//===-- HexagonTargetObjectFile.cpp ---------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the declarations of the HexagonTargetAsmInfo properties. // //===----------------------------------------------------------------------===// #include "HexagonTargetObjectFile.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GlobalObject.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/SectionKind.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #define DEBUG_TYPE "hexagon-sdata" using namespace llvm; static cl::opt SmallDataThreshold("hexagon-small-data-threshold", cl::init(8), cl::Hidden, cl::desc("The maximum size of an object in the sdata section")); static cl::opt NoSmallDataSorting("mno-sort-sda", cl::init(false), cl::Hidden, cl::desc("Disable small data sections sorting")); static cl::opt StaticsInSData("hexagon-statics-in-small-data", cl::Hidden, cl::desc("Allow static variables in .sdata")); static cl::opt TraceGVPlacement("trace-gv-placement", cl::Hidden, cl::init(false), cl::desc("Trace global value placement")); static cl::opt EmitJtInText("hexagon-emit-jt-text", cl::Hidden, cl::init(false), cl::desc("Emit hexagon jump tables in function section")); static cl::opt EmitLutInText("hexagon-emit-lut-text", cl::Hidden, cl::init(false), cl::desc("Emit hexagon lookup tables in function section")); // TraceGVPlacement controls messages for all builds. For builds with assertions // (debug or release), messages are also controlled by the usual debug flags // (e.g. -debug and -debug-only=globallayout) #define TRACE_TO(s, X) s << X #ifdef NDEBUG #define TRACE(X) \ do { \ if (TraceGVPlacement) { \ TRACE_TO(errs(), X); \ } \ } while (false) #else #define TRACE(X) \ do { \ if (TraceGVPlacement) { \ TRACE_TO(errs(), X); \ } else { \ LLVM_DEBUG(TRACE_TO(dbgs(), X)); \ } \ } while (false) #endif // Returns true if the section name is such that the symbol will be put // in a small data section. // For instance, global variables with section attributes such as ".sdata" // ".sdata.*", ".sbss", and ".sbss.*" will go into small data. static bool isSmallDataSection(StringRef Sec) { // sectionName is either ".sdata" or ".sbss". Looking for an exact match // obviates the need for checks for section names such as ".sdatafoo". if (Sec.equals(".sdata") || Sec.equals(".sbss") || Sec.equals(".scommon")) return true; // If either ".sdata." or ".sbss." is a substring of the section name // then put the symbol in small data. return Sec.contains(".sdata.") || Sec.contains(".sbss.") || Sec.contains(".scommon."); } static const char *getSectionSuffixForSize(unsigned Size) { switch (Size) { default: return ""; case 1: return ".1"; case 2: return ".2"; case 4: return ".4"; case 8: return ".8"; } } void HexagonTargetObjectFile::Initialize(MCContext &Ctx, const TargetMachine &TM) { TargetLoweringObjectFileELF::Initialize(Ctx, TM); SmallDataSection = getContext().getELFSection(".sdata", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_HEX_GPREL); SmallBSSSection = getContext().getELFSection(".sbss", ELF::SHT_NOBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_HEX_GPREL); } MCSection *HexagonTargetObjectFile::SelectSectionForGlobal( const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { TRACE("[SelectSectionForGlobal] GO(" << GO->getName() << ") "); TRACE("input section(" << GO->getSection() << ") "); TRACE((GO->hasPrivateLinkage() ? "private_linkage " : "") << (GO->hasLocalLinkage() ? "local_linkage " : "") << (GO->hasInternalLinkage() ? "internal " : "") << (GO->hasExternalLinkage() ? "external " : "") << (GO->hasCommonLinkage() ? "common_linkage " : "") << (GO->hasCommonLinkage() ? "common " : "" ) << (Kind.isCommon() ? "kind_common " : "" ) << (Kind.isBSS() ? "kind_bss " : "" ) << (Kind.isBSSLocal() ? "kind_bss_local " : "" )); // If the lookup table is used by more than one function, do not place // it in text section. if (EmitLutInText && GO->getName().startswith("switch.table")) { if (const Function *Fn = getLutUsedFunction(GO)) return selectSectionForLookupTable(GO, TM, Fn); } if (isGlobalInSmallSection(GO, TM)) return selectSmallSectionForGlobal(GO, Kind, TM); if (Kind.isCommon()) { // This is purely for LTO+Linker Script because commons don't really have a // section. However, the BitcodeSectionWriter pass will query for the // sections of commons (and the linker expects us to know their section) so // we'll return one here. return BSSSection; } TRACE("default_ELF_section\n"); // Otherwise, we work the same as ELF. return TargetLoweringObjectFileELF::SelectSectionForGlobal(GO, Kind, TM); } MCSection *HexagonTargetObjectFile::getExplicitSectionGlobal( const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { