//===-- MipsSEInstrInfo.cpp - Mips32/64 Instruction Information -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the Mips32/64 implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "MipsSEInstrInfo.h" #include "MCTargetDesc/MipsInstPrinter.h" #include "MipsAnalyzeImmediate.h" #include "MipsMachineFunction.h" #include "MipsTargetMachine.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" using namespace llvm; static unsigned getUnconditionalBranch(const MipsSubtarget &STI) { if (STI.inMicroMipsMode()) return STI.isPositionIndependent() ? Mips::B_MM : Mips::J_MM; return STI.isPositionIndependent() ? Mips::B : Mips::J; } MipsSEInstrInfo::MipsSEInstrInfo(const MipsSubtarget &STI) : MipsInstrInfo(STI, getUnconditionalBranch(STI)), RI() {} const MipsRegisterInfo &MipsSEInstrInfo::getRegisterInfo() const { return RI; } /// isLoadFromStackSlot - If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. Register MipsSEInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const { unsigned Opc = MI.getOpcode(); if ((Opc == Mips::LW) || (Opc == Mips::LD) || (Opc == Mips::LWC1) || (Opc == Mips::LDC1) || (Opc == Mips::LDC164)) { if ((MI.getOperand(1).isFI()) && // is a stack slot (MI.getOperand(2).isImm()) && // the imm is zero (isZeroImm(MI.getOperand(2)))) { FrameIndex = MI.getOperand(1).getIndex(); return MI.getOperand(0).getReg(); } } return 0; } /// isStoreToStackSlot - If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. Register MipsSEInstrInfo::isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const { unsigned Opc = MI.getOpcode(); if ((Opc == Mips::SW) || (Opc == Mips::SD) || (Opc == Mips::SWC1) || (Opc == Mips::SDC1) || (Opc == Mips::SDC164)) { if ((MI.getOperand(1).isFI()) && // is a stack slot (MI.getOperand(2).isImm()) && // the imm is zero (isZeroImm(MI.getOperand(2)))) { FrameIndex = MI.getOperand(1).getIndex(); return MI.getOperand(0).getReg(); } } return 0; } void MipsSEInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc) const { unsigned Opc = 0, ZeroReg = 0; bool isMicroMips = Subtarget.inMicroMipsMode(); if (Mips::GPR32RegClass.contains(DestReg)) { // Copy to CPU Reg. if (Mips::GPR32RegClass.contains(SrcReg)) { if (isMicroMips) Opc = Mips::MOVE16_MM; else Opc = Mips::OR, ZeroReg = Mips::ZERO; } else if (Mips::CCRRegClass.contains(SrcReg)) Opc = Mips::CFC1; else if (Mips::FGR32RegClass.contains(SrcReg)) Opc = Mips::MFC1; else if (Mips::HI32RegClass.contains(SrcReg)) { Opc = isMicroMips ? Mips::MFHI16_MM : Mips::MFHI; SrcReg = 0; } else if (Mips::LO32RegClass.contains(SrcReg)) { Opc = isMicroMips ? Mips::MFLO16_MM : Mips::MFLO; SrcReg = 0; } else if (Mips::HI32DSPRegClass.contains(SrcReg)) Opc = Mips::MFHI_DSP; else if (Mips::LO32DSPRegClass.contains(SrcReg)) Opc = Mips::MFLO_DSP; else if (Mips::DSPCCRegClass.contains(SrcReg)) { BuildMI(MBB, I, DL, get(Mips::RDDSP), DestReg).addImm(1 << 4) .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc)); return; } else if (Mips::MSACtrlRegClass.contains(SrcReg)) Opc = Mips::CFCMSA; } else if (Mips::GPR32RegClass.contains(SrcReg)) { // Copy from CPU Reg. if (Mips::CCRRegClass.contains(DestReg)) Opc = Mips::CTC1; else if (Mips::FGR32RegClass.contains(DestReg)) Opc = Mips::MTC1; else if (Mips::HI32RegClass.contains(DestReg)) Opc = Mips::MTHI, DestReg = 0; else if (Mips::LO32RegClass.contains(DestReg)) Opc = Mips::MTLO, DestReg = 0; else if (Mips::HI32DSPRegClass.contains(DestReg)) Opc = Mips::MTHI_DSP; else if (Mips::LO32DSPRegClass.contains(DestReg)) Opc = Mips::MTLO_DSP; else if (Mips::DSPCCRegClass.contains(DestReg)) { BuildMI(MBB, I, DL, get(Mips::WRDSP)) .