//===- HexagonInstrInfo.h - Hexagon Instruction Information -----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the Hexagon implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H #define LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H #include "MCTargetDesc/HexagonBaseInfo.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/Support/MachineValueType.h" #include #include #define GET_INSTRINFO_HEADER #include "HexagonGenInstrInfo.inc" namespace llvm { class HexagonSubtarget; class MachineBranchProbabilityInfo; class MachineFunction; class MachineInstr; class MachineOperand; class TargetRegisterInfo; class HexagonInstrInfo : public HexagonGenInstrInfo { const HexagonSubtarget &Subtarget; enum BundleAttribute { memShufDisabledMask = 0x4 }; virtual void anchor(); public: explicit HexagonInstrInfo(HexagonSubtarget &ST); /// TargetInstrInfo overrides. /// If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. unsigned isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const override; /// If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. unsigned isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const override; /// Check if the instruction or the bundle of instructions has /// load from stack slots. Return the frameindex and machine memory operand /// if true. bool hasLoadFromStackSlot( const MachineInstr &MI, SmallVectorImpl &Accesses) const override; /// Check if the instruction or the bundle of instructions has /// store to stack slots. Return the frameindex and machine memory operand /// if true. bool hasStoreToStackSlot( const MachineInstr &MI, SmallVectorImpl &Accesses) const override; /// Analyze the branching code at the end of MBB, returning /// true if it cannot be understood (e.g. it's a switch dispatch or isn't /// implemented for a target). Upon success, this returns false and returns /// with the following information in various cases: /// /// 1. If this block ends with no branches (it just falls through to its succ) /// just return false, leaving TBB/FBB null. /// 2. If this block ends with only an unconditional branch, it sets TBB to be /// the destination block. /// 3. If this block ends with a conditional branch and it falls through to a /// successor block, it sets TBB to be the branch destination block and a /// list of operands that evaluate the condition. These operands can be /// passed to other TargetInstrInfo methods to create new branches. /// 4. If this block ends with a conditional branch followed by an /// unconditional branch, it returns the 'true' destination in TBB, the /// 'false' destination in FBB, and a list of operands that evaluate the /// condition. These operands can be passed to other TargetInstrInfo /// methods to create new branches. /// /// Note that removeBranch and insertBranch must be implemented to support /// cases where this method returns success. /// /// If AllowModify is true, then this routine is allowed to modify the basic /// block (e.g. delete instructions after the unconditional branch). bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const override; /// Remove the branching code at the end of the specific MBB. /// This is only invoked in cases where analyzeBranch returns success. It /// returns the number of instructions that were removed. unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved = nullptr) const override; /// Insert branch code into the end of the specified MachineBasicBlock. /// The operands to this method are the same as those /// returned by analyzeBranch. This is only invoked in cases where /// analyzeBranch returns success. It returns the number of instructions /// inserted. /// /// It is also invoked by tail merging to add unconditional branches in /// cases where analyzeBranch doesn't apply because there was no original /// branch to analyze. At least this much must be implemented, else tail /// merging needs to be disabled. unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef Cond, const DebugLoc &DL, int *BytesAdded = nullptr) const override; /// Analyze loop L, which must be a single-basic-block loop, and if the /// conditions can be understood enough produce a PipelinerLoopInfo object. std::unique_ptr analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override; /// Return true if it's profitable to predicate /// instructions with accumulated instruction latency of "NumCycles" /// of the specified basic block, where the probability of the instructions /// being executed is given by Probability, and Confidence is a measure /// of our confidence that it will be properly predicted. bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, BranchProbability Probability) const override; /// Second variant of isProfitableToIfCvt. This one /// checks for the case where two basic blocks from true and false path /// of a if-then-else (diamond) are predicated on mutally exclusive /// predicates, where the probability of the true path being taken is given /// by Probability, and Confidence is a measure of our confidence that it /// will be properly predicted. bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB, unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability) const override; /// Return true if it's profitable for if-converter to duplicate instructions /// of