//=== MicroMipsSizeReduction.cpp - MicroMips size reduction pass --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// ///\file /// This pass is used to reduce the size of instructions where applicable. /// /// TODO: Implement microMIPS64 support. //===----------------------------------------------------------------------===// #include "Mips.h" #include "MipsInstrInfo.h" #include "MipsSubtarget.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/Support/Debug.h" using namespace llvm; #define DEBUG_TYPE "micromips-reduce-size" #define MICROMIPS_SIZE_REDUCE_NAME "MicroMips instruction size reduce pass" STATISTIC(NumReduced, "Number of instructions reduced (32-bit to 16-bit ones, " "or two instructions into one"); namespace { /// Order of operands to transfer // TODO: Will be extended when additional optimizations are added enum OperandTransfer { OT_NA, ///< Not applicable OT_OperandsAll, ///< Transfer all operands OT_Operands02, ///< Transfer operands 0 and 2 OT_Operand2, ///< Transfer just operand 2 OT_OperandsXOR, ///< Transfer operands for XOR16 OT_OperandsLwp, ///< Transfer operands for LWP OT_OperandsSwp, ///< Transfer operands for SWP OT_OperandsMovep, ///< Transfer operands for MOVEP }; /// Reduction type // TODO: Will be extended when additional optimizations are added enum ReduceType { RT_TwoInstr, ///< Reduce two instructions into one instruction RT_OneInstr ///< Reduce one instruction into a smaller instruction }; // Information about immediate field restrictions struct ImmField { ImmField() : ImmFieldOperand(-1), Shift(0), LBound(0), HBound(0) {} ImmField(uint8_t Shift, int16_t LBound, int16_t HBound, int8_t ImmFieldOperand) : ImmFieldOperand(ImmFieldOperand), Shift(Shift), LBound(LBound), HBound(HBound) {} int8_t ImmFieldOperand; // Immediate operand, -1 if it does not exist uint8_t Shift; // Shift value int16_t LBound; // Low bound of the immediate operand int16_t HBound; // High bound of the immediate operand }; /// Information about operands // TODO: Will be extended when additional optimizations are added struct OpInfo { OpInfo(enum OperandTransfer TransferOperands) : TransferOperands(TransferOperands) {} OpInfo() : TransferOperands(OT_NA) {} enum OperandTransfer TransferOperands; ///< Operands to transfer to the new instruction }; // Information about opcodes struct OpCodes { OpCodes(unsigned WideOpc, unsigned NarrowOpc) : WideOpc(WideOpc), NarrowOpc(NarrowOpc) {} unsigned WideOpc; ///< Wide opcode unsigned NarrowOpc; ///< Narrow opcode }; typedef struct ReduceEntryFunArgs ReduceEntryFunArgs; /// ReduceTable - A static table with information on mapping from wide /// opcodes to narrow struct ReduceEntry { enum ReduceType eRType; ///< Reduction type bool (*ReduceFunction)( ReduceEntryFunArgs *Arguments); ///< Pointer to reduce function struct OpCodes Ops; ///< All relevant OpCodes struct OpInfo OpInf; ///< Characteristics of operands struct ImmField Imm; ///< Characteristics of immediate field ReduceEntry(enum ReduceType RType, struct