//===- HexagonMCInstrInfo.cpp - Utility functions on Hexagon MCInsts ------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Utility functions for Hexagon specific MCInst queries // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H #define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/MC/MCInst.h" #include "llvm/Support/MathExtras.h" #include #include namespace llvm { class HexagonMCChecker; class MCContext; class MCExpr; class MCInstrDesc; class MCInstrInfo; class MCRegisterInfo; class MCSubtargetInfo; class DuplexCandidate { public: unsigned packetIndexI, packetIndexJ, iClass; DuplexCandidate(unsigned i, unsigned j, unsigned iClass) : packetIndexI(i), packetIndexJ(j), iClass(iClass) {} }; namespace Hexagon { class PacketIterator : public llvm::iterator_facade_base< PacketIterator, std::forward_iterator_tag, const MCInst> { MCInstrInfo const &MCII; MCInst::const_iterator BundleCurrent; MCInst::const_iterator BundleEnd; MCInst::const_iterator DuplexCurrent; MCInst::const_iterator DuplexEnd; public: PacketIterator(MCInstrInfo const &MCII, MCInst const &Inst); PacketIterator(MCInstrInfo const &MCII, MCInst const &Inst, std::nullptr_t); PacketIterator &operator++(); MCInst const &operator*() const; bool operator==(PacketIterator const &Other) const; }; } // end namespace Hexagon namespace HexagonMCInstrInfo { constexpr size_t innerLoopOffset = 0; constexpr int64_t innerLoopMask = 1 << innerLoopOffset; constexpr size_t outerLoopOffset = 1; constexpr int64_t outerLoopMask = 1 << outerLoopOffset; // do not reorder memory load/stores by default load/stores are re-ordered // and by default loads can be re-ordered constexpr size_t memReorderDisabledOffset = 2; constexpr int64_t memReorderDisabledMask = 1 << memReorderDisabledOffset; constexpr size_t splitNoMemOrderOffset = 3; constexpr int64_t splitNoMemorderMask = 1 << splitNoMemOrderOffset; constexpr size_t noShuffleOffset = 4; constexpr int64_t noShuffleMask = 1 << noShuffleOffset; constexpr size_t bundleInstructionsOffset = 1; void addConstant(MCInst &MI, uint64_t Value, MCContext &Context); void addConstExtender(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB, MCInst const &MCI); // Returns a iterator range of instructions in this bundle iterator_range bundleInstructions(MCInstrInfo const &MCII, MCInst const &MCI); iterator_range bundleInstructions(MCInst const &MCI); // Returns the number of instructions in the bundle size_t bundleSize(MCInst const &MCI); // Put the packet in to canonical form, compound, duplex, pad, and shuffle bool canonicalizePacket(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCContext &Context, MCInst &MCB, HexagonMCChecker *Checker, bool AttemptCompatibility = false); bool IsABranchingInst(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCInst const &I); // Create a duplex instruction given the two subinsts MCInst *deriveDuplex(MCContext &Context, unsigned iClass, MCInst const &inst0, MCInst const &inst1); MCInst deriveExtender(MCInstrInfo const &MCII, MCInst const &Inst, MCOperand const &MO); // Convert this instruction in to a duplex subinst MCInst deriveSubInst(MCInst const &Inst); // Return the extender for instruction at Index or nullptr if none MCInst const *extenderForIndex(MCInst const &MCB, size_t Index); void extendIfNeeded(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB, MCInst const &MCI); // Return memory access size in bytes unsigned getMemAccessSize(MCInstrInfo const &MCII, MCInst const &MCI); // Return memory access size unsigned getAddrMode(MCInstrInfo const &MCII, MCInst const &MCI); MCInstrDesc const &getDesc(MCInstrInfo const &MCII, MCInst const &MCI); // Return which duplex group this instruction belongs to unsigned getDuplexCandidateGroup(MCInst const &MI); // Return a list of all possible instruction duplex combinations SmallVector getDuplexPossibilties(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCInst const &MCB); unsigned getDuplexRegisterNumbering(unsigned Reg); MCExpr const &getExpr(MCExpr const &Expr); // Return the index of the extendable operand unsigned short getExtendableOp(MCInstrInfo const &MCII, MCInst const &MCI); // Return a reference to the extendable operand MCOperand const &getExtendableOperand(MCInstrInfo const &MCII, MCInst const &MCI); // Return the implicit alignment of the extendable operand unsigned getExtentAlignment(MCInstrInfo const &MCII, MCInst const &MCI); // Return the number of logical bits of the extendable operand unsigned getExtentBits(MCInstrInfo