TRACE("[getExplicitSectionGlobal] GO(" << GO->getName() << ") from(" << GO->getSection() << ") "); TRACE((GO->hasPrivateLinkage() ? "private_linkage " : "") << (GO->hasLocalLinkage() ? "local_linkage " : "") << (GO->hasInternalLinkage() ? "internal " : "") << (GO->hasExternalLinkage() ? "external " : "") << (GO->hasCommonLinkage() ? "common_linkage " : "") << (GO->hasCommonLinkage() ? "common " : "" ) << (Kind.isCommon() ? "kind_common " : "" ) << (Kind.isBSS() ? "kind_bss " : "" ) << (Kind.isBSSLocal() ? "kind_bss_local " : "" )); if (GO->hasSection()) { StringRef Section = GO->getSection(); if (Section.contains(".access.text.group")) return getContext().getELFSection(GO->getSection(), ELF::SHT_PROGBITS, ELF::SHF_ALLOC | ELF::SHF_EXECINSTR); if (Section.contains(".access.data.group")) return getContext().getELFSection(GO->getSection(), ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); } if (isGlobalInSmallSection(GO, TM)) return selectSmallSectionForGlobal(GO, Kind, TM); // Otherwise, we work the same as ELF. TRACE("default_ELF_section\n"); return TargetLoweringObjectFileELF::getExplicitSectionGlobal(GO, Kind, TM); } /// Return true if this global value should be placed into small data/bss /// section. bool HexagonTargetObjectFile::isGlobalInSmallSection(const GlobalObject *GO, const TargetMachine &TM) const { bool HaveSData = isSmallDataEnabled(TM); if (!HaveSData) LLVM_DEBUG(dbgs() << "Small-data allocation is disabled, but symbols " "may have explicit section assignments...\n"); // Only global variables, not functions. LLVM_DEBUG(dbgs() << "Checking if value is in small-data, -G" << SmallDataThreshold << ": \"" << GO->getName() << "\": "); const GlobalVariable *GVar = dyn_cast(GO); if (!GVar) { LLVM_DEBUG(dbgs() << "no, not a global variable\n"); return false; } // Globals with external linkage that have an original section set must be // emitted to that section, regardless of whether we would put them into // small data or not. This is how we can support mixing -G0/-G8 in LTO. if (GVar->hasSection()) { bool IsSmall = isSmallDataSection(GVar->getSection()); LLVM_DEBUG(dbgs() << (IsSmall ? "yes" : "no") << ", has section: " << GVar->getSection() << '\n'); return IsSmall; } // If sdata is disabled, stop the checks here. if (!HaveSData) { LLVM_DEBUG(dbgs() << "no, small-data allocation is disabled\n"); return false; } if (GVar->isConstant()) { LLVM_DEBUG(dbgs() << "no, is a constant\n"); return false; } bool IsLocal = GVar->hasLocalLinkage(); if (!StaticsInSData && IsLocal) { LLVM_DEBUG(dbgs() << "no, is static\n"); return false; } Type *GType = GVar->getValueType(); if (isa(GType)) { LLVM_DEBUG(dbgs() << "no, is an array\n"); return false; } // If the type is a struct with no body provided, treat is conservatively. // There cannot be actual definitions of object of such a type in this CU // (only references), so assuming that they are not in sdata is safe. If // these objects end up in the sdata, the references will still be valid. if (StructType *ST = dyn_cast(GType)) { if (ST->isOpaque()) { LLVM_DEBUG(dbgs() << "no, has opaque type\n"); return false; } } unsigned Size = GVar->getParent()->getDataLayout().getTypeAllocSize(GType); if (Size == 0) { LLVM_DEBUG(dbgs() << "no, has size 0\n"); return false; } if (Size > SmallDataThreshold) { LLVM_DEBUG(dbgs() << "no, size exceeds sdata threshold: " << Size << '\n'); return false; } LLVM_DEBUG(dbgs() << "yes\n"); return true; } bool HexagonTargetObjectFile::isSmallDataEnabled(const TargetMachine &TM) const { return SmallDataThreshold > 0 && !TM.isPositionIndependent(); } unsigned HexagonTargetObjectFile::getSmallDataSize() const { return SmallDataThreshold; } bool HexagonTargetObjectFile::shouldPutJumpTableInFunctionSection( bool UsesLabelDifference, const Function &F) const { return EmitJtInText; } /// Descends any type down to "elementary" components, /// discovering the smallest addressable one. /// If zero is returned, declaration will not be modified. unsigned HexagonTargetObjectFile::getSmallestAddressableSize(const Type *Ty, const GlobalValue *GV, const TargetMachine &TM) const { // Assign the smallest element access size to the highest // value which assembler can handle. unsigned SmallestElement = 8; if (!Ty) return 0; switch (Ty->getTypeID()) { case Type::StructTyID: { const StructType *STy = cast(Ty); for (auto &E : STy->elements()) { unsigned AtomicSize = getSmallestAddressableSize(E, GV, TM); if (AtomicSize < SmallestElement) SmallestElement = AtomicSize; } return (STy->getNumElements() == 0) ? 