//===-- PPCMCCodeEmitter.cpp - Convert PPC code to machine code -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the PPCMCCodeEmitter class. // //===----------------------------------------------------------------------===// #include "PPCMCCodeEmitter.h" #include "MCTargetDesc/PPCFixupKinds.h" #include "PPCMCTargetDesc.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixup.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Endian.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/Triple.h" #include #include using namespace llvm; #define DEBUG_TYPE "mccodeemitter" STATISTIC(MCNumEmitted, "Number of MC instructions emitted"); MCCodeEmitter *llvm::createPPCMCCodeEmitter(const MCInstrInfo &MCII, MCContext &Ctx) { return new PPCMCCodeEmitter(MCII, Ctx); } unsigned PPCMCCodeEmitter:: getDirectBrEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the branch target. Fixups.push_back(MCFixup::create(0, MO.getExpr(), (isNoTOCCallInstr(MI) ? (MCFixupKind)PPC::fixup_ppc_br24_notoc : (MCFixupKind)PPC::fixup_ppc_br24))); return 0; } /// Check if Opcode corresponds to a call instruction that should be marked /// with the NOTOC relocation. bool PPCMCCodeEmitter::isNoTOCCallInstr(const MCInst &MI) const { unsigned Opcode = MI.getOpcode(); if (!MCII.get(Opcode).isCall()) return false; switch (Opcode) { default: #ifndef NDEBUG llvm_unreachable("Unknown call opcode"); #endif return false; case PPC::BL8_NOTOC: case PPC::BL8_NOTOC_TLS: case PPC::BL8_NOTOC_RM: return true; #ifndef NDEBUG case PPC::BL8: case PPC::BL: case PPC::BL8_TLS: case PPC::BL_TLS: case PPC::BLA8: case PPC::BLA: case PPC::BCCL: case PPC::BCCLA: case PPC::BCL: case PPC::BCLn: case PPC::BL8_NOP: case PPC::BL_NOP: case PPC::BL8_NOP_TLS: case PPC::BLA8_NOP: case PPC::BCTRL8: case PPC::BCTRL: case PPC::BCCCTRL8: case PPC::BCCCTRL: case PPC::BCCTRL8: case PPC::BCCTRL: case PPC::BCCTRL8n: case PPC::BCCTRLn: case PPC::BL8_RM: case PPC::BLA8_RM: case PPC::BL8_NOP_RM: case PPC::BLA8_NOP_RM: case PPC::BCTRL8_RM: case PPC::BCTRL8_LDinto_toc: case PPC::BCTRL8_LDinto_toc_RM: case PPC::BL8_TLS_: case PPC::TCRETURNdi8: case PPC::TCRETURNai8: case PPC::TCRETURNri8: case PPC::TAILBCTR8: case PPC::TAILB8: case PPC::TAILBA8: case PPC::BCLalways: case PPC::BLRL: case PPC::BCCLRL: case PPC::BCLRL: case PPC::BCLRLn: case PPC::BDZL: case PPC::BDNZL: case PPC::BDZLA: case PPC::BDNZLA: case PPC::BDZLp: case PPC::BDNZLp: case PPC::BDZLAp: case PPC::BDNZLAp: case PPC::BDZLm: case PPC::BDNZLm: case PPC::BDZLAm: case PPC::BDNZLAm: case PPC::BDZLRL: case PPC::BDNZLRL: case PPC::BDZLRLp: case PPC::BDNZLRLp: case PPC::BDZLRLm: case PPC::BDNZLRLm: case PPC::BL_RM: case PPC::BLA_RM: case PPC::BL_NOP_RM: case PPC::BCTRL_RM: case PPC::TCRETURNdi: case PPC::TCRETURNai: case PPC::TCRETURNri: case PPC::BCTRL_LWZinto_toc: case PPC::BCTRL_LWZinto_toc_RM: case PPC::TAILBCTR: case PPC::TAILB: case PPC::TAILBA: return false; #endif } } unsigned PPCMCCodeEmitter::getCondBrEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the branch target. Fixups.push_back(MCFixup::create(0, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_brcond14)); return 0; } unsigned PPCMCCodeEmitter:: getAbsDirectBrEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the branch target. Fixups.push_back(MCFixup::create(0, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_br24abs)); return 0; } unsigned PPCMCCodeEmitter:: getAbsCondBrEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the branch target. Fixups.push_back(MCFixup::create(0, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_brcond14abs)); return 0; } unsigned PPCMCCodeEmitter::getVSRpEvenEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { assert(MI.getOperand(OpNo).isReg() && "Operand should be a register"); unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI) << 1; return RegBits; } unsigned PPCMCCodeEmitter::getImm16Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the immediate field. Fixups.push_back(MCFixup::create(IsLittleEndian? 