const &MCII, MCInst const &MCI); // Check if the extendable operand is signed. bool isExtentSigned(MCInstrInfo const &MCII, MCInst const &MCI); // Return the max value that a constant extendable operand can have // without being extended. int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI); // Return the min value that a constant extendable operand can have // without being extended. int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI); // Return instruction name StringRef getName(MCInstrInfo const &MCII, MCInst const &MCI); // Return the operand index for the new value. unsigned short getNewValueOp(MCInstrInfo const &MCII, MCInst const &MCI); // Return the operand that consumes or produces a new value. MCOperand const &getNewValueOperand(MCInstrInfo const &MCII, MCInst const &MCI); unsigned short getNewValueOp2(MCInstrInfo const &MCII, MCInst const &MCI); MCOperand const &getNewValueOperand2(MCInstrInfo const &MCII, MCInst const &MCI); // Return the Hexagon ISA class for the insn. unsigned getType(MCInstrInfo const &MCII, MCInst const &MCI); /// Return the resources used by this instruction unsigned getCVIResources(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCInst const &MCI); /// Return the slots used by the insn. unsigned getUnits(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCInst const &MCI); unsigned getOtherReservedSlots(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCInst const &MCI); bool hasDuplex(MCInstrInfo const &MCII, MCInst const &MCI); // Does the packet have an extender for the instruction at Index bool hasExtenderForIndex(MCInst const &MCB, size_t Index); bool hasImmExt(MCInst const &MCI); // Return whether the instruction is a legal new-value producer. bool hasNewValue(MCInstrInfo const &MCII, MCInst const &MCI); bool hasNewValue2(MCInstrInfo const &MCII, MCInst const &MCI); bool hasTmpDst(MCInstrInfo const &MCII, MCInst const &MCI); bool hasHvxTmp(MCInstrInfo const &MCII, MCInst const &MCI); unsigned iClassOfDuplexPair(unsigned Ga, unsigned Gb); int64_t minConstant(MCInst const &MCI, size_t Index); template bool inRange(MCInst const &MCI, size_t Index) { return isShiftedUInt(minConstant(MCI, Index)); } template bool inSRange(MCInst const &MCI, size_t Index) { return isShiftedInt(minConstant(MCI, Index)); } template bool inRange(MCInst const &MCI, size_t Index) { return isUInt(minConstant(MCI, Index)); } // Return the instruction at Index MCInst const &instruction(MCInst const &MCB, size_t Index); bool isAccumulator(MCInstrInfo const &MCII, MCInst const &MCI); // Returns whether this MCInst is a wellformed bundle bool isBundle(MCInst const &MCI); // Return whether the insn is an actual insn. bool isCanon(MCInstrInfo const &MCII, MCInst const &MCI); bool isCofMax1(MCInstrInfo const &MCII, MCInst const &MCI); bool isCofRelax1(MCInstrInfo const &MCII, MCInst const &MCI); bool isCofRelax2(MCInstrInfo const &MCII, MCInst const &MCI); bool isCompound(MCInstrInfo const &MCII, MCInst const &MCI); // Return whether the instruction needs to be constant extended. bool isConstExtended(MCInstrInfo const &MCII, MCInst const &MCI); bool isCVINew(MCInstrInfo const &MCII, MCInst const &MCI); // Is this double register suitable for use in a duplex subinst bool isDblRegForSubInst(unsigned Reg); // Is this a duplex instruction bool isDuplex(MCInstrInfo const &MCII, MCInst const &MCI); // Can these instructions be duplexed bool isDuplexPair(MCInst const &MIa, MCInst const &MIb); // Can these duplex classes be combine in to a duplex instruction bool isDuplexPairMatch(unsigned Ga, unsigned Gb); // Return true if the insn may be extended based on the operand value. bool isExtendable(MCInstrInfo const &MCII, MCInst const &MCI); // Return whether the instruction must be always extended. bool isExtended(MCInstrInfo const &MCII, MCInst const &MCI); /// Return whether it is a floating-point insn. bool isFloat(MCInstrInfo const &MCII, MCInst const &MCI); bool isHVX(MCInstrInfo const &MCII, MCInst const &MCI); // Returns whether this instruction is an immediate extender bool isImmext(MCInst const &MCI); // Returns whether this bundle is an endloop0 bool isInnerLoop(MCInst const &MCI); // Is this an integer register bool isIntReg(unsigned Reg); // Is this register suitable for use in a duplex subinst bool isIntRegForSubInst(unsigned Reg); bool isMemReorderDisabled(MCInst const &MCI); // Return whether the insn is a new-value consumer. bool isNewValue(MCInstrInfo const &MCII, MCInst const &MCI); /// Return