//===-- PPCMCCodeEmitter.cpp - Convert PPC code to machine code -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the PPCMCCodeEmitter class. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/PPCFixupKinds.h" #include "PPCInstrInfo.h" #include "PPCMCCodeEmitter.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/Triple.h" #include "llvm/MC/MCFixup.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/Endian.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; #define DEBUG_TYPE "mccodeemitter" STATISTIC(MCNumEmitted, "Number of MC instructions emitted"); MCCodeEmitter *llvm::createPPCMCCodeEmitter(const MCInstrInfo &MCII, const MCRegisterInfo &MRI, MCContext &Ctx) { return new PPCMCCodeEmitter(MCII, Ctx); } unsigned PPCMCCodeEmitter:: getDirectBrEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the branch target. Fixups.push_back(MCFixup::create(0, MO.getExpr(), ((MI.getOpcode() == PPC::BL8_NOTOC) ? (MCFixupKind)PPC::fixup_ppc_br24_notoc : (MCFixupKind)PPC::fixup_ppc_br24))); return 0; } unsigned PPCMCCodeEmitter::getCondBrEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the branch target. Fixups.push_back(MCFixup::create(0, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_brcond14)); return 0; } unsigned PPCMCCodeEmitter:: getAbsDirectBrEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the branch target. Fixups.push_back(MCFixup::create(0, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_br24abs)); return 0; } unsigned PPCMCCodeEmitter:: getAbsCondBrEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the branch target. Fixups.push_back(MCFixup::create(0, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_brcond14abs)); return 0; } unsigned PPCMCCodeEmitter::getImm16Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the immediate field. Fixups.push_back(MCFixup::create(IsLittleEndian? 0 : 2, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_half16)); return 0; } uint64_t PPCMCCodeEmitter::getImm34Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the immediate field. Fixups.push_back(MCFixup::create(0, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_pcrel34)); return 0; } unsigned PPCMCCodeEmitter::getMemRIEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Encode (imm, reg) as a memri, which has the low 16-bits as the // displacement and the next 5 bits as the register #. assert(MI.getOperand(OpNo+1).isReg()); unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 16; const MCOperand &MO = MI.getOperand(OpNo); if (MO.isImm()) return (getMachineOpValue(MI, MO, Fixups, STI) & 0xFFFF) | RegBits; // Add a fixup for the displacement field. Fixups.push_back(MCFixup::create(IsLittleEndian? 0 : 2, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_half16)); return RegBits; } unsigned PPCMCCodeEmitter::getMemRIXEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Encode (imm, reg) as a memrix, which has the low 14-bits as the // displacement and the next 5 bits as the register #. assert(MI.getOperand(OpNo+1).isReg()); unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 14; const MCOperand &MO = MI.getOperand(OpNo); if (MO.isImm()) return ((getMachineOpValue(MI, MO, Fixups, STI) >> 2) & 0x3FFF) | RegBits; // Add a fixup for the displacement field. Fixups.push_back(MCFixup::create(IsLittleEndian? 0 : 2, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_half16ds)); return RegBits; } unsigned PPCMCCodeEmitter::getMemRIX16Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Encode (imm, reg) as a memrix16, which has the low 12-bits as the // displacement and the next 5 bits as the register #. assert(MI.getOperand(OpNo+1).isReg()); unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 12; const MCOperand &MO = MI.getOperand(OpNo); if (MO.isImm()) { assert(!(MO.getImm() % 16) && "Expecting an immediate that is a multiple of 16"); return ((getMachineOpValue(MI, MO, Fixups, STI) >> 4) & 0xFFF) | RegBits; } // Otherwise add a fixup for the displacement field. Fixups.push_back(MCFixup::create(IsLittleEndian? 