0 : 2, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_half16)); return 0; } uint64_t PPCMCCodeEmitter::getImm34Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI, MCFixupKind Fixup) const { const MCOperand &MO = MI.getOperand(OpNo); assert(!MO.isReg() && "Not expecting a register for this operand."); if (MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the immediate field. Fixups.push_back(MCFixup::create(0, MO.getExpr(), Fixup)); return 0; } uint64_t PPCMCCodeEmitter::getImm34EncodingNoPCRel(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { return getImm34Encoding(MI, OpNo, Fixups, STI, (MCFixupKind)PPC::fixup_ppc_imm34); } uint64_t PPCMCCodeEmitter::getImm34EncodingPCRel(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { return getImm34Encoding(MI, OpNo, Fixups, STI, (MCFixupKind)PPC::fixup_ppc_pcrel34); } unsigned PPCMCCodeEmitter::getDispRIEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI) & 0xFFFF; // Add a fixup for the displacement field. Fixups.push_back(MCFixup::create(IsLittleEndian? 0 : 2, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_half16)); return 0; } unsigned PPCMCCodeEmitter::getDispRIXEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isImm()) return ((getMachineOpValue(MI, MO, Fixups, STI) >> 2) & 0x3FFF); // Add a fixup for the displacement field. Fixups.push_back(MCFixup::create(IsLittleEndian? 0 : 2, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_half16ds)); return 0; } unsigned PPCMCCodeEmitter::getDispRIX16Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isImm()) { assert(!(MO.getImm() % 16) && "Expecting an immediate that is a multiple of 16"); return ((getMachineOpValue(MI, MO, Fixups, STI) >> 4) & 0xFFF); } // Otherwise add a fixup for the displacement field. Fixups.push_back(MCFixup::create(IsLittleEndian ? 0 : 2, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_half16dq)); return 0; } unsigned PPCMCCodeEmitter::getDispRIHashEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Encode imm for the hash load/store to stack for the ROP Protection // instructions. const MCOperand &MO = MI.getOperand(OpNo); assert(MO.isImm() && "Expecting an immediate operand."); assert(!(MO.getImm() % 8) && "Expecting offset to be 8 byte aligned."); unsigned DX = (MO.getImm() >> 3) & 0x3F; return DX; } uint64_t PPCMCCodeEmitter::getDispRI34PCRelEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Encode the displacement part of pc-relative memri34, which is an imm34. // The 34 bit immediate can fall into one of three cases: // 1) It is a relocation to be filled in by the linker represented as: // (MCExpr::SymbolRef) // 2) It is a relocation + SignedOffset represented as: // (MCExpr::Binary(MCExpr::SymbolRef + MCExpr::Constant)) // 3) It is a known value at compile time. // If this is not a MCExpr then we are in case 3) and we are dealing with // a value known at compile time, not a relocation. const MCOperand &MO = MI.getOperand(OpNo); if (!MO.isExpr()) return (getMachineOpValue(MI, MO, Fixups, STI)) & 0x3FFFFFFFFUL; // At this point in the function it is known that MO is of type MCExpr. // Therefore we are dealing with either case 1) a symbol ref or // case 2) a symbol ref plus a constant. const MCExpr *Expr = MO.getExpr(); switch (Expr->getKind()) { default: llvm_unreachable("Unsupported MCExpr for getMemRI34PCRelEncoding."); case MCExpr::SymbolRef: { // Relocation alone. const MCSymbolRefExpr *SRE = cast(Expr); (void)SRE; // Currently these are the only valid PCRelative Relocations. assert((SRE->getKind() == MCSymbolRefExpr::VK_PCREL || SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_PCREL || SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_TLSGD_PCREL || SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_TLSLD_PCREL || SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_TPREL_PCREL) && "VariantKind must be VK_PCREL or VK_PPC_GOT_PCREL or " "VK_PPC_GOT_TLSGD_PCREL or VK_PPC_GOT_TLSLD_PCREL or " "VK_PPC_GOT_TPREL_PCREL."); // Generate the fixup for the relocation. Fixups.push_back( MCFixup::create(0, Expr, static_cast(PPC::fixup_ppc_pcrel34))); // Put zero in the location of the immediate. The linker will fill in the // correct value based on the relocation. return 0; } case MCExpr::Binary: { // Relocation plus some offset. const MCBinaryExpr *BE = cast(Expr); assert(BE->getOpcode() == MCBinaryExpr::Add && "Binary expression opcode must be an add."); const MCExpr *LHS = BE->getLHS(); const MCExpr *RHS = BE->getRHS(); // Need to check in both directions. Reloc+Offset and Offset+Reloc. if (LHS->getKind() != MCExpr::SymbolRef) std::swap(LHS, RHS); if (LHS->getKind() != MCExpr::SymbolRef || RHS->getKind() != MCExpr::Constant) llvm_unreachable("Expecting to have one constant and one relocation."); const MCSymbolRefExpr *SRE = cast(LHS); (void)SRE; assert(isInt<34>(cast(RHS)->getValue()) && "Value must fit in 34 bits."); // Currently these are the only valid PCRelative Relocations. assert((SRE->getKind() == MCSymbolRefExpr::VK_PCREL || SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_PCREL) && "VariantKind must be VK_PCREL or VK_PPC_GOT_PCREL"); // Generate the fixup for the relocation. Fixups.push_back( MCFixup::create(0, Expr, static_cast(PPC::fixup_ppc_pcrel34))); // Put zero in the location of the immediate. The linker will fill in the // correct value based on the relocation. return 0; } } } uint64_t PPCMCCodeEmitter::getDispRI34Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Encode the displacement part of a memri34. const MCOperand &MO = MI.getOperand(OpNo); return (getMachineOpValue(MI, MO, Fixups, STI)) & 0x3FFFFFFFFUL; } unsigned PPCMCCodeEmitter::getDispSPE8Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Encode imm as a dispSPE8, which has the low 5-bits of (imm / 8). const MCOperand &MO = MI.getOperand(OpNo); assert(MO.isImm()); return getMachineOpValue(MI, MO, Fixups, STI) >> 3; } unsigned PPCMCCodeEmitter::getDispSPE4Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Encode imm as a dispSPE8, which has the low 5-bits of (imm / 4). const MCOperand &MO = MI.getOperand(OpNo); assert(MO.isImm()); return getMachineOpValue(MI, MO, Fixups, STI) >> 2; } unsigned PPCMCCodeEmitter::getDispSPE2Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Encode imm as a dispSPE8, which has the low 5-bits of (imm / 2). const MCOperand &MO = MI.getOperand(OpNo); assert(MO.isImm()); return getMachineOpValue(MI, MO, Fixups, STI) >> 1; } unsigned PPCMCCodeEmitter::getTLSRegEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the TLS register, which simply provides a relocation // hint to the linker that this statement is part of a relocation sequence. // Return the thread-pointer register's encoding. Add a one byte displacement // if using PC relative memops. const MCExpr *Expr = MO.getExpr(); const MCSymbolRefExpr *SRE = cast(Expr); bool IsPCRel = SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS_PCREL; Fixups.push_back(MCFixup::create(IsPCRel ? 