//===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "HexagonISelLowering.h" #include "HexagonRegisterInfo.h" #include "HexagonSubtarget.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/IR/IntrinsicsHexagon.h" #include "llvm/Support/CommandLine.h" #include #include #include using namespace llvm; static cl::opt HvxWidenThreshold("hexagon-hvx-widen", cl::Hidden, cl::init(16), cl::desc("Lower threshold (in bytes) for widening to HVX vectors")); static const MVT LegalV64[] = { MVT::v64i8, MVT::v32i16, MVT::v16i32 }; static const MVT LegalW64[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 }; static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 }; static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 }; static std::tuple getIEEEProperties(MVT Ty) { // For a float scalar type, return (exp-bits, exp-bias, fraction-bits) MVT ElemTy = Ty.getScalarType(); switch (ElemTy.SimpleTy) { case MVT::f16: return std::make_tuple(5, 15, 10); case MVT::f32: return std::make_tuple(8, 127, 23); case MVT::f64: return std::make_tuple(11, 1023, 52); default: break; } llvm_unreachable(("Unexpected type: " + EVT(ElemTy).getEVTString()).c_str()); } void HexagonTargetLowering::initializeHVXLowering() { if (Subtarget.useHVX64BOps()) { addRegisterClass(MVT::v64i8, &Hexagon::HvxVRRegClass); addRegisterClass(MVT::v32i16, &Hexagon::HvxVRRegClass); addRegisterClass(MVT::v16i32, &Hexagon::HvxVRRegClass); addRegisterClass(MVT::v128i8, &Hexagon::HvxWRRegClass); addRegisterClass(MVT::v64i16, &Hexagon::HvxWRRegClass); addRegisterClass(MVT::v32i32, &Hexagon::HvxWRRegClass); // These "short" boolean vector types should be legal because // they will appear as results of vector compares. If they were // not legal, type legalization would try to make them legal // and that would require using operations that do not use or // produce such types. That, in turn, would imply using custom // nodes, which would be unoptimizable by the DAG combiner. // The idea is to rely on target-independent operations as much // as possible. addRegisterClass(MVT::v16i1, &Hexagon::HvxQRRegClass); addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass); addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass); } else if (Subtarget.useHVX128BOps()) { addRegisterClass(MVT::v128i8, &Hexagon::HvxVRRegClass); addRegisterClass(MVT::v64i16, &Hexagon::HvxVRRegClass); addRegisterClass(MVT::v32i32, &Hexagon::HvxVRRegClass); addRegisterClass(MVT::v256i8, &Hexagon::HvxWRRegClass); addRegisterClass(MVT::v128i16, &Hexagon::HvxWRRegClass); addRegisterClass(MVT::v64i32, &Hexagon::HvxWRRegClass); addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass); addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass); addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass); if (Subtarget.useHVXV68Ops() && Subtarget.useHVXFloatingPoint()) { addRegisterClass(MVT::v32f32, &Hexagon::HvxVRRegClass); addRegisterClass(MVT::v64f16, &Hexagon::HvxVRRegClass); addRegisterClass(MVT::v64f32, &Hexagon::HvxWRRegClass); addRegisterClass(MVT::v128f16, &Hexagon::HvxWRRegClass); } } // Set up operation actions. bool Use64b = Subtarget.useHVX64BOps(); ArrayRef LegalV = Use64b ? LegalV64 : LegalV128; ArrayRef LegalW = Use64b ? LegalW64 : LegalW128; MVT ByteV = Use64b ? MVT::v64i8 : MVT::v128i8; MVT WordV = Use64b ? MVT::v16i32 : MVT::v32i32; MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8; auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) { setOperationAction(Opc, FromTy, Promote); AddPromotedToType(Opc, FromTy, ToTy); }; // Handle bitcasts of vector predicates to scalars (e.g. v32i1 to i32). // Note: v16i1 -> i16 is handled in type legalization instead of op // legalization. setOperationAction(ISD::BITCAST, MVT::i16, Custom); setOperationAction(ISD::BITCAST, MVT::i32, Custom); setOperationAction(ISD::BITCAST, MVT::i64, Custom); setOperationAction(ISD::BITCAST, MVT::v16i1, Custom); setOperationAction(ISD::BITCAST, MVT::v128i1, Custom); setOperationAction(ISD::BITCAST, MVT::i128, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, ByteV, Legal); setOperationAction(ISD::VECTOR_SHUFFLE, ByteW, Legal); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); if (Subtarget.useHVX128BOps() && Subtarget.useHVXV68Ops() && Subtarget.useHVXFloatingPoint()) { static const MVT FloatV[] = { MVT::v64f16, MVT::v32f32 }; static const MVT FloatW[] = { MVT::v128f16, MVT::v64f32 }; for (MVT T : FloatV) { setOperationAction(ISD::FADD, T, Legal); setOperationAction(ISD::FSUB, T, Legal); setOperationAction(ISD::FMUL, T, Legal); setOperationAction(ISD::FMINNUM, T, Legal); setOperationAction(ISD::FMAXNUM, T, Legal); setOperationAction(ISD::INSERT_SUBVECTOR, T, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, T, Custom); setOperationAction(ISD::SPLAT_VECTOR, T, Legal); setOperationAction(ISD::SPLAT_VECTOR, T, Legal); setOperationAction(ISD::MLOAD, T, Custom); setOperationAction(ISD::MSTORE, T, Custom); // Custom-lower BUILD_VECTOR. The standard (target-independent) // handling of it would convert it to a load, which is not always // the optimal choice. setOperationAction(ISD::BUILD_VECTOR, T, Custom); } // BUILD_VECTOR with f16 operands cannot be promoted without // promoting the result, so lower the node to vsplat or constant pool setOperationAction(ISD::BUILD_VECTOR, MVT::f16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::f16, Custom); setOperationAction(ISD::SPLAT_VECTOR, MVT::f16, Custom); // Vector shuffle is always promoted to ByteV and a bitcast to f16 is // generated. setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v128f16, ByteW); setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v64f16, ByteV); setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v64f32, ByteW); setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v32f32, ByteV); for (MVT P : FloatW) { setOperationAction(ISD::LOAD, P, Custom); setOperationAction(ISD::STORE, P, Custom); setOperationAction(ISD::FADD, P, Custom); setOperationAction(ISD::FSUB, P, Custom); setOperationAction(ISD::FMUL, P, Custom); setOperationAction(ISD::FMINNUM, P, Custom); setOperationAction(ISD::FMAXNUM, P, Custom); setOperationAction(ISD::SETCC, P, Custom); setOperationAction(ISD::VSELECT, P, Custom); // Custom-lower BUILD_VECTOR. The standard (target-independent) // handling of it would convert it to a load, which is not always // the optimal choice. setOperationAction(ISD::BUILD_VECTOR, P, Custom); // Make concat-vectors custom to handle concats of more than 2 vectors. setOperationAction(ISD::CONCAT_VECTORS, P, Custom); setOperationAction(ISD::MLOAD, P, Custom); setOperationAction(ISD::MSTORE, P, Custom); } if (Subtarget.useHVXQFloatOps()) { setOperationAction(ISD::FP_EXTEND, MVT::v64f32, Custom); setOperationAction(ISD::FP_ROUND, MVT::v64f16, Legal); } else if (Subtarget.useHVXIEEEFPOps()) { setOperationAction(ISD::FP_EXTEND, MVT::v64f32, Legal); setOperationAction(ISD::FP_ROUND, MVT::v64f16, Legal); } } for (MVT T : LegalV) { setIndexedLoadAction(ISD::POST_INC, T, Legal); setIndexedStoreAction(ISD::POST_INC, T, Legal); setOperationAction(ISD::ABS, T, Legal); setOperationAction(ISD::AND, T, Legal); setOperationAction(ISD::OR, T, Legal); setOperationAction(ISD::XOR, T, Legal); setOperationAction(ISD::ADD, T, Legal); setOperationAction(ISD::SUB, T, Legal); setOperationAction(ISD::MUL, T, Legal); setOperationAction(ISD::CTPOP, T, Legal); setOperationAction(ISD::CTLZ, T, Legal); setOperationAction(ISD::SELECT, T, Legal); setOperationAction(ISD::SPLAT_VECTOR, T, Legal); if (T != ByteV) { setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal); setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal); setOperationAction(ISD::BSWAP, T, Legal); } setOperationAction(ISD::SMIN, T, Legal); setOperationAction(ISD::SMAX, T, Legal); if (T.getScalarType() != MVT::i32) { setOperationAction(ISD::UMIN, T, Legal); setOperationAction(ISD::UMAX, T, Legal); } setOperationAction(ISD::CTTZ, T, Custom); setOperationAction(ISD::LOAD, T, Custom); setOperationAction(ISD::MLOAD, T, Custom); setOperationAction(ISD::MSTORE, T, Custom); if (T.getScalarType() != MVT::i32) { setOperationAction(ISD::MULHS, T, Legal); setOperationAction(ISD::MULHU, T, Legal); } setOperationAction(ISD::BUILD_VECTOR, T, Custom); // Make concat-vectors custom to handle concats of more than 2 vectors. setOperationAction(ISD::CONCAT_VECTORS, T, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, T, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, T, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, T, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom); setOperationAction(ISD::ANY_EXTEND, T, Custom); setOperationAction(ISD::SIGN_EXTEND, T, Custom); setOperationAction(ISD::ZERO_EXTEND, T, Custom); setOperationAction(ISD::FSHL, T, Custom); setOperationAction(ISD::FSHR, T, Custom); if (T != ByteV) { setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom); // HVX only has shifts of words and halfwords. setOperationAction(ISD::SRA, T, Custom); setOperationAction(ISD::SHL, T, Custom); setOperationAction(ISD::SRL, T, Custom); // Promote all shuffles to operate on vectors of bytes. setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV); } if (Subtarget.useHVXFloatingPoint()) { // Same action for both QFloat and IEEE. setOperationAction(ISD::SINT_TO_FP, T, Custom); setOperationAction(ISD::UINT_TO_FP, T, Custom); setOperationAction(ISD::FP_TO_SINT, T, Custom); setOperationAction(ISD::FP_TO_UINT, T, Custom); } setCondCodeAction(ISD::SETNE, T, Expand); setCondCodeAction(ISD::SETLE, T, Expand); setCondCodeAction(ISD::SETGE, T, Expand); setCondCodeAction(ISD::SETLT, T, Expand); setCondCodeAction(ISD::SETULE, T, Expand); setCondCodeAction(ISD::SETUGE, T, Expand); setCondCodeAction(ISD::SETULT, T, Expand); } for (MVT T : LegalW) { // Custom-lower BUILD_VECTOR for vector pairs. The standard (target- // independent) handling of it would convert it to a load, which is // not always the optimal choice. setOperationAction(ISD::BUILD_VECTOR, T, Custom); // Make concat-vectors custom to handle concats of more than 2 vectors. setOperationAction(ISD::CONCAT_VECTORS, T, Custom); // Custom-lower these operations for pairs. Expand them into a concat // of the corresponding operations on individual vectors. setOperationAction(ISD::ANY_EXTEND, T, Custom); setOperationAction(ISD::SIGN_EXTEND, T, Custom); setOperationAction(ISD::ZERO_EXTEND, T, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, T, Custom); setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom); setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal); setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal); setOperationAction(ISD::SPLAT_VECTOR, T, Custom); setOperationAction(ISD::LOAD, T, Custom); setOperationAction(ISD::STORE, T, Custom); setOperationAction(ISD::MLOAD, T, Custom); setOperationAction(ISD::MSTORE, T, Custom); setOperationAction(ISD::ABS, T, Custom); setOperationAction(ISD::CTLZ, T, Custom); setOperationAction(ISD::CTTZ, T, Custom); setOperationAction(ISD::CTPOP, T, Custom); setOperationAction(ISD::ADD, T, Legal); setOperationAction(ISD::SUB, T, Legal); setOperationAction(ISD::MUL, T, Custom); setOperationAction(ISD::MULHS, T, Custom); setOperationAction(ISD::MULHU, T, Custom); setOperationAction(ISD::AND, T, Custom); setOperationAction(ISD::OR, T, Custom); setOperationAction(ISD::XOR, T, Custom); setOperationAction(ISD::SETCC, T, Custom); setOperationAction(ISD::VSELECT, T, Custom); if (T != ByteW) { setOperationAction(ISD::SRA, T, Custom); setOperationAction(ISD::SHL, T, Custom); setOperationAction(ISD::SRL, T, Custom); // Promote all shuffles to operate on vectors of bytes. setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW); } setOperationAction(ISD::FSHL, T, Custom); setOperationAction(ISD::FSHR, T, Custom); setOperationAction(ISD::SMIN, T, Custom); setOperationAction(ISD::SMAX, T, Custom); if (T.getScalarType() != MVT::i32) { setOperationAction(ISD::UMIN, T, Custom); setOperationAction(ISD::UMAX, T, Custom); } if (Subtarget.useHVXFloatingPoint()) { // Same action for both QFloat and IEEE. setOperationAction(ISD::SINT_TO_FP, T, Custom); setOperationAction(ISD::UINT_TO_FP, T, Custom); setOperationAction(ISD::FP_TO_SINT, T, Custom); setOperationAction(ISD::FP_TO_UINT, T, Custom); } } // Legalize all of these to HexagonISD::[SU]MUL_LOHI. setOperationAction(ISD::MULHS, WordV, Custom); // -> _LOHI setOperationAction(ISD::MULHU, WordV, Custom); // -> _LOHI setOperationAction(ISD::SMUL_LOHI, WordV, Custom); setOperationAction(ISD::UMUL_LOHI, WordV, Custom); setCondCodeAction(ISD::SETNE, MVT::v64f16, Expand); setCondCodeAction(ISD::SETLE, MVT::v64f16, Expand); setCondCodeAction(ISD::SETGE, MVT::v64f16, Expand); setCondCodeAction(ISD::SETLT, MVT::v64f16, Expand); setCondCodeAction(ISD::SETONE, MVT::v64f16, Expand); setCondCodeAction(ISD::SETOLE, MVT::v64f16, Expand); setCondCodeAction(ISD::SETOGE, MVT::v64f16, Expand); setCondCodeAction(ISD::SETOLT, MVT::v64f16, Expand); setCondCodeAction(ISD::SETUNE, MVT::v64f16, Expand); setCondCodeAction(ISD::SETULE, MVT::v64f16, Expand); setCondCodeAction(ISD::SETUGE, MVT::v64f16, Expand); setCondCodeAction(ISD::SETULT, MVT::v64f16, Expand); setCondCodeAction(ISD::SETNE, MVT::v32f32, Expand); setCondCodeAction(ISD::SETLE, MVT::v32f32, Expand); setCondCodeAction(ISD::SETGE, MVT::v32f32, Expand); setCondCodeAction(ISD::SETLT, MVT::v32f32, Expand); setCondCodeAction(ISD::SETONE, MVT::v32f32, Expand); setCondCodeAction(ISD::SETOLE, MVT::v32f32, Expand); setCondCodeAction(ISD::SETOGE, MVT::v32f32, Expand); setCondCodeAction(ISD::SETOLT, MVT::v32f32, Expand); setCondCodeAction(ISD::SETUNE, MVT::v32f32, Expand); setCondCodeAction(ISD::SETULE, MVT::v32f32, Expand); setCondCodeAction(ISD::SETUGE, MVT::v32f32, Expand); setCondCodeAction(ISD::SETULT, MVT::v32f32, Expand); // Boolean vectors. for (MVT T : LegalW) { // Boolean types for vector pairs will overlap with the boolean // types for single vectors, e.g. // v64i8 -> v64i1 (single) // v64i16 -> v64i1 (pair) // Set these actions first, and allow the single actions to overwrite // any duplicates. MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements()); setOperationAction(ISD::SETCC, BoolW, Custom); setOperationAction(ISD::AND, BoolW, Custom); setOperationAction(ISD::OR, BoolW, Custom); setOperationAction(ISD::XOR, BoolW, Custom); // Masked load/store takes a mask that may need splitting. setOperationAction(ISD::MLOAD, BoolW, Custom); setOperationAction(ISD::MSTORE, BoolW, Custom); } for (MVT T : LegalV) { MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements()); setOperationAction(ISD::BUILD_VECTOR, BoolV, Custom); setOperationAction(ISD::CONCAT_VECTORS, BoolV, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, BoolV, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, BoolV, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, BoolV, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom); setOperationAction(ISD::SELECT, BoolV, Custom); setOperationAction(ISD::AND, BoolV, Legal); setOperationAction(ISD::OR, BoolV, Legal); setOperationAction(ISD::XOR, BoolV, Legal); } if (Use64b) { for (MVT T: {MVT::v32i8, MVT::v32i16, MVT::v16i8, MVT::v16i16, MVT::v16i32}) setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal); } else { for (MVT T: {MVT::v64i8, MVT::v64i16, MVT::v32i8, MVT::v32i16, MVT::v32i32}) setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal); } // Handle store widening for short vectors. unsigned HwLen = Subtarget.getVectorLength(); for (MVT ElemTy : Subtarget.getHVXElementTypes()) { if (ElemTy == MVT::i1) continue; int ElemWidth = ElemTy.getFixedSizeInBits(); int