OpCodes Op, bool (*F)(ReduceEntryFunArgs *Arguments), struct OpInfo OpInf, struct ImmField Imm) : eRType(RType), ReduceFunction(F), Ops(Op), OpInf(OpInf), Imm(Imm) {} unsigned NarrowOpc() const { return Ops.NarrowOpc; } unsigned WideOpc() const { return Ops.WideOpc; } int16_t LBound() const { return Imm.LBound; } int16_t HBound() const { return Imm.HBound; } uint8_t Shift() const { return Imm.Shift; } int8_t ImmField() const { return Imm.ImmFieldOperand; } enum OperandTransfer TransferOperands() const { return OpInf.TransferOperands; } enum ReduceType RType() const { return eRType; } // operator used by std::equal_range bool operator<(const unsigned int r) const { return (WideOpc() < r); } // operator used by std::equal_range friend bool operator<(const unsigned int r, const struct ReduceEntry &re) { return (r < re.WideOpc()); } }; // Function arguments for ReduceFunction struct ReduceEntryFunArgs { MachineInstr *MI; // Instruction const ReduceEntry &Entry; // Entry field MachineBasicBlock::instr_iterator &NextMII; // Iterator to next instruction in block ReduceEntryFunArgs(MachineInstr *argMI, const ReduceEntry &argEntry, MachineBasicBlock::instr_iterator &argNextMII) : MI(argMI), Entry(argEntry), NextMII(argNextMII) {} }; typedef llvm::SmallVector ReduceEntryVector; class MicroMipsSizeReduce : public MachineFunctionPass { public: static char ID; MicroMipsSizeReduce(); static const MipsInstrInfo *MipsII; const MipsSubtarget *Subtarget; bool runOnMachineFunction(MachineFunction &MF) override; llvm::StringRef getPassName() const override { return "microMIPS instruction size reduction pass"; } private: /// Reduces width of instructions in the specified basic block. bool ReduceMBB(MachineBasicBlock &MBB); /// Attempts to reduce MI, returns true on success. bool ReduceMI(const MachineBasicBlock::instr_iterator &MII, MachineBasicBlock::instr_iterator &NextMII); // Attempts to reduce LW/SW instruction into LWSP/SWSP, // returns true on success. static bool ReduceXWtoXWSP(ReduceEntryFunArgs *Arguments); // Attempts to reduce two LW/SW instructions into LWP/SWP instruction, // returns true on success. static bool ReduceXWtoXWP(ReduceEntryFunArgs *Arguments); // Attempts to reduce LBU/LHU instruction into LBU16/LHU16, // returns true on success. static bool ReduceLXUtoLXU16(ReduceEntryFunArgs *Arguments); // Attempts to reduce SB/SH instruction into SB16/SH16, // returns true on success. static bool ReduceSXtoSX16(ReduceEntryFunArgs *Arguments); // Attempts to reduce two MOVE instructions into MOVEP instruction, // returns true on success. static bool ReduceMoveToMovep(ReduceEntryFunArgs *Arguments); // Attempts to reduce arithmetic instructions, returns true on success. static bool ReduceArithmeticInstructions(ReduceEntryFunArgs *Arguments); // Attempts to reduce ADDIU into ADDIUSP instruction, // returns true on success. static bool ReduceADDIUToADDIUSP(ReduceEntryFunArgs *Arguments); // Attempts to reduce ADDIU into ADDIUR1SP instruction, // returns true on