//===-- HexagonMCTargetDesc.cpp - Hexagon Target Descriptions -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file provides Hexagon specific target descriptions. // //===----------------------------------------------------------------------===// #include "HexagonArch.h" #include "HexagonTargetStreamer.h" #include "MCTargetDesc/HexagonInstPrinter.h" #include "MCTargetDesc/HexagonMCAsmInfo.h" #include "MCTargetDesc/HexagonMCELFStreamer.h" #include "MCTargetDesc/HexagonMCInstrInfo.h" #include "MCTargetDesc/HexagonMCTargetDesc.h" #include "TargetInfo/HexagonTargetInfo.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCELFStreamer.h" #include "llvm/MC/MCInstrAnalysis.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace llvm; #define GET_INSTRINFO_MC_DESC #include "HexagonGenInstrInfo.inc" #define GET_SUBTARGETINFO_MC_DESC #include "HexagonGenSubtargetInfo.inc" #define GET_REGINFO_MC_DESC #include "HexagonGenRegisterInfo.inc" cl::opt llvm::HexagonDisableCompound ("mno-compound", cl::desc("Disable looking for compound instructions for Hexagon")); cl::opt llvm::HexagonDisableDuplex ("mno-pairing", cl::desc("Disable looking for duplex instructions for Hexagon")); namespace { // These flags are to be deprecated cl::opt MV5("mv5", cl::Hidden, cl::desc("Build for Hexagon V5"), cl::init(false)); cl::opt MV55("mv55", cl::Hidden, cl::desc("Build for Hexagon V55"), cl::init(false)); cl::opt MV60("mv60", cl::Hidden, cl::desc("Build for Hexagon V60"), cl::init(false)); cl::opt MV62("mv62", cl::Hidden, cl::desc("Build for Hexagon V62"), cl::init(false)); cl::opt MV65("mv65", cl::Hidden, cl::desc("Build for Hexagon V65"), cl::init(false)); cl::opt MV66("mv66", cl::Hidden, cl::desc("Build for Hexagon V66"), cl::init(false)); cl::opt MV67("mv67", cl::Hidden, cl::desc("Build for Hexagon V67"), cl::init(false)); cl::opt MV67T("mv67t", cl::Hidden, cl::desc("Build for Hexagon V67T"), cl::init(false)); cl::opt EnableHVX("mhvx", cl::desc("Enable Hexagon Vector eXtensions"), cl::values( clEnumValN(Hexagon::ArchEnum::V60, "v60", "Build for HVX v60"), clEnumValN(Hexagon::ArchEnum::V62, "v62", "Build for HVX v62"), clEnumValN(Hexagon::ArchEnum::V65, "v65", "Build for HVX v65"), clEnumValN(Hexagon::ArchEnum::V66, "v66", "Build for HVX v66"), clEnumValN(Hexagon::ArchEnum::V67, "v67", "Build for HVX v67"), // Sentinel for no value specified. clEnumValN(Hexagon::ArchEnum::Generic, "", "")), // Sentinel for flag not present. cl::init(Hexagon::ArchEnum::NoArch), cl::ValueOptional); } // namespace static cl::opt DisableHVX("mno-hvx", cl::Hidden, cl::desc("Disable Hexagon Vector eXtensions")); static StringRef DefaultArch = "hexagonv60"; static StringRef HexagonGetArchVariant() { if (MV5) return "hexagonv5"; if (MV55) return "hexagonv55"; if (MV60) return "hexagonv60"; if (MV62) return "hexagonv62"; if (MV65) return "hexagonv65"; if (MV66) return "hexagonv66"; if (MV67) return "hexagonv67"; if (MV67T) return "hexagonv67t"; return ""; } StringRef Hexagon_MC::selectHexagonCPU(StringRef CPU) { StringRef ArchV = HexagonGetArchVariant(); if (!ArchV.empty() && !CPU.empty()) { // Tiny cores have a "t" suffix that is discarded when creating a secondary // non-tiny subtarget. See: addArchSubtarget std::pair ArchP = ArchV.split('t'); std::pair CPUP = CPU.split('t'); if (!ArchP.first.equals(CPUP.first)) report_fatal_error("conflicting