//===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to NVPTX assembly language. // //===----------------------------------------------------------------------===// #include "NVPTXAsmPrinter.h" #include "MCTargetDesc/NVPTXBaseInfo.h" #include "MCTargetDesc/NVPTXInstPrinter.h" #include "MCTargetDesc/NVPTXMCAsmInfo.h" #include "MCTargetDesc/NVPTXTargetStreamer.h" #include "NVPTX.h" #include "NVPTXMCExpr.h" #include "NVPTXMachineFunctionInfo.h" #include "NVPTXRegisterInfo.h" #include "NVPTXSubtarget.h" #include "NVPTXTargetMachine.h" #include "NVPTXUtilities.h" #include "TargetInfo/NVPTXTargetInfo.h" #include "cl_common_defines.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineValueType.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Endian.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/NativeFormatting.h" #include "llvm/Support/Path.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetMachine.h" #include "llvm/TargetParser/Triple.h" #include "llvm/Transforms/Utils/UnrollLoop.h" #include #include #include #include #include #include #include using namespace llvm; static cl::opt LowerCtorDtor("nvptx-lower-global-ctor-dtor", cl::desc("Lower GPU ctor / dtors to globals on the device."), cl::init(false), cl::Hidden); #define DEPOTNAME "__local_depot" /// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V /// depends. static void DiscoverDependentGlobals(const Value *V, DenseSet &Globals) { if (const GlobalVariable *GV = dyn_cast(V)) Globals.insert(GV); else { if (const User *U = dyn_cast(V)) { for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) { DiscoverDependentGlobals(U->getOperand(i), Globals); } } } } /// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable /// instances to be emitted, but only after any dependents have been added /// first.s static void VisitGlobalVariableForEmission(const GlobalVariable *GV, SmallVectorImpl &Order, DenseSet &Visited, DenseSet &Visiting) { // Have we already visited this one? if (Visited.count(GV)) return; // Do we have a circular dependency? if (!Visiting.insert(GV).second) report_fatal_error("Circular dependency found in global variable set"); // Make sure we visit all dependents first DenseSet Others; for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i) DiscoverDependentGlobals(GV->getOperand(i), Others); for (const GlobalVariable *GV : Others) VisitGlobalVariableForEmission(GV, Order, Visited, Visiting); // Now we can visit ourself Order.push_back(GV); Visited.insert(GV); Visiting.erase(GV); } void NVPTXAsmPrinter::emitInstruction(const MachineInstr *MI) { NVPTX_MC::verifyInstructionPredicates(MI->getOpcode(), getSubtargetInfo().getFeatureBits()); MCInst Inst; lowerToMCInst(MI, Inst); EmitToStreamer(*OutStreamer, Inst); } // Handle symbol backtracking for targets that do not support image handles bool NVPTXAsmPrinter::lowerImageHandleOperand(const MachineInstr *MI, unsigned OpNo, MCOperand &MCOp) { const MachineOperand &MO = MI->getOperand(OpNo); const MCInstrDesc &MCID = MI->getDesc(); if (MCID.TSFlags & NVPTXII::IsTexFlag) { // This is a texture fetch, so operand 4 is a texref and operand 5 is // a samplerref if (OpNo == 4 && MO.isImm()) { lowerImageHandleSymbol(MO.getImm(), MCOp); return true; } if (OpNo == 5 && MO.isImm() && !(MCID.TSFlags & NVPTXII::IsTexModeUnifiedFlag)) { lowerImageHandleSymbol(MO.getImm(), MCOp); return true; } return false; } else if (MCID.TSFlags & NVPTXII::IsSuldMask) { unsigned VecSize = 1 << (((MCID.TSFlags & NVPTXII::IsSuldMask) >> NVPTXII::IsSuldShift) - 1); // For a surface load of vector size N, the Nth operand will be the surfref if (OpNo == VecSize && MO.isImm()) { lowerImageHandleSymbol(MO.getImm(), MCOp); return true; } return false; } else if (MCID.TSFlags & NVPTXII::IsSustFlag) { // This is a surface store, so operand 0 is a surfref if (OpNo == 0 && MO.isImm()) { lowerImageHandleSymbol(MO.getImm(), MCOp); return true; } return false; } else if (MCID.TSFlags & NVPTXII::IsSurfTexQueryFlag) { // This is a query, so operand 1 is a surfref/texref if (OpNo == 1 && MO.isImm()) { lowerImageHandleSymbol(MO.getImm(), MCOp); return true; } return false; } return false; } void NVPTXAsmPrinter::lowerImageHandleSymbol(unsigned Index, MCOperand &MCOp) { // Ewwww LLVMTargetMachine &TM = const_cast(MF->getTarget()); NVPTXTargetMachine &nvTM = static_cast(TM); const NVPTXMachineFunctionInfo *MFI = MF->getInfo(); const char *Sym = MFI->getImageHandleSymbol(Index); StringRef SymName = nvTM.getStrPool().save(Sym); MCOp = GetSymbolRef(OutContext.getOrCreateSymbol(SymName)); } void NVPTXAsmPrinter::lowerToMCInst(const MachineInstr *MI, MCInst &OutMI) { OutMI.setOpcode(MI->getOpcode()); // Special: Do not mangle symbol operand of CALL_PROTOTYPE if (MI->getOpcode() == NVPTX::CALL_PROTOTYPE) { const MachineOperand &MO = MI->getOperand(0); OutMI.addOperand(GetSymbolRef( OutContext.getOrCreateSymbol(Twine(MO.getSymbolName())))); return; } const NVPTXSubtarget &STI = MI->getMF()->getSubtarget(); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); MCOperand MCOp; if (!STI.hasImageHandles()) { if (lowerImageHandleOperand(MI, i, MCOp)) { OutMI.addOperand(MCOp); continue; } } if (lowerOperand(MO, MCOp)) OutMI.addOperand(MCOp); } } bool NVPTXAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) { switch (MO.getType()) { default: llvm_unreachable("unknown operand type"); case MachineOperand::MO_Register: MCOp = MCOperand::createReg(encodeVirtualRegister(MO.getReg())); break; case MachineOperand::MO_Immediate: MCOp = MCOperand::createImm(MO.getImm()); break; case MachineOperand::MO_MachineBasicBlock: MCOp = MCOperand::createExpr(MCSymbolRefExpr::create( MO.getMBB()->getSymbol(), OutContext)); break; case MachineOperand::MO_ExternalSymbol: MCOp = GetSymbolRef(GetExternalSymbolSymbol(MO.getSymbolName())); break; case MachineOperand::MO_GlobalAddress: MCOp = GetSymbolRef(getSymbol(MO.getGlobal())); break; case MachineOperand::MO_FPImmediate: { const ConstantFP *Cnt = MO.getFPImm(); const APFloat &Val = Cnt->getValueAPF(); switch (Cnt->getType()->getTypeID()) { default: report_fatal_error("Unsupported FP type"); break; case Type::HalfTyID: MCOp = MCOperand::createExpr( NVPTXFloatMCExpr::createConstantFPHalf(Val, OutContext)); break; case Type::BFloatTyID: MCOp = MCOperand::createExpr( NVPTXFloatMCExpr::createConstantBFPHalf(Val, OutContext)); break; case Type::FloatTyID: MCOp = MCOperand::createExpr( NVPTXFloatMCExpr::createConstantFPSingle(Val, OutContext)); break; case Type::DoubleTyID: MCOp = MCOperand::createExpr( NVPTXFloatMCExpr::createConstantFPDouble(Val, OutContext)); break; } break; } } return true; } unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg) { if (Register::isVirtualRegister(Reg)) { const TargetRegisterClass *RC = MRI->getRegClass(Reg); DenseMap &RegMap = VRegMapping[RC]; unsigned RegNum = RegMap[Reg]; // Encode the register class in the upper 4 bits // Must be kept in sync with NVPTXInstPrinter::printRegName unsigned Ret = 0; if (RC == &NVPTX::Int1RegsRegClass) { Ret = (1 << 28); } else if (RC == &NVPTX::Int16RegsRegClass) { Ret = (2 << 28); } else if (RC == &NVPTX::Int32RegsRegClass) { Ret = (3 << 28); } else if (RC == &NVPTX::Int64RegsRegClass) { Ret = (4 << 28); } else if (RC == &NVPTX::Float32RegsRegClass) { Ret = (5 << 28); } else if (RC == &NVPTX::Float64RegsRegClass) { Ret = (6 << 28); } else { report_fatal_error("Bad register class"); } // Insert the vreg number Ret |= (RegNum & 0x0FFFFFFF); return Ret; } else { // Some special-use registers are actually physical registers. // Encode this as the register class ID of 0 and the real register ID. return Reg & 0x0FFFFFFF; } } MCOperand NVPTXAsmPrinter::GetSymbolRef(const MCSymbol *Symbol) { const MCExpr *Expr; Expr = MCSymbolRefExpr::create(Symbol, MCSymbolRefExpr::VK_None, OutContext); return MCOperand::createExpr(Expr); } static bool ShouldPassAsArray(Type *Ty) { return Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128) || Ty->isHalfTy() || Ty->isBFloatTy(); } void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) { const DataLayout &DL = getDataLayout(); const NVPTXSubtarget &STI = TM.getSubtarget(*F); const auto *TLI = cast(STI.getTargetLowering()); Type *Ty = F->getReturnType(); bool isABI = (STI.getSmVersion() >= 20); if (Ty->getTypeID() == Type::VoidTyID) return; O << " ("; if (isABI) { if ((Ty->isFloatingPointTy() || Ty->isIntegerTy()) && !ShouldPassAsArray(Ty)) { unsigned size = 0; if (auto *ITy = dyn_cast(Ty)) { size = ITy->getBitWidth(); } else { assert(Ty->isFloatingPointTy() && "Floating point type expected here"); size = Ty->getPrimitiveSizeInBits(); } size = promoteScalarArgumentSize(size); O << ".param .b" << size << " func_retval0"; } else if (isa(Ty)) { O << ".param .b" << TLI->getPointerTy(DL).getSizeInBits() << " func_retval0"; } else if (ShouldPassAsArray(Ty)) { unsigned totalsz = DL.getTypeAllocSize(Ty); unsigned retAlignment = 0; if (!getAlign(*F, 0, retAlignment)) retAlignment = TLI->getFunctionParamOptimizedAlign(F, Ty, DL).value(); O << ".param .align " << retAlignment << " .b8 func_retval0[" << totalsz << "]"; } else llvm_unreachable("Unknown return type"); } else { SmallVector vtparts; ComputeValueVTs(*TLI, DL, Ty, vtparts); unsigned idx = 0; for (unsigned i = 0, e = vtparts.size(); i != e; ++i) { unsigned elems = 1; EVT elemtype = vtparts[i]; if (vtparts[i].isVector()) { elems = vtparts[i].getVectorNumElements(); elemtype = vtparts[i].getVectorElementType(); } for (unsigned j = 0, je = elems; j != je; ++j) { unsigned sz = elemtype.getSizeInBits(); if (elemtype.isInteger()) sz = promoteScalarArgumentSize(sz); O << ".reg .b" << sz << " func_retval" << idx; if (j < je - 1) O << ", "; ++idx; } if (i < e - 1) O << ", "; } } O << ") "; } void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF, raw_ostream &O) { const Function &F = MF.getFunction(); printReturnValStr(&F, O); } // Return true if MBB is the header of a loop marked with // llvm.loop.unroll.disable or llvm.loop.unroll.count=1. bool NVPTXAsmPrinter::isLoopHeaderOfNoUnroll( const MachineBasicBlock &MBB) const { MachineLoopInfo &LI = getAnalysis(); // We insert .pragma "nounroll" only to the loop header. if (!LI.isLoopHeader(&MBB)) return false; // llvm.loop.unroll.disable is marked on the back edges of a loop. Therefore, // we iterate through each back edge of the loop with header MBB, and check // whether its metadata contains llvm.loop.unroll.disable. for (const MachineBasicBlock *PMBB : MBB.predecessors()) { if (LI.getLoopFor(PMBB) != LI.getLoopFor(&MBB)) { // Edges from other loops to MBB are not back edges. continue; } if (const BasicBlock *PBB = PMBB->getBasicBlock()) { if (MDNode *LoopID = PBB->getTerminator()->getMetadata(LLVMContext::MD_loop)) { if (GetUnrollMetadata(LoopID, "llvm.loop.unroll.disable")) return true; if (MDNode *UnrollCountMD = GetUnrollMetadata(LoopID, "llvm.loop.unroll.count")) { if (mdconst::extract(UnrollCountMD->getOperand(1)) ->isOne()) return true; } } } } return false; } void NVPTXAsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { AsmPrinter::emitBasicBlockStart(MBB); if (isLoopHeaderOfNoUnroll(MBB)) OutStreamer->emitRawText(StringRef("\t.pragma \"nounroll\";\n")); } void NVPTXAsmPrinter::emitFunctionEntryLabel() { SmallString<128> Str; raw_svector_ostream O(Str); if (!GlobalsEmitted) { emitGlobals(*MF->getFunction().getParent()); GlobalsEmitted = true; } // Set up MRI = &MF->getRegInfo(); F = &MF->getFunction(); emitLinkageDirective(F, O); if (isKernelFunction(*F)) O << ".entry "; else { O << ".func "; printReturnValStr(*MF, O); } CurrentFnSym->print(O, MAI); emitFunctionParamList(F, O); O << "\n"; if (isKernelFunction(*F)) emitKernelFunctionDirectives(*F, O); if (shouldEmitPTXNoReturn(F, TM)) O << ".noreturn"; OutStreamer->emitRawText(O.str()); VRegMapping.clear(); // Emit open brace for function body. OutStreamer->emitRawText(StringRef("{\n")); setAndEmitFunctionVirtualRegisters(*MF); // Emit initial .loc debug directive for correct relocation symbol data. if (MMI && MMI->hasDebugInfo()) emitInitialRawDwarfLocDirective(*MF); } bool NVPTXAsmPrinter::runOnMachineFunction(MachineFunction &F) { bool Result = AsmPrinter::runOnMachineFunction(F); // Emit closing brace for the body of function F. // The closing brace must be emitted here because we need to emit additional // debug labels/data after the last basic block. // We need to emit the closing brace here because we don't have function that // finished emission of the function body. OutStreamer->emitRawText(StringRef("}\n")); return Result; } void NVPTXAsmPrinter::emitFunctionBodyStart() { SmallString<128> Str; raw_svector_ostream O(Str); emitDemotedVars(&MF->getFunction(), O); OutStreamer->emitRawText(O.str()); } void NVPTXAsmPrinter::emitFunctionBodyEnd() { VRegMapping.clear(); } const MCSymbol *NVPTXAsmPrinter::getFunctionFrameSymbol() const { SmallString<128> Str; raw_svector_ostream(Str) << DEPOTNAME << getFunctionNumber(); return OutContext.getOrCreateSymbol(Str); } void NVPTXAsmPrinter::emitImplicitDef(const MachineInstr *MI) const { Register RegNo = MI->getOperand(0).getReg(); if (RegNo.isVirtual()) { OutStreamer->AddComment(Twine("implicit-def: ") + getVirtualRegisterName(RegNo)); } else { const NVPTXSubtarget &STI = MI->getMF()->getSubtarget(); OutStreamer->AddComment(Twine("implicit-def: ") + STI.getRegisterInfo()->getName(RegNo)); } OutStreamer->addBlankLine(); } void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function &F, raw_ostream &O) const { // If the NVVM IR has some of reqntid* specified, then output // the reqntid directive, and set the unspecified ones to 1. // If none of Reqntid* is specified, don't output reqntid directive. unsigned Reqntidx, Reqntidy, Reqntidz; Reqntidx = Reqntidy = Reqntidz = 1; bool ReqSpecified = false; ReqSpecified |= getReqNTIDx(F, Reqntidx); ReqSpecified |= getReqNTIDy(F, Reqntidy); ReqSpecified |= getReqNTIDz(F, Reqntidz); if (ReqSpecified) O << ".reqntid " << Reqntidx << ", " << Reqntidy << ", " << Reqntidz << "\n"; // If the NVVM IR has some of maxntid* specified, then output // the maxntid directive, and set the unspecified ones to 1. // If none of maxntid* is specified, don't output maxntid directive. unsigned Maxntidx, Maxntidy, Maxntidz; Maxntidx = Maxntidy = Maxntidz = 1; bool MaxSpecified = false; MaxSpecified |= getMaxNTIDx(F, Maxntidx); MaxSpecified |= getMaxNTIDy(F, Maxntidy); MaxSpecified |= getMaxNTIDz(F, Maxntidz); if (MaxSpecified) O << ".maxntid " << Maxntidx << ", " << Maxntidy << ", " << Maxntidz << "\n"; unsigned Mincta = 0; if (getMinCTASm(F, Mincta)) O << ".minnctapersm " << Mincta << "\n"; unsigned Maxnreg = 0; if (getMaxNReg(F, Maxnreg)) O << ".maxnreg " << Maxnreg << "\n"; // .maxclusterrank directive requires SM_90 or higher, make sure that we // filter it out for lower SM versions, as it causes a hard ptxas crash. const NVPTXTargetMachine &NTM = static_cast(TM); const auto *STI = static_cast(NTM.getSubtargetImpl()); unsigned Maxclusterrank = 0; if (getMaxClusterRank(F, Maxclusterrank) && STI->getSmVersion() >= 90) O << ".maxclusterrank " << Maxclusterrank << "\n"; } std::string NVPTXAsmPrinter::getVirtualRegisterName(unsigned Reg) const { const TargetRegisterClass *RC = MRI->getRegClass(Reg); std::string Name; raw_string_ostream NameStr(Name); VRegRCMap::const_iterator I = VRegMapping.find(RC); assert(I != VRegMapping.end() && "Bad register class"); const DenseMap &RegMap = I->second; VRegMap::const_iterator VI = RegMap.find(Reg); assert(VI != RegMap.end() && "Bad virtual register"); unsigned MappedVR = VI->second; NameStr << getNVPTXRegClassStr(RC) << MappedVR; NameStr.flush(); return Name; } void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr, raw_ostream &O) { O << getVirtualRegisterName(vr); } void NVPTXAsmPrinter::emitDeclaration(const Function *F, raw_ostream &O) { emitLinkageDirective(F, O); if (isKernelFunction(*F)) O << ".entry "; else O << ".func "; printReturnValStr(F, O); getSymbol(F)->print(O, MAI); O << "\n"; emitFunctionParamList(F, O); O << "\n"; if (shouldEmitPTXNoReturn(F, TM)) O << ".noreturn"; O << ";\n"; } static bool usedInGlobalVarDef(const Constant *C) { if (!C) return false; if (const GlobalVariable *GV = dyn_cast(C)) { return GV->getName() != "llvm.used"; } for (const User *U : C->users()) if (const Constant *C = dyn_cast(U)) if (usedInGlobalVarDef(C)) return true; return false; } static bool usedInOneFunc(const User *U, Function const *&oneFunc) { if (const GlobalVariable *othergv = dyn_cast(U)) { if (othergv->getName() == "llvm.used") return true; } if (const Instruction *instr = dyn_cast(U)) { if (instr->getParent() && instr->getParent()->getParent()) { const Function *curFunc = instr->getParent()->getParent(); if (oneFunc && (curFunc != oneFunc)) return false; oneFunc = curFunc; return true; } else return false; } for (const User *UU : U->users()) if (!usedInOneFunc(UU, oneFunc)) return false; return true; } /* Find out if a global variable can be demoted to local scope. * Currently, this is valid for CUDA shared variables, which have local * scope and global lifetime. So the conditions to check are : * 1. Is the global variable in shared address space? * 2. Does it have local linkage? * 3. Is the global variable referenced only in one function? */ static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) { if (!gv->hasLocalLinkage()) return false; PointerType *Pty = gv->getType(); if (Pty->getAddressSpace() != ADDRESS_SPACE_SHARED) return false; const Function *oneFunc = nullptr; bool flag = usedInOneFunc(gv, oneFunc); if (!flag) return false; if (!oneFunc) return false; f = oneFunc; return true; } static bool useFuncSeen(const Constant *C, DenseMap &seenMap) { for (const User *U : C->users()) { if (const Constant *cu = dyn_cast(U)) { if (useFuncSeen(cu, seenMap)) return true; } else if (const Instruction *I = dyn_cast(U)) { const BasicBlock *bb = I->getParent(); if (!bb) continue; const Function *caller = bb->getParent(); if (!caller) continue; if (seenMap.contains(caller)) return true; } } return false; } void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) { DenseMap seenMap; for (const Function &F : M) { if (F.getAttributes().hasFnAttr("nvptx-libcall-callee")) { emitDeclaration(&F, O); continue; } if (F.isDeclaration()) { if (F.use_empty()) continue; if (F.getIntrinsicID()) continue; emitDeclaration(&F, O); continue; } for (const User *U : F.users()) { if (const Constant *C = dyn_cast(U)) { if (usedInGlobalVarDef(C)) { // The use is in the initialization of a global variable // that is a function pointer, so print a declaration // for the original function emitDeclaration(&F, O); break; } // Emit a declaration of this function if the function that // uses this constant expr has already been seen. if (useFuncSeen(C, seenMap)) { emitDeclaration(&F, O); break; } } if (!isa(U)) continue; const Instruction *instr = cast(U); const BasicBlock *bb = instr->getParent(); if (!bb) continue; const Function *caller = bb->getParent(); if (!caller) continue; // If a caller has already been seen, then the caller is // appearing in the module before the callee. so print out // a declaration for the callee. if (seenMap.contains(caller)) { emitDeclaration(&F, O); break; } } seenMap[&F] = true; } } static bool isEmptyXXStructor(GlobalVariable *GV) { if (!GV) return true; const ConstantArray *InitList = dyn_cast(GV->getInitializer()); if (!InitList) return true; // Not an array; we don't know how to parse. return InitList->getNumOperands() == 0; } void NVPTXAsmPrinter::emitStartOfAsmFile(Module &M) { // Construct a default subtarget off of the TargetMachine defaults. The // rest of NVPTX isn't friendly to change subtargets per function and // so the default TargetMachine will have all of the options. const NVPTXTargetMachine &NTM = static_cast(TM); const auto* STI = static_cast(NTM.getSubtargetImpl()); SmallString<128> Str1; raw_svector_ostream OS1(Str1); // Emit header before any dwarf directives are emitted below. emitHeader(M, OS1, *STI); OutStreamer->emitRawText(OS1.str()); } bool NVPTXAsmPrinter::doInitialization(Module &M) { const NVPTXTargetMachine &NTM = static_cast(TM); const NVPTXSubtarget &STI = *static_cast(NTM.getSubtargetImpl()); if (M.alias_size() && (STI.getPTXVersion() < 63 || STI.getSmVersion() < 30)) report_fatal_error(".alias requires PTX version >= 6.3 and sm_30"); // OpenMP supports NVPTX global constructors and destructors. bool IsOpenMP = M.getModuleFlag("openmp") != nullptr; if (!isEmptyXXStructor(M.getNamedGlobal("llvm.global_ctors")) && !LowerCtorDtor && !IsOpenMP) { report_fatal_error( "Module has a nontrivial global ctor, which NVPTX does not support."); return true; // error } if (!isEmptyXXStructor(M.getNamedGlobal("llvm.global_dtors")) && !LowerCtorDtor && !IsOpenMP) { report_fatal_error( "Module has a nontrivial global dtor, which NVPTX does not support."); return true; // error } // We need to call the parent's one explicitly. bool Result = AsmPrinter::doInitialization(M); GlobalsEmitted = false; return Result; } void NVPTXAsmPrinter::emitGlobals(const Module &M) { SmallString<128> Str2; raw_svector_ostream OS2(Str2); emitDeclarations(M, OS2); // As ptxas does not support forward references of globals, we need to first // sort the list of module-level globals in def-use order. We visit each // global variable in order, and ensure that we emit it *after* its dependent // globals. We use a little extra memory maintaining both a set and a list to // have fast searches while maintaining a strict ordering. SmallVector Globals; DenseSet GVVisited; DenseSet GVVisiting; // Visit each global variable, in order for (const GlobalVariable &I : M.globals()) VisitGlobalVariableForEmission(&I, Globals, GVVisited, GVVisiting); assert(GVVisited.size() == M.global_size() && "Missed a global variable"); assert(GVVisiting.size() == 