MaxElems = (8*HwLen) / ElemWidth; for (int N = 2; N < MaxElems; N *= 2) { MVT VecTy = MVT::getVectorVT(ElemTy, N); auto Action = getPreferredVectorAction(VecTy); if (Action == TargetLoweringBase::TypeWidenVector) { setOperationAction(ISD::LOAD, VecTy, Custom); setOperationAction(ISD::STORE, VecTy, Custom); setOperationAction(ISD::SETCC, VecTy, Custom); setOperationAction(ISD::TRUNCATE, VecTy, Custom); setOperationAction(ISD::ANY_EXTEND, VecTy, Custom); setOperationAction(ISD::SIGN_EXTEND, VecTy, Custom); setOperationAction(ISD::ZERO_EXTEND, VecTy, Custom); if (Subtarget.useHVXFloatingPoint()) { setOperationAction(ISD::FP_TO_SINT, VecTy, Custom); setOperationAction(ISD::FP_TO_UINT, VecTy, Custom); setOperationAction(ISD::SINT_TO_FP, VecTy, Custom); setOperationAction(ISD::UINT_TO_FP, VecTy, Custom); } MVT BoolTy = MVT::getVectorVT(MVT::i1, N); if (!isTypeLegal(BoolTy)) setOperationAction(ISD::SETCC, BoolTy, Custom); } } } setTargetDAGCombine({ISD::CONCAT_VECTORS, ISD::TRUNCATE, ISD::VSELECT}); } unsigned HexagonTargetLowering::getPreferredHvxVectorAction(MVT VecTy) const { MVT ElemTy = VecTy.getVectorElementType(); unsigned VecLen = VecTy.getVectorNumElements(); unsigned HwLen = Subtarget.getVectorLength(); // Split vectors of i1 that exceed byte vector length. if (ElemTy == MVT::i1 && VecLen > HwLen) return TargetLoweringBase::TypeSplitVector; ArrayRef Tys = Subtarget.getHVXElementTypes(); // For shorter vectors of i1, widen them if any of the corresponding // vectors of integers needs to be widened. if (ElemTy == MVT::i1) { for (MVT T : Tys) { assert(T != MVT::i1); auto A = getPreferredHvxVectorAction(MVT::getVectorVT(T, VecLen)); if (A != ~0u) return A; } return ~0u; } // If the size of VecTy is at least half of the vector length, // widen the vector. Note: the threshold was not selected in // any scientific way. if (llvm::is_contained(Tys, ElemTy)) { unsigned VecWidth = VecTy.getSizeInBits(); unsigned HwWidth = 8*HwLen; if (VecWidth > 2*HwWidth) return TargetLoweringBase::TypeSplitVector; bool HaveThreshold = HvxWidenThreshold.getNumOccurrences() > 0; if (HaveThreshold && 8*HvxWidenThreshold <= VecWidth) return TargetLoweringBase::TypeWidenVector; if (VecWidth >= HwWidth/2 && VecWidth < HwWidth) return TargetLoweringBase::TypeWidenVector; } // Defer to default. return ~0u; } unsigned HexagonTargetLowering::getCustomHvxOperationAction(SDNode &Op) const { unsigned Opc = Op.getOpcode(); switch (Opc) { case HexagonISD::SMUL_LOHI: case HexagonISD::UMUL_LOHI: case HexagonISD::USMUL_LOHI: return TargetLoweringBase::Custom; } return TargetLoweringBase::Legal; } SDValue HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef Ops, const SDLoc &dl, SelectionDAG &DAG) const { SmallVector IntOps; IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32)); append_range(IntOps, Ops); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps); } MVT HexagonTargetLowering::typeJoin(const TypePair &Tys) const { assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType()); MVT ElemTy = Tys.first.getVectorElementType(); return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() + Tys.second.getVectorNumElements()); } HexagonTargetLowering::TypePair HexagonTargetLowering::typeSplit(MVT VecTy) const { assert(VecTy.isVector()); unsigned NumElem = VecTy.getVectorNumElements(); assert((NumElem % 2) == 0 && "Expecting even-sized vector type"); MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2); return { HalfTy, HalfTy }; } MVT HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const { MVT ElemTy = VecTy.getVectorElementType(); MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor); return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements()); } MVT HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const { MVT ElemTy = VecTy.getVectorElementType(); MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor); return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements()); } SDValue HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy, SelectionDAG &DAG) const { if (ty(Vec).getVectorElementType() == ElemTy) return Vec; MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy); return DAG.getBitcast(CastTy, Vec); } SDValue HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl, SelectionDAG &DAG) const { return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)), Ops.first, Ops.second); } HexagonTargetLowering::VectorPair HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl, SelectionDAG &DAG) const { TypePair Tys = typeSplit(ty(Vec)); if (Vec.getOpcode() == HexagonISD::QCAT) return VectorPair(Vec.getOperand(0), Vec.getOperand(1)); return DAG.SplitVector(Vec, dl, Tys.first, Tys.second); } bool HexagonTargetLowering::isHvxSingleTy(MVT Ty) const { return Subtarget.isHVXVectorType(Ty) && Ty.getSizeInBits() == 8 * Subtarget.getVectorLength(); } bool HexagonTargetLowering::isHvxPairTy(MVT Ty) const { return Subtarget.isHVXVectorType(Ty) && Ty.getSizeInBits() == 16 * Subtarget.getVectorLength(); } bool HexagonTargetLowering::isHvxBoolTy(MVT Ty) const { return Subtarget.isHVXVectorType(Ty, true) && Ty.getVectorElementType() == MVT::i1; } bool HexagonTargetLowering::allowsHvxMemoryAccess( MVT VecTy, MachineMemOperand::Flags Flags, unsigned *Fast) const { // Bool vectors are excluded by default, but make it explicit to // emphasize that bool vectors cannot be loaded or stored. // Also, disallow double vector stores (to prevent unnecessary // store widening in DAG combiner). if (VecTy.getSizeInBits() > 8*Subtarget.getVectorLength()) return false; if (!Subtarget.isHVXVectorType(VecTy, /*IncludeBool=*/false)) return false; if (Fast) *Fast = 1; return true; } bool HexagonTargetLowering::allowsHvxMisalignedMemoryAccesses( MVT VecTy, MachineMemOperand::Flags Flags, unsigned *Fast) const { if (!Subtarget.isHVXVectorType(VecTy)) return false; // XXX Should this be false? vmemu are a bit slower than vmem. if (Fast) *Fast = 1; return true; } void HexagonTargetLowering::AdjustHvxInstrPostInstrSelection( MachineInstr &MI, SDNode *Node) const { unsigned Opc = MI.getOpcode(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); MachineBasicBlock &MB = *MI.getParent(); MachineFunction &MF = *MB.getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); DebugLoc DL = MI.getDebugLoc(); auto At = MI.getIterator(); switch (Opc) { case Hexagon::PS_vsplatib: if (Subtarget.useHVXV62Ops()) { // SplatV = A2_tfrsi #imm // OutV = V6_lvsplatb SplatV Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) .add(MI.getOperand(1)); Register OutV = MI.getOperand(0).getReg(); BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatb), OutV) .addReg(SplatV); } else { // SplatV = A2_tfrsi #imm:#imm:#imm:#imm // OutV = V6_lvsplatw SplatV Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); const MachineOperand &InpOp = MI.getOperand(1); assert(InpOp.isImm()); uint32_t V = InpOp.getImm() & 0xFF; BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) .addImm(V << 24 | V << 16 | V << 8 | V); Register OutV = MI.getOperand(0).getReg(); BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV); } MB.erase(At); break; case Hexagon::PS_vsplatrb: if (Subtarget.useHVXV62Ops()) { // OutV = V6_lvsplatb Inp Register OutV = MI.getOperand(0).getReg(); BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatb), OutV) .add(MI.getOperand(1)); } else { Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); const MachineOperand &InpOp = MI.getOperand(1); BuildMI(MB, At, DL, TII.get(Hexagon::S2_vsplatrb), SplatV) .addReg(InpOp.getReg(), 0, InpOp.getSubReg()); Register OutV = MI.getOperand(0).getReg(); BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV) .addReg(SplatV); } MB.erase(At); break; case Hexagon::PS_vsplatih: if (Subtarget.useHVXV62Ops()) { // SplatV = A2_tfrsi #imm // OutV = V6_lvsplath