architectures specified."); return CPU; } if (ArchV.empty()) { if (CPU.empty()) CPU = DefaultArch; return CPU; } return ArchV; } unsigned llvm::HexagonGetLastSlot() { return HexagonItinerariesV5FU::SLOT3; } unsigned llvm::HexagonConvertUnits(unsigned ItinUnits, unsigned *Lanes) { enum { CVI_NONE = 0, CVI_XLANE = 1 << 0, CVI_SHIFT = 1 << 1, CVI_MPY0 = 1 << 2, CVI_MPY1 = 1 << 3, CVI_ZW = 1 << 4 }; if (ItinUnits == HexagonItinerariesV62FU::CVI_ALL || ItinUnits == HexagonItinerariesV62FU::CVI_ALL_NOMEM) return (*Lanes = 4, CVI_XLANE); else if (ItinUnits & HexagonItinerariesV62FU::CVI_MPY01 && ItinUnits & HexagonItinerariesV62FU::CVI_XLSHF) return (*Lanes = 2, CVI_XLANE | CVI_MPY0); else if (ItinUnits & HexagonItinerariesV62FU::CVI_MPY01) return (*Lanes = 2, CVI_MPY0); else if (ItinUnits & HexagonItinerariesV62FU::CVI_XLSHF) return (*Lanes = 2, CVI_XLANE); else if (ItinUnits & HexagonItinerariesV62FU::CVI_XLANE && ItinUnits & HexagonItinerariesV62FU::CVI_SHIFT && ItinUnits & HexagonItinerariesV62FU::CVI_MPY0 && ItinUnits & HexagonItinerariesV62FU::CVI_MPY1) return (*Lanes = 1, CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1); else if (ItinUnits & HexagonItinerariesV62FU::CVI_XLANE && ItinUnits & HexagonItinerariesV62FU::CVI_SHIFT) return (*Lanes = 1, CVI_XLANE | CVI_SHIFT); else if (ItinUnits & HexagonItinerariesV62FU::CVI_MPY0 && ItinUnits & HexagonItinerariesV62FU::CVI_MPY1) return (*Lanes = 1, CVI_MPY0 | CVI_MPY1); else if (ItinUnits == HexagonItinerariesV62FU::CVI_ZW) return (*Lanes = 1, CVI_ZW); else if (ItinUnits == HexagonItinerariesV62FU::CVI_XLANE) return (*Lanes = 1, CVI_XLANE); else if (ItinUnits == HexagonItinerariesV62FU::CVI_SHIFT) return (*Lanes = 1, CVI_SHIFT); return (*Lanes = 0, CVI_NONE); } namespace llvm { namespace HexagonFUnits { bool isSlot0Only(unsigned units) { return HexagonItinerariesV62FU::SLOT0 == units; } } // namespace HexagonFUnits } // namespace llvm namespace { class HexagonTargetAsmStreamer : public HexagonTargetStreamer { public: HexagonTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS, bool isVerboseAsm, MCInstPrinter &IP) : HexagonTargetStreamer(S) {} void prettyPrintAsm(MCInstPrinter &InstPrinter, uint64_t Address, const MCInst &Inst, const MCSubtargetInfo &STI, raw_ostream &OS) override { assert(HexagonMCInstrInfo::isBundle(Inst)); assert(HexagonMCInstrInfo::bundleSize(Inst) <= HEXAGON_PACKET_SIZE); std::string Buffer; { raw_string_ostream TempStream(Buffer); InstPrinter.printInst(&Inst, Address, "", STI, TempStream); } StringRef Contents(Buffer); auto PacketBundle = Contents.rsplit('\n'); auto HeadTail = PacketBundle.first.split('\n'); StringRef Separator = "\n"; StringRef Indent = "\t"; OS << "\t{\n"; while (!HeadTail.first.empty()) { StringRef InstTxt; auto Duplex = HeadTail.first.split('\v'); if (!Duplex.second.empty()) { OS << Indent << Duplex.first << Separator; InstTxt = Duplex.second; } else if (!HeadTail.first.trim().startswith("immext")) { InstTxt = Duplex.first; } if (!InstTxt.empty()) OS << Indent << InstTxt << Separator; HeadTail = HeadTail.second.split('\n'); } if (HexagonMCInstrInfo::isMemReorderDisabled(Inst)) OS << "\n\t} :mem_noshuf" << PacketBundle.second; else OS << "\t}" << PacketBundle.second; } }; class HexagonTargetELFStreamer : public HexagonTargetStreamer { public: MCELFStreamer &getStreamer() { return