0 && "Did not fully process a global variable"); const NVPTXTargetMachine &NTM = static_cast(TM); const NVPTXSubtarget &STI = *static_cast(NTM.getSubtargetImpl()); // Print out module-level global variables in proper order for (unsigned i = 0, e = Globals.size(); i != e; ++i) printModuleLevelGV(Globals[i], OS2, /*processDemoted=*/false, STI); OS2 << '\n'; OutStreamer->emitRawText(OS2.str()); } void NVPTXAsmPrinter::emitGlobalAlias(const Module &M, const GlobalAlias &GA) { SmallString<128> Str; raw_svector_ostream OS(Str); MCSymbol *Name = getSymbol(&GA); const Function *F = dyn_cast(GA.getAliasee()); if (!F || isKernelFunction(*F)) report_fatal_error("NVPTX aliasee must be a non-kernel function"); if (GA.hasLinkOnceLinkage() || GA.hasWeakLinkage() || GA.hasAvailableExternallyLinkage() || GA.hasCommonLinkage()) report_fatal_error("NVPTX aliasee must not be '.weak'"); OS << "\n"; emitLinkageDirective(F, OS); OS << ".func "; printReturnValStr(F, OS); OS << Name->getName(); emitFunctionParamList(F, OS); if (shouldEmitPTXNoReturn(F, TM)) OS << "\n.noreturn"; OS << ";\n"; OS << ".alias " << Name->getName() << ", " << F->getName() << ";\n"; OutStreamer->emitRawText(OS.str()); } void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O, const NVPTXSubtarget &STI) { O << "//\n"; O << "// Generated by LLVM NVPTX Back-End\n"; O << "//\n"; O << "\n"; unsigned PTXVersion = STI.getPTXVersion(); O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n"; O << ".target "; O << STI.getTargetName(); const NVPTXTargetMachine &NTM = static_cast(TM); if (NTM.getDrvInterface() == NVPTX::NVCL) O << ", texmode_independent"; bool HasFullDebugInfo = false; for (DICompileUnit *CU : M.debug_compile_units()) { switch(CU->getEmissionKind()) { case DICompileUnit::NoDebug: case DICompileUnit::DebugDirectivesOnly: break; case DICompileUnit::LineTablesOnly: case DICompileUnit::FullDebug: HasFullDebugInfo = true; break; } if (HasFullDebugInfo) break; } if (MMI && MMI->hasDebugInfo() && HasFullDebugInfo) O << ", debug"; O << "\n"; O << ".address_size "; if (NTM.is64Bit()) O << "64"; else O << "32"; O << "\n"; O << "\n"; } bool NVPTXAsmPrinter::doFinalization(Module &M) { bool HasDebugInfo = MMI && MMI->hasDebugInfo(); // If we did not emit any functions, then the global declarations have not // yet been emitted. if (!GlobalsEmitted) { emitGlobals(M); GlobalsEmitted = true; } // If we have any aliases we emit them at the end. SmallVector AliasesToRemove; for (GlobalAlias &Alias : M.aliases()) { emitGlobalAlias(M, Alias); AliasesToRemove.push_back(&Alias); } for (GlobalAlias *A : AliasesToRemove) A->eraseFromParent(); // call doFinalization bool ret = AsmPrinter::doFinalization(M); clearAnnotationCache(&M); auto *TS = static_cast(OutStreamer->getTargetStreamer()); // Close the last emitted section if (HasDebugInfo) { TS->closeLastSection(); // Emit empty .debug_loc section for better support of the empty files. OutStreamer->emitRawText("\t.section\t.debug_loc\t{\t}"); } // Output last DWARF .file directives, if any. TS->outputDwarfFileDirectives(); return ret; } // This function emits appropriate linkage directives for // functions and global variables. // // extern function declaration -> .extern // extern function definition -> .visible // external global variable with init -> .visible // external without init -> .extern // appending -> not allowed, assert. // for any linkage other than // internal, private, linker_private, // linker_private_weak, linker_private_weak_def_auto, // we emit -> .weak. void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V, raw_ostream &O) { if (static_cast(TM).getDrvInterface() == NVPTX::CUDA) { if (V->hasExternalLinkage()) { if (isa(V)) { const GlobalVariable *GVar = cast(V); if (GVar) { if (GVar->hasInitializer()) O << ".visible "; else O << ".extern "; } } else if (V->isDeclaration()) O << ".extern "; else O << ".visible "; } else if (V->hasAppendingLinkage()) { std::string msg; msg.append("Error: "); msg.append("Symbol "); if (V->hasName()) msg.append(std::string(V->getName())); msg.append("has unsupported appending linkage type"); llvm_unreachable(msg.c_str()); } else if (!V->hasInternalLinkage() && !V->hasPrivateLinkage()) { O << ".weak "; } } } void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar, raw_ostream &O, bool processDemoted, const NVPTXSubtarget &STI) { // Skip meta data if (GVar->hasSection()) { if (GVar->getSection() == "llvm.metadata") return; } // Skip LLVM intrinsic global variables if (GVar->getName().starts_with("llvm.") || GVar->getName().starts_with("nvvm.")) return; const DataLayout &DL = getDataLayout(); // GlobalVariables are always constant pointers themselves. PointerType *PTy = GVar->getType(); Type *ETy = GVar->getValueType(); if (GVar->hasExternalLinkage()) { if (GVar->hasInitializer()) O << ".visible "; else O << ".extern "; } else if (GVar->hasLinkOnceLinkage() || GVar->hasWeakLinkage() || GVar->hasAvailableExternallyLinkage() || GVar->hasCommonLinkage()) { O << ".weak "; } if (isTexture(*GVar)) { O << ".global .texref " << getTextureName(*GVar) << ";\n"; return; } if (isSurface(*GVar)) { O << ".global .surfref " << getSurfaceName(*GVar) << ";\n"; return; } if (GVar->isDeclaration()) { // (extern) declarations, no definition or initializer // Currently the only known declaration is for an automatic __local // (.shared) promoted to global. emitPTXGlobalVariable(GVar, O, STI); O << ";\n"; return; } if (isSampler(*GVar)) { O << ".global .samplerref " << getSamplerName(*GVar); const Constant *Initializer = nullptr; if (GVar->hasInitializer()) Initializer = GVar->getInitializer(); const ConstantInt *CI = nullptr; if (Initializer) CI = dyn_cast(Initializer); if (CI) { unsigned sample = CI->getZExtValue(); O << " = { "; for (int i = 0, addr = ((sample & __CLK_ADDRESS_MASK) >> __CLK_ADDRESS_BASE); i < 3; i++) { O << "addr_mode_" << i << " = "; switch (addr) { case 0: O << "wrap"; break; case 1: O << "clamp_to_border"; break; case 2: O << "clamp_to_edge"; break; case 3: O << "wrap"; break; case 4: O << "mirror"; break; } O << ", "; } O << "filter_mode = "; switch ((sample & __CLK_FILTER_MASK) >> __CLK_FILTER_BASE) { case 0: O << "nearest"; break; case 1: O << "linear"; break; case 2: llvm_unreachable("Anisotropic filtering is not supported"); default: O << "nearest"; break; } if (!