0 : SmallestElement; } case Type::ArrayTyID: { const ArrayType *ATy = cast(Ty); return getSmallestAddressableSize(ATy->getElementType(), GV, TM); } case Type::FixedVectorTyID: case Type::ScalableVectorTyID: { const VectorType *PTy = cast(Ty); return getSmallestAddressableSize(PTy->getElementType(), GV, TM); } case Type::PointerTyID: case Type::HalfTyID: case Type::FloatTyID: case Type::DoubleTyID: case Type::IntegerTyID: { const DataLayout &DL = GV->getParent()->getDataLayout(); // It is unfortunate that DL's function take non-const Type*. return DL.getTypeAllocSize(const_cast(Ty)); } case Type::FunctionTyID: case Type::VoidTyID: case Type::BFloatTyID: case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: case Type::LabelTyID: case Type::MetadataTyID: case Type::X86_MMXTyID: case Type::X86_AMXTyID: case Type::TokenTyID: case Type::TypedPointerTyID: case Type::TargetExtTyID: return 0; } return 0; } MCSection *HexagonTargetObjectFile::selectSmallSectionForGlobal( const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { const Type *GTy = GO->getValueType(); unsigned Size = getSmallestAddressableSize(GTy, GO, TM); // If we have -ffunction-section or -fdata-section then we should emit the // global value to a unique section specifically for it... even for sdata. bool EmitUniquedSection = TM.getDataSections(); TRACE("Small data. Size(" << Size << ")"); // Handle Small Section classification here. if (Kind.isBSS() || Kind.isBSSLocal()) { // If -mno-sort-sda is not set, find out smallest accessible entity in // declaration and add it to the section name string. // Note. It does not track the actual usage of the value, only its de- // claration. Also, compiler adds explicit pad fields to some struct // declarations - they are currently counted towards smallest addres- // sable entity. if (NoSmallDataSorting) { TRACE(" default sbss\n"); return SmallBSSSection; } StringRef Prefix(".sbss"); SmallString<128> Name(Prefix); Name.append(getSectionSuffixForSize(Size)); if (EmitUniquedSection) { Name.append("."); Name.append(GO->getName()); } TRACE(" unique sbss(" << Name << ")\n"); return getContext().getELFSection(Name.str(), ELF::SHT_NOBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_HEX_GPREL); } if (Kind.isCommon()) { // This is purely for LTO+Linker Script because commons don't really have a // section. However, the BitcodeSectionWriter pass will query for the // sections of commons (and the linker expects us to know their section) so // we'll return one here. if (NoSmallDataSorting) return BSSSection; Twine Name = Twine(".scommon") + getSectionSuffixForSize(Size); TRACE(" small COMMON (" << Name << ")\n"); return getContext().getELFSection(Name.str(), ELF::SHT_NOBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_HEX_GPREL); } // We could have changed sdata object to a constant... in this // case the Kind could be wrong for it. if (Kind.isMergeableConst()) { TRACE(" const_object_as_data "); const GlobalVariable *GVar = dyn_cast(GO); if (GVar->hasSection() && isSmallDataSection(GVar->getSection())) Kind = SectionKind::getData(); } if (Kind.isData()) { if (NoSmallDataSorting) { TRACE(" default sdata\n"); return SmallDataSection; } StringRef Prefix(".sdata"); SmallString<128> Name(Prefix); Name.append(getSectionSuffixForSize(Size)); if (EmitUniquedSection) { Name.append("."); Name.append(GO->getName()); } TRACE(" unique sdata(" << Name << ")\n"); return getContext().getELFSection(Name.str(), ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_HEX_GPREL); } TRACE("default ELF section\n"); // Otherwise, we work the same as ELF. return TargetLoweringObjectFileELF::SelectSectionForGlobal(GO, Kind, TM); } // Return the function that uses the lookup table. If there are more // than one live function that uses this look table, bail out and place // the lookup table in default section. const Function * HexagonTargetObjectFile::getLutUsedFunction(const GlobalObject *GO) const { const Function *ReturnFn = nullptr; for (const auto *U : GO->users()) { // validate each instance of user to be a live function. auto *I = dyn_cast(U); if (!I) continue; auto *Bb = I->getParent(); if (!Bb) continue; auto *UserFn = Bb->getParent(); if (!ReturnFn) ReturnFn = UserFn; else if (ReturnFn != UserFn) return nullptr; } return ReturnFn; } MCSection *HexagonTargetObjectFile::selectSectionForLookupTable( const GlobalObject *GO, const TargetMachine &TM, const Function *Fn) const { SectionKind Kind = SectionKind::getText(); // If the function has explicit section, place the lookup table in this // explicit section. if (Fn->hasSection()) return getExplicitSectionGlobal(Fn, Kind, TM); const auto *FuncObj = dyn_cast(Fn); return SelectSectionForGlobal(FuncObj, Kind, TM); }