specified accumulated instruction latencies in the specified MBB to /// enable if-conversion. /// The probability of the instructions being executed is given by /// Probability, and Confidence is a measure of our confidence that it /// will be properly predicted. bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, BranchProbability Probability) const override; /// Emit instructions to copy a pair of physical registers. /// /// This function should support copies within any legal register class as /// well as any cross-class copies created during instruction selection. /// /// The source and destination registers may overlap, which may require a /// careful implementation when multiple copy instructions are required for /// large registers. See for example the ARM target. void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc) const override; /// Store the specified register of the given register class to the specified /// stack frame index. The store instruction is to be added to the given /// machine basic block before the specified machine instruction. If isKill /// is true, the register operand is the last use and must be marked kill. void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const override; /// Load the specified register of the given register class from the specified /// stack frame index. The load instruction is to be added to the given /// machine basic block before the specified machine instruction. void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const override; /// This function is called for all pseudo instructions /// that remain after register allocation. Many pseudo instructions are /// created to help register allocation. This is the place to convert them /// into real instructions. The target can edit MI in place, or it can insert /// new instructions and erase MI. The function should return true if /// anything was changed. bool expandPostRAPseudo(MachineInstr &MI) const override; /// Get the base register and byte offset of a load/store instr. bool getMemOperandsWithOffsetWidth( const MachineInstr &LdSt, SmallVectorImpl &BaseOps, int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, const TargetRegisterInfo *TRI) const override; /// Reverses the branch condition of the specified condition list, /// returning false on success and true if it cannot be reversed. bool reverseBranchCondition(SmallVectorImpl &Cond) const override; /// Insert a noop into the instruction stream at the specified point. void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const override; /// Returns true if the instruction is already predicated. bool isPredicated(const MachineInstr &MI) const override; /// Return true for post-incremented instructions. bool isPostIncrement(const MachineInstr &MI) const override; /// Convert the instruction into a predicated instruction. /// It returns true if the operation was successful. bool PredicateInstruction(MachineInstr &MI, ArrayRef Cond) const override; /// Returns true if the first specified predicate /// subsumes the second, e.g. GE subsumes GT. bool SubsumesPredicate(ArrayRef Pred1, ArrayRef Pred2) const override; /// If the specified instruction defines any predicate /// or condition code register(s) used for predication, returns true as well /// as the definition predicate(s) by reference. bool ClobbersPredicate(MachineInstr &MI, std::vector &Pred, bool SkipDead) const override; /// Return true if the specified instruction can be predicated. /// By default, this returns true for every instruction with a /// PredicateOperand. bool isPredicable(const MachineInstr &MI) const override; /// Test if the given instruction should be considered a scheduling boundary. /// This primarily includes labels and terminators. bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const override; /// Measure the specified inline asm to determine an approximation of its /// length. unsigned getInlineAsmLength( const char *Str, const MCAsmInfo &MAI, const TargetSubtargetInfo *STI = nullptr) const override; /// Allocate and return a hazard recognizer to use for this target when /// scheduling the machine instructions after register allocation. ScheduleHazardRecognizer* CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, const ScheduleDAG *DAG) const override; /// For a comparison instruction, return the source registers /// in SrcReg and SrcReg2 if having two register operands, and the value it /// compares against in CmpValue. Return true if the comparison instruction /// can be analyzed. bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &Mask, int64_t &Value) const override; /// Compute the instruction latency of a given instruction. /// If the instruction has higher cost when predicated, it's returned via /// PredCost. unsigned getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr &MI, unsigned *PredCost = nullptr) const override; /// Create machine specific model for scheduling. DFAPacketizer * CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override; // Sometimes, it is possible for the target // to tell, even without aliasing information, that two MIs access different // memory addresses. This function returns true if two MIs access different // memory addresses and false otherwise. bool areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, const