1 : 0, Expr, (MCFixupKind)PPC::fixup_ppc_nofixup)); const Triple &TT = STI.getTargetTriple(); bool isPPC64 = TT.isPPC64(); return CTX.getRegisterInfo()->getEncodingValue(isPPC64 ? PPC::X13 : PPC::R2); } unsigned PPCMCCodeEmitter::getTLSCallEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // For special TLS calls, we need two fixups; one for the branch target // (__tls_get_addr), which we create via getDirectBrEncoding as usual, // and one for the TLSGD or TLSLD symbol, which is emitted here. const MCOperand &MO = MI.getOperand(OpNo+1); Fixups.push_back(MCFixup::create(0, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_nofixup)); return getDirectBrEncoding(MI, OpNo, Fixups, STI); } unsigned PPCMCCodeEmitter:: get_crbitm_encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); assert((MI.getOpcode() == PPC::MTOCRF || MI.getOpcode() == PPC::MTOCRF8 || MI.getOpcode() == PPC::MFOCRF || MI.getOpcode() == PPC::MFOCRF8) && (MO.getReg() >= PPC::CR0 && MO.getReg() <= PPC::CR7)); return 0x80 >> CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); } // Get the index for this operand in this instruction. This is needed for // computing the register number in PPC::getRegNumForOperand() for // any instructions that use a different numbering scheme for registers in // different operands. static unsigned getOpIdxForMO(const MCInst &MI, const MCOperand &MO) { for (unsigned i = 0; i < MI.getNumOperands(); i++) { const MCOperand &Op = MI.getOperand(i); if (&Op == &MO) return i; } llvm_unreachable("This operand is not part of this instruction"); return ~0U; // Silence any warnings about no return. } uint64_t PPCMCCodeEmitter:: getMachineOpValue(const MCInst &MI, const MCOperand &MO, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { if (MO.isReg()) { // MTOCRF/MFOCRF should go through get_crbitm_encoding for the CR operand. // The GPR operand should come through here though. assert((MI.getOpcode() != PPC::MTOCRF && MI.getOpcode() != PPC::MTOCRF8 && MI.getOpcode() != PPC::MFOCRF && MI.getOpcode() != PPC::MFOCRF8) || MO.getReg() < PPC::CR0 || MO.getReg() > PPC::CR7); unsigned OpNo = getOpIdxForMO(MI, MO); unsigned Reg = PPC::getRegNumForOperand(MCII.get(MI.getOpcode()), MO.getReg(), OpNo); return CTX.getRegisterInfo()->getEncodingValue(Reg); } assert(MO.isImm() && "Relocation required in an instruction that we cannot encode!"); return MO.getImm(); } void PPCMCCodeEmitter::encodeInstruction(const MCInst &MI, SmallVectorImpl &CB, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { uint64_t Bits = getBinaryCodeForInstr(MI, Fixups, STI); // Output the constant in big/little endian byte order. unsigned Size = getInstSizeInBytes(MI); llvm::endianness E = IsLittleEndian ? llvm::endianness::little : llvm::endianness::big; switch (Size) { case 0: break; case 4: support::endian::write(CB, Bits, E); break; case 8: // If we emit a pair of instructions, the first one is // always in the top 32 bits, even on little-endian. support::endian::write(CB, Bits >> 32, E); support::endian::write(CB, Bits, E); break; default: llvm_unreachable("Invalid instruction size"); } ++MCNumEmitted; // Keep track of the # of mi's emitted. } // Get the number of bytes used to encode the given MCInst. unsigned PPCMCCodeEmitter::getInstSizeInBytes(const MCInst &MI) const { unsigned Opcode = MI.getOpcode(); const MCInstrDesc &Desc = MCII.get(Opcode); return Desc.getSize(); } bool PPCMCCodeEmitter::isPrefixedInstruction(const MCInst &MI) const { return MCII.get(MI.getOpcode()).TSFlags & PPCII::Prefixed; } #include "PPCGenMCCodeEmitter.inc"