static_cast(Streamer); } HexagonTargetELFStreamer(MCStreamer &S, MCSubtargetInfo const &STI) : HexagonTargetStreamer(S) { MCAssembler &MCA = getStreamer().getAssembler(); MCA.setELFHeaderEFlags(Hexagon_MC::GetELFFlags(STI)); } void emitCommonSymbolSorted(MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment, unsigned AccessSize) override { HexagonMCELFStreamer &HexagonELFStreamer = static_cast(getStreamer()); HexagonELFStreamer.HexagonMCEmitCommonSymbol(Symbol, Size, ByteAlignment, AccessSize); } void emitLocalCommonSymbolSorted(MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment, unsigned AccessSize) override { HexagonMCELFStreamer &HexagonELFStreamer = static_cast(getStreamer()); HexagonELFStreamer.HexagonMCEmitLocalCommonSymbol( Symbol, Size, ByteAlignment, AccessSize); } }; } // end anonymous namespace llvm::MCInstrInfo *llvm::createHexagonMCInstrInfo() { MCInstrInfo *X = new MCInstrInfo(); InitHexagonMCInstrInfo(X); return X; } static MCRegisterInfo *createHexagonMCRegisterInfo(const Triple &TT) { MCRegisterInfo *X = new MCRegisterInfo(); InitHexagonMCRegisterInfo(X, Hexagon::R31); return X; } static MCAsmInfo *createHexagonMCAsmInfo(const MCRegisterInfo &MRI, const Triple &TT, const MCTargetOptions &Options) { MCAsmInfo *MAI = new HexagonMCAsmInfo(TT); // VirtualFP = (R30 + #0). MCCFIInstruction Inst = MCCFIInstruction::cfiDefCfa( nullptr, MRI.getDwarfRegNum(Hexagon::R30, true), 0); MAI->addInitialFrameState(Inst); return MAI; } static MCInstPrinter *createHexagonMCInstPrinter(const Triple &T, unsigned SyntaxVariant, const MCAsmInfo &MAI, const MCInstrInfo &MII, const MCRegisterInfo &MRI) { if (SyntaxVariant == 0) return new HexagonInstPrinter(MAI, MII, MRI); else return nullptr; } static MCTargetStreamer * createMCAsmTargetStreamer(MCStreamer &S, formatted_raw_ostream &OS, MCInstPrinter *IP, bool IsVerboseAsm) { return new HexagonTargetAsmStreamer(S, OS, IsVerboseAsm, *IP); } static MCStreamer *createMCStreamer(Triple const &T, MCContext &Context, std::unique_ptr &&MAB, std::unique_ptr &&OW, std::unique_ptr &&Emitter, bool RelaxAll) { return createHexagonELFStreamer(T, Context, std::move(MAB), std::move(OW), std::move(Emitter)); } static MCTargetStreamer * createHexagonObjectTargetStreamer(MCStreamer &S, const MCSubtargetInfo &STI) { return new HexagonTargetELFStreamer(S, STI); } static void LLVM_ATTRIBUTE_UNUSED clearFeature(MCSubtargetInfo* STI, uint64_t F) { if (STI->getFeatureBits()[F]) STI->ToggleFeature(F); } static bool LLVM_ATTRIBUTE_UNUSED checkFeature(MCSubtargetInfo* STI, uint64_t F) { return STI->getFeatureBits()[F]; } namespace { std::string selectHexagonFS(StringRef CPU, StringRef FS) { SmallVector Result; if (!FS.empty()) Result.push_back(FS); switch (EnableHVX) { case Hexagon::ArchEnum::V5: case Hexagon::ArchEnum::V55: break; case Hexagon::ArchEnum::V60: Result.push_back("+hvxv60"); break; case Hexagon::ArchEnum::V62: Result.push_back("+hvxv62"); break; case Hexagon::ArchEnum::V65: Result.push_back("+hvxv65"); break; case Hexagon::ArchEnum::V66: Result.push_back("+hvxv66"); break; case Hexagon::ArchEnum::V67: Result.push_back("+hvxv67"); break; case Hexagon::ArchEnum::Generic:{ Result.push_back(StringSwitch(CPU) .Case("hexagonv60", "+hvxv60") .Case("hexagonv62", "+hvxv62") .Case("hexagonv65", "+hvxv65") .Case("hexagonv66", "+hvxv66") .Case("hexagonv67", "+hvxv67") .Case("hexagonv67t", "+hvxv67")); break; } case