//===-- PPCBranchSelector.cpp - Emit long conditional branches ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains a pass that scans a machine function to determine which // conditional branches need more than 16 bits of displacement to reach their // target basic block. It does this in two passes; a calculation of basic block // positions pass, and a branch pseudo op to machine branch opcode pass. This // pass should be run last, just before the assembly printer. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/PPCPredicates.h" #include "PPC.h" #include "PPCInstrBuilder.h" #include "PPCInstrInfo.h" #include "PPCSubtarget.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetMachine.h" #include using namespace llvm; #define DEBUG_TYPE "ppc-branch-select" STATISTIC(NumExpanded, "Number of branches expanded to long format"); STATISTIC(NumPrefixed, "Number of prefixed instructions"); STATISTIC(NumPrefixedAligned, "Number of prefixed instructions that have been aligned"); namespace { struct PPCBSel : public MachineFunctionPass { static char ID; PPCBSel() : MachineFunctionPass(ID) { initializePPCBSelPass(*PassRegistry::getPassRegistry()); } // The sizes of the basic blocks in the function (the first // element of the pair); the second element of the pair is the amount of the // size that is due to potential padding. std::vector> BlockSizes; // The first block number which has imprecise instruction address. int FirstImpreciseBlock = -1; unsigned GetAlignmentAdjustment(MachineBasicBlock &MBB, unsigned Offset); unsigned ComputeBlockSizes(MachineFunction &Fn); void modifyAdjustment(MachineFunction &Fn); int computeBranchSize(MachineFunction &Fn, const MachineBasicBlock *Src, const MachineBasicBlock *Dest, unsigned BrOffset); bool runOnMachineFunction(MachineFunction &Fn) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } StringRef getPassName() const override { return "PowerPC Branch Selector"; } }; char PPCBSel::ID = 0; } INITIALIZE_PASS(PPCBSel, "ppc-branch-select", "PowerPC Branch Selector", false, false) /// createPPCBranchSelectionPass - returns an instance of the Branch Selection /// Pass /// FunctionPass *llvm::createPPCBranchSelectionPass() { return new PPCBSel(); } /// In order to make MBB aligned, we need to add an adjustment value to the /// original Offset. unsigned PPCBSel::GetAlignmentAdjustment(MachineBasicBlock &MBB, unsigned Offset) { const Align Alignment = MBB.getAlignment(); if (Alignment == Align(1)) return 0; const Align ParentAlign = MBB.getParent()->getAlignment(); if (Alignment <= ParentAlign) return offsetToAlignment(Offset, Alignment); // The alignment of this MBB is larger than the function's alignment, so we // can't tell whether or not it will insert nops. Assume that it will. if (FirstImpreciseBlock < 0) FirstImpreciseBlock = MBB.getNumber(); return Alignment.value() + offsetToAlignment(Offset, Alignment); } /// We need to be careful about the offset of the first block in the function /// because it might not have the function's alignment. This happens because, /// under the ELFv2 ABI, for functions which require a TOC pointer, we add a /// two-instruction sequence to the start of the function. /// Note: This needs to be synchronized with the check in /// PPCLinuxAsmPrinter::EmitFunctionBodyStart. static inline unsigned GetInitialOffset(MachineFunction &Fn) { unsigned InitialOffset = 0; if (Fn.getSubtarget().isELFv2ABI() && !Fn.getRegInfo().use_empty(PPC::X2)) InitialOffset = 8; return InitialOffset; } /// Measure each MBB and compute a size for the entire function. unsigned PPCBSel::ComputeBlockSizes(MachineFunction &Fn) { const PPCInstrInfo *TII = static_cast(Fn.getSubtarget().getInstrInfo()); unsigned FuncSize = GetInitialOffset(Fn); for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E; ++MFI) { MachineBasicBlock *MBB = &*MFI; // The end of the previous block may have extra nops if this block has an // alignment requirement. if (MBB->getNumber() > 0) { unsigned AlignExtra = GetAlignmentAdjustment(*MBB, FuncSize); auto &BS = BlockSizes[MBB->getNumber()-1]; BS.first += AlignExtra; BS.second = AlignExtra; FuncSize += AlignExtra; } unsigned BlockSize = 0; unsigned UnalignedBytesRemaining = 0; for (MachineInstr &MI : *MBB) { unsigned MINumBytes = TII->getInstSizeInBytes(MI); if (MI.isInlineAsm() && (FirstImpreciseBlock < 0)) FirstImpreciseBlock = MBB->getNumber(); if (TII->isPrefixed(MI.getOpcode())) { NumPrefixed++; // All 8 byte instructions may require alignment. Each 8 byte // instruction may be