success. static bool ReduceADDIUToADDIUR1SP(ReduceEntryFunArgs *Arguments); // Attempts to reduce XOR into XOR16 instruction, // returns true on success. static bool ReduceXORtoXOR16(ReduceEntryFunArgs *Arguments); // Changes opcode of an instruction, replaces an instruction with a // new one, or replaces two instructions with a new instruction // depending on their order i.e. if these are consecutive forward // or consecutive backward static bool ReplaceInstruction(MachineInstr *MI, const ReduceEntry &Entry, MachineInstr *MI2 = nullptr, bool ConsecutiveForward = true); // Table with transformation rules for each instruction. static ReduceEntryVector ReduceTable; }; char MicroMipsSizeReduce::ID = 0; const MipsInstrInfo *MicroMipsSizeReduce::MipsII; // This table must be sorted by WideOpc as a main criterion and // ReduceType as a sub-criterion (when wide opcodes are the same). ReduceEntryVector MicroMipsSizeReduce::ReduceTable = { // ReduceType, OpCodes, ReduceFunction, // OpInfo(TransferOperands), // ImmField(Shift, LBound, HBound, ImmFieldPosition) {RT_OneInstr, OpCodes(Mips::ADDiu, Mips::ADDIUR1SP_MM), ReduceADDIUToADDIUR1SP, OpInfo(OT_Operands02), ImmField(2, 0, 64, 2)}, {RT_OneInstr, OpCodes(Mips::ADDiu, Mips::ADDIUSP_MM), ReduceADDIUToADDIUSP, OpInfo(OT_Operand2), ImmField(0, 0, 0, 2)}, {RT_OneInstr, OpCodes(Mips::ADDiu_MM, Mips::ADDIUR1SP_MM), ReduceADDIUToADDIUR1SP, OpInfo(OT_Operands02), ImmField(2, 0, 64, 2)}, {RT_OneInstr, OpCodes(Mips::ADDiu_MM, Mips::ADDIUSP_MM), ReduceADDIUToADDIUSP, OpInfo(OT_Operand2), ImmField(0, 0, 0, 2)}, {RT_OneInstr, OpCodes(Mips::ADDu, Mips::ADDU16_MM), ReduceArithmeticInstructions, OpInfo(OT_OperandsAll), ImmField(0, 0, 0, -1)}, {RT_OneInstr, OpCodes(Mips::ADDu_MM, Mips::ADDU16_MM), ReduceArithmeticInstructions, OpInfo(OT_OperandsAll), ImmField(0, 0, 0, -1)}, {RT_OneInstr, OpCodes(Mips::LBu, Mips::LBU16_MM), ReduceLXUtoLXU16, OpInfo(OT_OperandsAll), ImmField(0, -1, 15, 2)}, {RT_OneInstr, OpCodes(Mips::LBu_MM, Mips::LBU16_MM), ReduceLXUtoLXU16, OpInfo(OT_OperandsAll), ImmField(0, -1, 15, 2)}, {RT_OneInstr, OpCodes(Mips::LEA_ADDiu, Mips::ADDIUR1SP_MM), ReduceADDIUToADDIUR1SP, OpInfo(OT_Operands02), ImmField(2, 0, 64, 2)}, {RT_OneInstr, OpCodes(Mips::LEA_ADDiu_MM, Mips::ADDIUR1SP_MM), ReduceADDIUToADDIUR1SP, OpInfo(OT_Operands02), ImmField(2, 0, 64, 2)}, {RT_OneInstr, OpCodes(Mips::LHu, Mips::LHU16_MM), ReduceLXUtoLXU16, OpInfo(OT_OperandsAll), ImmField(1, 0, 16, 2)}, {RT_OneInstr, OpCodes(Mips::LHu_MM, Mips::LHU16_MM), ReduceLXUtoLXU16, OpInfo(OT_OperandsAll), ImmField(1, 0, 16, 2)}, {RT_TwoInstr, OpCodes(Mips::LW, Mips::LWP_MM), ReduceXWtoXWP, OpInfo(OT_OperandsLwp), ImmField(0, -2048, 2048, 2)}, {RT_OneInstr, OpCodes(Mips::LW, Mips::LWSP_MM), ReduceXWtoXWSP, OpInfo(OT_OperandsAll), ImmField(2, 0, 32, 2)}, {RT_TwoInstr, OpCodes(Mips::LW16_MM, Mips::LWP_MM), ReduceXWtoXWP, OpInfo(OT_OperandsLwp), ImmField(0, -2048, 2048, 2)}, {RT_TwoInstr, OpCodes(Mips::LW_MM, Mips::LWP_MM), ReduceXWtoXWP, OpInfo(OT_OperandsLwp), ImmField(0, -2048, 