SplatV Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) .add(MI.getOperand(1)); Register OutV = MI.getOperand(0).getReg(); BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplath), OutV) .addReg(SplatV); } else { // SplatV = A2_tfrsi #imm:#imm // OutV = V6_lvsplatw SplatV Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); const MachineOperand &InpOp = MI.getOperand(1); assert(InpOp.isImm()); uint32_t V = InpOp.getImm() & 0xFFFF; BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) .addImm(V << 16 | V); Register OutV = MI.getOperand(0).getReg(); BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV); } MB.erase(At); break; case Hexagon::PS_vsplatrh: if (Subtarget.useHVXV62Ops()) { // OutV = V6_lvsplath Inp Register OutV = MI.getOperand(0).getReg(); BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplath), OutV) .add(MI.getOperand(1)); } else { // SplatV = A2_combine_ll Inp, Inp // OutV = V6_lvsplatw SplatV Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); const MachineOperand &InpOp = MI.getOperand(1); BuildMI(MB, At, DL, TII.get(Hexagon::A2_combine_ll), SplatV) .addReg(InpOp.getReg(), 0, InpOp.getSubReg()) .addReg(InpOp.getReg(), 0, InpOp.getSubReg()); Register OutV = MI.getOperand(0).getReg(); BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV); } MB.erase(At); break; case Hexagon::PS_vsplatiw: case Hexagon::PS_vsplatrw: if (Opc == Hexagon::PS_vsplatiw) { // SplatV = A2_tfrsi #imm Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) .add(MI.getOperand(1)); MI.getOperand(1).ChangeToRegister(SplatV, false); } // OutV = V6_lvsplatw SplatV/Inp MI.setDesc(TII.get(Hexagon::V6_lvsplatw)); break; } } SDValue HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy, SelectionDAG &DAG) const { if (ElemIdx.getValueType().getSimpleVT() != MVT::i32) ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx); unsigned ElemWidth = ElemTy.getSizeInBits(); if (ElemWidth == 8) return ElemIdx; unsigned L = Log2_32(ElemWidth/8); const SDLoc &dl(ElemIdx); return DAG.getNode(ISD::SHL, dl, MVT::i32, {ElemIdx, DAG.getConstant(L, dl, MVT::i32)}); } SDValue HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy, SelectionDAG &DAG) const { unsigned ElemWidth = ElemTy.getSizeInBits(); assert(ElemWidth >= 8 && ElemWidth <= 32); if (ElemWidth == 32) return Idx; if (ty(Idx) != MVT::i32) Idx = DAG.getBitcast(MVT::i32, Idx); const SDLoc &dl(Idx); SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32); SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask}); return SubIdx; } SDValue HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0, SDValue Op1, ArrayRef Mask, SelectionDAG &DAG) const { MVT OpTy = ty(Op0); assert(OpTy == ty(Op1)); MVT ElemTy = OpTy.getVectorElementType(); if (ElemTy == MVT::i8) return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask); assert(ElemTy.getSizeInBits() >= 8); MVT ResTy = tyVector(OpTy, MVT::i8); unsigned ElemSize = ElemTy.getSizeInBits() / 8; SmallVector ByteMask; for (int M : Mask) { if (M < 0) { for (unsigned I = 0; I != ElemSize; ++I) ByteMask.push_back(-1); } else { int NewM = M*ElemSize; for (unsigned I = 0; I != ElemSize; ++I) ByteMask.push_back(NewM+I); } } assert(ResTy.getVectorNumElements() == ByteMask.size()); return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG), opCastElem(Op1, MVT::i8, DAG), ByteMask); } SDValue HexagonTargetLowering::buildHvxVectorReg(ArrayRef Values, const SDLoc &dl, MVT VecTy, SelectionDAG &DAG) const { unsigned VecLen = Values.size(); MachineFunction &MF = DAG.getMachineFunction(); MVT ElemTy = VecTy.getVectorElementType(); unsigned ElemWidth = ElemTy.getSizeInBits(); unsigned HwLen = Subtarget.getVectorLength(); unsigned ElemSize = ElemWidth / 8; assert(ElemSize*VecLen == HwLen); SmallVector Words; if (VecTy.getVectorElementType() != MVT::i32 && !(Subtarget.useHVXFloatingPoint() && VecTy.getVectorElementType() == MVT::f32)) { assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size"); unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2; MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord); for (unsigned i = 0; i != VecLen; i += OpsPerWord) { SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG); Words.push_back(DAG.getBitcast(MVT::i32, W)); } } else { for (SDValue V : Values) Words.push_back(DAG.getBitcast(MVT::i32, V)); } auto isSplat = [] (ArrayRef Values, SDValue &SplatV) { unsigned NumValues = Values.size(); assert(NumValues > 0); bool IsUndef = true; for (unsigned i = 0; i != NumValues; ++i) { if (Values[i].isUndef()) continue; IsUndef = false; if (!SplatV.getNode()) SplatV = Values[i]; else if (SplatV != Values[i]) return false; } if (IsUndef) SplatV = Values[0]; return true; }; unsigned NumWords = Words.size(); SDValue SplatV; bool IsSplat = isSplat(Words, SplatV); if (IsSplat && isUndef(SplatV)) return DAG.getUNDEF(VecTy); if (IsSplat) { assert(SplatV.getNode()); auto *IdxN = dyn_cast(SplatV.getNode()); if (IdxN && IdxN->isZero()) return getZero(dl, VecTy, DAG); MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4); SDValue S = DAG.getNode(ISD::SPLAT_VECTOR, dl, WordTy, SplatV); return DAG.getBitcast(VecTy, S); } // Delay recognizing constant vectors until here, so that we can generate // a vsplat. SmallVector Consts(VecLen); bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts); if (AllConst) { ArrayRef Tmp((Constant**)Consts.begin(), (Constant**)Consts.end()); Constant *CV = ConstantVector::get(Tmp); Align Alignment(HwLen); SDValue CP = LowerConstantPool(DAG.getConstantPool(CV, VecTy, Alignment), DAG); return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP, MachinePointerInfo::getConstantPool(MF), Alignment); } // A special case is a situation where the vector is built entirely from // elements extracted from another vector. This could be done via a shuffle // more efficiently, but typically, the size of the source vector will not // match the size of the vector being built (which precludes the use of a // shuffle directly). // This only handles a single source vector, and the vector being built // should be of a sub-vector type of the source vector type. auto IsBuildFromExtracts = [this,&Values] (SDValue &SrcVec, SmallVectorImpl &SrcIdx) { SDValue Vec; for (SDValue V : Values) { if (isUndef(V)) { SrcIdx.push_back(-1); continue; } if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) return false; // All extracts should come from the same vector. SDValue T = V.getOperand(0); if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode()) return false; Vec = T; ConstantSDNode *C = dyn_cast(V.getOperand(1)); if (C == nullptr) return false; int I = C->getSExtValue(); assert(I >= 0 && "Negative element index"); SrcIdx.push_back(I); } SrcVec = Vec; return true; }; SmallVector ExtIdx; SDValue ExtVec; if (IsBuildFromExtracts(ExtVec, ExtIdx)) { MVT ExtTy = ty(ExtVec); unsigned ExtLen = ExtTy.getVectorNumElements(); if (ExtLen == VecLen || ExtLen == 2*VecLen) { // Construct a new shuffle mask that will produce a vector with the same // number of elements as the input vector, and such that the vector we // want will be the initial subvector of it. SmallVector Mask; BitVector Used(ExtLen); for (int M : ExtIdx) { Mask.push_back(M); if (M >= 0) Used.set(M); } // Fill the rest of the mask with the unused elements of ExtVec in hopes // that it will result in a permutation of ExtVec's elements. It's still // fine if it doesn't (e.g. if undefs are present, or elements are // repeated), but permutations can always be done efficiently via vdelta // and vrdelta. for (unsigned I = 0; I != ExtLen; ++I) { if (Mask.size() == ExtLen) break; if (!Used.test(I)) Mask.push_back(I); } SDValue S = DAG.getVectorShuffle(ExtTy, dl, ExtVec, DAG.getUNDEF(ExtTy), Mask); return ExtLen == VecLen ? S : LoHalf(S, DAG); } } // Find most common element to initialize vector with. This is to avoid // unnecessary vinsert/valign for cases where the same value is present // many times. Creates a histogram of the vector's elements to find the // most common element n. assert(4*Words.size() == Subtarget.getVectorLength()); int VecHist[32]; int n = 0; for (unsigned i = 0; i != NumWords; ++i) { VecHist[i] = 0; if (Words[i].isUndef()) continue; for (unsigned j = i; j != NumWords; ++j) if (Words[i] == Words[j]) VecHist[i]++; if (VecHist[i] > VecHist[n]) n = i; } SDValue HalfV = getZero(dl, VecTy, DAG); if (VecHist[n] > 1) { SDValue SplatV = DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Words[n]); HalfV = DAG.getNode(HexagonISD::VALIGN, dl, VecTy, {HalfV, SplatV, DAG.getConstant(HwLen/2, dl, MVT::i32)}); } SDValue HalfV0 = HalfV; SDValue HalfV1 = HalfV; // Construct two halves in parallel, then or them together. Rn and Rm count // number of rotations needed before the next element. One last rotation is // performed post-loop to position the last element. int Rn = 0, Rm = 0; SDValue Sn, Sm; SDValue N = HalfV0; SDValue M = HalfV1; for (unsigned i = 0; i != NumWords/2; ++i) { // Rotate by element count since last insertion. if (Words[i] != Words[n] || VecHist[n] <= 1) { Sn = DAG.getConstant(Rn, dl, MVT::i32); HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, Sn}); N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {HalfV0, Words[i]}); Rn = 0; } if (Words[i+NumWords/2] != Words[n] || VecHist[n] <= 1) { Sm = DAG.getConstant(Rm, dl, MVT::i32); HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, Sm}); M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {HalfV1, Words[i+NumWords/2]}); Rm = 0; } Rn += 4; Rm += 4; } // Perform last rotation. Sn = DAG.getConstant(Rn+HwLen/2, dl, MVT::i32); Sm = DAG.getConstant(Rm, dl, MVT::i32); HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, Sn}); HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, Sm}); SDValue T0 = DAG.getBitcast(tyVector(VecTy, MVT::i32), HalfV0); SDValue T1 = DAG.getBitcast(tyVector(VecTy, MVT::i32), HalfV1); SDValue DstV = DAG.getNode(ISD::OR, dl, ty(T0), {T0, T1}); SDValue OutV = DAG.getBitcast(tyVector(ty(DstV), VecTy.getVectorElementType()), DstV); return OutV; } SDValue HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl, unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const { MVT PredTy = ty(PredV); unsigned HwLen = Subtarget.getVectorLength(); MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); if (Subtarget.isHVXVectorType(PredTy, true)) { // Move the vector predicate SubV to a vector register, and scale it // down to match the representation (bytes per type element) that VecV // uses. The scaling down will pick every 2nd or 4th (every Scale-th // in general) element and put them at the front of the resulting // vector. This subvector will then be inserted into the Q2V of VecV. // To avoid having an operation that generates an illegal type (short // vector), generate a full size vector. // SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV); SmallVector Mask(HwLen); // Scale = BitBytes(PredV) / Given BitBytes. unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes); unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes; for (unsigned i = 0; i != HwLen; ++i) { unsigned Num = i % Scale; unsigned Off = i / Scale; Mask[BlockLen*Num + Off] = i; } SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask); if (!ZeroFill) return S; // Fill the bytes beyond BlockLen with 0s. // V6_pred_scalar2 cannot fill the entire predicate, so it only works // when BlockLen < HwLen. assert(BlockLen < HwLen && "vsetq(v1) prerequisite"); MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG); SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q); return DAG.getNode(ISD::AND, dl, ByteTy, S, M); } // Make sure that this is a valid scalar predicate. assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1); unsigned Bytes = 8 / PredTy.getVectorNumElements(); SmallVector Words[2]; unsigned IdxW = 0; SDValue W0 = isUndef(PredV) ? DAG.getUNDEF(MVT::i64) : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV); Words[IdxW].push_back(HiHalf(W0, DAG)); Words[IdxW].push_back(LoHalf(W0, DAG)); while (Bytes < BitBytes) { IdxW ^= 1; Words[IdxW].clear(); if (Bytes < 4) { for (const SDValue &W : Words[IdxW ^ 1]) { SDValue T = expandPredicate(W, dl, DAG); Words[IdxW].push_back(HiHalf(T, DAG)); Words[IdxW].push_back(LoHalf(T, DAG)); } } else { for (const SDValue &W : Words[IdxW ^ 1]) { Words[IdxW].push_back(W); Words[IdxW].push_back(W); } } Bytes *= 2; } assert(Bytes == BitBytes); SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy); SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32); for (const SDValue &W : Words[IdxW]) { Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4); Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W); } return Vec; } SDValue HexagonTargetLowering::buildHvxVectorPred(ArrayRef Values, const SDLoc &dl, MVT VecTy, SelectionDAG &DAG) const { // Construct a vector V of bytes, such that a comparison V >u 0 would // produce the required vector predicate. unsigned VecLen = Values.size(); unsigned HwLen = Subtarget.getVectorLength(); assert(VecLen <= HwLen || VecLen == 8*HwLen); SmallVector Bytes; bool AllT = true, AllF = true; auto IsTrue = [] (SDValue V) { if (const auto *N = dyn_cast(V.getNode())) return !N->isZero(); return false; }; auto IsFalse = [] (SDValue V) { if (const auto *N = dyn_cast(V.getNode())) return N->isZero(); return false; }; if (VecLen <= HwLen) { // In the hardware, each bit of a vector predicate corresponds to a byte // of a vector register. Calculate how many bytes does a bit of VecTy // correspond to. assert(HwLen % VecLen == 0); unsigned BitBytes = HwLen / VecLen; for (SDValue V : Values) { AllT &= IsTrue(V); AllF &= IsFalse(V); SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8) : DAG.getUNDEF(MVT::i8); for (unsigned B = 0; B != BitBytes; ++B) Bytes.push_back(Ext); } } else { // There are as many i1 values, as there are bits in a vector register. // Divide the values into groups of 8 and check that each group consists // of the same value (ignoring undefs). for (unsigned I = 0; I != VecLen; I += 8) { unsigned B = 0; // Find the first non-undef value in this group. for (; B != 8; ++B) { if (!Values[I+B].isUndef()) break; } SDValue F = Values[I+B]; AllT &= IsTrue(F); AllF &= IsFalse(F); SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8) : DAG.getUNDEF(MVT::i8); Bytes.push_back(Ext); // Verify that the rest of values in the group are the same as the // first. for (; B != 8; ++B) assert(Values[I+B].isUndef() || Values[I+B] == F); } } if (AllT) return DAG.getNode(HexagonISD::QTRUE, dl, VecTy); if (AllF) return DAG.getNode(HexagonISD::QFALSE, dl, VecTy); MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG); return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec); } SDValue HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV, const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { MVT ElemTy = ty(VecV).getVectorElementType(); unsigned ElemWidth = ElemTy.getSizeInBits(); assert(ElemWidth >= 8 && ElemWidth <= 32); (void)ElemWidth; SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG); SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {VecV, ByteIdx}); if (ElemTy == MVT::i32) return ExWord; // Have an extracted word, need to extract the smaller element out of it. // 1. Extract the bits of (the original) IdxV that correspond to the index // of the desired element in the 32-bit word. SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG); // 2. Extract the element from the word. SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord); return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG); } SDValue HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV, const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { // Implement other return types if necessary. assert(ResTy == MVT::i1); unsigned HwLen = Subtarget.getVectorLength(); MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); unsigned Scale = HwLen / ty(VecV).getVectorNumElements(); SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32); IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV); SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG); SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32); return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG); } SDValue HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV, SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const { MVT ElemTy = ty(VecV).getVectorElementType(); unsigned ElemWidth = ElemTy.getSizeInBits(); assert(ElemWidth >= 8 && ElemWidth <= 32); (void)ElemWidth; auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV, SDValue ByteIdxV) { MVT VecTy = ty(VecV); unsigned HwLen = Subtarget.getVectorLength(); SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32, {ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)}); SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV}); SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV}); SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32, {DAG.getConstant(HwLen, dl, MVT::i32), MaskV}); SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV}); return TorV; }; SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG); if (ElemTy == MVT::i32) return InsertWord(VecV, ValV, ByteIdx); // If this is not inserting a 32-bit word, convert it into such a thing. // 1. Extract the existing word from the target vector. SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32, {ByteIdx, DAG.getConstant(2, dl, MVT::i32)}); SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx, dl, MVT::i32, DAG); // 2. Treating the extracted word as a 32-bit vector, insert the given // value into it. SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG); MVT SubVecTy = tyVector(ty(Ext), ElemTy); SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext), ValV, SubIdx, dl, ElemTy, DAG); // 3. Insert the 32-bit word back into the original vector. return InsertWord(VecV, Ins, ByteIdx); } SDValue HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV, SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const { unsigned HwLen = Subtarget.getVectorLength(); MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); unsigned Scale = HwLen / ty(VecV).getVectorNumElements(); SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32); IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV); ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV); SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG); return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV); } SDValue HexagonTargetLowering::extractHvxSubvectorReg(SDValue OrigOp, SDValue VecV, SDValue IdxV, const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { MVT VecTy = ty(VecV); unsigned HwLen = Subtarget.getVectorLength(); unsigned Idx = cast(IdxV.getNode())->getZExtValue(); MVT ElemTy = VecTy.getVectorElementType(); unsigned ElemWidth = ElemTy.getSizeInBits(); // If the source vector is a vector pair, get the single vector containing // the subvector of interest. The subvector will never overlap two single // vectors. if (isHvxPairTy(VecTy)) { if (Idx * ElemWidth >= 8*HwLen) Idx -= VecTy.getVectorNumElements() / 2; VecV = OrigOp; if (typeSplit(VecTy).first == ResTy) return VecV; } // The only meaningful subvectors of a single HVX vector are those that // fit in a scalar register. assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64); MVT WordTy = tyVector(VecTy, MVT::i32); SDValue WordVec = DAG.getBitcast(WordTy, VecV); unsigned WordIdx = (Idx*ElemWidth) / 32; SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32); SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG); if (ResTy.getSizeInBits() == 32) return DAG.getBitcast(ResTy, W0); SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32); SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG); SDValue WW = getCombine(W1, W0, dl, MVT::i64, DAG); return DAG.getBitcast(ResTy, WW); } SDValue HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV, const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { MVT VecTy = ty(VecV); unsigned HwLen = Subtarget.getVectorLength(); MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); // IdxV is required to be a constant. unsigned Idx = cast(IdxV.getNode())->getZExtValue(); unsigned ResLen = ResTy.getVectorNumElements(); unsigned BitBytes = HwLen / VecTy.getVectorNumElements(); unsigned Offset = Idx * BitBytes; SDValue Undef = DAG.getUNDEF(ByteTy); SmallVector Mask; if (Subtarget.isHVXVectorType(ResTy, true)) { // Converting between two vector predicates. Since the result is shorter // than the source, it will correspond to a vector predicate with the // relevant bits replicated. The replication count is the ratio of the // source and target vector lengths. unsigned Rep = VecTy.getVectorNumElements() / ResLen; assert(isPowerOf2_32(Rep) && HwLen % Rep == 0); for (unsigned i = 0; i != HwLen/Rep; ++i) { for (unsigned j = 0; j != Rep; ++j) Mask.push_back(i + Offset); } SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask); return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV); } // Converting between a vector predicate and a scalar predicate. In the // vector predicate, a group of BitBytes bits will correspond to a single // i1 element of the source vector type. Those bits will all have the same // value. The same will be true for ByteVec, where each byte corresponds // to a bit in the vector predicate. // The algorithm is to traverse the ByteVec, going over the i1 values from // the source vector, and generate the corresponding representation in an // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the // elements so that the interesting 8 bytes will be in the low end of the // vector. unsigned Rep = 8 / ResLen; // Make sure the output fill the entire vector register, so repeat the // 8-byte groups as many times as necessary. for (unsigned r = 0; r != HwLen/ResLen; ++r) { // This will generate the indexes of the 8 interesting bytes. for (unsigned i = 0; i != ResLen; ++i) { for (unsigned j = 0; j != Rep; ++j) Mask.push_back(Offset + i*BitBytes); } } SDValue Zero = getZero(dl, MVT::i32, DAG); SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask); // Combine the two low words from ShuffV into a v8i8, and byte-compare // them against 0. SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero}); SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, DAG.getConstant(4, dl, MVT::i32)}); SDValue Vec64 = getCombine(W1, W0, dl, MVT::v8i8, DAG); return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy, {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG); } SDValue HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV, SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const { MVT VecTy = ty(VecV); MVT SubTy = ty(SubV); unsigned HwLen = Subtarget.getVectorLength(); MVT ElemTy = VecTy.getVectorElementType(); unsigned ElemWidth = ElemTy.getSizeInBits(); bool IsPair = isHvxPairTy(VecTy); MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth); // The two single vectors that VecV consists of, if it's a pair. SDValue V0, V1; SDValue SingleV = VecV; SDValue PickHi; if (IsPair) { V0 = LoHalf(VecV, DAG); V1 = HiHalf(VecV, DAG); SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(), dl, MVT::i32); PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT); if (isHvxSingleTy(SubTy)) { if (const auto *CN = dyn_cast(IdxV.getNode())) { unsigned Idx = CN->getZExtValue(); assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2); unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi; return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV); } // If