//==- HexagonInstrFormats.td - Hexagon Instruction Formats --*- tablegen -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // Addressing modes for load/store instructions class AddrModeType value> { bits<3> Value = value; } def NoAddrMode : AddrModeType<0>; // No addressing mode def Absolute : AddrModeType<1>; // Absolute addressing mode def AbsoluteSet : AddrModeType<2>; // Absolute set addressing mode def BaseImmOffset : AddrModeType<3>; // Indirect with offset def BaseLongOffset : AddrModeType<4>; // Indirect with long offset def BaseRegOffset : AddrModeType<5>; // Indirect with register offset def PostInc : AddrModeType<6>; // Post increment addressing mode class MemAccessSize value> { bits<4> Value = value; } // These numbers must match the MemAccessSize enumeration values in // HexagonBaseInfo.h. def NoMemAccess : MemAccessSize<0>; def ByteAccess : MemAccessSize<1>; def HalfWordAccess : MemAccessSize<2>; def WordAccess : MemAccessSize<3>; def DoubleWordAccess : MemAccessSize<4>; def HVXVectorAccess : MemAccessSize<5>; //===----------------------------------------------------------------------===// // Instruction Class Declaration + //===----------------------------------------------------------------------===// // "Parse" bits are explicitly NOT defined in the opcode space to prevent // TableGen from using them for generation of the decoder tables. class OpcodeHexagon { field bits<32> Inst = ?; // Default to an invalid insn. bits<4> IClass = 0; // ICLASS bits<1> zero = 0; let Inst{31-28} = IClass; } class InstHexagon pattern, string cstr, InstrItinClass itin, IType type> : Instruction { let Namespace = "Hexagon"; dag OutOperandList = outs; dag InOperandList = ins; let AsmString = asmstr; let Pattern = pattern; let Constraints = cstr; let Itinerary = itin; let Size = 4; // SoftFail is a field the disassembler can use to provide a way for // instructions to not match without killing the whole decode process. It is // mainly used for ARM, but Tablegen expects this field to exist or it fails // to build the decode table. field bits<32> SoftFail = 0; // *** Must match MCTargetDesc/HexagonBaseInfo.h *** // Instruction type according to the ISA. IType Type = type; let TSFlags{6-0} = Type.Value; // Solo instructions, i.e., those that cannot be in a packet with others. bits<1> isSolo = 0; let TSFlags{7} = isSolo; // Packed only with A or X-type instructions. bits<1> isSoloAX = 0; let TSFlags{8} = isSoloAX; // Restricts slot 1 to ALU-only instructions. bits<1> isRestrictSlot1AOK = 0; let TSFlags{9} = isRestrictSlot1AOK; // Predicated instructions. bits<1> isPredicated = 0; let TSFlags{10} = isPredicated; bits<1> isPredicatedFalse = 0; let TSFlags{11} = isPredicatedFalse; bits<1> isPredicatedNew = 0; let TSFlags{12} = isPredicatedNew; bits<1> isPredicateLate = 0; let TSFlags{13} = isPredicateLate; // Late predicate producer insn. // New-value insn helper fields. bits<1> isNewValue = 0; let TSFlags{14} = isNewValue; // New-value consumer insn. bits<1> hasNewValue = 0; let TSFlags{15} = hasNewValue; // New-value producer insn. bits<3> opNewValue = 0; let TSFlags{18-16} = opNewValue; // New-value produced operand. bits<1> isNVStorable = 0; let TSFlags{19} = isNVStorable; // Store that can become new-value store. bits<1> isNVStore = 0; let TSFlags{20} = isNVStore; // New-value store insn. bits<1> isCVLoadable = 0; let TSFlags{21} = isCVLoadable; // Load that can become cur-value load. bits<1> isCVLoad = 0; let TSFlags{22} = isCVLoad; // Cur-value load insn. // Immediate extender