2048, 2)}, {RT_OneInstr, OpCodes(Mips::LW_MM, Mips::LWSP_MM), ReduceXWtoXWSP, OpInfo(OT_OperandsAll), ImmField(2, 0, 32, 2)}, {RT_TwoInstr, OpCodes(Mips::MOVE16_MM, Mips::MOVEP_MM), ReduceMoveToMovep, OpInfo(OT_OperandsMovep), ImmField(0, 0, 0, -1)}, {RT_OneInstr, OpCodes(Mips::SB, Mips::SB16_MM), ReduceSXtoSX16, OpInfo(OT_OperandsAll), ImmField(0, 0, 16, 2)}, {RT_OneInstr, OpCodes(Mips::SB_MM, Mips::SB16_MM), ReduceSXtoSX16, OpInfo(OT_OperandsAll), ImmField(0, 0, 16, 2)}, {RT_OneInstr, OpCodes(Mips::SH, Mips::SH16_MM), ReduceSXtoSX16, OpInfo(OT_OperandsAll), ImmField(1, 0, 16, 2)}, {RT_OneInstr, OpCodes(Mips::SH_MM, Mips::SH16_MM), ReduceSXtoSX16, OpInfo(OT_OperandsAll), ImmField(1, 0, 16, 2)}, {RT_OneInstr, OpCodes(Mips::SUBu, Mips::SUBU16_MM), ReduceArithmeticInstructions, OpInfo(OT_OperandsAll), ImmField(0, 0, 0, -1)}, {RT_OneInstr, OpCodes(Mips::SUBu_MM, Mips::SUBU16_MM), ReduceArithmeticInstructions, OpInfo(OT_OperandsAll), ImmField(0, 0, 0, -1)}, {RT_TwoInstr, OpCodes(Mips::SW, Mips::SWP_MM), ReduceXWtoXWP, OpInfo(OT_OperandsSwp), ImmField(0, -2048, 2048, 2)}, {RT_OneInstr, OpCodes(Mips::SW, Mips::SWSP_MM), ReduceXWtoXWSP, OpInfo(OT_OperandsAll), ImmField(2, 0, 32, 2)}, {RT_TwoInstr, OpCodes(Mips::SW16_MM, Mips::SWP_MM), ReduceXWtoXWP, OpInfo(OT_OperandsSwp), ImmField(0, -2048, 2048, 2)}, {RT_TwoInstr, OpCodes(Mips::SW_MM, Mips::SWP_MM), ReduceXWtoXWP, OpInfo(OT_OperandsSwp), ImmField(0, -2048, 2048, 2)}, {RT_OneInstr, OpCodes(Mips::SW_MM, Mips::SWSP_MM), ReduceXWtoXWSP, OpInfo(OT_OperandsAll), ImmField(2, 0, 32, 2)}, {RT_OneInstr, OpCodes(Mips::XOR, Mips::XOR16_MM), ReduceXORtoXOR16, OpInfo(OT_OperandsXOR), ImmField(0, 0, 0, -1)}, {RT_OneInstr, OpCodes(Mips::XOR_MM, Mips::XOR16_MM), ReduceXORtoXOR16, OpInfo(OT_OperandsXOR), ImmField(0, 0, 0, -1)}}; } // end anonymous namespace INITIALIZE_PASS(MicroMipsSizeReduce, DEBUG_TYPE, MICROMIPS_SIZE_REDUCE_NAME, false, false) // Returns true if the machine operand MO is register SP. static bool IsSP(const MachineOperand &MO) { if (MO.isReg() && ((MO.getReg() == Mips::SP))) return true; return false; } // Returns true if the machine operand MO is register $16, $17, or $2-$7. static bool isMMThreeBitGPRegister(const MachineOperand &MO) { if (MO.isReg() && Mips::GPRMM16RegClass.contains(MO.getReg())) return true; return false; } // Returns true if the machine operand MO is register $0, $17, or $2-$7. static bool isMMSourceRegister(const MachineOperand &MO) { if (MO.isReg() && Mips::GPRMM16ZeroRegClass.contains(MO.getReg())) return true; return false; } // Returns true if the operand Op is an immediate value // and writes the immediate value into variable Imm. static bool GetImm(MachineInstr *MI, unsigned Op, int64_t &Imm) { if (!MI->getOperand(Op).isImm()) return false; Imm = MI->getOperand(Op).getImm(); return true; } // Returns true if the value is a valid immediate for ADDIUSP. static bool AddiuspImmValue(int64_t Value) { int64_t Value2 = Value >> 2; if (((Value & (int64_t)maskTrailingZeros(2)) == Value) && ((Value2 >= 2 && Value2 <= 257) || (Value2 >= -258 && Value2 <= -3))) return true; return false; } // Returns true if the variable Value has the number of least-significant zero // bits equal to Shift and if the shifted value is between the bounds. static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound) { int64_t Value2 = Value >> Shift; if (((Value & (int64_t)maskTrailingZeros(Shift)) == Value) && (Value2 >= LBound) && (Value2 < HBound)) return true; return false; } // Returns true if immediate operand is in range. static bool ImmInRange(MachineInstr *MI, const ReduceEntry &Entry) { int64_t offset; if (!GetImm(MI, Entry.ImmField(), offset)) return false; if (!InRange(offset, Entry.Shift(), Entry.LBound(), Entry.HBound())) return false; return true; } // Returns true if MI can be reduced to lwp/swp instruction static bool CheckXWPInstr(MachineInstr *MI, bool ReduceToLwp, const ReduceEntry &Entry) { if (ReduceToLwp && !(MI->getOpcode() == Mips::LW || MI->getOpcode() == Mips::LW_MM || MI->getOpcode() == Mips::LW16_MM)) return false; if (!ReduceToLwp && !(MI->getOpcode() == Mips::SW || MI->getOpcode() == Mips::SW_MM || MI->getOpcode() == Mips::SW16_MM)) return false; Register reg = MI->getOperand(0).getReg(); if (reg == Mips::RA) return false; if (!ImmInRange(MI, Entry)) return false; if (ReduceToLwp && (MI->getOperand(0).getReg() == MI->getOperand(1).getReg())) return false; return true; } // Returns true if the registers Reg1 and Reg2 are consecutive static bool ConsecutiveRegisters(unsigned Reg1, unsigned Reg2) { constexpr std::array Registers = { {Mips::AT, Mips::V0, Mips::V1, Mips::A0, Mips::A1, Mips::A2, Mips::A3, Mips::T0, Mips::T1, Mips::T2, Mips::T3, Mips::T4, Mips::T5, Mips::T6, Mips::T7, Mips::S0, Mips::S1, Mips::S2, Mips::S3, Mips::S4, Mips::S5, Mips::S6, Mips::S7, Mips::T8, Mips::T9, Mips::K0, Mips::K1, Mips::GP, Mips::SP, Mips::FP, Mips::RA}}; for (uint8_t i = 0; i < Registers.size() - 1; i++) { if (Registers[i] == Reg1) { if (Registers[i + 1] == Reg2) return true; else return false; } } return false; } // Returns true if registers and offsets are consecutive static bool ConsecutiveInstr(MachineInstr *MI1, MachineInstr *MI2) { int64_t Offset1, Offset2; if (!GetImm(MI1, 2, Offset1)) return false; if (!GetImm(MI2, 2, Offset2)) return false; Register Reg1 = MI1->getOperand(0).getReg(); Register Reg2 = MI2->getOperand(0).getReg(); return ((Offset1 == (Offset2 - 4)) && (ConsecutiveRegisters(Reg1, Reg2))); } MicroMipsSizeReduce::MicroMipsSizeReduce() : MachineFunctionPass(ID) {} bool MicroMipsSizeReduce::ReduceMI(const MachineBasicBlock::instr_iterator &MII, MachineBasicBlock::instr_iterator &NextMII) { MachineInstr *MI = &*MII; unsigned Opcode = MI->getOpcode(); // Search the table. ReduceEntryVector::const_iterator Start = std::begin(ReduceTable); ReduceEntryVector::const_iterator End = std::end(ReduceTable); std::pair Range = std::equal_range(Start, End, Opcode); if (Range.first == Range.second) return false; for (ReduceEntryVector::const_iterator