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1 << 4) .addReg(DestReg, RegState::ImplicitDefine); return; } else if (Mips::MSACtrlRegClass.contains(DestReg)) { BuildMI(MBB, I, DL, get(Mips::CTCMSA)) .addReg(DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } } else if (Mips::FGR32RegClass.contains(DestReg, SrcReg)) Opc = Mips::FMOV_S; else if (Mips::AFGR64RegClass.contains(DestReg, SrcReg)) Opc = Mips::FMOV_D32; else if (Mips::FGR64RegClass.contains(DestReg, SrcReg)) Opc = Mips::FMOV_D64; else if (Mips::GPR64RegClass.contains(DestReg)) { // Copy to CPU64 Reg. if (Mips::GPR64RegClass.contains(SrcReg)) Opc = Mips::OR64, ZeroReg = Mips::ZERO_64; else if (Mips::HI64RegClass.contains(SrcReg)) Opc = Mips::MFHI64, SrcReg = 0; else if (Mips::LO64RegClass.contains(SrcReg)) Opc = Mips::MFLO64, SrcReg = 0; else if (Mips::FGR64RegClass.contains(SrcReg)) Opc = Mips::DMFC1; } else if (Mips::GPR64RegClass.contains(SrcReg)) { // Copy from CPU64 Reg. if (Mips::HI64RegClass.contains(DestReg)) Opc = Mips::MTHI64, DestReg = 0; else if (Mips::LO64RegClass.contains(DestReg)) Opc = Mips::MTLO64, DestReg = 0; else if (Mips::FGR64RegClass.contains(DestReg)) Opc = Mips::DMTC1; } else if (Mips::MSA128BRegClass.contains(DestReg)) { // Copy to MSA reg if (Mips::MSA128BRegClass.contains(SrcReg)) Opc = Mips::MOVE_V; } assert(Opc && "Cannot copy registers"); MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc)); if (DestReg) MIB.addReg(DestReg, RegState::Define); if (SrcReg) MIB.addReg(SrcReg, getKillRegState(KillSrc)); if (ZeroReg) MIB.addReg(ZeroReg); } static bool isORCopyInst(const MachineInstr &MI) { switch (MI.getOpcode()) { default: break; case Mips::OR_MM: case Mips::OR: if (MI.getOperand(2).getReg() == Mips::ZERO) return true; break; case Mips::OR64: if (MI.getOperand(2).getReg() == Mips::ZERO_64) return true; break; } return false; } /// We check for the common case of 'or', as it's MIPS' preferred instruction /// for GPRs but we have to check the operands to ensure that is the case. /// Other move instructions for MIPS are directly identifiable. std::optional MipsSEInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { if (MI.isMoveReg() || isORCopyInst(MI)) return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; return std::nullopt; } void MipsSEInstrInfo:: storeRegToStack(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register SrcReg, bool isKill, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, int64_t Offset) const { DebugLoc DL; MachineMemOperand *MMO = GetMemOperand(MBB, FI, MachineMemOperand::MOStore); unsigned Opc = 0; if (Mips::GPR32RegClass.hasSubClassEq(RC)) Opc = Mips::SW; else if (Mips::GPR64RegClass.hasSubClassEq(RC)) Opc = Mips::SD; else if (Mips::ACC64RegClass.hasSubClassEq(RC)) Opc = Mips::STORE_ACC64; else if (Mips::ACC64DSPRegClass.hasSubClassEq(RC)) Opc = Mips::STORE_ACC64DSP; else if (Mips::ACC128RegClass.hasSubClassEq(RC)) Opc = Mips::STORE_ACC128; else if (Mips::DSPCCRegClass.hasSubClassEq(RC)) Opc = Mips::STORE_CCOND_DSP; else if (Mips::FGR32RegClass.hasSubClassEq(RC)) Opc = Mips::SWC1; else if (Mips::AFGR64RegClass.hasSubClassEq(RC)) Opc = Mips::SDC1; else if (Mips::FGR64RegClass.hasSubClassEq(RC)) Opc = Mips::SDC164; else if (TRI->isTypeLegalForClass(*RC, MVT::v16i8)) Opc = Mips::ST_B; else if (TRI->isTypeLegalForClass(*RC, MVT::v8i16) || TRI->isTypeLegalForClass(*RC, MVT::v8f16)) Opc = Mips::ST_H; else if (TRI->isTypeLegalForClass(*RC, MVT::v4i32) || TRI->isTypeLegalForClass(*RC, MVT::v4f32)) Opc = Mips::ST_W; else if (TRI->isTypeLegalForClass(*RC, MVT::v2i64) || TRI->isTypeLegalForClass(*RC, MVT::v2f64)) Opc = Mips::ST_D; else if (Mips::LO32RegClass.hasSubClassEq(RC)) Opc = Mips::SW; else if (Mips::LO64RegClass.hasSubClassEq(RC)) Opc = Mips::SD; else if (Mips::HI32RegClass.hasSubClassEq(RC)) Opc = Mips::SW; else if (Mips::HI64RegClass.hasSubClassEq(RC)) Opc = Mips::SD; else if (Mips::DSPRRegClass.hasSubClassEq(RC)) Opc = Mips::SWDSP; // Hi, Lo are normally caller save but they are callee save // for interrupt handling. const Function &Func = MBB.getParent()->getFunction(); if (Func.hasFnAttribute("interrupt")) { if (Mips::HI32RegClass.hasSubClassEq(RC)) { BuildMI(MBB, I, DL, get(Mips::MFHI), Mips::K0); SrcReg = Mips::K0; } else if (Mips::HI64RegClass.hasSubClassEq(RC)) { BuildMI(MBB, I, DL, get(Mips::MFHI64), Mips::K0_64); SrcReg = Mips::K0_64; } else if (Mips::LO32RegClass.hasSubClassEq(RC)) { BuildMI(MBB, I, DL, get(Mips::MFLO), Mips::K0); SrcReg = Mips::K0; } else if (Mips::LO64RegClass.hasSubClassEq(RC)) { BuildMI(MBB, I, DL, get(Mips::MFLO64), Mips::K0_64); SrcReg = Mips::K0_64; } } assert(Opc && "Register class not handled!"); BuildMI(MBB, I, DL, get(Opc)).addReg(SrcReg, getKillRegState(isKill)) .addFrameIndex(FI).addImm(Offset).addMemOperand(MMO); } void MipsSEInstrInfo:: loadRegFromStack(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register DestReg, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, int64_t Offset) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); MachineMemOperand *MMO = GetMemOperand(MBB, FI, MachineMemOperand::MOLoad); unsigned Opc = 0; const Function &Func = MBB.getParent()->getFunction(); bool ReqIndirectLoad = Func.hasFnAttribute("interrupt") && (DestReg == Mips::LO0 || DestReg == Mips::LO0_64 || DestReg == Mips::HI0 || DestReg == Mips::HI0_64); if (Mips::GPR32RegClass.hasSubClassEq(RC)) Opc = Mips::LW; else if (Mips::GPR64RegClass.hasSubClassEq(RC)) Opc = Mips::LD; else if (Mips::ACC64RegClass.hasSubClassEq(RC)) Opc = Mips::LOAD_ACC64; else if (Mips::ACC64DSPRegClass.hasSubClassEq(RC)) Opc = Mips::LOAD_ACC64DSP; else if (Mips::ACC128RegClass.hasSubClassEq(RC)) Opc = Mips::LOAD_ACC128; else if (Mips::DSPCCRegClass.hasSubClassEq(RC)) Opc = Mips::LOAD_CCOND_DSP; else if (Mips::FGR32RegClass.hasSubClassEq(RC)) Opc = Mips::LWC1; else if (Mips::AFGR64RegClass.hasSubClassEq(RC)) Opc = Mips::LDC1; else if (Mips::FGR64RegClass.hasSubClassEq(RC)) Opc = Mips::LDC164; else if (TRI->isTypeLegalForClass(*RC, MVT::v16i8)) Opc = Mips::LD_B; else if (TRI->isTypeLegalForClass(*RC, MVT::v8i16) || TRI->isTypeLegalForClass(*RC, MVT::v8f16)) Opc = Mips::LD_H; else if (TRI->isTypeLegalForClass(*RC, MVT::v4i32) || TRI->isTypeLegalForClass(*RC, MVT::v4f32)) Opc = Mips::LD_W; else if (TRI->isTypeLegalForClass(*RC, MVT::v2i64) || TRI->isTypeLegalForClass(*RC, MVT::v2f64)) Opc = Mips::LD_D; else if (Mips::HI32RegClass.hasSubClassEq(RC)) Opc = Mips::LW; else if (Mips::HI64RegClass.hasSubClassEq(RC)) Opc = Mips::LD; else if (Mips::LO32RegClass.hasSubClassEq(RC)) Opc = Mips::LW; else if (Mips::LO64RegClass.hasSubClassEq(RC)) Opc = Mips::LD; else if (Mips::DSPRRegClass.hasSubClassEq(RC)) Opc = Mips::LWDSP; assert(Opc && "Register class not handled!"); if (!ReqIndirectLoad) BuildMI(MBB, I, DL, get(Opc), DestReg) .addFrameIndex(FI) .addImm(Offset) .addMemOperand(MMO); else { // Load HI/LO through K0. Notably the DestReg is encoded into the // instruction itself. unsigned Reg = Mips::K0; unsigned LdOp = Mips::MTLO; if (DestReg == Mips::HI0) LdOp = Mips::MTHI; if (Subtarget.getABI().ArePtrs64bit()) { Reg = Mips::K0_64; if (DestReg == Mips::HI0_64) LdOp = Mips::MTHI64; else LdOp = Mips::MTLO64; } BuildMI(MBB, I, DL, get(Opc), Reg) .addFrameIndex(FI) .addImm(Offset) .addMemOperand(MMO); BuildMI(MBB, I, DL, get(LdOp)).addReg(Reg); } } bool MipsSEInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { MachineBasicBlock &MBB = *MI.getParent(); bool isMicroMips = Subtarget.inMicroMipsMode(); unsigned Opc; switch (MI.getDesc().getOpcode()) { default: return false; case Mips::RetRA: expandRetRA(MBB, MI); break; case Mips::ERet: expandERet(MBB, MI); break; case Mips::PseudoMFHI: expandPseudoMFHiLo(MBB, MI, Mips::MFHI); break; case Mips::PseudoMFHI_MM: expandPseudoMFHiLo(MBB, MI, Mips::MFHI16_MM); break; case Mips::PseudoMFLO: expandPseudoMFHiLo(MBB, MI, Mips::MFLO); break; case Mips::PseudoMFLO_MM: expandPseudoMFHiLo(MBB, MI, Mips::MFLO16_MM); break; case Mips::PseudoMFHI64: expandPseudoMFHiLo(MBB, MI, Mips::MFHI64); break; case Mips::PseudoMFLO64: expandPseudoMFHiLo(MBB, MI, Mips::MFLO64); break; case Mips::PseudoMTLOHI: expandPseudoMTLoHi(MBB, MI, Mips::MTLO, Mips::MTHI, false); break; case Mips::PseudoMTLOHI64: expandPseudoMTLoHi(MBB, MI, Mips::MTLO64, Mips::MTHI64, false); break; case Mips::PseudoMTLOHI_DSP: expandPseudoMTLoHi(MBB, MI, Mips::MTLO_DSP, Mips::MTHI_DSP, true); break; case Mips::PseudoMTLOHI_MM: expandPseudoMTLoHi(MBB, MI, Mips::MTLO_MM, Mips::MTHI_MM, false); break; case Mips::PseudoCVT_S_W: expandCvtFPInt(MBB, MI, Mips::CVT_S_W, Mips::MTC1, false); break; case Mips::PseudoCVT_D32_W: Opc = isMicroMips ? Mips::CVT_D32_W_MM : Mips::CVT_D32_W; expandCvtFPInt(MBB, MI, Opc, Mips::MTC1, false); break; case Mips::PseudoCVT_S_L: expandCvtFPInt(MBB, MI, Mips::CVT_S_L, Mips::DMTC1, true); break; case Mips::PseudoCVT_D64_W: Opc = isMicroMips ? Mips::CVT_D64_W_MM : Mips::CVT_D64_W; expandCvtFPInt(MBB, MI, Opc, Mips::MTC1, true); break; case Mips::PseudoCVT_D64_L: expandCvtFPInt(MBB, MI, Mips::CVT_D64_L, Mips::DMTC1, true); break; case Mips::BuildPairF64: expandBuildPairF64(MBB, MI, isMicroMips, false); break; case Mips::BuildPairF64_64: expandBuildPairF64(MBB, MI, isMicroMips, true); break; case Mips::ExtractElementF64: expandExtractElementF64(MBB, MI, isMicroMips, false); break; case Mips::ExtractElementF64_64: expandExtractElementF64(MBB, MI, isMicroMips, true); break; case Mips::MIPSeh_return32: case Mips::MIPSeh_return64: expandEhReturn(MBB, MI); break; } MBB.erase(MI); return true; } /// isBranchWithImm - Return true if the branch contains an immediate /// operand (\see lib/Target/Mips/MipsBranchExpansion.cpp). bool MipsSEInstrInfo::isBranchWithImm(unsigned Opc) const { switch (Opc) { default: return false; case Mips::BBIT0: case Mips::BBIT1: case Mips::BBIT032: case Mips::BBIT132: return true; } } /// getOppositeBranchOpc - Return the inverse of the specified /// opcode, e.g. turning BEQ to BNE. unsigned MipsSEInstrInfo::getOppositeBranchOpc(unsigned Opc) const { switch (Opc) { default: llvm_unreachable("Illegal opcode!"); case Mips::BEQ: return Mips::BNE; case Mips::BEQ_MM: return Mips::BNE_MM; case Mips::BNE: return Mips::BEQ; case Mips::BNE_MM: return Mips::BEQ_MM; case Mips::BGTZ: return Mips::BLEZ; case Mips::BGEZ: return Mips::BLTZ; case Mips::BLTZ: return Mips::BGEZ; case Mips::BLEZ: return Mips::BGTZ; case Mips::BGTZ_MM: return Mips::BLEZ_MM; case Mips::BGEZ_MM: return Mips::BLTZ_MM; case Mips::BLTZ_MM: return Mips::BGEZ_MM; case Mips::BLEZ_MM: return Mips::BGTZ_MM; case Mips::BEQ64: return Mips::BNE64; case Mips::BNE64: return Mips::BEQ64; case Mips::BGTZ64: return Mips::BLEZ64; case Mips::BGEZ64: return Mips::BLTZ64; case Mips::BLTZ64: return Mips::BGEZ64; case Mips::BLEZ64: return Mips::BGTZ64; case Mips::BC1T: return Mips::BC1F; case Mips::BC1F: return Mips::BC1T; case Mips::BC1T_MM: return Mips::BC1F_MM; case Mips::BC1F_MM: return Mips::BC1T_MM; case Mips::BEQZ16_MM: return Mips::BNEZ16_MM; case Mips::BNEZ16_MM: return