helper fields. bits<1> isExtendable = 0; let TSFlags{23} = isExtendable; // Insn may be extended. bits<1> isExtended = 0; let TSFlags{24} = isExtended; // Insn must be extended. bits<3> opExtendable = 0; let TSFlags{27-25} = opExtendable; // Which operand may be extended. bits<1> isExtentSigned = 0; let TSFlags{28} = isExtentSigned; // Signed or unsigned range. bits<5> opExtentBits = 0; let TSFlags{33-29} = opExtentBits; //Number of bits of range before extending. bits<2> opExtentAlign = 0; let TSFlags{35-34} = opExtentAlign; // Alignment exponent before extending. bit cofMax1 = 0; let TSFlags{36} = cofMax1; bit cofRelax1 = 0; let TSFlags{37} = cofRelax1; bit cofRelax2 = 0; let TSFlags{38} = cofRelax2; bit isRestrictNoSlot1Store = 0; let TSFlags{39} = isRestrictNoSlot1Store; // Addressing mode for load/store instructions. AddrModeType addrMode = NoAddrMode; let TSFlags{42-40} = addrMode.Value; // Memory access size for mem access instructions (load/store) MemAccessSize accessSize = NoMemAccess; let TSFlags{46-43} = accessSize.Value; bits<1> isTaken = 0; let TSFlags {47} = isTaken; // Branch prediction. bits<1> isFP = 0; let TSFlags {48} = isFP; // Floating-point. bits<1> hasNewValue2 = 0; let TSFlags{50} = hasNewValue2; // Second New-value producer insn. bits<3> opNewValue2 = 0; let TSFlags{53-51} = opNewValue2; // Second New-value produced operand. bits<1> isAccumulator = 0; let TSFlags{54} = isAccumulator; bits<1> prefersSlot3 = 0; let TSFlags{55} = prefersSlot3; // Complex XU bits<1> hasHvxTmp = 0; let TSFlags{56} = hasHvxTmp; // vector register vX.tmp false-write bit CVINew = 0; let TSFlags{58} = CVINew; bit isCVI = 0; let TSFlags{59} = isCVI; bit isHVXALU = 0; let TSFlags{60} = isHVXALU; bit isHVXALU2SRC = 0; let TSFlags{61} = isHVXALU2SRC; bit hasUnaryRestriction = 0; let TSFlags{62} = hasUnaryRestriction; // Fields used for relation models. bit isNonTemporal = 0; string isNT = ""; // set to "true" for non-temporal vector stores. string BaseOpcode = ""; string CextOpcode = ""; string PredSense = ""; string PNewValue = ""; string NValueST = ""; // Set to "true" for new-value stores. string InputType = ""; // Input is "imm" or "reg" type. string isFloat = "false"; // Set to "true" for the floating-point load/store. string isBrTaken = !if(isTaken, "true", "false"); // Set to "true"/"false" for jump instructions let PredSense = !if(isPredicated, !if(isPredicatedFalse, "false", "true"), ""); let PNewValue = !if(isPredicatedNew, "new", ""); let NValueST = !if(isNVStore, "true", "false"); let isNT = !if(isNonTemporal, "true", "false"); let hasSideEffects = 0; // *** Must match MCTargetDesc/HexagonBaseInfo.h *** } class HInst : InstHexagon; //===----------------------------------------------------------------------===// // Instruction Classes Definitions + //===----------------------------------------------------------------------===// let mayLoad = 1 in class LDInst pattern = [], string cstr = "", InstrItinClass itin = LD_tc_ld_SLOT01> : InstHexagon, OpcodeHexagon; class CONSTLDInst pattern = [], string cstr = "", InstrItinClass itin = LD_tc_ld_SLOT01> : InstHexagon, OpcodeHexagon; let mayStore = 1 in class STInst pattern = [], string cstr = "", InstrItinClass itin = ST_tc_st_SLOT01> : InstHexagon, OpcodeHexagon; let isCodeGenOnly = 1, isPseudo = 1 in class Endloop pattern = [], string cstr = "", InstrItinClass itin = tc_ENDLOOP> : InstHexagon, OpcodeHexagon; let isCodeGenOnly = 1, isPseudo = 1 in class Pseudo pattern = [], string cstr = ""> : InstHexagon, OpcodeHexagon; let