Entry = Range.first; Entry != Range.second; ++Entry) { ReduceEntryFunArgs Arguments(&(*MII), *Entry, NextMII); if (((*Entry).ReduceFunction)(&Arguments)) return true; } return false; } bool MicroMipsSizeReduce::ReduceXWtoXWSP(ReduceEntryFunArgs *Arguments) { MachineInstr *MI = Arguments->MI; const ReduceEntry &Entry = Arguments->Entry; if (!ImmInRange(MI, Entry)) return false; if (!IsSP(MI->getOperand(1))) return false; return ReplaceInstruction(MI, Entry); } bool MicroMipsSizeReduce::ReduceXWtoXWP(ReduceEntryFunArgs *Arguments) { const ReduceEntry &Entry = Arguments->Entry; MachineBasicBlock::instr_iterator &NextMII = Arguments->NextMII; const MachineBasicBlock::instr_iterator &E = Arguments->MI->getParent()->instr_end(); if (NextMII == E) return false; MachineInstr *MI1 = Arguments->MI; MachineInstr *MI2 = &*NextMII; // ReduceToLwp = true/false - reduce to LWP/SWP instruction bool ReduceToLwp = (MI1->getOpcode() == Mips::LW) || (MI1->getOpcode() == Mips::LW_MM) || (MI1->getOpcode() == Mips::LW16_MM); if (!CheckXWPInstr(MI1, ReduceToLwp, Entry)) return false; if (!CheckXWPInstr(MI2, ReduceToLwp, Entry)) return false; Register Reg1 = MI1->getOperand(1).getReg(); Register Reg2 = MI2->getOperand(1).getReg(); if (Reg1 != Reg2) return false; bool ConsecutiveForward = ConsecutiveInstr(MI1, MI2); bool ConsecutiveBackward = ConsecutiveInstr(MI2, MI1); if (!(ConsecutiveForward || ConsecutiveBackward)) return false; NextMII = std::next(NextMII); return ReplaceInstruction(MI1, Entry, MI2, ConsecutiveForward); } bool MicroMipsSizeReduce::ReduceArithmeticInstructions( ReduceEntryFunArgs *Arguments) { MachineInstr *MI = Arguments->MI; const ReduceEntry &Entry = Arguments->Entry; if (!isMMThreeBitGPRegister(MI->getOperand(0)) || !isMMThreeBitGPRegister(MI->getOperand(1)) || !isMMThreeBitGPRegister(MI->getOperand(2))) return false; return ReplaceInstruction(MI, Entry); } bool MicroMipsSizeReduce::ReduceADDIUToADDIUR1SP( ReduceEntryFunArgs *Arguments) { MachineInstr *MI = Arguments->MI; const ReduceEntry &Entry = Arguments->Entry; if (!ImmInRange(MI, Entry)) return false; if (!isMMThreeBitGPRegister(MI->getOperand(0)) || !IsSP(MI->getOperand(1))) return false; return ReplaceInstruction(MI, Entry); } bool MicroMipsSizeReduce::ReduceADDIUToADDIUSP(ReduceEntryFunArgs *Arguments) { MachineInstr *MI = Arguments->MI; const ReduceEntry &Entry = Arguments->Entry; int64_t ImmValue; if (!GetImm(MI, Entry.ImmField(), ImmValue)) return false; if (!AddiuspImmValue(ImmValue)) return false; if (!IsSP(MI->getOperand(0)) || !IsSP(MI->getOperand(1))) return false; return ReplaceInstruction(MI, Entry); } bool MicroMipsSizeReduce::ReduceLXUtoLXU16(ReduceEntryFunArgs *Arguments) { MachineInstr *MI = Arguments->MI; const ReduceEntry &Entry = Arguments->Entry; if (!ImmInRange(MI, Entry)) return false; if (!isMMThreeBitGPRegister(MI->getOperand(0)) || !isMMThreeBitGPRegister(MI->getOperand(1))) return false; return ReplaceInstruction(MI, Entry); } bool MicroMipsSizeReduce::ReduceSXtoSX16(ReduceEntryFunArgs *Arguments) { MachineInstr *MI = Arguments->MI; const ReduceEntry &Entry = Arguments->Entry; if (!ImmInRange(MI, Entry)) return false; if (!isMMSourceRegister(MI->getOperand(0)) || !isMMThreeBitGPRegister(MI->getOperand(1))) return false; return ReplaceInstruction(MI, Entry); } // Returns true if Reg can be a source register // of MOVEP instruction static bool IsMovepSrcRegister(unsigned Reg) { if (Reg == Mips::ZERO || Reg == Mips::V0 || Reg == Mips::V1 || Reg == Mips::S0 || Reg == Mips::S1 || Reg == Mips::S2 || Reg == Mips::S3 || Reg == Mips::S4) return true; return false; } // Returns true if Reg can be a destination register // of MOVEP instruction static bool IsMovepDestinationReg(unsigned Reg) { if (Reg == Mips::A0 || Reg == Mips::A1 || Reg == Mips::A2 || Reg == Mips::A3 || Reg == Mips::S5 || Reg == Mips::S6) return true; return false; } // Returns true if the registers can be a pair of destination // registers in MOVEP instruction static bool IsMovepDestinationRegPair(unsigned R0, unsigned R1) { if ((R0 == Mips::A0 && R1 == Mips::S5) || (R0 == Mips::A0 && R1 == Mips::S6) || (R0 == Mips::A0 && R1 == Mips::A1) || (R0 == Mips::A0 && R1 == Mips::A2) || (R0 == Mips::A0 && R1 == Mips::A3) || (R0 == Mips::A1 && R1 == Mips::A2) || (R0 == Mips::A1 && R1 == Mips::A3) || (R0 == Mips::A2 && R1 == Mips::A3)) return true; return false; } bool MicroMipsSizeReduce::ReduceMoveToMovep(ReduceEntryFunArgs *Arguments) { const ReduceEntry &Entry = Arguments->Entry; MachineBasicBlock::instr_iterator &NextMII = Arguments->NextMII; const MachineBasicBlock::instr_iterator &E = Arguments->MI->getParent()->instr_end(); if (NextMII == E) return false; MachineInstr *MI1 = Arguments->MI; MachineInstr *MI2 = &*NextMII; Register RegDstMI1 = MI1->getOperand(0).getReg(); Register RegSrcMI1 = MI1->getOperand(1).getReg(); if (!IsMovepSrcRegister(RegSrcMI1)) return false; if (!IsMovepDestinationReg(RegDstMI1)) return false; if (MI2->getOpcode() != Entry.WideOpc()) return false; Register RegDstMI2 = MI2->getOperand(0).getReg(); Register RegSrcMI2 = MI2->getOperand(1).getReg(); if (!IsMovepSrcRegister(RegSrcMI2)) return false; bool ConsecutiveForward; if (IsMovepDestinationRegPair(RegDstMI1, RegDstMI2)) { ConsecutiveForward = true; } else if (IsMovepDestinationRegPair(RegDstMI2, RegDstMI1)) { ConsecutiveForward = false; } else return false; NextMII = std::next(NextMII); return ReplaceInstruction(MI1, Entry, MI2, ConsecutiveForward); } bool MicroMipsSizeReduce::ReduceXORtoXOR16(ReduceEntryFunArgs *Arguments) { MachineInstr *MI = Arguments->MI; const ReduceEntry &Entry = Arguments->Entry; if (!isMMThreeBitGPRegister(MI->getOperand(0)) || !isMMThreeBitGPRegister(MI->getOperand(1)) || !isMMThreeBitGPRegister(MI->getOperand(2))) return false; if (!(MI->getOperand(0).getReg() == MI->getOperand(2).getReg()) && !