//===-- LoongArchTargetMachine.cpp - Define TargetMachine for LoongArch ---===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Implements the info about LoongArch target spec. // //===----------------------------------------------------------------------===// #include "LoongArchTargetMachine.h" #include "LoongArch.h" #include "LoongArchMachineFunctionInfo.h" #include "LoongArchTargetTransformInfo.h" #include "MCTargetDesc/LoongArchBaseInfo.h" #include "TargetInfo/LoongArchTargetInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/CodeGen.h" #include "llvm/Transforms/Scalar.h" #include using namespace llvm; #define DEBUG_TYPE "loongarch" extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeLoongArchTarget() { // Register the target. RegisterTargetMachine X(getTheLoongArch32Target()); RegisterTargetMachine Y(getTheLoongArch64Target()); auto *PR = PassRegistry::getPassRegistry(); initializeLoongArchPreRAExpandPseudoPass(*PR); initializeLoongArchDAGToDAGISelPass(*PR); } static cl::opt EnableLoopDataPrefetch("loongarch-enable-loop-data-prefetch", cl::Hidden, cl::desc("Enable the loop data prefetch pass"), cl::init(false)); static std::string computeDataLayout(const Triple &TT) { if (TT.isArch64Bit()) return "e-m:e-p:64:64-i64:64-i128:128-n64-S128"; assert(TT.isArch32Bit() && "only LA32 and LA64 are currently supported"); return "e-m:e-p:32:32-i64:64-n32-S128"; } static Reloc::Model getEffectiveRelocModel(const Triple &TT, std::optional RM) { return RM.value_or(Reloc::Static); } static CodeModel::Model getEffectiveLoongArchCodeModel(const Triple &TT, std::optional CM) { if (!CM) return CodeModel::Small; switch (*CM) { case CodeModel::Small: return *CM; case CodeModel::Medium: case CodeModel::Large: if (!TT.isArch64Bit()) report_fatal_error("Medium/Large code model requires LA64"); return *CM; default: report_fatal_error( "Only small, medium and large code models are allowed on LoongArch"); } } LoongArchTargetMachine::LoongArchTargetMachine( const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, std::optional RM, std::optional CM, CodeGenOptLevel OL, bool JIT) : LLVMTargetMachine(T, computeDataLayout(TT), TT, CPU, FS, Options, getEffectiveRelocModel(TT, RM), getEffectiveLoongArchCodeModel(TT, CM), OL), TLOF(std::make_unique()) { initAsmInfo(); } LoongArchTargetMachine::~LoongArchTargetMachine() = default; const LoongArchSubtarget * LoongArchTargetMachine::getSubtargetImpl(const Function &F) const { Attribute CPUAttr = F.getFnAttribute("target-cpu"); Attribute TuneAttr = F.getFnAttribute("tune-cpu"); Attribute FSAttr = F.getFnAttribute("target-features"); std::string CPU = CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; std::string TuneCPU = TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU; std::string FS = FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; std::string Key = CPU + TuneCPU + FS; auto &I = SubtargetMap[Key]; if (!I) { // This needs to be done before we create a new subtarget since any // creation will depend on the TM and the code generation flags on the // function that reside in TargetOptions. resetTargetOptions(F); auto ABIName = Options.MCOptions.getABIName(); if (const MDString *ModuleTargetABI = dyn_cast_or_null( F.getParent()->getModuleFlag("target-abi"))) { auto TargetABI = LoongArchABI::getTargetABI(ABIName); if (TargetABI != LoongArchABI::ABI_Unknown && ModuleTargetABI->getString() != ABIName) { report_fatal_error("-target-abi option != target-abi module flag"); } ABIName = ModuleTargetABI->getString(); } I = std::make_unique(TargetTriple, CPU, TuneCPU, FS, ABIName, *this); } return I.get(); } MachineFunctionInfo *LoongArchTargetMachine::createMachineFunctionInfo( BumpPtrAllocator &Allocator, const Function &F, const TargetSubtargetInfo *STI) const { return LoongArchMachineFunctionInfo::create( Allocator, F, STI); } namespace { class LoongArchPassConfig : public TargetPassConfig { public: LoongArchPassConfig(LoongArchTargetMachine &TM, PassManagerBase &PM) : TargetPassConfig(TM, PM) {} LoongArchTargetMachine &getLoongArchTargetMachine() const { return getTM(); } void addIRPasses() override; bool addInstSelector() override; void addPreEmitPass() override; void addPreEmitPass2() override; void addPreRegAlloc() override; }; } // end namespace TargetPassConfig * LoongArchTargetMachine::createPassConfig(PassManagerBase &PM) { return new LoongArchPassConfig(*this, PM); } void LoongArchPassConfig::addIRPasses() { // Run LoopDataPrefetch // // Run this before LSR to remove the multiplies involved in computing the // pointer values N iterations ahead. if (TM->getOptLevel() != CodeGenOptLevel::None && EnableLoopDataPrefetch) addPass(createLoopDataPrefetchPass()); addPass(createAtomicExpandPass()); TargetPassConfig::addIRPasses(); } bool LoongArchPassConfig::addInstSelector() { addPass(createLoongArchISelDag(getLoongArchTargetMachine())); return false; } TargetTransformInfo LoongArchTargetMachine::getTargetTransformInfo(const Function &F) const { return TargetTransformInfo(LoongArchTTIImpl(this, F)); } void LoongArchPassConfig::addPreEmitPass() { addPass(&BranchRelaxationPassID); } void LoongArchPassConfig::addPreEmitPass2() { addPass(createLoongArchExpandPseudoPass()); // Schedule the expansion of AtomicPseudos at the last possible moment, // avoiding the possibility for other passes to break the requirements for // forward progress in the LL/SC block. addPass(createLoongArchExpandAtomicPseudoPass()); } void LoongArchPassConfig::addPreRegAlloc() { addPass(createLoongArchPreRAExpandPseudoPass()); }