MachineInstr &MIb) const override; /// For instructions with a base and offset, return the position of the /// base register and offset operands. bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos, unsigned &OffsetPos) const override; /// If the instruction is an increment of a constant value, return the amount. bool getIncrementValue(const MachineInstr &MI, int &Value) const override; /// getOperandLatency - Compute and return the use operand latency of a given /// pair of def and use. /// In most cases, the static scheduling itinerary was enough to determine the /// operand latency. But it may not be possible for instructions with variable /// number of defs / uses. /// /// This is a raw interface to the itinerary that may be directly overriden by /// a target. Use computeOperandLatency to get the best estimate of latency. int getOperandLatency(const InstrItineraryData *ItinData, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const override; /// Decompose the machine operand's target flags into two values - the direct /// target flag value and any of bit flags that are applied. std::pair decomposeMachineOperandsTargetFlags(unsigned TF) const override; /// Return an array that contains the direct target flag values and their /// names. /// /// MIR Serialization is able to serialize only the target flags that are /// defined by this method. ArrayRef> getSerializableDirectMachineOperandTargetFlags() const override; /// Return an array that contains the bitmask target flag values and their /// names. /// /// MIR Serialization is able to serialize only the target flags that are /// defined by this method. ArrayRef> getSerializableBitmaskMachineOperandTargetFlags() const override; bool isTailCall(const MachineInstr &MI) const override; bool isAsCheapAsAMove(const MachineInstr &MI) const override; // Return true if the instruction should be sunk by MachineSink. // MachineSink determines on its own whether the instruction is safe to sink; // this gives the target a hook to override the default behavior with regards // to which instructions should be sunk. bool shouldSink(const MachineInstr &MI) const override; /// HexagonInstrInfo specifics. unsigned createVR(MachineFunction *MF, MVT VT) const; MachineInstr *findLoopInstr(MachineBasicBlock *BB, unsigned EndLoopOp, MachineBasicBlock *TargetBB, SmallPtrSet &Visited) const; bool isAbsoluteSet(const MachineInstr &MI) const; bool isAccumulator(const MachineInstr &MI) const; bool isAddrModeWithOffset(const MachineInstr &MI) const; bool isBaseImmOffset(const MachineInstr &MI) const; bool isComplex(const MachineInstr &MI) const; bool isCompoundBranchInstr(const MachineInstr &MI) const; bool isConstExtended(const MachineInstr &MI) const; bool isDeallocRet(const MachineInstr &MI) const; bool isDependent(const MachineInstr &ProdMI, const MachineInstr &ConsMI) const; bool isDotCurInst(const MachineInstr &MI) const; bool isDotNewInst(const MachineInstr &MI) const; bool isDuplexPair(const MachineInstr &MIa, const MachineInstr &MIb) const; bool isEndLoopN(unsigned Opcode) const; bool isExpr(unsigned OpType) const; bool isExtendable(const MachineInstr &MI) const; bool isExtended(const MachineInstr &MI) const; bool isFloat(const MachineInstr &MI) const; bool isHVXMemWithAIndirect(const MachineInstr &I, const MachineInstr &J) const; bool isIndirectCall(const MachineInstr &MI) const; bool isIndirectL4Return(const MachineInstr &MI) const; bool isJumpR(const MachineInstr &MI) const; bool isJumpWithinBranchRange(const MachineInstr &MI, unsigned offset) const; bool isLateSourceInstr(const MachineInstr &MI) const; bool isLoopN(const MachineInstr &MI) const; bool isMemOp(const MachineInstr &MI) const; bool isNewValue(const MachineInstr &MI) const; bool isNewValue(unsigned Opcode) const; bool isNewValueInst(const MachineInstr &MI) const; bool isNewValueJump(const MachineInstr &MI) const; bool isNewValueJump(unsigned Opcode) const; bool isNewValueStore(const MachineInstr &MI) const; bool isNewValueStore(unsigned Opcode) const; bool isOperandExtended(const MachineInstr &MI, unsigned OperandNum) const; bool isPredicatedNew(const MachineInstr &MI) const; bool isPredicatedNew(unsigned Opcode) const; bool isPredicatedTrue(const MachineInstr &MI) const; bool isPredicatedTrue(unsigned Opcode) const; bool isPredicated(unsigned Opcode) const; bool isPredicateLate(unsigned Opcode) const; bool isPredictedTaken(unsigned Opcode) const; bool isPureSlot0(const MachineInstr &MI) const; bool isRestrictNoSlot1Store(const MachineInstr &MI) const; bool isSaveCalleeSavedRegsCall(const MachineInstr &MI) const; bool isSignExtendingLoad(const MachineInstr &MI) const; bool isSolo(const MachineInstr &MI) const; bool isSpillPredRegOp(const MachineInstr &MI) const; bool isTC1(const MachineInstr &MI) const; bool isTC2(const MachineInstr &MI) const; bool isTC2Early(const MachineInstr &MI) const; bool isTC4x(const MachineInstr &MI) const; bool isToBeScheduledASAP(const MachineInstr &MI1, const MachineInstr &MI2) const; bool isHVXVec(const MachineInstr &MI) const; bool isValidAutoIncImm(const EVT VT, const int Offset) const; bool isValidOffset(unsigned Opcode, int Offset, const TargetRegisterInfo *TRI, bool Extend = true) const; bool isVecAcc(const MachineInstr &MI) const; bool