//===- MipsDelaySlotFiller.cpp - Mips Delay Slot Filler -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Simple pass to fill delay slots with useful instructions. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/MipsMCNaCl.h" #include "Mips.h" #include "MipsInstrInfo.h" #include "MipsRegisterInfo.h" #include "MipsSubtarget.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "mips-delay-slot-filler" STATISTIC(FilledSlots, "Number of delay slots filled"); STATISTIC(UsefulSlots, "Number of delay slots filled with instructions that" " are not NOP."); static cl::opt DisableDelaySlotFiller( "disable-mips-delay-filler", cl::init(false), cl::desc("Fill all delay slots with NOPs."), cl::Hidden); static cl::opt DisableForwardSearch( "disable-mips-df-forward-search", cl::init(true), cl::desc("Disallow MIPS delay filler to search forward."), cl::Hidden); static cl::opt DisableSuccBBSearch( "disable-mips-df-succbb-search", cl::init(true), cl::desc("Disallow MIPS delay filler to search successor basic blocks."), cl::Hidden); static cl::opt DisableBackwardSearch( "disable-mips-df-backward-search", cl::init(false), cl::desc("Disallow MIPS delay filler to search backward."), cl::Hidden); enum CompactBranchPolicy { CB_Never, ///< The policy 'never' may in some circumstances or for some ///< ISAs not be absolutely adhered to. CB_Optimal, ///< Optimal is the default and will produce compact branches ///< when delay slots cannot be filled. CB_Always ///< 'always' may in some circumstances may not be ///< absolutely adhered to there may not be a corresponding ///< compact form of a branch. }; static cl::opt MipsCompactBranchPolicy( "mips-compact-branches", cl::Optional, cl::init(CB_Optimal), cl::desc("MIPS Specific: Compact branch policy."), cl::values(clEnumValN(CB_Never, "never", "Do not use compact branches if possible."), clEnumValN(CB_Optimal, "optimal", "Use compact branches where appropriate (default)."), clEnumValN(CB_Always, "always", "Always use compact branches if possible."))); namespace { using Iter = MachineBasicBlock::iterator; using ReverseIter = MachineBasicBlock::reverse_iterator; using BB2BrMap = SmallDenseMap; class RegDefsUses { public: RegDefsUses(const TargetRegisterInfo &TRI); void init(const MachineInstr &MI); /// This function sets all caller-saved registers in Defs. void setCallerSaved(const MachineInstr &MI); /// This function sets all unallocatable registers in Defs. void setUnallocatableRegs(const MachineFunction &MF); /// Set bits in Uses corresponding to MBB's live-out registers except for /// the registers that are live-in to SuccBB. void addLiveOut(const MachineBasicBlock &MBB, const MachineBasicBlock &SuccBB); bool update(const MachineInstr &MI, unsigned Begin, unsigned End); private: bool checkRegDefsUses(BitVector &NewDefs, BitVector &NewUses, unsigned Reg, bool IsDef) const; /// Returns true if Reg or its alias is in RegSet. bool isRegInSet(const BitVector &RegSet, unsigned Reg) const; const TargetRegisterInfo &TRI; BitVector Defs, Uses; }; /// Base class for inspecting loads and stores. class InspectMemInstr { public: InspectMemInstr(bool ForbidMemInstr_) : ForbidMemInstr(ForbidMemInstr_) {} virtual ~InspectMemInstr() = default; /// Return true if MI cannot be moved to delay slot. bool hasHazard(const MachineInstr &MI); protected: /// Flags indicating whether loads or