) ToPromote.insert(ToPromote2.begin(), ToPromote2.end()); return true; } // For ANDI and ANDIS, the higher-order bits are zero if either that is true // of the first operand, or if the second operand is positive (so that it is // not sign extended). if (Op32.getMachineOpcode() == PPC::ANDIo || Op32.getMachineOpcode() == PPC::ANDISo) { SmallPtrSet ToPromote1; bool Op0OK = PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1)); if (!Op0OK && !Op1OK) return false; ToPromote.insert(Op32.getNode()); if (Op0OK) ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); return true; } return false; } void PPCDAGToDAGISel::PeepholePPC64ZExt() { if (!PPCSubTarget->isPPC64()) return; // When we zero-extend from i32 to i64, we use a pattern like this: // def : Pat<(i64 (zext i32:$in)), // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32), // 0, 32)>; // There are several 32-bit shift/rotate instructions, however, that will // clear the higher-order bits of their output, rendering the RLDICL // unnecessary. When that happens, we remove it here, and redefine the // relevant 32-bit operation to be a 64-bit operation. SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); bool MadeChange = false; while (Position != CurDAG->allnodes_begin()) { SDNode *N = &*--Position; // Skip dead nodes and any non-machine opcodes. if (N->use_empty() || !N->isMachineOpcode()) continue; if (N->getMachineOpcode() != PPC::RLDICL) continue; if (N->getConstantOperandVal(1) != 0 || N->getConstantOperandVal(2) != 32) continue; SDValue ISR = N->getOperand(0); if (!ISR.isMachineOpcode() || ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG) continue; if (!ISR.hasOneUse()) continue; if (ISR.getConstantOperandVal(2) != PPC::sub_32) continue; SDValue IDef = ISR.getOperand(0); if (!IDef.isMachineOpcode() || IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF) continue; // We now know that we're looking at a canonical i32 -> i64 zext. See if we // can get rid of it. SDValue Op32 = ISR->getOperand(1); if (!Op32.isMachineOpcode()) continue; // There are some 32-bit instructions that always clear the high-order 32 // bits, there are also some instructions (like AND) that we can look // through. SmallPtrSet ToPromote; if (!PeepholePPC64ZExtGather(Op32, ToPromote)) continue; // If the ToPromote set contains nodes that have uses outside of the set // (except for the original INSERT_SUBREG), then abort the transformation. bool OutsideUse = false; for (SDNode *PN : ToPromote) { for (SDNode *UN : PN->uses()) { if (!ToPromote.count(UN) && UN != ISR.getNode()) { OutsideUse = true; break; } } if (OutsideUse) break; } if (OutsideUse) continue; MadeChange = true; // We now know that this zero extension can be removed by promoting to // nodes in ToPromote to 64-bit operations, where for operations in the // frontier of the set, we need to insert INSERT_SUBREGs for their // operands. for (SDNode *PN : ToPromote) { unsigned NewOpcode; switch (PN->getMachineOpcode()) { default: llvm_unreachable("Don't know the 64-bit variant of this instruction"); case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break; case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break; case PPC::SLW: NewOpcode = PPC::SLW8; break; case PPC::SRW: NewOpcode = PPC::SRW8; break; case PPC::LI: NewOpcode = PPC::LI8; break; case PPC::LIS: NewOpcode = PPC::LIS8; break; case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break; case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break; case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break; case PPC::CNTTZW: NewOpcode = PPC::CNTTZW8; break; case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break; case PPC::OR: NewOpcode = PPC::OR8; break; case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break; case PPC::ORI: NewOpcode = PPC::ORI8; break; case PPC::ORIS: NewOpcode = PPC::ORIS8; break; case PPC::AND: NewOpcode = PPC::AND8; break; case PPC::ANDIo: NewOpcode = PPC::ANDIo8; break; case PPC::ANDISo: NewOpcode = PPC::ANDISo8; break; } // Note: During the replacement process, the nodes will be in an // inconsistent state (some instructions will have operands with values // of the wrong type). Once done, however, everything should be right // again. SmallVector Ops; for (const SDValue &V : PN->ops()) { if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 && !isa(V)) { SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) }; SDNode *ReplOp = CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V), ISR.getNode()->getVTList(), ReplOpOps); Ops.push_back(SDValue(ReplOp, 0)); } else { Ops.push_back(V); } } // Because all to-be-promoted nodes only have users that are other // promoted nodes (or the original INSERT_SUBREG), we can safely replace // the i32 result value type with i64. SmallVector NewVTs; SDVTList VTs = PN->getVTList(); for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i) if (VTs.VTs[i] == MVT::i32) NewVTs.push_back(MVT::i64); else NewVTs.push_back(VTs.VTs[i]); LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: "); LLVM_DEBUG(PN->dump(CurDAG)); CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops); LLVM_DEBUG(dbgs() << "\nNew: "); LLVM_DEBUG(PN->dump(CurDAG)); LLVM_DEBUG(dbgs() << "\n"); } // Now we replace the original zero extend and its associated INSERT_SUBREG // with the value feeding the INSERT_SUBREG (which has now been promoted to // return an i64). LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: "); LLVM_DEBUG(N->dump(CurDAG)); LLVM_DEBUG(dbgs() << "\nNew: "); LLVM_DEBUG(Op32.getNode()->dump(CurDAG)); LLVM_DEBUG(dbgs() << "\n"); ReplaceUses(N, Op32.getNode()); } if (MadeChange) CurDAG->RemoveDeadNodes(); } void PPCDAGToDAGISel::PeepholePPC64() { // These optimizations are currently supported only for 64-bit SVR4. if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64()) return; SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); while (Position != CurDAG->allnodes_begin()) { SDNode *N = &*--Position; // Skip dead nodes and any non-machine opcodes. if (N->use_empty() || !N->isMachineOpcode()) continue; unsigned FirstOp; unsigned StorageOpcode = N->getMachineOpcode(); bool RequiresMod4Offset = false; switch (StorageOpcode) { default: continue; case PPC::LWA: case PPC::LD: case PPC::DFLOADf64: case PPC::DFLOADf32: RequiresMod4Offset = true; LLVM_FALLTHROUGH; case PPC::LBZ: case PPC::LBZ8: case PPC::LFD: case PPC::LFS: case PPC::LHA: case PPC::LHA8: case PPC::LHZ: case PPC::LHZ8: case PPC::LWZ: case PPC::LWZ8: FirstOp = 0; break; case PPC::STD: case PPC::DFSTOREf64: case PPC::DFSTOREf32: RequiresMod4Offset = true; LLVM_FALLTHROUGH; case PPC::STB: case PPC::STB8: case PPC::STFD: case PPC::STFS: case PPC::STH: case PPC::STH8: case PPC::STW: case PPC::STW8: FirstOp = 1; break; } // If this is a load or store with a zero offset, or within the alignment, // we may be able to fold an add-immediate into the memory operation. // The check against alignment is below, as it can't occur until we check // the arguments to N if (!isa(N->getOperand(FirstOp))) continue; SDValue Base = N->getOperand(FirstOp + 1); if (!Base.isMachineOpcode()) continue; unsigned Flags = 0; bool ReplaceFlags = true; // When the feeding operation is an add-immediate of some sort, // determine whether we need to add relocation information to the // target flags on the immediate operand when we fold it into the // load instruction. // // For something like ADDItocL, the relocation information is // inferred from the opcode; when we process it in the AsmPrinter, // we add the necessary relocation there. A load, though, can receive // relocation from various flavors of ADDIxxx, so we need to carry // the relocation information in the target flags. switch (Base.getMachineOpcode()) { default: continue; case PPC::ADDI8: case PPC::ADDI: // In some cases (such as TLS) the relocation information // is already in place on the operand, so copying the operand // is sufficient. ReplaceFlags = false; // For these cases, the