Mips::BEQZ16_MM; case Mips::BEQZC_MM: return Mips::BNEZC_MM; case Mips::BNEZC_MM: return Mips::BEQZC_MM; case Mips::BEQZC: return Mips::BNEZC; case Mips::BNEZC: return Mips::BEQZC; case Mips::BLEZC: return Mips::BGTZC; case Mips::BGEZC: return Mips::BLTZC; case Mips::BGEC: return Mips::BLTC; case Mips::BGTZC: return Mips::BLEZC; case Mips::BLTZC: return Mips::BGEZC; case Mips::BLTC: return Mips::BGEC; case Mips::BGEUC: return Mips::BLTUC; case Mips::BLTUC: return Mips::BGEUC; case Mips::BEQC: return Mips::BNEC; case Mips::BNEC: return Mips::BEQC; case Mips::BC1EQZ: return Mips::BC1NEZ; case Mips::BC1NEZ: return Mips::BC1EQZ; case Mips::BEQZC_MMR6: return Mips::BNEZC_MMR6; case Mips::BNEZC_MMR6: return Mips::BEQZC_MMR6; case Mips::BLEZC_MMR6: return Mips::BGTZC_MMR6; case Mips::BGEZC_MMR6: return Mips::BLTZC_MMR6; case Mips::BGEC_MMR6: return Mips::BLTC_MMR6; case Mips::BGTZC_MMR6: return Mips::BLEZC_MMR6; case Mips::BLTZC_MMR6: return Mips::BGEZC_MMR6; case Mips::BLTC_MMR6: return Mips::BGEC_MMR6; case Mips::BGEUC_MMR6: return Mips::BLTUC_MMR6; case Mips::BLTUC_MMR6: return Mips::BGEUC_MMR6; case Mips::BEQC_MMR6: return Mips::BNEC_MMR6; case Mips::BNEC_MMR6: return Mips::BEQC_MMR6; case Mips::BC1EQZC_MMR6: return Mips::BC1NEZC_MMR6; case Mips::BC1NEZC_MMR6: return Mips::BC1EQZC_MMR6; case Mips::BEQZC64: return Mips::BNEZC64; case Mips::BNEZC64: return Mips::BEQZC64; case Mips::BEQC64: return Mips::BNEC64; case Mips::BNEC64: return Mips::BEQC64; case Mips::BGEC64: return Mips::BLTC64; case Mips::BGEUC64: return Mips::BLTUC64; case Mips::BLTC64: return Mips::BGEC64; case Mips::BLTUC64: return Mips::BGEUC64; case Mips::BGTZC64: return Mips::BLEZC64; case Mips::BGEZC64: return Mips::BLTZC64; case Mips::BLTZC64: return Mips::BGEZC64; case Mips::BLEZC64: return Mips::BGTZC64; case Mips::BBIT0: return Mips::BBIT1; case Mips::BBIT1: return Mips::BBIT0; case Mips::BBIT032: return Mips::BBIT132; case Mips::BBIT132: return Mips::BBIT032; case Mips::BZ_B: return Mips::BNZ_B; case Mips::BZ_H: return Mips::BNZ_H; case Mips::BZ_W: return Mips::BNZ_W; case Mips::BZ_D: return Mips::BNZ_D; case Mips::BZ_V: return Mips::BNZ_V; case Mips::BNZ_B: return Mips::BZ_B; case Mips::BNZ_H: return Mips::BZ_H; case Mips::BNZ_W: return Mips::BZ_W; case Mips::BNZ_D: return Mips::BZ_D; case Mips::BNZ_V: return Mips::BZ_V; } } /// Adjust SP by Amount bytes. void MipsSEInstrInfo::adjustStackPtr(unsigned SP, int64_t Amount, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { MipsABIInfo ABI = Subtarget.getABI(); DebugLoc DL; unsigned ADDiu = ABI.GetPtrAddiuOp(); if (Amount == 0) return; if (isInt<16>(Amount)) { // addi sp, sp, amount BuildMI(MBB, I, DL, get(ADDiu), SP).addReg(SP).addImm(Amount); } else { // For numbers which are not 16bit integers we synthesize Amount inline // then add or subtract it from sp. unsigned Opc = ABI.GetPtrAdduOp(); if (Amount < 0) { Opc = ABI.GetPtrSubuOp(); Amount = -Amount; } unsigned Reg = loadImmediate(Amount, MBB, I, DL, nullptr); BuildMI(MBB, I, DL, get(Opc), SP).addReg(SP).addReg(Reg, RegState::Kill); } } /// This function generates the sequence of instructions needed to get the /// result of adding register REG and immediate IMM. unsigned MipsSEInstrInfo::loadImmediate(int64_t Imm, MachineBasicBlock &MBB, MachineBasicBlock::iterator II, const DebugLoc &DL, unsigned *NewImm) const { MipsAnalyzeImmediate AnalyzeImm; const MipsSubtarget &STI = Subtarget; MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); unsigned Size = STI.isABI_N64() ? 64 : 32; unsigned LUi = STI.isABI_N64() ? Mips::LUi64 : Mips::LUi; unsigned ZEROReg = STI.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO; const TargetRegisterClass *RC = STI.