stores have been seen. bool OrigSeenLoad = false; bool OrigSeenStore = false; bool SeenLoad = false; bool SeenStore = false; /// Memory instructions are not allowed to move to delay slot if this flag /// is true. bool ForbidMemInstr; private: virtual bool hasHazard_(const MachineInstr &MI) = 0; }; /// This subclass rejects any memory instructions. class NoMemInstr : public InspectMemInstr { public: NoMemInstr() : InspectMemInstr(true) {} private: bool hasHazard_(const MachineInstr &MI) override { return true; } }; /// This subclass accepts loads from stacks and constant loads. class LoadFromStackOrConst : public InspectMemInstr { public: LoadFromStackOrConst() : InspectMemInstr(false) {} private: bool hasHazard_(const MachineInstr &MI) override; }; /// This subclass uses memory dependence information to determine whether a /// memory instruction can be moved to a delay slot. class MemDefsUses : public InspectMemInstr { public: explicit MemDefsUses(const MachineFrameInfo *MFI); private: using ValueType = PointerUnion; bool hasHazard_(const MachineInstr &MI) override; /// Update Defs and Uses. Return true if there exist dependences that /// disqualify the delay slot candidate between V and values in Uses and /// Defs. bool updateDefsUses(ValueType V, bool MayStore); /// Get the list of underlying objects of MI's memory operand. bool getUnderlyingObjects(const MachineInstr &MI, SmallVectorImpl &Objects) const; const MachineFrameInfo *MFI; SmallPtrSet Uses, Defs; /// Flags indicating whether loads or stores with no underlying objects have /// been seen. bool SeenNoObjLoad = false; bool SeenNoObjStore = false; }; class MipsDelaySlotFiller : public MachineFunctionPass { public: MipsDelaySlotFiller() : MachineFunctionPass(ID) { initializeMipsDelaySlotFillerPass(*PassRegistry::getPassRegistry()); } StringRef getPassName() const override { return "Mips Delay Slot Filler"; } bool runOnMachineFunction(MachineFunction &F) override { TM = &F.getTarget(); bool Changed = false; for (MachineBasicBlock &MBB : F) Changed |= runOnMachineBasicBlock(MBB); // This pass invalidates liveness information when it reorders // instructions to fill delay slot. Without this, -verify-machineinstrs // will fail. if (Changed) F.getRegInfo().invalidateLiveness(); return Changed; } MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } static char ID; private: bool runOnMachineBasicBlock(MachineBasicBlock &MBB); Iter replaceWithCompactBranch(MachineBasicBlock &MBB, Iter Branch, const DebugLoc &DL); /// This function checks if it is valid to move Candidate to the delay slot /// and returns true if it isn't. It also updates memory and register /// dependence information. bool delayHasHazard(const MachineInstr &Candidate, RegDefsUses &RegDU, InspectMemInstr &IM) const; /// This function searches range [Begin, End) for an instruction that can be /// moved to the delay slot. Returns true on success. template bool searchRange(MachineBasicBlock &MBB, IterTy Begin, IterTy End, RegDefsUses &RegDU, InspectMemInstr &IM, Iter Slot, IterTy &Filler) const; /// This function searches in the backward direction for an instruction that /// can be moved to the delay slot. Returns true on success. bool searchBackward(MachineBasicBlock &MBB, MachineInstr &Slot) const; /// This function searches MBB in the forward direction for an instruction /// that