Hexagon::ArchEnum::NoArch: // Sentinel if -mhvx isn't specified break; } return join(Result.begin(), Result.end(), ","); } } static bool isCPUValid(const std::string &CPU) { return Hexagon::CpuTable.find(CPU) != Hexagon::CpuTable.cend(); } namespace { std::pair selectCPUAndFS(StringRef CPU, StringRef FS) { std::pair Result; Result.first = std::string(Hexagon_MC::selectHexagonCPU(CPU)); Result.second = selectHexagonFS(Result.first, FS); return Result; } std::mutex ArchSubtargetMutex; std::unordered_map> ArchSubtarget; } // namespace MCSubtargetInfo const * Hexagon_MC::getArchSubtarget(MCSubtargetInfo const *STI) { std::lock_guard Lock(ArchSubtargetMutex); auto Existing = ArchSubtarget.find(std::string(STI->getCPU())); if (Existing == ArchSubtarget.end()) return nullptr; return Existing->second.get(); } FeatureBitset Hexagon_MC::completeHVXFeatures(const FeatureBitset &S) { using namespace Hexagon; // Make sure that +hvx-length turns hvx on, and that "hvx" alone // turns on hvxvNN, corresponding to the existing ArchVNN. FeatureBitset FB = S; unsigned CpuArch = ArchV5; for (unsigned F : {ArchV67, ArchV66, ArchV65, ArchV62, ArchV60, ArchV55, ArchV5}) { if (!FB.test(F)) continue; CpuArch = F; break; } bool UseHvx = false; for (unsigned F : {ExtensionHVX, ExtensionHVX64B, ExtensionHVX128B}) { if (!FB.test(F)) continue; UseHvx = true; break; } bool HasHvxVer = false; for (unsigned F : {ExtensionHVXV60, ExtensionHVXV62, ExtensionHVXV65, ExtensionHVXV66, ExtensionHVXV67}) { if (!FB.test(F)) continue; HasHvxVer = true; UseHvx = true; break; } if (!UseHvx || HasHvxVer) return FB; // HasHvxVer is false, and UseHvx is true. switch (CpuArch) { case ArchV67: FB.set(ExtensionHVXV67); LLVM_FALLTHROUGH; case ArchV66: FB.set(ExtensionHVXV66); LLVM_FALLTHROUGH; case ArchV65: FB.set(ExtensionHVXV65); LLVM_FALLTHROUGH; case ArchV62: FB.set(ExtensionHVXV62); LLVM_FALLTHROUGH; case ArchV60: FB.set(ExtensionHVXV60); break; } return FB; } MCSubtargetInfo *Hexagon_MC::createHexagonMCSubtargetInfo(const Triple &TT, StringRef CPU, StringRef FS) { std::pair Features = selectCPUAndFS(CPU, FS); StringRef CPUName = Features.first; StringRef ArchFS = Features.second; MCSubtargetInfo *X = createHexagonMCSubtargetInfoImpl(TT, CPUName, ArchFS); if (X != nullptr && (CPUName == "hexagonv67t")) addArchSubtarget(X, ArchFS); if (CPU.equals("help")) exit(0); if (!isCPUValid(CPUName.str())) { errs() << "error: invalid CPU \"" << CPUName.str().c_str() << "\" specified\n"; return nullptr; } if (HexagonDisableDuplex) { llvm::FeatureBitset Features = X->getFeatureBits(); X->setFeatureBits(Features.reset(Hexagon::FeatureDuplex)); } X->setFeatureBits(completeHVXFeatures(X->getFeatureBits())); // The Z-buffer instructions are grandfathered in for current // architectures but omitted for new ones. Future instruction // sets may introduce new/conflicting z-buffer instructions. const bool ZRegOnDefault = (CPUName == "hexagonv67") || (CPUName == "hexagonv66"); if (ZRegOnDefault) { llvm::FeatureBitset Features = X->getFeatureBits(); X->setFeatureBits(Features.set(Hexagon::ExtensionZReg)); } return X; } void Hexagon_MC::addArchSubtarget(MCSubtargetInfo const *STI, StringRef FS) { assert(STI != nullptr); if (STI->getCPU().contains("t")) { auto ArchSTI = createHexagonMCSubtargetInfo( STI->getTargetTriple(), STI->getCPU().substr(0, STI->getCPU().size() - 