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; bool LastInstrIsADDiu = NewImm; const MipsAnalyzeImmediate::InstSeq &Seq = AnalyzeImm.Analyze(Imm, Size, LastInstrIsADDiu); MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin(); assert(Seq.size() && (!LastInstrIsADDiu || (Seq.size() > 1))); // The first instruction can be a LUi, which is different from other // instructions (ADDiu, ORI and SLL) in that it does not have a register // operand. Register Reg = RegInfo.createVirtualRegister(RC); if (Inst->Opc == LUi) BuildMI(MBB, II, DL, get(LUi), Reg).addImm(SignExtend64<16>(Inst->ImmOpnd)); else BuildMI(MBB, II, DL, get(Inst->Opc), Reg).addReg(ZEROReg) .addImm(SignExtend64<16>(Inst->ImmOpnd)); // Build the remaining instructions in Seq. for (++Inst; Inst != Seq.end() - LastInstrIsADDiu; ++Inst) BuildMI(MBB, II, DL, get(Inst->Opc), Reg).addReg(Reg, RegState::Kill) .addImm(SignExtend64<16>(Inst->ImmOpnd)); if (LastInstrIsADDiu) *NewImm = Inst->ImmOpnd; return Reg; } unsigned MipsSEInstrInfo::getAnalyzableBrOpc(unsigned Opc) const { return (Opc == Mips::BEQ || Opc == Mips::BEQ_MM || Opc == Mips::BNE || Opc == Mips::BNE_MM || Opc == Mips::BGTZ || Opc == Mips::BGEZ || Opc == Mips::BLTZ || Opc == Mips::BLEZ || Opc == Mips::BEQ64 || Opc == Mips::BNE64 || Opc == Mips::BGTZ64 || Opc == Mips::BGEZ64 || Opc == Mips::BLTZ64 || Opc == Mips::BLEZ64 || Opc == Mips::BC1T || Opc == Mips::BC1F || Opc == Mips::B || Opc == Mips::J || Opc == Mips::J_MM || Opc == Mips::B_MM || Opc == Mips::BEQZC_MM || Opc == Mips::BNEZC_MM || Opc == Mips::BEQC || Opc == Mips::BNEC || Opc == Mips::BLTC || Opc == Mips::BGEC || Opc == Mips::BLTUC || Opc == Mips::BGEUC || Opc == Mips::BGTZC || Opc == Mips::BLEZC || Opc == Mips::BGEZC || Opc == Mips::BLTZC || Opc == Mips::BEQZC || Opc == Mips::BNEZC || Opc == Mips::BEQZC64 || Opc == Mips::BNEZC64 || Opc == Mips::BEQC64 || Opc == Mips::BNEC64 || Opc == Mips::BGEC64 || Opc == Mips::BGEUC64 || Opc == Mips::BLTC64 || Opc == Mips::BLTUC64 || Opc == Mips::BGTZC64 || Opc == Mips::BGEZC64 || Opc == Mips::BLTZC64 || Opc == Mips::BLEZC64 || Opc == Mips::BC || Opc == Mips::BBIT0 || Opc == Mips::BBIT1 || Opc == Mips::BBIT032 || Opc == Mips::BBIT132 || Opc == Mips::BC_MMR6 || Opc == Mips::BEQC_MMR6 || Opc == Mips::BNEC_MMR6 || Opc == Mips::BLTC_MMR6 || Opc == Mips::BGEC_MMR6 || Opc == Mips::BLTUC_MMR6 || Opc == Mips::BGEUC_MMR6 || Opc == Mips::BGTZC_MMR6 || Opc == Mips::BLEZC_MMR6 || Opc == Mips::BGEZC_MMR6 || Opc == Mips::BLTZC_MMR6 || Opc == Mips::BEQZC_MMR6 || Opc == Mips::BNEZC_MMR6) ? Opc : 0; } void MipsSEInstrInfo::expandRetRA(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { MachineInstrBuilder MIB; if (Subtarget.isGP64bit()) MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Mips::PseudoReturn64)) .addReg(Mips::RA_64, RegState::Undef); else MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Mips::PseudoReturn)) .addReg(Mips::RA, RegState::Undef); // Retain any imp-use flags. for (auto & MO : I->operands()) { if (MO.isImplicit()) MIB.add(MO); } } void MipsSEInstrInfo::expandERet(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { BuildMI(MBB, I, I->getDebugLoc(), get(Mips::ERET)); } std::pair MipsSEInstrInfo::compareOpndSize(unsigned Opc, const MachineFunction &MF) const { const MCInstrDesc &Desc = get(Opc); assert(Desc.NumOperands == 2 && "Unary instruction expected."); const MipsRegisterInfo *RI = &getRegisterInfo(); unsigned DstRegSize = RI->getRegSizeInBits(*getRegClass(Desc, 0, RI, MF)); unsigned SrcRegSize = RI->getRegSizeInBits(*getRegClass(Desc, 1, RI, MF)); return std::make_pair(DstRegSize > SrcRegSize, DstRegSize < SrcRegSize); } void MipsSEInstrInfo::expandPseudoMFHiLo(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned NewOpc) const { BuildMI(MBB, I, I->getDebugLoc(), get(NewOpc), I->getOperand(0).getReg()); } void MipsSEInstrInfo::expandPseudoMTLoHi(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned LoOpc, unsigned HiOpc, bool HasExplicitDef) const { // Expand // lo_hi pseudomtlohi $gpr0, $gpr1 // to these two instructions: // mtlo $gpr0 // mthi $gpr1 DebugLoc DL = I->getDebugLoc(); const MachineOperand &SrcLo = I->getOperand(1), &SrcHi = I->getOperand(2); MachineInstrBuilder LoInst = BuildMI(MBB, I, DL, get(LoOpc)); MachineInstrBuilder HiInst = BuildMI(MBB, I, DL, get(HiOpc)); // Add lo/hi registers if the mtlo/hi instructions created have explicit // def registers. if (HasExplicitDef) { Register DstReg = I->getOperand(0).getReg(); Register DstLo = getRegisterInfo().getSubReg(DstReg, Mips::sub_lo); Register DstHi = getRegisterInfo().getSubReg(DstReg, Mips::sub_hi); LoInst.addReg(DstLo, RegState::Define); HiInst.addReg(DstHi, RegState::Define); } LoInst.addReg(SrcLo.getReg(), getKillRegState(SrcLo.isKill())); HiInst.addReg(SrcHi.getReg(), getKillRegState(SrcHi.isKill())); } void MipsSEInstrInfo::expandCvtFPInt(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned CvtOpc, unsigned MovOpc, bool IsI64) const { const MCInstrDesc &CvtDesc = get(CvtOpc), &MovDesc = get(MovOpc); const MachineOperand &Dst = I->getOperand(0), &Src = I->getOperand(1); unsigned DstReg = Dst.getReg(), SrcReg = Src.getReg(), TmpReg = DstReg; unsigned KillSrc = getKillRegState(Src.isKill()); DebugLoc DL = I->getDebugLoc(); bool DstIsLarger, SrcIsLarger; std::tie(DstIsLarger, SrcIsLarger) = compareOpndSize(CvtOpc, *MBB.getParent()); if (DstIsLarger) TmpReg = getRegisterInfo().getSubReg(DstReg, Mips::sub_lo); if (SrcIsLarger) DstReg = getRegisterInfo().getSubReg(DstReg, Mips::sub_lo); BuildMI(MBB, I, DL, MovDesc, TmpReg).addReg(SrcReg, KillSrc); BuildMI(MBB, I, DL, CvtDesc, DstReg).addReg(TmpReg, RegState::Kill); } void MipsSEInstrInfo::expandExtractElementF64(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, bool isMicroMips, bool FP64) const { Register DstReg = I->getOperand(0).getReg(); Register SrcReg = I->getOperand(1).getReg(); unsigned N = I->getOperand(2).getImm(); DebugLoc dl = I->getDebugLoc(); assert(N < 2 && "Invalid immediate"); unsigned SubIdx = N ? Mips::sub_hi : Mips::sub_lo; Register SubReg = getRegisterInfo().getSubReg(SrcReg, SubIdx); // FPXX on MIPS-II or MIPS32r1 should have been handled with a spill/reload // in MipsSEFrameLowering.cpp. assert(!(Subtarget.isABI_FPXX() && !Subtarget.hasMips32r2())); // FP64A (FP64 with nooddspreg) should have been handled with a spill/reload // in MipsSEFrameLowering.cpp. assert(!(Subtarget.isFP64bit() && !Subtarget.useOddSPReg())); if (SubIdx == Mips::sub_hi && Subtarget.hasMTHC1()) { // FIXME: Strictly speaking MFHC1 only reads the top 32-bits however, we // claim to read the whole 64-bits as part of a white lie used to // temporarily work around a widespread bug in the -mfp64 support. // The problem is that none of the 32-bit fpu ops mention the fact // that they clobber the upper 32-bits of the 64-bit FPR. Fixing that // requires a major overhaul of the FPU implementation which can't // be done right now due to time constraints. // MFHC1 is one of two instructions that are affected since they are // the only instructions that don't read the lower 32-bits. // We therefore pretend that it reads the bottom 32-bits to // artificially create a dependency and prevent the scheduler // changing the behaviour of the code. BuildMI(MBB, I, dl, get(isMicroMips ? (FP64 ? Mips::MFHC1_D64_MM : Mips::MFHC1_D32_MM) : (FP64 ? Mips::MFHC1_D64 : Mips::MFHC1_D32)), DstReg) .addReg(SrcReg); } else BuildMI(MBB, I, dl, get(Mips::MFC1), DstReg).addReg(SubReg); } void MipsSEInstrInfo::expandBuildPairF64(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, bool isMicroMips, bool FP64) const { Register DstReg = I->getOperand(0).getReg(); unsigned LoReg = I->getOperand(1).getReg(), HiReg = I->getOperand(2).getReg(); const MCInstrDesc& Mtc1Tdd = get(Mips::MTC1); DebugLoc dl = I->getDebugLoc(); const TargetRegisterInfo &TRI = getRegisterInfo(); // When mthc1 is available, use: // mtc1 Lo, $fp // mthc1 Hi, $fp // // Otherwise, for O32 FPXX ABI: // spill + reload via ldc1 // This case is handled by the frame lowering code. // // Otherwise, for FP32: // mtc1 Lo, $fp // mtc1 Hi, $fp + 1 // // The case where dmtc1 is available doesn't need to be handled here // because it never creates a BuildPairF64 node. // FPXX on MIPS-II or MIPS32r1 should have been handled with a spill/reload // in MipsSEFrameLowering.cpp. assert(!(Subtarget.isABI_FPXX() && !Subtarget.hasMips32r2())); // FP64A (FP64 with nooddspreg) should have been handled with a spill/reload // in MipsSEFrameLowering.cpp. assert(!(Subtarget.isFP64bit() && !Subtarget.useOddSPReg())); BuildMI(MBB, I, dl, Mtc1Tdd, TRI.getSubReg(DstReg, Mips::sub_lo)) .addReg(LoReg); if (Subtarget.hasMTHC1()) { // FIXME: The .addReg(DstReg) is a white lie used to temporarily work // around a widespread bug in the -mfp64 support. // The problem is that none of the 32-bit fpu ops mention the fact // that they clobber the upper 32-bits of the 64-bit FPR. Fixing that // requires a major overhaul of the FPU implementation which can't // be done right now due to time constraints. // MTHC1 is one of two instructions that are affected since they are // the only instructions that don't read the lower 32-bits. // We therefore pretend that it reads the bottom 32-bits to // artificially create a dependency and prevent the scheduler // changing the behaviour of the code. BuildMI(MBB, I, dl, get(isMicroMips ? (FP64 ? Mips::MTHC1_D64_MM : Mips::MTHC1_D32_MM) : (FP64 ? Mips::MTHC1_D64 : Mips::MTHC1_D32)), DstReg) .addReg(DstReg) .addReg(HiReg); } else if (Subtarget.isABI_FPXX()) llvm_unreachable("BuildPairF64 not expanded in frame lowering code!"); else BuildMI(MBB, I, dl, Mtc1Tdd, TRI.getSubReg(DstReg, Mips::sub_hi)) .addReg(HiReg); } void MipsSEInstrInfo::expandEhReturn(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { // This pseudo instruction is generated as part of the lowering of // ISD::EH_RETURN. We convert it to a stack increment by OffsetReg, and // indirect jump to TargetReg MipsABIInfo ABI = Subtarget.getABI(); unsigned ADDU = ABI.GetPtrAdduOp(); unsigned SP = Subtarget.isGP64bit() ? Mips::SP_64 : Mips::SP; unsigned RA = Subtarget.isGP64bit() ? Mips::RA_64 : Mips::RA; unsigned T9 = Subtarget.isGP64bit() ? Mips::T9_64 : Mips::T9; unsigned ZERO = Subtarget.isGP64bit() ? Mips::ZERO_64 : Mips::ZERO; Register OffsetReg = I->getOperand(0).getReg(); Register TargetReg = I->getOperand(1).getReg(); // addu $ra, $v0, $zero // addu $sp, $sp, $v1 // jr $ra (via RetRA) const TargetMachine &TM = MBB.getParent()->getTarget(); if (TM.isPositionIndependent()) BuildMI(MBB, I, I->getDebugLoc(), get(ADDU), T9) .addReg(TargetReg) .addReg(ZERO); BuildMI(MBB, I, I->getDebugLoc(), get(ADDU), RA) .addReg(TargetReg) .addReg(ZERO); BuildMI(MBB, I, I->getDebugLoc(), get(ADDU), SP).addReg(SP).addReg(OffsetReg); expandRetRA(MBB, I); } const MipsInstrInfo *llvm::createMipsSEInstrInfo(const MipsSubtarget &STI) { return new MipsSEInstrInfo(STI); }