(MI->getOperand(0).getReg() == MI->getOperand(1).getReg())) return false; return ReplaceInstruction(MI, Entry); } bool MicroMipsSizeReduce::ReduceMBB(MachineBasicBlock &MBB) { bool Modified = false; MachineBasicBlock::instr_iterator MII = MBB.instr_begin(), E = MBB.instr_end(); MachineBasicBlock::instr_iterator NextMII; // Iterate through the instructions in the basic block for (; MII != E; MII = NextMII) { NextMII = std::next(MII); MachineInstr *MI = &*MII; // Don't reduce bundled instructions or pseudo operations if (MI->isBundle() || MI->isTransient()) continue; // Try to reduce 32-bit instruction into 16-bit instruction Modified |= ReduceMI(MII, NextMII); } return Modified; } bool MicroMipsSizeReduce::ReplaceInstruction(MachineInstr *MI, const ReduceEntry &Entry, MachineInstr *MI2, bool ConsecutiveForward) { enum OperandTransfer OpTransfer = Entry.TransferOperands(); LLVM_DEBUG(dbgs() << "Converting 32-bit: " << *MI); ++NumReduced; if (OpTransfer == OT_OperandsAll) { MI->setDesc(MipsII->get(Entry.NarrowOpc())); LLVM_DEBUG(dbgs() << " to 16-bit: " << *MI); return true; } else { MachineBasicBlock &MBB = *MI->getParent(); const MCInstrDesc &NewMCID = MipsII->get(Entry.NarrowOpc()); DebugLoc dl = MI->getDebugLoc(); MachineInstrBuilder MIB = BuildMI(MBB, MI, dl, NewMCID); switch (OpTransfer) { case OT_Operand2: MIB.add(MI->getOperand(2)); break; case OT_Operands02: { MIB.add(MI->getOperand(0)); MIB.add(MI->getOperand(2)); break; } case OT_OperandsXOR: { if (MI->getOperand(0).getReg() == MI->getOperand(2).getReg()) { MIB.add(MI->getOperand(0)); MIB.add(MI->getOperand(1)); MIB.add(MI->getOperand(2)); } else { MIB.add(MI->getOperand(0)); MIB.add(MI->getOperand(2)); MIB.add(MI->getOperand(1)); } break; } case OT_OperandsMovep: case OT_OperandsLwp: case OT_OperandsSwp: { if (ConsecutiveForward) { MIB.add(MI->getOperand(0)); MIB.add(MI2->getOperand(0)); MIB.add(MI->getOperand(1)); if (OpTransfer == OT_OperandsMovep) MIB.add(MI2->getOperand(1)); else MIB.add(MI->getOperand(2)); } else { // consecutive backward MIB.add(MI2->getOperand(0)); MIB.add(MI->getOperand(0)); MIB.add(MI2->getOperand(1)); if (OpTransfer == OT_OperandsMovep) MIB.add(MI->getOperand(1)); else MIB.add(MI2->getOperand(2)); } LLVM_DEBUG(dbgs() << "and converting 32-bit: " << *MI2 << " to: " << *MIB); MBB.erase_instr(MI); MBB.erase_instr(MI2); return true; } default: llvm_unreachable("Unknown operand transfer!"); } // Transfer MI flags. MIB.setMIFlags(MI->getFlags()); LLVM_DEBUG(dbgs() << " to 16-bit: " << *MIB); MBB.erase_instr(MI); return true; } return false; } bool MicroMipsSizeReduce::runOnMachineFunction(MachineFunction &MF) { Subtarget = &MF.getSubtarget(); // TODO: Add support for the subtarget microMIPS32R6. if (!Subtarget->inMicroMipsMode() || !Subtarget->hasMips32r2() || Subtarget->hasMips32r6()) return false; MipsII = static_cast(Subtarget->getInstrInfo()); bool Modified = false; MachineFunction::iterator I = MF.begin(), E = MF.end(); for (; I != E; ++I) Modified |= ReduceMBB(*I); return Modified; } /// Returns an instance of the MicroMips size reduction pass. FunctionPass *llvm::createMicroMipsSizeReducePass() { return new MicroMipsSizeReduce(); }