aligned by another 4 bytes. // This means that an 8 byte instruction may require 12 bytes // (8 for the instruction itself and 4 for the alignment nop). // This will happen if an 8 byte instruction can be aligned to 64 bytes // by only adding a 4 byte nop. // We don't know the alignment at this point in the code so we have to // adopt a more pessimistic approach. If an instruction may need // alignment we assume that it does need alignment and add 4 bytes to // it. As a result we may end up with more long branches than before // but we are in the safe position where if we need a long branch we // have one. // The if statement checks to make sure that two 8 byte instructions // are at least 64 bytes away from each other. It is not possible for // two instructions that both need alignment to be within 64 bytes of // each other. if (!UnalignedBytesRemaining) { BlockSize += 4; UnalignedBytesRemaining = 60; NumPrefixedAligned++; } } UnalignedBytesRemaining -= std::min(UnalignedBytesRemaining, MINumBytes); BlockSize += MINumBytes; } BlockSizes[MBB->getNumber()].first = BlockSize; FuncSize += BlockSize; } return FuncSize; } /// Modify the basic block align adjustment. void PPCBSel::modifyAdjustment(MachineFunction &Fn) { unsigned Offset = GetInitialOffset(Fn); for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E; ++MFI) { MachineBasicBlock *MBB = &*MFI; if (MBB->getNumber() > 0) { auto &BS = BlockSizes[MBB->getNumber()-1]; BS.first -= BS.second; Offset -= BS.second; unsigned AlignExtra = GetAlignmentAdjustment(*MBB, Offset); BS.first += AlignExtra; BS.second = AlignExtra; Offset += AlignExtra; } Offset += BlockSizes[MBB->getNumber()].first; } } /// Determine the offset from the branch in Src block to the Dest block. /// BrOffset is the offset of the branch instruction inside Src block. int PPCBSel::computeBranchSize(MachineFunction &Fn, const MachineBasicBlock *Src, const MachineBasicBlock *Dest, unsigned BrOffset) { int BranchSize; Align MaxAlign = Align(4); bool NeedExtraAdjustment = false; if (Dest->getNumber() <= Src->getNumber()) { // If this is a backwards branch, the delta is the offset from the // start of this block to this branch, plus the sizes of all blocks // from this block to the dest. BranchSize = BrOffset; MaxAlign = std::max(MaxAlign, Src->getAlignment()); int DestBlock = Dest->getNumber(); BranchSize += BlockSizes[DestBlock].first; for (unsigned i = DestBlock+1, e = Src->getNumber(); i < e; ++i) { BranchSize += BlockSizes[i].first; MaxAlign = std::max(MaxAlign, Fn.getBlockNumbered(i)->getAlignment()); } NeedExtraAdjustment = (FirstImpreciseBlock >= 0) && (DestBlock >= FirstImpreciseBlock); } else { // Otherwise, add the size of the blocks between this block and the // dest to the number of bytes left in this block. unsigned StartBlock = Src->getNumber(); BranchSize = BlockSizes[StartBlock].first - BrOffset; MaxAlign = std::max(MaxAlign, Dest->getAlignment()); for (unsigned i = StartBlock+1, e = Dest->getNumber(); i != e; ++i) { BranchSize += BlockSizes[i].first; MaxAlign = std::max(MaxAlign, Fn.getBlockNumbered(i)->getAlignment()); } NeedExtraAdjustment = (FirstImpreciseBlock >= 0) && (Src->getNumber() >= FirstImpreciseBlock); } // We tend to over estimate code size due to large alignment and // inline assembly. Usually it causes larger computed branch offset. // But sometimes it may also causes smaller computed branch offset // than actual branch offset. If the offset is close to the limit of // encoding, it may cause problem at run time. // Following is a simplified example. // // actual estimated // address address // ... // bne Far 100 10c // .p2align 4 // Near: 110 110 // ... // Far: 8108 8108 // // Actual offset: 0x8108 - 0x100 = 0x8008 // Computed offset: 0x8108 - 0x10c = 0x7ffc // // This example also shows when we can get the largest gap between // estimated offset and actual offset. If there is an aligned block // ABB between branch and target, assume its alignment is // bits. Now consider the accumulated function size FSIZE till the end // of previous block PBB. If the estimated FSIZE is multiple of // 2^, we don't need any padding for the estimated address of // ABB. If actual FSIZE at the end of PBB is 4 bytes more than // multiple of 2^, then we need (2^ - 4) bytes of // padding. It also means the actual branch offset is (2^ - 4) // larger than computed offset. Other actual FSIZE needs less padding // bytes, so causes smaller gap between actual and computed offset. // // On the other hand, if the inline asm or large