1), FS); std::lock_guard Lock(ArchSubtargetMutex); ArchSubtarget[std::string(STI->getCPU())] = std::unique_ptr(ArchSTI); } } unsigned Hexagon_MC::GetELFFlags(const MCSubtargetInfo &STI) { static std::map ElfFlags = { {"hexagonv5", ELF::EF_HEXAGON_MACH_V5}, {"hexagonv55", ELF::EF_HEXAGON_MACH_V55}, {"hexagonv60", ELF::EF_HEXAGON_MACH_V60}, {"hexagonv62", ELF::EF_HEXAGON_MACH_V62}, {"hexagonv65", ELF::EF_HEXAGON_MACH_V65}, {"hexagonv66", ELF::EF_HEXAGON_MACH_V66}, {"hexagonv67", ELF::EF_HEXAGON_MACH_V67}, {"hexagonv67t", ELF::EF_HEXAGON_MACH_V67T}, }; auto F = ElfFlags.find(STI.getCPU()); assert(F != ElfFlags.end() && "Unrecognized Architecture"); return F->second; } llvm::ArrayRef Hexagon_MC::GetVectRegRev() { return makeArrayRef(VectRegRev); } namespace { class HexagonMCInstrAnalysis : public MCInstrAnalysis { public: HexagonMCInstrAnalysis(MCInstrInfo const *Info) : MCInstrAnalysis(Info) {} bool isUnconditionalBranch(MCInst const &Inst) const override { //assert(!HexagonMCInstrInfo::isBundle(Inst)); return MCInstrAnalysis::isUnconditionalBranch(Inst); } bool isConditionalBranch(MCInst const &Inst) const override { //assert(!HexagonMCInstrInfo::isBundle(Inst)); return MCInstrAnalysis::isConditionalBranch(Inst); } bool evaluateBranch(MCInst const &Inst, uint64_t Addr, uint64_t Size, uint64_t &Target) const override { if (!(isCall(Inst) || isUnconditionalBranch(Inst) || isConditionalBranch(Inst))) return false; //assert(!HexagonMCInstrInfo::isBundle(Inst)); if(!HexagonMCInstrInfo::isExtendable(*Info, Inst)) return false; auto const &Extended(HexagonMCInstrInfo::getExtendableOperand(*Info, Inst)); assert(Extended.isExpr()); int64_t Value; if(!Extended.getExpr()->evaluateAsAbsolute(Value)) return false; Target = Value; return true; } }; } static MCInstrAnalysis *createHexagonMCInstrAnalysis(const MCInstrInfo *Info) { return new HexagonMCInstrAnalysis(Info); } // Force static initialization. extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeHexagonTargetMC() { // Register the MC asm info. RegisterMCAsmInfoFn X(getTheHexagonTarget(), createHexagonMCAsmInfo); // Register the MC instruction info. TargetRegistry::RegisterMCInstrInfo(getTheHexagonTarget(), createHexagonMCInstrInfo); // Register the MC register info. TargetRegistry::RegisterMCRegInfo(getTheHexagonTarget(), createHexagonMCRegisterInfo); // Register the MC subtarget info. TargetRegistry::RegisterMCSubtargetInfo(getTheHexagonTarget(), Hexagon_MC::createHexagonMCSubtargetInfo); // Register the MC Code Emitter TargetRegistry::RegisterMCCodeEmitter(getTheHexagonTarget(), createHexagonMCCodeEmitter); // Register the asm backend TargetRegistry::RegisterMCAsmBackend(getTheHexagonTarget(), createHexagonAsmBackend); // Register the MC instruction analyzer. TargetRegistry::RegisterMCInstrAnalysis(getTheHexagonTarget(), createHexagonMCInstrAnalysis); // Register the obj streamer TargetRegistry::RegisterELFStreamer(getTheHexagonTarget(), createMCStreamer); // Register the obj target streamer TargetRegistry::RegisterObjectTargetStreamer(getTheHexagonTarget(), createHexagonObjectTargetStreamer); // Register the asm streamer TargetRegistry::RegisterAsmTargetStreamer(getTheHexagonTarget(), createMCAsmTargetStreamer); // Register the MC Inst Printer TargetRegistry::RegisterMCInstPrinter(getTheHexagonTarget(), createHexagonMCInstPrinter); }