can be moved to the delay slot. Returns true on success. bool searchForward(MachineBasicBlock &MBB, Iter Slot) const; /// This function searches one of MBB's successor blocks for an instruction /// that can be moved to the delay slot and inserts clones of the /// instruction into the successor's predecessor blocks. bool searchSuccBBs(MachineBasicBlock &MBB, Iter Slot) const; /// Pick a successor block of MBB. Return NULL if MBB doesn't have a /// successor block that is not a landing pad. MachineBasicBlock *selectSuccBB(MachineBasicBlock &B) const; /// This function analyzes MBB and returns an instruction with an unoccupied /// slot that branches to Dst. std::pair getBranch(MachineBasicBlock &MBB, const MachineBasicBlock &Dst) const; /// Examine Pred and see if it is possible to insert an instruction into /// one of its branches delay slot or its end. bool examinePred(MachineBasicBlock &Pred, const MachineBasicBlock &Succ, RegDefsUses &RegDU, bool &HasMultipleSuccs, BB2BrMap &BrMap) const; bool terminateSearch(const MachineInstr &Candidate) const; const TargetMachine *TM = nullptr; }; } // end anonymous namespace char MipsDelaySlotFiller::ID = 0; static bool hasUnoccupiedSlot(const MachineInstr *MI) { return MI->hasDelaySlot() && !MI->isBundledWithSucc(); } INITIALIZE_PASS(MipsDelaySlotFiller, DEBUG_TYPE, "Fill delay slot for MIPS", false, false) /// This function inserts clones of Filler into predecessor blocks. static void insertDelayFiller(Iter Filler, const BB2BrMap &BrMap) { MachineFunction *MF = Filler->getParent()->getParent(); for (const auto &I : BrMap) { if (I.second) { MIBundleBuilder(I.second).append(MF->CloneMachineInstr(&*Filler)); ++UsefulSlots; } else { I.first->push_back(MF->CloneMachineInstr(&*Filler)); } } } /// This function adds registers Filler defines to MBB's live-in register list. static void addLiveInRegs(Iter Filler, MachineBasicBlock &MBB) { for (const MachineOperand &MO : Filler->operands()) { unsigned R; if (!MO.isReg() || !MO.isDef() || !(R = MO.getReg())) continue; #ifndef NDEBUG const MachineFunction &MF = *MBB.getParent(); assert(MF.getSubtarget().getRegisterInfo()->getAllocatableSet(MF).test(R) && "Shouldn't move an instruction with unallocatable registers across " "basic block boundaries."); #endif if (!MBB.isLiveIn(R)) MBB.addLiveIn(R); } } RegDefsUses::RegDefsUses(const TargetRegisterInfo &TRI) : TRI(TRI), Defs(TRI.getNumRegs(), false), Uses(TRI.getNumRegs(), false) {} void RegDefsUses::init(const MachineInstr &MI) { // Add all register operands which are explicit and non-variadic. update(MI, 0, MI.getDesc().getNumOperands()); // If MI is a call, add RA to Defs to prevent users of RA from going into // delay slot. if (MI.isCall()) Defs.set(Mips::RA); // Add all implicit register operands of branch instructions except // register AT. if (MI.isBranch()) { update(MI, MI.getDesc().getNumOperands(), MI.getNumOperands()); Defs.reset(Mips::AT); } } void RegDefsUses::setCallerSaved(const MachineInstr &MI) { assert(MI.isCall()); // Add RA/RA_64 to Defs to prevent users of RA/RA_64 from going into // the delay slot. The reason is that RA/RA_64 must not be changed // in the delay slot so that the callee can return to the caller. if (MI.definesRegister(Mips::RA) || MI.definesRegister(Mips::RA_64)) { Defs.set(Mips::RA); Defs.set(Mips::RA_64); } // If MI is a call, add all