isVecALU(const MachineInstr &MI) const; bool isVecUsableNextPacket(const MachineInstr &ProdMI, const MachineInstr &ConsMI) const; bool isZeroExtendingLoad(const MachineInstr &MI) const; bool addLatencyToSchedule(const MachineInstr &MI1, const MachineInstr &MI2) const; bool canExecuteInBundle(const MachineInstr &First, const MachineInstr &Second) const; bool doesNotReturn(const MachineInstr &CallMI) const; bool hasEHLabel(const MachineBasicBlock *B) const; bool hasNonExtEquivalent(const MachineInstr &MI) const; bool hasPseudoInstrPair(const MachineInstr &MI) const; bool hasUncondBranch(const MachineBasicBlock *B) const; bool mayBeCurLoad(const MachineInstr &MI) const; bool mayBeNewStore(const MachineInstr &MI) const; bool producesStall(const MachineInstr &ProdMI, const MachineInstr &ConsMI) const; bool producesStall(const MachineInstr &MI, MachineBasicBlock::const_instr_iterator MII) const; bool predCanBeUsedAsDotNew(const MachineInstr &MI, unsigned PredReg) const; bool PredOpcodeHasJMP_c(unsigned Opcode) const; bool predOpcodeHasNot(ArrayRef Cond) const; unsigned getAddrMode(const MachineInstr &MI) const; MachineOperand *getBaseAndOffset(const MachineInstr &MI, int64_t &Offset, unsigned &AccessSize) const; SmallVector getBranchingInstrs(MachineBasicBlock& MBB) const; unsigned getCExtOpNum(const MachineInstr &MI) const; HexagonII::CompoundGroup getCompoundCandidateGroup(const MachineInstr &MI) const; unsigned getCompoundOpcode(const MachineInstr &GA, const MachineInstr &GB) const; int getDuplexOpcode(const MachineInstr &MI, bool ForBigCore = true) const; int getCondOpcode(int Opc, bool sense) const; int getDotCurOp(const MachineInstr &MI) const; int getNonDotCurOp(const MachineInstr &MI) const; int getDotNewOp(const MachineInstr &MI) const; int getDotNewPredJumpOp(const MachineInstr &MI, const MachineBranchProbabilityInfo *MBPI) const; int getDotNewPredOp(const MachineInstr &MI, const MachineBranchProbabilityInfo *MBPI) const; int getDotOldOp(const MachineInstr &MI) const; HexagonII::SubInstructionGroup getDuplexCandidateGroup(const MachineInstr &MI) const; short getEquivalentHWInstr(const MachineInstr &MI) const; unsigned getInstrTimingClassLatency(const InstrItineraryData *ItinData, const MachineInstr &MI) const; bool getInvertedPredSense(SmallVectorImpl &Cond) const; unsigned getInvertedPredicatedOpcode(const int Opc) const; int getMaxValue(const MachineInstr &MI) const; unsigned getMemAccessSize(const MachineInstr &MI) const; int getMinValue(const MachineInstr &MI) const; short getNonExtOpcode(const MachineInstr &MI) const; bool getPredReg(ArrayRef Cond, unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const; short getPseudoInstrPair(const MachineInstr &MI) const; short getRegForm(const MachineInstr &MI) const; unsigned getSize(const MachineInstr &MI) const; uint64_t getType(const MachineInstr &MI) const; InstrStage::FuncUnits getUnits(const MachineInstr &MI) const; MachineBasicBlock::instr_iterator expandVGatherPseudo(MachineInstr &MI) const; /// getInstrTimingClassLatency - Compute the instruction latency of a given /// instruction using Timing Class information, if available. unsigned nonDbgBBSize(const MachineBasicBlock *BB) const; unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const; void immediateExtend(MachineInstr &MI) const; bool invertAndChangeJumpTarget(MachineInstr &MI, MachineBasicBlock *NewTarget) const; void genAllInsnTimingClasses(MachineFunction &MF) const; bool reversePredSense(MachineInstr &MI) const; unsigned reversePrediction(unsigned Opcode) const; bool validateBranchCond(const ArrayRef &Cond) const; void setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const; bool getBundleNoShuf(const MachineInstr &MIB) const; // When TinyCore with Duplexes is enabled, this function is used to translate // tiny-instructions to big-instructions and vice versa to get the slot // consumption. void changeDuplexOpcode(MachineBasicBlock::instr_iterator MII, bool ToBigInstrs) const; void translateInstrsForDup(MachineFunction &MF, bool ToBigInstrs = true) const; void translateInstrsForDup(MachineBasicBlock::instr_iterator MII, bool ToBigInstrs) const; // Addressing mode relations. short changeAddrMode_abs_io(short Opc) const; short changeAddrMode_io_abs(short Opc) const; short changeAddrMode_io_pi(short Opc) const; short changeAddrMode_io_rr(short Opc) const; short changeAddrMode_pi_io(short Opc) const; short changeAddrMode_rr_io(short Opc) const; short changeAddrMode_rr_ur(short Opc) const; short changeAddrMode_ur_rr(short Opc) const; short changeAddrMode_abs_io(const MachineInstr &MI) const { return changeAddrMode_abs_io(MI.getOpcode()); } short changeAddrMode_io_abs(const MachineInstr &MI) const { return changeAddrMode_io_abs(MI.getOpcode()); } short changeAddrMode_io_rr(const MachineInstr &MI) const { return changeAddrMode_io_rr(MI.getOpcode()); } short changeAddrMode_rr_io(const MachineInstr &MI) const { return changeAddrMode_rr_io(MI.getOpcode()); } short changeAddrMode_rr_ur(const MachineInstr &MI) const { return changeAddrMode_rr_ur(MI.getOpcode()); } short changeAddrMode_ur_rr(const MachineInstr &MI) const { return changeAddrMode_ur_rr(MI.getOpcode()); } MCInst getNop() const override; }; } // end namespace llvm #endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H