((sample & __CLK_NORMALIZED_MASK) >> __CLK_NORMALIZED_BASE)) { O << ", force_unnormalized_coords = 1"; } O << " }"; } O << ";\n"; return; } if (GVar->hasPrivateLinkage()) { if (strncmp(GVar->getName().data(), "unrollpragma", 12) == 0) return; // FIXME - need better way (e.g. Metadata) to avoid generating this global if (strncmp(GVar->getName().data(), "filename", 8) == 0) return; if (GVar->use_empty()) return; } const Function *demotedFunc = nullptr; if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) { O << "// " << GVar->getName() << " has been demoted\n"; if (localDecls.find(demotedFunc) != localDecls.end()) localDecls[demotedFunc].push_back(GVar); else { std::vector temp; temp.push_back(GVar); localDecls[demotedFunc] = temp; } return; } O << "."; emitPTXAddressSpace(PTy->getAddressSpace(), O); if (isManaged(*GVar)) { if (STI.getPTXVersion() < 40 || STI.getSmVersion() < 30) { report_fatal_error( ".attribute(.managed) requires PTX version >= 4.0 and sm_30"); } O << " .attribute(.managed)"; } if (MaybeAlign A = GVar->getAlign()) O << " .align " << A->value(); else O << " .align " << (int)DL.getPrefTypeAlign(ETy).value(); if (ETy->isFloatingPointTy() || ETy->isPointerTy() || (ETy->isIntegerTy() && ETy->getScalarSizeInBits() <= 64)) { O << " ."; // Special case: ABI requires that we use .u8 for predicates if (ETy->isIntegerTy(1)) O << "u8"; else O << getPTXFundamentalTypeStr(ETy, false); O << " "; getSymbol(GVar)->print(O, MAI); // Ptx allows variable initilization only for constant and global state // spaces. if (GVar->hasInitializer()) { if ((PTy->getAddressSpace() == ADDRESS_SPACE_GLOBAL) || (PTy->getAddressSpace() == ADDRESS_SPACE_CONST)) { const Constant *Initializer = GVar->getInitializer(); // 'undef' is treated as there is no value specified. if (!Initializer->isNullValue() && !isa(Initializer)) { O << " = "; printScalarConstant(Initializer, O); } } else { // The frontend adds zero-initializer to device and constant variables // that don't have an initial value, and UndefValue to shared // variables, so skip warning for this case. if (!GVar->getInitializer()->isNullValue() && !isa(GVar->getInitializer())) { report_fatal_error("initial value of '" + GVar->getName() + "' is not allowed in addrspace(" + Twine(PTy->getAddressSpace()) + ")"); } } } } else { uint64_t ElementSize = 0; // Although PTX has direct support for struct type and array type and // LLVM IR is very similar to PTX, the LLVM CodeGen does not support for // targets that support these high level field accesses. Structs, arrays // and vectors are lowered into arrays of bytes. switch (ETy->getTypeID()) { case Type::IntegerTyID: // Integers larger than 64 bits case Type::StructTyID: case Type::ArrayTyID: case Type::FixedVectorTyID: ElementSize = DL.getTypeStoreSize(ETy); // Ptx allows variable initilization only for constant and // global state spaces. if (((PTy->getAddressSpace() == ADDRESS_SPACE_GLOBAL) || (PTy->getAddressSpace() == ADDRESS_SPACE_CONST)) && GVar->hasInitializer()) { const Constant *Initializer = GVar->getInitializer(); if (!isa(Initializer) && !Initializer->isNullValue()) { AggBuffer aggBuffer(ElementSize, *this); bufferAggregateConstant(Initializer, &aggBuffer); if (aggBuffer.numSymbols()) { unsigned int ptrSize = MAI->getCodePointerSize(); if (ElementSize % ptrSize || !aggBuffer.allSymbolsAligned(ptrSize)) { // Print in bytes and use the mask() operator for pointers. if (!STI.hasMaskOperator()) report_fatal_error( "initialized packed aggregate with pointers '" + GVar->getName() + "' requires at least PTX ISA version 7.1"); O << " .u8 "; getSymbol(GVar)->print(O, MAI); O << "[" << ElementSize << "] = {"; aggBuffer.printBytes(O); O << "}"; } else { O << " .u" << ptrSize * 8 << " "; getSymbol(GVar)->print(O, MAI); O << "[" << ElementSize / ptrSize << "] = {"; aggBuffer.printWords(O); O << "}"; } } else { O << " .b8 "; getSymbol(GVar)->print(O, MAI); O << "[" << ElementSize << "] = {"; aggBuffer.printBytes(O); O << "}"; } } else { O << " .b8 "; getSymbol(GVar)->print(O, MAI); if (ElementSize) { O << "["; O << ElementSize; O << "]"; } } } else { O << " .b8 "; getSymbol(GVar)->print(O, MAI); if (ElementSize) { O << "["; O << ElementSize; O << "]"; } } break; default: llvm_unreachable("type not supported yet"); } } O << ";\n"; } void NVPTXAsmPrinter::AggBuffer::printSymbol(unsigned nSym, raw_ostream &os) { const Value *v = Symbols[nSym]; const Value *v0 = SymbolsBeforeStripping[nSym]; if (const GlobalValue *GVar = dyn_cast(v)) { MCSymbol *Name = AP.getSymbol(GVar); PointerType *PTy = dyn_cast(v0->getType()); // Is v0 a generic pointer? bool isGenericPointer = PTy && PTy->getAddressSpace() == 0; if (EmitGeneric && isGenericPointer && !isa(v)) { os << "generic("; Name->print(os, AP.MAI); os << ")"; } else { Name->print(os, AP.MAI); } } else if (const ConstantExpr *CExpr = dyn_cast(v0)) { const MCExpr *Expr = AP.lowerConstantForGV(cast(CExpr), false); AP.printMCExpr(*Expr, os); } else llvm_unreachable("symbol type unknown"); } void NVPTXAsmPrinter::AggBuffer::printBytes(raw_ostream &os) { unsigned int ptrSize = AP.MAI->getCodePointerSize(); symbolPosInBuffer.push_back(size); unsigned int nSym = 0; unsigned int nextSymbolPos = symbolPosInBuffer[nSym]; for (unsigned int pos = 0; pos < size;) { if (pos) os << ", "; if (pos != nextSymbolPos) { os << (unsigned int)buffer[pos]; ++pos; continue; } // Generate a per-byte mask() operator for the symbol, which looks like: // .global .u8 addr[] = {0xFF(foo), 0xFF00(foo), 0xFF0000(foo), ...}; // See https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#initializers std::string symText; llvm::raw_string_ostream oss(symText); printSymbol(nSym, oss); for (unsigned i = 0; i < ptrSize; ++i) { if (i) os << ", "; llvm::write_hex(os, 0xFFULL << i * 8, HexPrintStyle::PrefixUpper); os << "(" << symText << ")"; } pos += ptrSize; nextSymbolPos = symbolPosInBuffer[++nSym]; assert(nextSymbolPos >= pos); } } void NVPTXAsmPrinter::AggBuffer::printWords(raw_ostream &os) { unsigned int ptrSize = AP.MAI->getCodePointerSize(); symbolPosInBuffer.push_back(size); unsigned int nSym = 0; unsigned int nextSymbolPos = symbolPosInBuffer[nSym]; assert(nextSymbolPos % ptrSize == 0); for (unsigned int pos = 0; pos < size; pos += ptrSize) { if (pos) os << ", "; if (pos == nextSymbolPos) { printSymbol(nSym, os); nextSymbolPos = symbolPosInBuffer[++nSym]; assert(nextSymbolPos % ptrSize == 0); assert(nextSymbolPos >= pos + ptrSize); } else if (ptrSize == 4) os << support::endian::read32le(&buffer[pos]); else os << support::endian::read64le(&buffer[pos]); } } void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) { if (localDecls.find(f) == localDecls.end()) return; std::vector &gvars = localDecls[f]; const NVPTXTargetMachine &NTM = static_cast(TM); const NVPTXSubtarget &STI = *static_cast(NTM.getSubtargetImpl()); for (const GlobalVariable *GV : gvars) { O << "\t// demoted variable\n\t"; printModuleLevelGV(GV, O, /*processDemoted=*/true, STI); } } void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace, raw_ostream &O) const { switch (AddressSpace) { case ADDRESS_SPACE_LOCAL: O << "local"; break; case ADDRESS_SPACE_GLOBAL: O << "global"; break; case ADDRESS_SPACE_CONST: O << "const"; break; case ADDRESS_SPACE_SHARED: O << "shared"; break; default: report_fatal_error("Bad address space found while emitting PTX: " + llvm::Twine(AddressSpace)); break; } } std::string NVPTXAsmPrinter::getPTXFundamentalTypeStr(Type *Ty, bool useB4PTR) const { switch (Ty->getTypeID()) { case Type::IntegerTyID: { unsigned NumBits = cast(Ty)->getBitWidth(); if (NumBits == 1) return "pred"; else if (NumBits <= 64) { std::string name = "u"; return name + utostr(NumBits); } else { llvm_unreachable("Integer too large"); break; } break; } case Type::BFloatTyID: case Type::HalfTyID: // fp16 and bf16 are stored as .b16 for compatibility with pre-sm_53 // PTX assembly. return "b16"; case Type::FloatTyID: return "f32"; case Type::DoubleTyID: return "f64"; case Type::PointerTyID: { unsigned PtrSize = TM.getPointerSizeInBits(Ty->getPointerAddressSpace()); assert((PtrSize == 64 || PtrSize == 32) && "Unexpected pointer size"); if (PtrSize == 64) if (useB4PTR) return "b64"; else return "u64"; else if (useB4PTR) return "b32"; else return "u32"; } default: break; } llvm_unreachable("unexpected type"); } void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar, raw_ostream &O, const NVPTXSubtarget &STI) { const DataLayout &DL = getDataLayout(); // GlobalVariables are always constant pointers themselves. Type *ETy = GVar->getValueType(); O << "."; emitPTXAddressSpace(GVar->getType()->getAddressSpace(), O); if (isManaged(*GVar)) { if (STI.getPTXVersion() < 40 || STI.getSmVersion() < 30) { report_fatal_error( ".attribute(.managed) requires PTX version >= 4.0 and sm_30"); } O << " .attribute(.managed)"; } if (MaybeAlign A = GVar->getAlign()) O << " .align " << A->value(); else O << " .align " << (int)DL.getPrefTypeAlign(ETy).value(); // Special case for i128 if (ETy->isIntegerTy(128)) { O << " .b8 "; getSymbol(GVar)->print(O, MAI); O << "[16]"; return; } if (ETy->isFloatingPointTy() || ETy->isIntOrPtrTy()) { O << " ."; O << getPTXFundamentalTypeStr(ETy); O << " "; getSymbol(GVar)->print(O, MAI); return; } int64_t ElementSize = 0; // Although PTX has direct support for struct type and array type and LLVM IR // is very similar to PTX, the LLVM CodeGen does not support for targets that // support these high level field accesses. Structs and arrays are lowered // into arrays of bytes. switch (ETy->getTypeID()) { case Type::StructTyID: case Type::ArrayTyID: case Type::FixedVectorTyID: ElementSize = DL.getTypeStoreSize(ETy); O << " .b8 "; getSymbol(GVar)->print(O, MAI); O << "["; if (ElementSize) { O << ElementSize; } O << "]"; break; default: llvm_unreachable("type not supported yet"); } } void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) { const DataLayout &DL = getDataLayout(); const AttributeList &PAL = F->getAttributes(); const NVPTXSubtarget &STI = TM.getSubtarget(*F); const auto *TLI = cast(STI.getTargetLowering()); Function::const_arg_iterator I, E; unsigned paramIndex = 0; bool first = true; bool isKernelFunc = isKernelFunction(*F); bool isABI = (STI.getSmVersion() >= 20); bool hasImageHandles = STI.hasImageHandles(); if (F->arg_empty() && !F->isVarArg()) { O << "()"; return; } O << "(\n"; for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) { Type *Ty = I->getType(); if (!first) O << ",\n"; first = false; // Handle image/sampler parameters if (isKernelFunction(*F)) { if (isSampler(*I) || isImage(*I)) { if (isImage(*I)) { std::string sname = std::string(I->getName()); if (isImageWriteOnly(*I) || isImageReadWrite(*I)) { if (hasImageHandles) O << "\t.param .u64 .ptr .surfref "; else O << "\t.param .surfref "; O << TLI->getParamName(F, paramIndex); } else { // Default image is read_only if (hasImageHandles) O << "\t.param .u64 .ptr .texref "; else O << "\t.param .texref "; O << TLI->getParamName(F, paramIndex); } } else { if (hasImageHandles) O << "\t.param .u64 .ptr .samplerref "; else O << "\t.param .samplerref "; O << TLI->getParamName(F, paramIndex); } continue; } } auto getOptimalAlignForParam = [TLI, &DL, &PAL, F, paramIndex](Type *Ty) -> Align { Align TypeAlign = TLI->getFunctionParamOptimizedAlign(F, Ty, DL); MaybeAlign ParamAlign = PAL.getParamAlignment(paramIndex); return std::max(TypeAlign, ParamAlign.valueOrOne()); }; if (!PAL.hasParamAttr(paramIndex, Attribute::ByVal)) { if (ShouldPassAsArray(Ty)) { // Just print .param .align .b8 .param[size]; // = optimal alignment for the element type; always multiple of // PAL.getParamAlignment // size = typeallocsize of element type Align OptimalAlign = getOptimalAlignForParam(Ty); O << "\t.param .align " << OptimalAlign.value() << " .b8 "; O << TLI->getParamName(F, paramIndex); O << "[" << DL.getTypeAllocSize(Ty) << "]"; continue; } // Just a scalar auto *PTy = dyn_cast(Ty); unsigned PTySizeInBits = 0; if (PTy) { PTySizeInBits = TLI->getPointerTy(DL, PTy->getAddressSpace()).getSizeInBits(); assert(PTySizeInBits && "Invalid pointer size"); } if (isKernelFunc) { if (PTy) { // Special handling for pointer arguments to kernel O << "\t.param .u" << PTySizeInBits << " "; if (static_cast(TM).getDrvInterface() != NVPTX::CUDA) { int addrSpace = PTy->getAddressSpace(); switch (addrSpace) { default: O << ".ptr "; break; case ADDRESS_SPACE_CONST: O << ".ptr .const "; break; case ADDRESS_SPACE_SHARED: O << ".ptr .shared "; break; case ADDRESS_SPACE_GLOBAL: O << ".ptr .global "; break; } Align ParamAlign = I->getParamAlign().valueOrOne(); O << ".align " << ParamAlign.value() << " "; } O << TLI->getParamName(F, paramIndex); continue; } // non-pointer scalar to kernel func O << "\t.param ."; // Special case: predicate operands become .u8 types if (Ty->isIntegerTy(1)) O << "u8"; else O << getPTXFundamentalTypeStr(Ty); O << " "; O << TLI->getParamName(F, paramIndex); continue; } // Non-kernel function, just print .param .b for ABI // and .reg .b for non-ABI unsigned sz = 0; if (isa(Ty)) { sz = cast(Ty)->getBitWidth(); sz = promoteScalarArgumentSize(sz); } else if (PTy) { assert(PTySizeInBits && "Invalid pointer size"); sz = PTySizeInBits; } else sz = Ty->getPrimitiveSizeInBits(); if (isABI) O << "\t.param .b" << sz << " "; else O << "\t.reg .b" << sz << " "; O << TLI->getParamName(F, paramIndex); continue; } // param has byVal attribute. Type *ETy = PAL.getParamByValType(paramIndex); assert(ETy && "Param should have byval type"); if (isABI || isKernelFunc) { // Just print .param .align .b8 .param[size]; // = optimal alignment for the element type; always multiple of // PAL.getParamAlignment // size = typeallocsize of element type Align OptimalAlign = isKernelFunc ? getOptimalAlignForParam(ETy) : TLI->getFunctionByValParamAlign( F, ETy, PAL.getParamAlignment(paramIndex).valueOrOne(), DL); unsigned sz = DL.getTypeAllocSize(ETy); O << "\t.param .align " << OptimalAlign.value() << " .b8 "; O << TLI->getParamName(F, paramIndex); O << "[" << sz << "]"; continue; } else { // Split the ETy into constituent parts and // print .param .b for each part. // Further, if a part is vector, print the above for // each vector element. SmallVector vtparts; ComputeValueVTs(*TLI, DL, ETy, vtparts); for (unsigned i = 0, e = vtparts.size(); i != e; ++i) { unsigned elems = 1; EVT elemtype = vtparts[i]; if (vtparts[i].isVector()) { elems = vtparts[i].getVectorNumElements(); elemtype = vtparts[i].getVectorElementType(); } for (unsigned j = 0, je = elems; j != je; ++j) { unsigned sz = elemtype.getSizeInBits(); if (elemtype.isInteger()) sz = promoteScalarArgumentSize(sz); O << "\t.reg .b" << sz << " "; O << TLI->getParamName(F, paramIndex); if (j < je - 1) O << ",\n"; ++paramIndex; } if (i < e - 1) O << ",\n"; } --paramIndex; continue; } } if (F->isVarArg()) { if (!first) O << ",\n"; O << "\t.param .align " << STI.getMaxRequiredAlignment(); O << " .b8 "; O << TLI->getParamName(F, /* vararg */ -1) << "[]"; } O << "\n)"; } void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters( const MachineFunction &MF) { SmallString<128> Str; raw_svector_ostream O(Str); // Map the global virtual register number to a register class specific // virtual register number starting from 1 with that class. const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); //unsigned numRegClasses = TRI->getNumRegClasses(); // Emit the Fake Stack Object const MachineFrameInfo &MFI = MF.getFrameInfo(); int