caller-saved registers to Defs. BitVector CallerSavedRegs(TRI.getNumRegs(), true); CallerSavedRegs.reset(Mips::ZERO); CallerSavedRegs.reset(Mips::ZERO_64); for (const MCPhysReg *R = TRI.getCalleeSavedRegs(MI.getParent()->getParent()); *R; ++R) for (MCRegAliasIterator AI(*R, &TRI, true); AI.isValid(); ++AI) CallerSavedRegs.reset(*AI); Defs |= CallerSavedRegs; } void RegDefsUses::setUnallocatableRegs(const MachineFunction &MF) { BitVector AllocSet = TRI.getAllocatableSet(MF); for (unsigned R : AllocSet.set_bits()) for (MCRegAliasIterator AI(R, &TRI, false); AI.isValid(); ++AI) AllocSet.set(*AI); AllocSet.set(Mips::ZERO); AllocSet.set(Mips::ZERO_64); Defs |= AllocSet.flip(); } void RegDefsUses::addLiveOut(const MachineBasicBlock &MBB, const MachineBasicBlock &SuccBB) { for (const MachineBasicBlock *S : MBB.successors()) if (S != &SuccBB) for (const auto &LI : S->liveins()) Uses.set(LI.PhysReg); } bool RegDefsUses::update(const MachineInstr &MI, unsigned Begin, unsigned End) { BitVector NewDefs(TRI.getNumRegs()), NewUses(TRI.getNumRegs()); bool HasHazard = false; for (unsigned I = Begin; I != End; ++I) { const MachineOperand &MO = MI.getOperand(I); if (MO.isReg() && MO.getReg()) { if (checkRegDefsUses(NewDefs, NewUses, MO.getReg(), MO.isDef())) { LLVM_DEBUG(dbgs() << DEBUG_TYPE ": found register hazard for operand " << I << ": "; MO.dump()); HasHazard = true; } } } Defs |= NewDefs; Uses |= NewUses; return HasHazard; } bool RegDefsUses::checkRegDefsUses(BitVector &NewDefs, BitVector &NewUses, unsigned Reg, bool IsDef) const { if (IsDef) { NewDefs.set(Reg); // check whether Reg has already been defined or used. return (isRegInSet(Defs, Reg) || isRegInSet(Uses, Reg)); } NewUses.set(Reg); // check whether Reg has already been defined. return isRegInSet(Defs, Reg); } bool RegDefsUses::isRegInSet(const BitVector &RegSet, unsigned Reg) const { // Check Reg and all aliased Registers. for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) if (RegSet.test(*AI)) return true; return false; } bool InspectMemInstr::hasHazard(const MachineInstr &MI) { if (!MI.mayStore() && !MI.mayLoad()) return false; if (ForbidMemInstr) return true; OrigSeenLoad = SeenLoad; OrigSeenStore = SeenStore; SeenLoad |= MI.mayLoad(); SeenStore |= MI.mayStore(); // If MI is an ordered or volatile memory reference, disallow moving // subsequent loads and stores to delay slot. if (MI.hasOrderedMemoryRef() && (OrigSeenLoad || OrigSeenStore)) { ForbidMemInstr = true; return true; } return hasHazard_(MI); } bool LoadFromStackOrConst::hasHazard_(const MachineInstr &MI) { if (MI.mayStore()) return true; if (!MI.hasOneMemOperand() || !(*MI.memoperands_begin())->getPseudoValue()) return true; if (const PseudoSourceValue *PSV = (*MI.memoperands_begin())->getPseudoValue()) { if (isa(PSV)) return false; return !PSV->isConstant(nullptr) && !PSV->isStack(); } return true; } MemDefsUses::MemDefsUses(const MachineFrameInfo *MFI_) : InspectMemInstr(false), MFI(MFI_) {} bool MemDefsUses::hasHazard_(const MachineInstr &MI) { bool HasHazard = false; // Check underlying object list. SmallVector Objs; if (getUnderlyingObjects(MI, Objs)) { for (ValueType VT : Objs) HasHazard |= updateDefsUses(VT, MI.mayStore()); return HasHazard; } // No underlying objects found. HasHazard = MI.mayStore() && (OrigSeenLoad || OrigSeenStore); HasHazard |= MI.mayLoad() || OrigSeenStore; SeenNoObjLoad |= MI.mayLoad(); SeenNoObjStore |= MI.mayStore(); return HasHazard; } bool MemDefsUses::updateDefsUses(ValueType V, bool MayStore) { if (MayStore) return !Defs.insert(V).second || Uses.count(V) || SeenNoObjStore || SeenNoObjLoad; Uses.insert(V); return Defs.count(V) || SeenNoObjStore; } bool MemDefsUses:: getUnderlyingObjects(const MachineInstr &MI, SmallVectorImpl &Objects) const { if (!MI.hasOneMemOperand()) return false; auto & MMO = **MI.memoperands_begin(); if (const PseudoSourceValue *PSV = MMO.getPseudoValue()) { if (!PSV->isAliased(MFI)) return false; Objects.push_back(PSV); return true; } if (const Value *V = MMO.getValue()) { SmallVector Objs; ::getUnderlyingObjects(V, Objs); for (const Value *UValue : Objs) { if (!isIdentifiedObject(V)) return false; Objects.push_back(UValue); } return true; } return false; } // Replace Branch with the compact branch instruction. Iter MipsDelaySlotFiller::replaceWithCompactBranch(MachineBasicBlock &MBB, Iter Branch, const DebugLoc &DL) { const MipsSubtarget &STI = MBB.getParent()->getSubtarget(); const MipsInstrInfo *TII = STI.getInstrInfo(); unsigned NewOpcode = TII->getEquivalentCompactForm(Branch); Branch = TII->genInstrWithNewOpc(NewOpcode, Branch); auto *ToErase = cast(&*std::next(Branch)); // Update call site info for the Branch. if (ToErase->shouldUpdateCallSiteInfo()) ToErase->getMF()->moveCallSiteInfo(ToErase, cast(&*Branch)); ToErase->eraseFromParent(); return Branch; } // For given opcode returns opcode of corresponding instruction with short // delay slot. // For the pseudo TAILCALL*_MM instructions return the short delay slot // form. Unfortunately, TAILCALL<->b16 is denied as b16 has a limited range // that is too short to make use of for tail calls. static int getEquivalentCallShort(int Opcode) { switch (Opcode) { case Mips::BGEZAL: return Mips::BGEZALS_MM; case Mips::BLTZAL: return Mips::BLTZALS_MM; case Mips::JAL: case Mips::JAL_MM: return Mips::JALS_MM; case Mips::JALR: return Mips::JALRS_MM; case Mips::JALR16_MM: return Mips::JALRS16_MM; case Mips::TAILCALL_MM: llvm_unreachable("Attempting to shorten the TAILCALL_MM pseudo!"); case Mips::TAILCALLREG: return Mips::JR16_MM; default: llvm_unreachable("Unexpected call instruction for microMIPS."); } } /// runOnMachineBasicBlock - Fill in delay slots for the given basic block. /// We assume there is only one delay slot per delayed instruction. bool MipsDelaySlotFiller::runOnMachineBasicBlock(MachineBasicBlock &MBB) { bool Changed = false; const MipsSubtarget &STI = MBB.getParent()->getSubtarget(); bool InMicroMipsMode = STI.inMicroMipsMode(); const MipsInstrInfo *TII = STI.getInstrInfo(); for (Iter I = MBB.begin(); I != MBB.end(); ++I) { if (!hasUnoccupiedSlot(&*I)) continue; // Delay slot filling is disabled at -O0, or in microMIPS32R6. if (!DisableDelaySlotFiller && (TM->getOptLevel() != CodeGenOptLevel::None) && !(InMicroMipsMode && STI.hasMips32r6())) { bool Filled = false; if (MipsCompactBranchPolicy.getValue() != CB_Always || !TII->getEquivalentCompactForm(I)) { if (searchBackward(MBB, *I)) { LLVM_DEBUG(dbgs() << DEBUG_TYPE ": found instruction for delay slot" " in backwards search.\n"); Filled = true; } else if (I->isTerminator()) { if (searchSuccBBs(MBB, I)) { Filled = true; LLVM_DEBUG(dbgs() << DEBUG_TYPE ": found instruction for delay slot" " in successor BB search.