0 : 2, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_half16ds)); return RegBits; } uint64_t PPCMCCodeEmitter::getMemRI34PCRelEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Encode the PCRelative version of memri34: imm34(r0). // In the PC relative version the register for the address must be zero. // The 34 bit immediate can fall into one of three cases: // 1) It is a relocation to be filled in by the linker represented as: // (MCExpr::SymbolRef) // 2) It is a relocation + SignedOffset represented as: // (MCExpr::Binary(MCExpr::SymbolRef + MCExpr::Constant)) // 3) It is a known value at compile time. // Make sure that the register is a zero as expected. assert(MI.getOperand(OpNo + 1).isImm() && "Expecting an immediate."); uint64_t RegBits = getMachineOpValue(MI, MI.getOperand(OpNo + 1), Fixups, STI) << 34; assert(RegBits == 0 && "Operand must be 0."); // If this is not a MCExpr then we are in case 3) and we are dealing with // a value known at compile time, not a relocation. const MCOperand &MO = MI.getOperand(OpNo); if (!MO.isExpr()) return ((getMachineOpValue(MI, MO, Fixups, STI)) & 0x3FFFFFFFFUL) | RegBits; // At this point in the function it is known that MO is of type MCExpr. // Therefore we are dealing with either case 1) a symbol ref or // case 2) a symbol ref plus a constant. const MCExpr *Expr = MO.getExpr(); switch (Expr->getKind()) { default: llvm_unreachable("Unsupported MCExpr for getMemRI34PCRelEncoding."); case MCExpr::SymbolRef: { // Relocation alone. const MCSymbolRefExpr *SRE = cast(Expr); (void)SRE; // Currently these are the only valid PCRelative Relocations. assert((SRE->getKind() == MCSymbolRefExpr::VK_PCREL || SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_PCREL) && "VariantKind must be VK_PCREL or VK_PPC_GOT_PCREL"); // Generate the fixup for the relocation. Fixups.push_back( MCFixup::create(0, Expr, static_cast(PPC::fixup_ppc_pcrel34))); // Put zero in the location of the immediate. The linker will fill in the // correct value based on the relocation. return 0; } case MCExpr::Binary: { // Relocation plus some offset. const MCBinaryExpr *BE = cast(Expr); assert(BE->getOpcode() == MCBinaryExpr::Add && "Binary expression opcode must be an add."); const MCExpr *LHS = BE->getLHS(); const MCExpr *RHS = BE->getRHS(); // Need to check in both directions. Reloc+Offset and Offset+Reloc. if (LHS->getKind() != MCExpr::SymbolRef) std::swap(LHS, RHS); if (LHS->getKind() != MCExpr::SymbolRef || RHS->getKind() != MCExpr::Constant) llvm_unreachable("Expecting to have one constant and one relocation."); const MCSymbolRefExpr *SRE = cast(LHS); (void)SRE; assert(isInt<34>(cast(RHS)->getValue()) && "Value must fit in 34 bits."); // Currently these are the only valid PCRelative Relocations. assert((SRE->getKind() == MCSymbolRefExpr::VK_PCREL || SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_PCREL) && "VariantKind must be VK_PCREL or VK_PPC_GOT_PCREL"); // Generate the fixup for the relocation. Fixups.push_back( MCFixup::create(0, Expr, static_cast(PPC::fixup_ppc_pcrel34))); // Put zero in the location of the immediate. The linker will fill in the // correct value based on the relocation. return 0; } } } uint64_t PPCMCCodeEmitter::getMemRI34Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Encode (imm, reg) as a memri34, which has the low 34-bits as the // displacement and the next 5 bits as the register #. assert(MI.getOperand(OpNo + 1).isReg() && "Expecting a register."); uint64_t RegBits = getMachineOpValue(MI, MI.getOperand(OpNo + 1), Fixups, STI) << 34; const MCOperand &MO = MI.getOperand(OpNo); return ((getMachineOpValue(MI, MO, Fixups, STI)) & 0x3FFFFFFFFUL) | RegBits; } unsigned PPCMCCodeEmitter::getSPE8DisEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Encode (imm, reg) as a spe8dis, which has the low 5-bits of (imm / 8) // as the displacement and the next 5 bits as the register #. assert(MI.getOperand(OpNo+1).isReg()); uint32_t RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 5; const MCOperand &MO = MI.getOperand(OpNo); assert(MO.isImm()); uint32_t Imm = getMachineOpValue(MI, MO, Fixups, STI) >> 3; return reverseBits(Imm | RegBits) >> 22; } unsigned PPCMCCodeEmitter::getSPE4DisEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Encode (imm, reg) as a spe4dis, which has the low 5-bits of (imm / 4) // as the displacement and the next 5 bits as the register #. assert(MI.getOperand(OpNo+1).isReg()); uint32_t RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 5; const MCOperand &MO = MI.getOperand(OpNo); assert(MO.isImm()); uint32_t Imm = getMachineOpValue(MI, MO, Fixups, STI) >> 2; return reverseBits(Imm | RegBits) >> 22; } unsigned PPCMCCodeEmitter::getSPE2DisEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Encode (imm, reg) as a spe2dis, which has the low 