true if the operand is a new-value store insn. bool isNewValueStore(MCInstrInfo const &MCII, MCInst const &MCI); bool isOpExtendable(MCInstrInfo const &MCII, MCInst const &MCI, unsigned short); // Can these two instructions be duplexed bool isOrderedDuplexPair(MCInstrInfo const &MCII, MCInst const &MIa, bool ExtendedA, MCInst const &MIb, bool ExtendedB, bool bisReversable, MCSubtargetInfo const &STI); // Returns whether this bundle is an endloop1 bool isOuterLoop(MCInst const &MCI); // Return whether this instruction is predicated bool isPredicated(MCInstrInfo const &MCII, MCInst const &MCI); bool isPredicateLate(MCInstrInfo const &MCII, MCInst const &MCI); bool isPredicatedNew(MCInstrInfo const &MCII, MCInst const &MCI); // Return whether the predicate sense is true bool isPredicatedTrue(MCInstrInfo const &MCII, MCInst const &MCI); // Return true if this is a scalar predicate register. bool isPredReg(MCRegisterInfo const &MRI, unsigned Reg); // Returns true if the Ith operand is a predicate register. bool isPredRegister(MCInstrInfo const &MCII, MCInst const &Inst, unsigned I); // Return whether the insn is a prefix. bool isPrefix(MCInstrInfo const &MCII, MCInst const &MCI); // Return whether the insn is solo, i.e., cannot be in a packet. bool isSolo(MCInstrInfo const &MCII, MCInst const &MCI); /// Return whether the insn can be packaged only with A and X-type insns. bool isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI); /// Return whether the insn can be packaged only with an A-type insn in slot #1. bool isRestrictSlot1AOK(MCInstrInfo const &MCII, MCInst const &MCI); bool isRestrictNoSlot1Store(MCInstrInfo const &MCII, MCInst const &MCI); bool isSubInstruction(MCInst const &MCI); bool isVector(MCInstrInfo const &MCII, MCInst const &MCI); bool mustExtend(MCExpr const &Expr); bool mustNotExtend(MCExpr const &Expr); // Returns true if this instruction requires a slot to execute. bool requiresSlot(MCSubtargetInfo const &STI, MCInst const &MCI); // Returns true if \a MCB would require endloop padding. bool LoopNeedsPadding(MCInst const &MCB); unsigned packetSize(StringRef CPU); // Returns the maximum number of slots available in the given // subtarget's packets. unsigned packetSizeSlots(MCSubtargetInfo const &STI); // Returns the number of slots consumed by this packet, considering duplexed // and compound instructions. unsigned slotsConsumed(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCInst const &MCI); // Pad the bundle with nops to satisfy endloop requirements. void padEndloop(MCInst &MCI, MCContext &Context); class PredicateInfo { public: PredicateInfo() : Register(0), Operand(0), PredicatedTrue(false) {} PredicateInfo(unsigned Register, unsigned Operand, bool PredicatedTrue) : Register(Register), Operand(Operand), PredicatedTrue(PredicatedTrue) {} bool isPredicated() const; unsigned Register; unsigned Operand; bool PredicatedTrue; }; PredicateInfo predicateInfo(MCInstrInfo const &MCII, MCInst const &MCI); bool prefersSlot3(MCInstrInfo const &MCII, MCInst const &MCI); // Replace the instructions inside MCB, represented by Candidate void replaceDuplex(MCContext &Context, MCInst &MCI, DuplexCandidate Candidate); bool s27_2_reloc(MCExpr const &Expr); // Marks a bundle as endloop0 void setInnerLoop(MCInst &MCI); void setMemReorderDisabled(MCInst &MCI); void setMustExtend(MCExpr const &Expr, bool Val = true); void setMustNotExtend(MCExpr const &Expr, bool Val = true); void setS27_2_reloc(MCExpr const &Expr, bool Val = true); // Marks a bundle as endloop1 void setOuterLoop(MCInst &MCI); // Would duplexing this instruction create a requirement to extend bool subInstWouldBeExtended(MCInst const &potentialDuplex); unsigned SubregisterBit(unsigned Consumer, unsigned Producer, unsigned Producer2); bool IsVecRegSingle(unsigned VecReg); bool IsVecRegPair(unsigned VecReg); bool IsReverseVecRegPair(unsigned VecReg); bool IsSingleConsumerRefPairProducer(unsigned Producer, unsigned Consumer); /// Returns an ordered pair of the constituent register ordinals for /// each of the elements of \a VecRegPair. For example, Hexagon::W0 ("v0:1") /// returns { 0, 1 } and Hexagon::W1 ("v3:2") returns { 3, 2 }. std::pair GetVecRegPairIndices(unsigned VecRegPair); // Attempt to find and replace compound pairs void tryCompound(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCContext &Context, MCInst &MCI); } // end namespace HexagonMCInstrInfo } // end namespace llvm #endif // LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H