\n"); } } else if (searchForward(MBB, I)) { LLVM_DEBUG(dbgs() << DEBUG_TYPE ": found instruction for delay slot" " in forwards search.\n"); Filled = true; } } if (Filled) { // Get instruction with delay slot. MachineBasicBlock::instr_iterator DSI = I.getInstrIterator(); if (InMicroMipsMode && TII->getInstSizeInBytes(*std::next(DSI)) == 2 && DSI->isCall()) { // If instruction in delay slot is 16b change opcode to // corresponding instruction with short delay slot. // TODO: Implement an instruction mapping table of 16bit opcodes to // 32bit opcodes so that an instruction can be expanded. This would // save 16 bits as a TAILCALL_MM pseudo requires a fullsized nop. // TODO: Permit b16 when branching backwards to the same function // if it is in range. DSI->setDesc(TII->get(getEquivalentCallShort(DSI->getOpcode()))); } ++FilledSlots; Changed = true; continue; } } // For microMIPS if instruction is BEQ or BNE with one ZERO register, then // instead of adding NOP replace this instruction with the corresponding // compact branch instruction, i.e. BEQZC or BNEZC. Additionally // PseudoReturn and PseudoIndirectBranch are expanded to JR_MM, so they can // be replaced with JRC16_MM. // For MIPSR6 attempt to produce the corresponding compact (no delay slot) // form of the CTI. For indirect jumps this will not require inserting a // NOP and for branches will hopefully avoid requiring a NOP. if ((InMicroMipsMode || (STI.hasMips32r6() && MipsCompactBranchPolicy != CB_Never)) && TII->getEquivalentCompactForm(I)) { I = replaceWithCompactBranch(MBB, I, I->getDebugLoc()); Changed = true; continue; } // Bundle the NOP to the instruction with the delay slot. LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": could not fill delay slot for "; I->dump()); TII->insertNop(MBB, std::next(I), I->getDebugLoc()); MIBundleBuilder(MBB, I, std::next(I, 2)); ++FilledSlots; Changed = true; } return Changed; } template bool MipsDelaySlotFiller::searchRange(MachineBasicBlock &MBB, IterTy Begin, IterTy End, RegDefsUses &RegDU, InspectMemInstr &IM, Iter Slot, IterTy &Filler) const { for (IterTy I = Begin; I != End;) { IterTy CurrI = I; ++I; LLVM_DEBUG(dbgs() << DEBUG_TYPE ": checking instruction: "; CurrI->dump()); // skip debug value if (CurrI->isDebugInstr()) { LLVM_DEBUG(dbgs() << DEBUG_TYPE ": ignoring debug instruction: "; CurrI->dump()); continue; } if (CurrI->isBundle()) { LLVM_DEBUG(dbgs() << DEBUG_TYPE ": ignoring BUNDLE instruction: "; CurrI->dump()); // However, we still need to update the register def-use information. RegDU.update(*CurrI, 0, CurrI->getNumOperands()); continue; } if (terminateSearch(*CurrI)) { LLVM_DEBUG(dbgs() << DEBUG_TYPE ": should terminate search: "; CurrI->dump()); break; } assert((!CurrI->isCall() && !CurrI->isReturn() && !CurrI->isBranch()) && "Cannot put calls, returns or branches in delay slot."); if (CurrI->isKill()) { CurrI->eraseFromParent(); continue; } if (delayHasHazard(*CurrI, RegDU, IM)) continue; const MipsSubtarget &STI = MBB.getParent()->getSubtarget(); if (STI.isTargetNaCl()) { // In NaCl, instructions that must be masked are forbidden in delay slots. // We only check for loads, stores and SP changes. Calls, returns and // branches are not checked because non-NaCl targets never put them in // delay slots. unsigned AddrIdx; if ((isBasePlusOffsetMemoryAccess(CurrI->getOpcode(), &AddrIdx) && baseRegNeedsLoadStoreMask(CurrI->getOperand(AddrIdx).getReg())) || CurrI->modifiesRegister(Mips::SP, STI.getRegisterInfo())) continue; } bool InMicroMipsMode = STI.inMicroMipsMode(); const MipsInstrInfo *TII = STI.getInstrInfo(); unsigned Opcode = (*Slot).getOpcode(); // This is complicated by the tail call optimization. For non-PIC code // there is only a 32bit sized unconditional branch which can be assumed // to be able to reach the target. b16 only has a range of +/- 1 KB. // It's entirely possible that the target function is reachable with b16 // but we don't have enough information to make that decision. if (InMicroMipsMode && TII->getInstSizeInBytes(*CurrI) == 2 && (Opcode == Mips::JR || Opcode == Mips::PseudoIndirectBranch || Opcode == Mips::PseudoIndirectBranch_MM || Opcode == Mips::PseudoReturn || Opcode == Mips::TAILCALL)) continue; // Instructions LWP/SWP and MOVEP should not be in a delay slot as that // results in unpredictable behaviour if (InMicroMipsMode && (Opcode == Mips::LWP_MM || Opcode == Mips::SWP_MM || Opcode == Mips::MOVEP_MM)) continue; Filler = CurrI; LLVM_DEBUG(dbgs() << DEBUG_TYPE ": found instruction for delay slot: "; CurrI->dump()); return true; } return false; } bool MipsDelaySlotFiller::searchBackward(MachineBasicBlock &MBB, MachineInstr &Slot) const { if (DisableBackwardSearch) return false; auto *Fn = MBB.getParent(); RegDefsUses RegDU(*Fn->getSubtarget().getRegisterInfo()); MemDefsUses MemDU(&Fn->getFrameInfo()); ReverseIter Filler; RegDU.init(Slot); MachineBasicBlock::iterator SlotI = Slot; if (!searchRange(MBB, ++SlotI.getReverse(), MBB.rend(), RegDU, MemDU, Slot, Filler)) { LLVM_DEBUG(dbgs() << DEBUG_TYPE ": could not find instruction for delay " "slot using backwards search.\n"); return false; } MBB.splice(std::next(SlotI), &MBB, Filler.getReverse()); MIBundleBuilder(MBB, SlotI, std::next(SlotI, 2)); ++UsefulSlots; return true; } bool MipsDelaySlotFiller::searchForward(MachineBasicBlock &MBB, Iter Slot) const { // Can handle only calls. if (DisableForwardSearch || !Slot->isCall()) return false; RegDefsUses RegDU(*MBB.getParent()->getSubtarget().getRegisterInfo()); NoMemInstr NM; Iter Filler; RegDU.setCallerSaved(*Slot); if (!searchRange(MBB, std::next(Slot), MBB.end(), RegDU, NM, Slot, Filler)) { LLVM_DEBUG(dbgs() << DEBUG_TYPE ": could not find instruction for delay " "slot using forwards search.\n"); return false; } MBB.splice(std::next(Slot), &MBB, Filler); MIBundleBuilder(MBB, Slot, std::next(Slot, 2)); ++UsefulSlots; return true; } bool MipsDelaySlotFiller::searchSuccBBs(MachineBasicBlock &MBB, Iter Slot) const { if (DisableSuccBBSearch) return false; MachineBasicBlock *SuccBB = selectSuccBB(MBB); if (!SuccBB) return false; RegDefsUses RegDU(*MBB.getParent()->getSubtarget().getRegisterInfo()); bool HasMultipleSuccs = false; BB2BrMap BrMap; std::unique_ptr IM; Iter Filler; auto *Fn = MBB.getParent(); // Iterate over SuccBB's predecessor list. for (MachineBasicBlock *Pred : SuccBB->predecessors()) if (!examinePred(*Pred, *SuccBB, RegDU, HasMultipleSuccs, BrMap)) return false; // Do not allow moving instructions which have unallocatable register operands // across basic block boundaries. RegDU.setUnallocatableRegs(*Fn); // Only allow moving loads from stack or constants if any of the SuccBB's // predecessors have multiple successors. if (HasMultipleSuccs) { IM.reset(new LoadFromStackOrConst()); } else { const MachineFrameInfo &MFI = Fn->getFrameInfo(); IM.reset(new MemDefsUses(&MFI)); } if (!searchRange(MBB, SuccBB->begin(), SuccBB->end(), RegDU, *IM, Slot, Filler)) return false; insertDelayFiller(Filler, BrMap); addLiveInRegs(Filler, *SuccBB); Filler->eraseFromParent(); return true; } MachineBasicBlock * MipsDelaySlotFiller::selectSuccBB(MachineBasicBlock &B) const { if (B.succ_empty()) return nullptr; // Select the successor with the larget edge weight. auto &Prob = getAnalysis(); MachineBasicBlock *S = *std::max_element( B.succ_begin(), B.succ_end(), [&](const MachineBasicBlock *Dst0, const MachineBasicBlock *Dst1) { return Prob.getEdgeProbability(&B, Dst0) < Prob.getEdgeProbability(&B, Dst1); }); return S->isEHPad() ? nullptr : S; } std::pair MipsDelaySlotFiller::getBranch(MachineBasicBlock &MBB, const MachineBasicBlock &Dst) const { const MipsInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); MachineBasicBlock *TrueBB = nullptr, *FalseBB = nullptr; SmallVector BranchInstrs; SmallVector Cond; MipsInstrInfo::BranchType R = TII->analyzeBranch(MBB, TrueBB, FalseBB, Cond, false, BranchInstrs); if ((R == MipsInstrInfo::BT_None) || (R == MipsInstrInfo::BT_NoBranch)) return std::make_pair(R, nullptr); if (R != MipsInstrInfo::BT_CondUncond) { if (!hasUnoccupiedSlot(BranchInstrs[0])) return std::make_pair(MipsInstrInfo::BT_None, nullptr); assert(((R != MipsInstrInfo::BT_Uncond) || (TrueBB == &Dst))); return std::make_pair(R, BranchInstrs[0]); } assert((TrueBB == &Dst) || (FalseBB == &Dst)); // Examine the conditional branch. See if its slot is occupied. if (hasUnoccupiedSlot(BranchInstrs[0])) return std::make_pair(MipsInstrInfo::BT_Cond, BranchInstrs[0]); // If that fails, try the unconditional branch. if (hasUnoccupiedSlot(BranchInstrs[1]) && (FalseBB == &Dst)) return std::make_pair(MipsInstrInfo::BT_Uncond, BranchInstrs[1]); return std::make_pair(MipsInstrInfo::BT_None, nullptr); } bool MipsDelaySlotFiller::examinePred(MachineBasicBlock &Pred, const MachineBasicBlock &Succ, RegDefsUses &RegDU, bool &HasMultipleSuccs, BB2BrMap &BrMap) const { std::pair P = getBranch(Pred, Succ); // Return if either getBranch wasn't able to analyze the branches or there // were no branches with unoccupied slots. if (P.first == MipsInstrInfo::BT_None) return false; if ((P.first != MipsInstrInfo::BT_Uncond) && (P.first != MipsInstrInfo::BT_NoBranch)) { HasMultipleSuccs = true; RegDU.addLiveOut(Pred, Succ); } BrMap[&Pred] = P.second; return true; } bool MipsDelaySlotFiller::delayHasHazard(const MachineInstr &Candidate, RegDefsUses &RegDU, InspectMemInstr &IM) const { assert(!Candidate.isKill() && "KILL instructions should have been eliminated at this point."); bool HasHazard = Candidate.isImplicitDef(); HasHazard |= IM.hasHazard(Candidate); HasHazard |= RegDU.update(Candidate, 0, Candidate.getNumOperands()); return HasHazard; } bool MipsDelaySlotFiller::terminateSearch(const MachineInstr &Candidate) const { return (Candidate.isTerminator() || Candidate.isCall() || Candidate.isPosition() || Candidate.isInlineAsm() || Candidate.hasUnmodeledSideEffects()); } /// createMipsDelaySlotFillerPass - Returns a pass that fills in delay /// slots in Mips MachineFunctions FunctionPass *llvm::createMipsDelaySlotFillerPass() { return new MipsDelaySlotFiller(); }