5-bits of (imm / 2) // as the displacement and the next 5 bits as the register #. assert(MI.getOperand(OpNo+1).isReg()); uint32_t RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 5; const MCOperand &MO = MI.getOperand(OpNo); assert(MO.isImm()); uint32_t Imm = getMachineOpValue(MI, MO, Fixups, STI) >> 1; return reverseBits(Imm | RegBits) >> 22; } unsigned PPCMCCodeEmitter::getTLSRegEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the TLS register, which simply provides a relocation // hint to the linker that this statement is part of a relocation sequence. // Return the thread-pointer register's encoding. Fixups.push_back(MCFixup::create(0, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_nofixup)); const Triple &TT = STI.getTargetTriple(); bool isPPC64 = TT.isPPC64(); return CTX.getRegisterInfo()->getEncodingValue(isPPC64 ? PPC::X13 : PPC::R2); } unsigned PPCMCCodeEmitter::getTLSCallEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // For special TLS calls, we need two fixups; one for the branch target // (__tls_get_addr), which we create via getDirectBrEncoding as usual, // and one for the TLSGD or TLSLD symbol, which is emitted here. const MCOperand &MO = MI.getOperand(OpNo+1); Fixups.push_back(MCFixup::create(0, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_nofixup)); return getDirectBrEncoding(MI, OpNo, Fixups, STI); } unsigned PPCMCCodeEmitter:: get_crbitm_encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); assert((MI.getOpcode() == PPC::MTOCRF || MI.getOpcode() == PPC::MTOCRF8 || MI.getOpcode() == PPC::MFOCRF || MI.getOpcode() == PPC::MFOCRF8) && (MO.getReg() >= PPC::CR0 && MO.getReg() <= PPC::CR7)); return 0x80 >> CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); } // Get the index for this operand in this instruction. This is needed for // computing the register number in PPCInstrInfo::getRegNumForOperand() for // any instructions that use a different numbering scheme for registers in // different operands. static unsigned getOpIdxForMO(const MCInst &MI, const MCOperand &MO) { for (unsigned i = 0; i < MI.getNumOperands(); i++) { const MCOperand &Op = MI.getOperand(i); if (&Op == &MO) return i; } llvm_unreachable("This operand is not part of this instruction"); return ~0U; // Silence any warnings about no return. } uint64_t PPCMCCodeEmitter:: getMachineOpValue(const MCInst &MI, const MCOperand &MO, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { if (MO.isReg()) { // MTOCRF/MFOCRF should go through get_crbitm_encoding for the CR operand. // The GPR operand should come through here though. assert((MI.getOpcode() != PPC::MTOCRF && MI.getOpcode() != PPC::MTOCRF8 && MI.getOpcode() != PPC::MFOCRF && MI.getOpcode() != PPC::MFOCRF8) || MO.getReg() < PPC::CR0 || MO.getReg() > PPC::CR7); unsigned OpNo = getOpIdxForMO(MI, MO); unsigned Reg = PPCInstrInfo::getRegNumForOperand(MCII.get(MI.getOpcode()), MO.getReg(), OpNo); return CTX.getRegisterInfo()->getEncodingValue(Reg); } assert(MO.isImm() && "Relocation required in an instruction that we cannot encode!"); return MO.getImm(); } void PPCMCCodeEmitter::encodeInstruction( const MCInst &MI, raw_ostream &OS, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { verifyInstructionPredicates(MI, computeAvailableFeatures(STI.getFeatureBits())); uint64_t Bits = getBinaryCodeForInstr(MI, Fixups, STI); // Output the constant in big/little endian byte order. unsigned Size = getInstSizeInBytes(MI); support::endianness E = IsLittleEndian ? support::little : support::big; switch (Size) { case 0: break; case 4: support::endian::write(OS, Bits, E); break; case 8: // If we emit a pair of instructions, the first one is // always in the top 32 bits, even on little-endian. support::endian::write(OS, Bits >> 32, E); support::endian::write(OS, Bits, E); break; default: llvm_unreachable("Invalid instruction size"); } ++MCNumEmitted; // Keep track of the # of mi's emitted. } // Get the number of bytes used to encode the given MCInst. unsigned PPCMCCodeEmitter::getInstSizeInBytes(const MCInst &MI) const { unsigned Opcode = MI.getOpcode(); const MCInstrDesc &Desc = MCII.get(Opcode); return Desc.getSize(); } bool PPCMCCodeEmitter::isPrefixedInstruction(const MCInst &MI) const { unsigned Opcode = MI.getOpcode(); const PPCInstrInfo *InstrInfo = static_cast(&MCII); return InstrInfo->isPrefixed(Opcode); } #define ENABLE_INSTR_PREDICATE_VERIFIER #include "PPCGenMCCodeEmitter.inc"