immediate may not be divisible by 4, in // which case the fold is illegal for DS-form instructions. (The // other cases provide aligned addresses and are always safe.) if (RequiresMod4Offset && (!isa(Base.getOperand(1)) || Base.getConstantOperandVal(1) % 4 != 0)) continue; break; case PPC::ADDIdtprelL: Flags = PPCII::MO_DTPREL_LO; break; case PPC::ADDItlsldL: Flags = PPCII::MO_TLSLD_LO; break; case PPC::ADDItocL: Flags = PPCII::MO_TOC_LO; break; } SDValue ImmOpnd = Base.getOperand(1); // On PPC64, the TOC base pointer is guaranteed by the ABI only to have // 8-byte alignment, and so we can only use offsets less than 8 (otherwise, // we might have needed different @ha relocation values for the offset // pointers). int MaxDisplacement = 7; if (GlobalAddressSDNode *GA = dyn_cast(ImmOpnd)) { const GlobalValue *GV = GA->getGlobal(); MaxDisplacement = std::min((int) GV->getAlignment() - 1, MaxDisplacement); } bool UpdateHBase = false; SDValue HBase = Base.getOperand(0); int Offset = N->getConstantOperandVal(FirstOp); if (ReplaceFlags) { if (Offset < 0 || Offset > MaxDisplacement) { // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only // one use, then we can do this for any offset, we just need to also // update the offset (i.e. the symbol addend) on the addis also. if (Base.getMachineOpcode() != PPC::ADDItocL) continue; if (!HBase.isMachineOpcode() || HBase.getMachineOpcode() != PPC::ADDIStocHA) continue; if (!Base.hasOneUse() || !HBase.hasOneUse()) continue; SDValue HImmOpnd = HBase.getOperand(1); if (HImmOpnd != ImmOpnd) continue; UpdateHBase = true; } } else { // If we're directly folding the addend from an addi instruction, then: // 1. In general, the offset on the memory access must be zero. // 2. If the addend is a constant, then it can be combined with a // non-zero offset, but only if the result meets the encoding // requirements. if (auto *C = dyn_cast(ImmOpnd)) { Offset += C->getSExtValue(); if (RequiresMod4Offset && (Offset % 4) != 0) continue; if (!isInt<16>(Offset)) continue; ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd), ImmOpnd.getValueType()); } else if (Offset != 0) { continue; } } // We found an opportunity. Reverse the operands from the add // immediate and substitute them into the load or store. If // needed, update the target flags for the immediate operand to // reflect the necessary relocation information. LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: "); LLVM_DEBUG(Base->dump(CurDAG)); LLVM_DEBUG(dbgs() << "\nN: "); LLVM_DEBUG(N->dump(CurDAG)); LLVM_DEBUG(dbgs() << "\n"); // If the relocation information isn't already present on the // immediate operand, add it now. if (ReplaceFlags) { if (GlobalAddressSDNode *GA = dyn_cast(ImmOpnd)) { SDLoc dl(GA); const GlobalValue *GV = GA->getGlobal(); // We can't perform this optimization for data whose alignment // is insufficient for the instruction encoding. if (GV->getAlignment() < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) { LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); continue; } ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags); } else if (ConstantPoolSDNode *CP = dyn_cast(ImmOpnd)) { const Constant *C = CP->getConstVal(); ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlignment(), Offset, Flags); } } if (FirstOp == 1) // Store (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, Base.getOperand(0), N->getOperand(3)); else // Load (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), N->getOperand(2)); if (UpdateHBase) (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0), ImmOpnd); // The add-immediate may now be dead, in which case remove it. if (Base.getNode()->use_empty()) CurDAG->RemoveDeadNode(Base.getNode()); } } /// createPPCISelDag - This pass converts a legalized DAG into a /// PowerPC-specific DAG, ready for instruction scheduling. /// FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM, CodeGenOpt::Level OptLevel) { return new PPCDAGToDAGISel(TM, OptLevel); }