NumBytes = (int) MFI.getStackSize(); if (NumBytes) { O << "\t.local .align " << MFI.getMaxAlign().value() << " .b8 \t" << DEPOTNAME << getFunctionNumber() << "[" << NumBytes << "];\n"; if (static_cast(MF.getTarget()).is64Bit()) { O << "\t.reg .b64 \t%SP;\n"; O << "\t.reg .b64 \t%SPL;\n"; } else { O << "\t.reg .b32 \t%SP;\n"; O << "\t.reg .b32 \t%SPL;\n"; } } // Go through all virtual registers to establish the mapping between the // global virtual // register number and the per class virtual register number. // We use the per class virtual register number in the ptx output. unsigned int numVRs = MRI->getNumVirtRegs(); for (unsigned i = 0; i < numVRs; i++) { Register vr = Register::index2VirtReg(i); const TargetRegisterClass *RC = MRI->getRegClass(vr); DenseMap ®map = VRegMapping[RC]; int n = regmap.size(); regmap.insert(std::make_pair(vr, n + 1)); } // Emit register declarations // @TODO: Extract out the real register usage // O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n"; // O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n"; // O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n"; // O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n"; // O << "\t.reg .s64 %rd<" << NVPTXNumRegisters << ">;\n"; // O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n"; // O << "\t.reg .f64 %fd<" << NVPTXNumRegisters << ">;\n"; // Emit declaration of the virtual registers or 'physical' registers for // each register class for (unsigned i=0; i< TRI->getNumRegClasses(); i++) { const TargetRegisterClass *RC = TRI->getRegClass(i); DenseMap ®map = VRegMapping[RC]; std::string rcname = getNVPTXRegClassName(RC); std::string rcStr = getNVPTXRegClassStr(RC); int n = regmap.size(); // Only declare those registers that may be used. if (n) { O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1) << ">;\n"; } } OutStreamer->emitRawText(O.str()); } void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) { APFloat APF = APFloat(Fp->getValueAPF()); // make a copy bool ignored; unsigned int numHex; const char *lead; if (Fp->getType()->getTypeID() == Type::FloatTyID) { numHex = 8; lead = "0f"; APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &ignored); } else if (Fp->getType()->getTypeID() == Type::DoubleTyID) { numHex = 16; lead = "0d"; APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &ignored); } else llvm_unreachable("unsupported fp type"); APInt API = APF.bitcastToAPInt(); O << lead << format_hex_no_prefix(API.getZExtValue(), numHex, /*Upper=*/true); } void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) { if (const ConstantInt *CI = dyn_cast(CPV)) { O << CI->getValue(); return; } if (const ConstantFP *CFP = dyn_cast(CPV)) { printFPConstant(CFP, O); return; } if (isa(CPV)) { O << "0"; return; } if (const GlobalValue *GVar = dyn_cast(CPV)) { bool IsNonGenericPointer = false; if (GVar->getType()->getAddressSpace() != 0) { IsNonGenericPointer = true; } if (EmitGeneric && !isa(CPV) && !IsNonGenericPointer) { O << "generic("; getSymbol(GVar)->print(O, MAI); O << ")"; } else { getSymbol(GVar)->print(O, MAI); } return; } if (const ConstantExpr *Cexpr = dyn_cast(CPV)) { const MCExpr *E = lowerConstantForGV(cast(Cexpr), false); printMCExpr(*E, O); return; } llvm_unreachable("Not scalar type found in printScalarConstant()"); } void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes, AggBuffer *AggBuffer) { const DataLayout &DL = getDataLayout(); int AllocSize = DL.getTypeAllocSize(CPV->getType()); if (isa(CPV) || CPV->isNullValue()) { // Non-zero Bytes indicates that we need to zero-fill everything. Otherwise, // only the space allocated by CPV. AggBuffer->addZeros(Bytes ? Bytes : AllocSize); return; } // Helper for filling AggBuffer with APInts. auto AddIntToBuffer = [AggBuffer, Bytes](const APInt &Val) { size_t NumBytes = (Val.getBitWidth() + 7) / 8; SmallVector Buf(NumBytes); for (unsigned I = 0; I < NumBytes; ++I) { Buf[I] = Val.extractBitsAsZExtValue(8, I * 8); } AggBuffer->addBytes(Buf.data(), NumBytes, Bytes); }; switch (CPV->getType()->getTypeID()) { case Type::IntegerTyID: if (const auto CI = dyn_cast(CPV)) { AddIntToBuffer(CI->getValue()); break; } if (const auto *Cexpr = dyn_cast(CPV)) { if (const auto *CI = dyn_cast(ConstantFoldConstant(Cexpr, DL))) { AddIntToBuffer(CI->getValue()); break; } if (Cexpr->getOpcode() == Instruction::PtrToInt) { Value *V = Cexpr->getOperand(0)->stripPointerCasts(); AggBuffer->addSymbol(V, Cexpr->getOperand(0)); AggBuffer->addZeros(AllocSize); break; } } llvm_unreachable("unsupported integer const type"); break; case Type::HalfTyID: case Type::BFloatTyID: case Type::FloatTyID: case Type::DoubleTyID: AddIntToBuffer(cast(CPV)->getValueAPF().bitcastToAPInt()); break; case Type::PointerTyID: { if (const GlobalValue *GVar = dyn_cast(CPV)) { AggBuffer->addSymbol(GVar, GVar); } else if (const ConstantExpr *Cexpr = dyn_cast(CPV)) { const Value *v = Cexpr->stripPointerCasts(); AggBuffer->addSymbol(v, Cexpr); } AggBuffer->addZeros(AllocSize); break; } case Type::ArrayTyID: case Type::FixedVectorTyID: case Type::StructTyID: { if (isa(CPV) || isa(CPV)) { bufferAggregateConstant(CPV, AggBuffer); if (Bytes > AllocSize) AggBuffer->addZeros(Bytes - AllocSize); } else if (isa(CPV)) AggBuffer->addZeros(Bytes); else llvm_unreachable("Unexpected Constant type"); break; } default: llvm_unreachable("unsupported type"); } } void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV, AggBuffer *aggBuffer) { const DataLayout &DL = getDataLayout(); int Bytes; // Integers of arbitrary width if (const ConstantInt *CI = dyn_cast(CPV)) { APInt Val = CI->getValue(); for (unsigned I = 0, E = DL.getTypeAllocSize(CPV->getType()); I < E; ++I) { uint8_t Byte = Val.getLoBits(8).getZExtValue(); aggBuffer->addBytes(&Byte, 1, 1); Val.lshrInPlace(8); } return; } // Old constants if (isa(CPV) || isa(CPV)) { if (CPV->getNumOperands()) for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) bufferLEByte(cast(CPV->getOperand(i)), 0, aggBuffer); return; } if (const ConstantDataSequential *CDS = dyn_cast(CPV)) { if (CDS->getNumElements()) for (unsigned i = 0; i < CDS->getNumElements(); ++i) bufferLEByte(cast(CDS->getElementAsConstant(i)), 0, aggBuffer); return; } if (isa(CPV)) { if (CPV->getNumOperands()) { StructType *ST = cast(CPV->getType()); for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) { if (i == (e - 1)) Bytes = DL.getStructLayout(ST)->getElementOffset(0) + DL.getTypeAllocSize(ST) - DL.getStructLayout(ST)->getElementOffset(i); else Bytes = DL.getStructLayout(ST)->getElementOffset(i + 1) - DL.getStructLayout(ST)->getElementOffset(i); bufferLEByte(cast(CPV->getOperand(i)), Bytes, aggBuffer); } } return; } llvm_unreachable("unsupported constant type in printAggregateConstant()"); } /// lowerConstantForGV - Return an MCExpr for the given Constant. This is mostly /// a copy from AsmPrinter::lowerConstant, except customized to only handle /// expressions that are representable in PTX and create /// NVPTXGenericMCSymbolRefExpr nodes for addrspacecast instructions. const MCExpr * NVPTXAsmPrinter::lowerConstantForGV(const Constant *CV, bool ProcessingGeneric) { MCContext &Ctx = OutContext; if (CV->isNullValue() || isa(CV)) return MCConstantExpr::create(0, Ctx); if (const ConstantInt *CI = dyn_cast(CV)) return