alignment occurs // between the branch block and destination block, the estimated address // can be larger than actual address. If padding bytes are // needed for a later aligned block, the actual number of padding bytes // is at most more than estimated padding bytes. So the actual // aligned block address is less than or equal to the estimated aligned // block address. So the actual branch offset is less than or equal to // computed branch offset. // // The computed offset is at most ((1 << alignment) - 4) bytes smaller // than actual offset. So we add this number to the offset for safety. if (NeedExtraAdjustment) BranchSize += MaxAlign.value() - 4; return BranchSize; } bool PPCBSel::runOnMachineFunction(MachineFunction &Fn) { const PPCInstrInfo *TII = static_cast(Fn.getSubtarget().getInstrInfo()); // Give the blocks of the function a dense, in-order, numbering. Fn.RenumberBlocks(); BlockSizes.resize(Fn.getNumBlockIDs()); FirstImpreciseBlock = -1; // Measure each MBB and compute a size for the entire function. unsigned FuncSize = ComputeBlockSizes(Fn); // If the entire function is smaller than the displacement of a branch field, // we know we don't need to shrink any branches in this function. This is a // common case. if (FuncSize < (1 << 15)) { BlockSizes.clear(); return false; } // For each conditional branch, if the offset to its destination is larger // than the offset field allows, transform it into a long branch sequence // like this: // short branch: // bCC MBB // long branch: // b!CC $PC+8 // b MBB // bool MadeChange = true; bool EverMadeChange = false; while (MadeChange) { // Iteratively expand branches until we reach a fixed point. MadeChange = false; for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E; ++MFI) { MachineBasicBlock &MBB = *MFI; unsigned MBBStartOffset = 0; for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) { MachineBasicBlock *Dest = nullptr; if (I->getOpcode() == PPC::BCC && !I->getOperand(2).isImm()) Dest = I->getOperand(2).getMBB(); else if ((I->getOpcode() == PPC::BC || I->getOpcode() == PPC::BCn) && !I->getOperand(1).isImm()) Dest = I->getOperand(1).getMBB(); else if ((I->getOpcode() == PPC::BDNZ8 || I->getOpcode() == PPC::BDNZ || I->getOpcode() == PPC::BDZ8 || I->getOpcode() == PPC::BDZ) && !I->getOperand(0).isImm()) Dest = I->getOperand(0).getMBB(); if (!Dest) { MBBStartOffset += TII->getInstSizeInBytes(*I); continue; } // Determine the offset from the current branch to the destination // block. int BranchSize = computeBranchSize(Fn, &MBB, Dest, MBBStartOffset); // If this branch is in range, ignore it. if (isInt<16>(BranchSize)) { MBBStartOffset += 4; continue; } // Otherwise, we have to expand it to a long branch. MachineInstr &OldBranch = *I; DebugLoc dl = OldBranch.getDebugLoc(); if (I->getOpcode() == PPC::BCC) { // The BCC operands are: // 0. PPC branch predicate // 1. CR register // 2. Target MBB PPC::Predicate Pred = (PPC::Predicate)I->getOperand(0).getImm(); Register CRReg = I->getOperand(1).getReg(); // Jump over the uncond branch inst (i.e. $PC+8) on opposite condition. BuildMI(MBB, I, dl, TII->get(PPC::BCC)) .addImm(PPC::InvertPredicate(Pred)).addReg(CRReg).addImm(2); } else if (I->getOpcode() == PPC::BC) { Register CRBit = I->getOperand(0).getReg(); BuildMI(MBB, I, dl, TII->get(PPC::BCn)).addReg(CRBit).addImm(2); } else if (I->getOpcode() == PPC::BCn) { Register CRBit = I->getOperand(0).getReg(); BuildMI(MBB, I, dl, TII->get(PPC::BC)).addReg(CRBit).addImm(2); } else if (I->getOpcode() == PPC::BDNZ) { BuildMI(MBB, I, dl, TII->get(PPC::BDZ)).addImm(2); } else if (I->getOpcode() == PPC::BDNZ8) { BuildMI(MBB, I, dl, TII->get(PPC::BDZ8)).addImm(2); } else if (I->getOpcode() == PPC::BDZ) { BuildMI(MBB, I, dl, TII->get(PPC::BDNZ)).addImm(2); } else if (I->getOpcode() == PPC::BDZ8) { BuildMI(MBB, I, dl, TII->get(PPC::BDNZ8)).addImm(2); } else { llvm_unreachable("Unhandled branch type!"); } // Uncond branch to the real destination. I = BuildMI(MBB, I, dl, TII->get(PPC::B)).addMBB(Dest); // Remove the old branch from the function. OldBranch.eraseFromParent(); // Remember that this instruction is 8-bytes, increase the size of the // block by 4, remember to iterate. BlockSizes[MBB.getNumber()].first += 4; MBBStartOffset += 8; ++NumExpanded; MadeChange = true; } } if (MadeChange) { // If we're going to iterate again, make sure we've updated our // padding-based contributions to the block sizes. modifyAdjustment(Fn); } EverMadeChange |= MadeChange; } BlockSizes.clear(); return EverMadeChange; }