isCodeGenOnly = 1, isPseudo = 1 in class PseudoM pattern = [], string cstr=""> : InstHexagon, OpcodeHexagon; //===----------------------------------------------------------------------===// // Special Instructions - //===----------------------------------------------------------------------===// // The 'invalid_decode' instruction is used by the disassembler to // show an instruction that didn't decode correctly. This feature // is only leveraged in a special disassembler mode that's activated // by a command line flag. def tc_invalid : InstrItinClass; class Enc_invalid : OpcodeHexagon { } def invalid_decode : HInst< (outs ), (ins ), "", tc_invalid, TypeALU32_2op>, Enc_invalid { let Inst{13-0} = 0b00000000000000; let Inst{31-16} = 0b0000000000000000; let isCodeGenOnly = 1; } //===----------------------------------------------------------------------===// // Duplex Instruction Class Declaration //===----------------------------------------------------------------------===// class OpcodeDuplex { field bits<32> Inst = ?; // Default to an invalid insn. bits<4> IClass = 0; // ICLASS bits<13> ISubHi = 0; // Low sub-insn bits<13> ISubLo = 0; // High sub-insn let Inst{31-29} = IClass{3-1}; let Inst{13} = IClass{0}; let Inst{15-14} = 0; let Inst{28-16} = ISubHi; let Inst{12-0} = ISubLo; } class InstDuplex iClass, string cstr = ""> : Instruction, OpcodeDuplex { let Namespace = "Hexagon"; IType Type = TypeDUPLEX; // uses slot 0,1 let isCodeGenOnly = 1; let hasSideEffects = 0; dag OutOperandList = (outs); dag InOperandList = (ins); let IClass = iClass; let Constraints = cstr; let Itinerary = DUPLEX; let Size = 4; // SoftFail is a field the disassembler can use to provide a way for // instructions to not match without killing the whole decode process. It is // mainly used for ARM, but Tablegen expects this field to exist or it fails // to build the decode table. field bits<32> SoftFail = 0; // *** Must match MCTargetDesc/HexagonBaseInfo.h *** let TSFlags{6-0} = Type.Value; // Predicated instructions. bits<1> isPredicated = 0; let TSFlags{7} = isPredicated; bits<1> isPredicatedFalse = 0; let TSFlags{8} = isPredicatedFalse; bits<1> isPredicatedNew = 0; let TSFlags{9} = isPredicatedNew; // New-value insn helper fields. bits<1> isNewValue = 0; let TSFlags{10} = isNewValue; // New-value consumer insn. bits<1> hasNewValue = 0; let TSFlags{11} = hasNewValue; // New-value producer insn. bits<3> opNewValue = 0; let TSFlags{14-12} = opNewValue; // New-value produced operand. bits<1> isNVStorable = 0; let TSFlags{15} = isNVStorable; // Store that can become new-value store. bits<1> isNVStore = 0; let TSFlags{16} = isNVStore; // New-value store insn. // Immediate extender helper fields. bits<1> isExtendable = 0; let TSFlags{17} = isExtendable; // Insn may be extended. bits<1> isExtended = 0; let TSFlags{18} = isExtended; // Insn must be extended. bits<3> opExtendable = 0; let TSFlags{21-19} = opExtendable; // Which operand may be extended. bits<1> isExtentSigned = 0; let TSFlags{22} = isExtentSigned; // Signed or unsigned range. bits<5> opExtentBits = 0; let TSFlags{27-23} = opExtentBits; //Number of bits of range before extending. bits<2> opExtentAlign = 0; let TSFlags{29-28} = opExtentAlign; // Alignment exponent before extending. } //===----------------------------------------------------------------------===// // Instruction Classes Definitions - //===----------------------------------------------------------------------===// include "HexagonInstrFormatsV60.td" include "HexagonInstrFormatsV65.td"