MCConstantExpr::create(CI->getZExtValue(), Ctx); if (const GlobalValue *GV = dyn_cast(CV)) { const MCSymbolRefExpr *Expr = MCSymbolRefExpr::create(getSymbol(GV), Ctx); if (ProcessingGeneric) { return NVPTXGenericMCSymbolRefExpr::create(Expr, Ctx); } else { return Expr; } } const ConstantExpr *CE = dyn_cast(CV); if (!CE) { llvm_unreachable("Unknown constant value to lower!"); } switch (CE->getOpcode()) { default: break; // Error case Instruction::AddrSpaceCast: { // Strip the addrspacecast and pass along the operand PointerType *DstTy = cast(CE->getType()); if (DstTy->getAddressSpace() == 0) return lowerConstantForGV(cast(CE->getOperand(0)), true); break; // Error } case Instruction::GetElementPtr: { const DataLayout &DL = getDataLayout(); // Generate a symbolic expression for the byte address APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0); cast(CE)->accumulateConstantOffset(DL, OffsetAI); const MCExpr *Base = lowerConstantForGV(CE->getOperand(0), ProcessingGeneric); if (!OffsetAI) return Base; int64_t Offset = OffsetAI.getSExtValue(); return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), Ctx); } case Instruction::Trunc: // We emit the value and depend on the assembler to truncate the generated // expression properly. This is important for differences between // blockaddress labels. Since the two labels are in the same function, it // is reasonable to treat their delta as a 32-bit value. [[fallthrough]]; case Instruction::BitCast: return lowerConstantForGV(CE->getOperand(0), ProcessingGeneric); case Instruction::IntToPtr: { const DataLayout &DL = getDataLayout(); // Handle casts to pointers by changing them into casts to the appropriate // integer type. This promotes constant folding and simplifies this code. Constant *Op = CE->getOperand(0); Op = ConstantFoldIntegerCast(Op, DL.getIntPtrType(CV->getType()), /*IsSigned*/ false, DL); if (Op) return lowerConstantForGV(Op, ProcessingGeneric); break; // Error } case Instruction::PtrToInt: { const DataLayout &DL = getDataLayout(); // Support only foldable casts to/from pointers that can be eliminated by // changing the pointer to the appropriately sized integer type. Constant *Op = CE->getOperand(0); Type *Ty = CE->getType(); const MCExpr *OpExpr = lowerConstantForGV(Op, ProcessingGeneric); // We can emit the pointer value into this slot if the slot is an // integer slot equal to the size of the pointer. if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) return OpExpr; // Otherwise the pointer is smaller than the resultant integer, mask off // the high bits so we are sure to get a proper truncation if the input is // a constant expr. unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); } // The MC library also has a right-shift operator, but it isn't consistently // signed or unsigned between different targets. case Instruction::Add: { const MCExpr *LHS = lowerConstantForGV(CE->getOperand(0), ProcessingGeneric); const MCExpr *RHS = lowerConstantForGV(CE->getOperand(1), ProcessingGeneric); switch (CE->getOpcode()) { default: llvm_unreachable("Unknown binary operator constant cast expr"); case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); } } } // If the code isn't optimized, there may be outstanding folding // opportunities. Attempt to fold the expression using DataLayout as a // last resort before giving up. Constant *C = ConstantFoldConstant(CE, getDataLayout()); if (C != CE) return lowerConstantForGV(C, ProcessingGeneric); // Otherwise report the problem to the user. std::string S; raw_string_ostream OS(S); OS << "Unsupported expression in static initializer: "; CE->printAsOperand(OS, /*PrintType=*/false, !MF ? nullptr : MF->getFunction().getParent()); report_fatal_error(Twine(OS.str())); } // Copy of MCExpr::print customized for NVPTX void NVPTXAsmPrinter::printMCExpr(const MCExpr &Expr, raw_ostream &OS) { switch (Expr.getKind()) { case MCExpr::Target: return cast(&Expr)->printImpl(OS, MAI); case MCExpr::Constant: OS << cast(Expr).getValue(); return; case MCExpr::SymbolRef: { const MCSymbolRefExpr &SRE = cast(Expr); const MCSymbol &Sym = SRE.getSymbol(); Sym.print(OS, MAI); return; } case MCExpr::Unary: { const MCUnaryExpr &UE = cast(Expr); switch (UE.getOpcode()) { case MCUnaryExpr::LNot: OS << '!'; break; case MCUnaryExpr::Minus: OS << '-'; break; case MCUnaryExpr::Not: OS << '~'; break; case MCUnaryExpr::Plus: OS << '+'; break; } printMCExpr(*UE.getSubExpr(), OS); return; } case MCExpr::Binary: { const MCBinaryExpr &BE = cast(Expr); // Only print parens around the LHS if it is non-trivial. if (isa(BE.getLHS()) || isa(BE.getLHS()) || isa(BE.getLHS())) { printMCExpr(*BE.getLHS(), OS); } else { OS << '('; printMCExpr(*BE.getLHS(), OS); OS<< ')'; } switch (BE.getOpcode()) { case MCBinaryExpr::Add: // Print "X-42" instead of "X+-42". if (const MCConstantExpr *RHSC = dyn_cast(BE.getRHS())) { if (RHSC->getValue() < 0) { OS << RHSC->getValue(); return; } } OS << '+'; break; default: llvm_unreachable("Unhandled binary operator"); } // Only print parens around the LHS if it is non-trivial. if (isa(BE.getRHS()) || isa(BE.getRHS())) { printMCExpr(*BE.getRHS(), OS); } else { OS << '('; printMCExpr(*BE.getRHS(), OS); OS << ')'; } return; } } llvm_unreachable("Invalid expression kind!"); } /// PrintAsmOperand - Print out an operand for an inline asm expression. /// bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, const char *ExtraCode, raw_ostream &O) { if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: // See if this is a generic print operand return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O); case 'r': break; } } printOperand(MI, OpNo, O); return false; } bool NVPTXAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, const char *ExtraCode, raw_ostream &O) { if (ExtraCode && ExtraCode[0]) return true; // Unknown modifier O << '['; printMemOperand(MI, OpNo, O); O << ']'; return false; } void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNum, raw_ostream &O) { const MachineOperand &MO = MI->getOperand(OpNum); switch (MO.getType()) { case MachineOperand::MO_Register: if (MO.getReg().isPhysical()) { if (MO.getReg() == NVPTX::VRDepot) O << DEPOTNAME << getFunctionNumber(); else O << NVPTXInstPrinter::getRegisterName(MO.getReg()); } else { emitVirtualRegister(MO.getReg(), O); } break; case MachineOperand::MO_Immediate: O << MO.getImm(); break; case MachineOperand::MO_FPImmediate: printFPConstant(MO.getFPImm(), O); break; case MachineOperand::MO_GlobalAddress: PrintSymbolOperand(MO, O); break; case MachineOperand::MO_MachineBasicBlock: MO.getMBB()->getSymbol()->print(O, MAI); break; default: llvm_unreachable("Operand type not supported."); } } void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, unsigned OpNum, raw_ostream &O, const char *Modifier) { printOperand(MI, OpNum, O); if (Modifier && strcmp(Modifier, "add") == 0) { O << ", "; printOperand(MI, OpNum + 1, O); } else { if (MI->getOperand(OpNum + 1).isImm() && MI->getOperand(OpNum + 1).getImm() == 0) return; // don't print ',0' or '+0' O << "+"; printOperand(MI, OpNum + 1, O); } } // Force static initialization. extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeNVPTXAsmPrinter() { RegisterAsmPrinter X(getTheNVPTXTarget32()); RegisterAsmPrinter Y(getTheNVPTXTarget64()); }