IdxV is not a constant, generate the two variants: with the // SubV as the high and as the low subregister, and select the right // pair based on the IdxV. SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1}); SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV}); return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo); } // The subvector being inserted must be entirely contained in one of // the vectors V0 or V1. Set SingleV to the correct one, and update // IdxV to be the index relative to the beginning of that vector. SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV); IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV); SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0); } // The only meaningful subvectors of a single HVX vector are those that // fit in a scalar register. assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64); // Convert IdxV to be index in bytes. auto *IdxN = dyn_cast(IdxV.getNode()); if (!IdxN || !IdxN->isZero()) { IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, DAG.getConstant(ElemWidth/8, dl, MVT::i32)); SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV); } // When inserting a single word, the rotation back to the original position // would be by HwLen-Idx, but if two words are inserted, it will need to be // by (HwLen-4)-Idx. unsigned RolBase = HwLen; if (SubTy.getSizeInBits() == 32) { SDValue V = DAG.getBitcast(MVT::i32, SubV); SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, V); } else { SDValue V = DAG.getBitcast(MVT::i64, SubV); SDValue R0 = LoHalf(V, DAG); SDValue R1 = HiHalf(V, DAG); SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0); SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, DAG.getConstant(4, dl, MVT::i32)); SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1); RolBase = HwLen-4; } // If the vector wasn't ror'ed, don't ror it back. if (RolBase != 4 || !IdxN || !IdxN->isZero()) { SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32, DAG.getConstant(RolBase, dl, MVT::i32), IdxV); SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV); } if (IsPair) { SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1}); SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV}); return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo); } return SingleV; } SDValue HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV, SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const { MVT VecTy = ty(VecV); MVT SubTy = ty(SubV); assert(Subtarget.isHVXVectorType(VecTy, true)); // VecV is an HVX vector predicate. SubV may be either an HVX vector // predicate as well, or it can be a scalar predicate. unsigned VecLen = VecTy.getVectorNumElements(); unsigned HwLen = Subtarget.getVectorLength(); assert(HwLen % VecLen == 0 && "Unexpected vector type"); unsigned Scale = VecLen / SubTy.getVectorNumElements(); unsigned BitBytes = HwLen / VecLen; unsigned BlockLen = HwLen / Scale; MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG); SDValue ByteIdx; auto *IdxN = dyn_cast(IdxV.getNode()); if (!IdxN || !IdxN->isZero()) { ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, DAG.getConstant(BitBytes, dl, MVT::i32)); ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx); } // ByteVec is the target vector VecV rotated in such a way that the // subvector should be inserted at index 0. Generate a predicate mask // and use vmux to do the insertion. assert(BlockLen < HwLen && "vsetq(v1) prerequisite"); MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG); ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG); // Rotate ByteVec back, and convert to a vector predicate. if (!IdxN || !IdxN->isZero()) { SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32); SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx); ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi); } return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec); } SDValue HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl, MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const { // Sign- and any-extending of a vector predicate to a vector register is // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and // a vector of 1s (where the 1s are of type matching the vector type). assert(Subtarget.isHVXVectorType(ResTy)); if (!ZeroExt) return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV); assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements()); SDValue True = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, DAG.getConstant(1, dl, MVT::i32)); SDValue False = getZero(dl, ResTy, DAG); return DAG.getSelect(dl, ResTy, VecV, True, False); } SDValue HexagonTargetLowering::compressHvxPred(SDValue VecQ, const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { // Given a predicate register VecQ, transfer bits VecQ[0..HwLen-1] // (i.e. the entire predicate register) to bits [0..HwLen-1] of a // vector register. The remaining bits of the vector register are // unspecified. MachineFunction &MF = DAG.getMachineFunction(); unsigned HwLen = Subtarget.getVectorLength(); MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); MVT PredTy = ty(VecQ); unsigned PredLen = PredTy.getVectorNumElements(); assert(HwLen % PredLen == 0); MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(8*HwLen/PredLen), PredLen); Type *Int8Ty = Type::getInt8Ty(*DAG.getContext()); SmallVector Tmp; // Create an array of bytes (hex): 01,02,04,08,10,20,40,80, 01,02,04,08,... // These are bytes with the LSB rotated left with respect to their index. for (unsigned i = 0; i != HwLen/8; ++i) { for (unsigned j = 0; j != 8; ++j) Tmp.push_back(ConstantInt::get(Int8Ty, 1ull << j)); } Constant *CV = ConstantVector::get(Tmp); Align Alignment(HwLen); SDValue CP = LowerConstantPool(DAG.getConstantPool(CV, ByteTy, Alignment), DAG); SDValue Bytes = DAG.getLoad(ByteTy, dl, DAG.getEntryNode(), CP, MachinePointerInfo::getConstantPool(MF), Alignment); // Select the bytes that correspond to true bits in the vector predicate. SDValue Sel = DAG.getSelect(dl, VecTy, VecQ, DAG.getBitcast(VecTy, Bytes), getZero(dl, VecTy, DAG)); // Calculate the OR of all bytes in each group of 8. That will compress // all the individual bits into a single byte. // First, OR groups of 4, via vrmpy with 0x01010101. SDValue All1 = DAG.getSplatBuildVector(MVT::v4i8, dl, DAG.getConstant(1, dl, MVT::i32)); SDValue Vrmpy = getInstr(Hexagon::V6_vrmpyub, dl, ByteTy, {Sel, All1}, DAG); // Then rotate the accumulated vector by 4 bytes, and do the final OR. SDValue Rot = getInstr(Hexagon::V6_valignbi, dl, ByteTy, {Vrmpy, Vrmpy, DAG.getTargetConstant(4, dl, MVT::i32)}, DAG); SDValue Vor = DAG.getNode(ISD::OR, dl, ByteTy, {Vrmpy, Rot}); // Pick every 8th byte and coalesce them at the beginning of the output. // For symmetry, coalesce every 1+8th byte after that, then every 2+8th // byte and so on. SmallVector Mask; for (unsigned i = 0; i != HwLen; ++i) Mask.push_back((8*i) % HwLen + i/(HwLen/8)); SDValue Collect = DAG.getVectorShuffle(ByteTy, dl, Vor, DAG.getUNDEF(ByteTy), Mask); return DAG.getBitcast(ResTy, Collect); } SDValue HexagonTargetLowering::resizeToWidth(SDValue VecV, MVT ResTy, bool Signed, const SDLoc &dl, SelectionDAG &DAG) const { // Take a vector and resize the element type to match the given type. MVT InpTy = ty(VecV); if (InpTy == ResTy) return VecV; unsigned InpWidth = InpTy.getSizeInBits(); unsigned ResWidth = ResTy.getSizeInBits(); if (InpTy.isFloatingPoint()) { return InpWidth < ResWidth ? DAG.getNode(ISD::FP_EXTEND, dl, ResTy, VecV) : DAG.getNode(ISD::FP_ROUND, dl, ResTy, VecV, getZero(dl, MVT::i32, DAG)); } assert(InpTy.isInteger()); if (InpWidth < ResWidth) { unsigned ExtOpc = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; return DAG.getNode(ExtOpc, dl, ResTy, VecV); } else { unsigned NarOpc = Signed ? HexagonISD::SSAT : HexagonISD::USAT; return DAG.getNode(NarOpc, dl, ResTy, VecV, DAG.getValueType(ResTy)); } } SDValue HexagonTargetLowering::extractSubvector(SDValue Vec, MVT SubTy, unsigned SubIdx, SelectionDAG &DAG) const { assert(ty(Vec).getSizeInBits() % SubTy.getSizeInBits() == 0); const SDLoc &dl(Vec); unsigned ElemIdx = SubIdx * SubTy.getVectorNumElements(); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubTy, {Vec, DAG.getConstant(ElemIdx, dl, MVT::i32)}); } SDValue HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG) const { const SDLoc &dl(Op); MVT VecTy = ty(Op); unsigned Size = Op.getNumOperands(); SmallVector Ops; for (unsigned i = 0; i != Size; ++i) Ops.push_back(Op.getOperand(i)); // First, split the BUILD_VECTOR for vector pairs. We could generate // some pairs directly (via splat), but splats should be generated // by the combiner prior to getting here. if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) { ArrayRef A(Ops); MVT SingleTy = typeSplit(VecTy).first; SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG); SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1); } if (VecTy.getVectorElementType() == MVT::i1) return buildHvxVectorPred(Ops, dl, VecTy, DAG); // In case of MVT::f16 BUILD_VECTOR, since MVT::f16 is // not a legal type, just bitcast the node to use i16 // types and bitcast the result back to f16 if (VecTy.getVectorElementType() == MVT::f16) { SmallVector NewOps; for (unsigned i = 0; i != Size; i++) NewOps.push_back(DAG.getBitcast(MVT::i16, Ops[i])); SDValue T0 = DAG.getNode(ISD::BUILD_VECTOR, dl, tyVector(VecTy, MVT::i16), NewOps); return DAG.getBitcast(tyVector(VecTy, MVT::f16), T0); } return buildHvxVectorReg(Ops, dl, VecTy, DAG); } SDValue HexagonTargetLowering::LowerHvxSplatVector(SDValue Op, SelectionDAG &DAG) const { const SDLoc &dl(Op); MVT VecTy = ty(Op); MVT ArgTy = ty(Op.getOperand(0)); if (ArgTy == MVT::f16) { MVT SplatTy = MVT::getVectorVT(MVT::i16, VecTy.getVectorNumElements()); SDValue ToInt16 = DAG.getBitcast(MVT::i16, Op.getOperand(0)); SDValue ToInt32 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, ToInt16); SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, dl, SplatTy, ToInt32); return DAG.getBitcast(VecTy, Splat); } return SDValue(); } SDValue HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG) const { // Vector concatenation of two integer (non-bool) vectors does not need // special lowering. Custom-lower concats of bool vectors and expand // concats of more than 2 vectors. MVT VecTy = ty(Op); const SDLoc &dl(Op); unsigned NumOp = Op.getNumOperands(); if (VecTy.getVectorElementType() != MVT::i1) { if (NumOp == 2) return Op; // Expand the other cases into a build-vector. SmallVector Elems; for (SDValue V : Op.getNode()->ops()) DAG.ExtractVectorElements(V, Elems); // A vector of i16 will be broken up into a build_vector of i16's. // This is a problem, since at the time of operation legalization, // all operations are expected to be type-legalized, and i16 is not // a legal type. If any of the extracted elements is not of a valid // type, sign-extend it to a valid one. for (unsigned i = 0, e = Elems.size(); i != e; ++i) { SDValue V = Elems[i]; MVT Ty = ty(V); if (!isTypeLegal(Ty)) { MVT NTy = typeLegalize(Ty, DAG); if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { Elems[i] = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NTy, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NTy, V.getOperand(0), V.getOperand(1)), DAG.getValueType(Ty)); continue; } // A few less complicated cases. switch (V.getOpcode()) { case ISD::Constant: Elems[i] = DAG.getSExtOrTrunc(V, dl, NTy); break; case ISD::UNDEF: Elems[i] = DAG.getUNDEF(NTy); break; case ISD::TRUNCATE: Elems[i] = V.getOperand(0); break; default: llvm_unreachable("Unexpected vector element"); } } } return DAG.getBuildVector(VecTy, dl, Elems); } assert(VecTy.getVectorElementType() == MVT::i1); unsigned HwLen = Subtarget.getVectorLength(); assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0); SDValue Op0 = Op.getOperand(0); // If the operands are HVX types (i.e. not scalar predicates), then // defer the concatenation, and create QCAT instead. if (Subtarget.isHVXVectorType(ty(Op0), true)) { if (NumOp == 2) return DAG.getNode(HexagonISD::QCAT, dl, VecTy, Op0, Op.getOperand(1)); ArrayRef U(Op.getNode()->ops()); SmallVector SV(U.begin(), U.end()); ArrayRef Ops(SV); MVT HalfTy = typeSplit(VecTy).first; SDValue V0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy, Ops.take_front(NumOp/2)); SDValue V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy, Ops.take_back(NumOp/2)); return DAG.getNode(HexagonISD::QCAT, dl, VecTy, V0, V1); } // Count how many bytes (in a vector register) each bit in VecTy // corresponds to. unsigned BitBytes = HwLen / VecTy.getVectorNumElements(); SmallVector Prefixes; for (SDValue V : Op.getNode()->op_values()) { SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG); Prefixes.push_back(P); } unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements(); MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32); SDValue Res = getZero(dl, ByteTy, DAG); for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) { Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S); Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]); } return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res); } SDValue HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG) const { // Change the type of the extracted element to i32. SDValue VecV = Op.getOperand(0); MVT ElemTy = ty(VecV).getVectorElementType(); const SDLoc &dl(Op); SDValue IdxV = Op.getOperand(1); if (ElemTy == MVT::i1) return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG); return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG); } SDValue HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG) const { const SDLoc &dl(Op); MVT VecTy = ty(Op); SDValue VecV = Op.getOperand(0); SDValue ValV = Op.getOperand(1); SDValue IdxV = Op.getOperand(2); MVT ElemTy = ty(VecV).getVectorElementType(); if (ElemTy == MVT::i1) return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG); if (ElemTy == MVT::f16) { SDValue T0 = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, tyVector(VecTy, MVT::i16), DAG.getBitcast(tyVector(VecTy, MVT::i16), VecV), DAG.getBitcast(MVT::i16, ValV), IdxV); return DAG.getBitcast(tyVector(VecTy, MVT::f16), T0); } return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG); } SDValue HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG) const { SDValue SrcV = Op.getOperand(0); MVT SrcTy = ty(SrcV); MVT DstTy = ty(Op); SDValue IdxV = Op.getOperand(1); unsigned Idx = cast(IdxV.getNode())->getZExtValue(); assert(Idx % DstTy.getVectorNumElements() == 0); (void)Idx; const SDLoc &dl(Op); MVT ElemTy = SrcTy.getVectorElementType(); if (ElemTy == MVT::i1) return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG); return extractHvxSubvectorReg(Op, SrcV, IdxV, dl, DstTy, DAG); } SDValue HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG) const { // Idx does not need to be a constant. SDValue VecV = Op.getOperand(0); SDValue ValV = Op.getOperand(1); SDValue IdxV = Op.getOperand(2); const SDLoc &dl(Op); MVT VecTy = ty(VecV); MVT ElemTy = VecTy.getVectorElementType(); if (ElemTy == MVT::i1) return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG); return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG); } SDValue HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const { // Lower any-extends of boolean vectors to sign-extends, since they // translate directly to Q2V. Zero-extending could also be done equally // fast, but Q2V is used/recognized in more places. // For all other vectors, use zero-extend. MVT ResTy = ty(Op); SDValue InpV = Op.getOperand(0); MVT ElemTy = ty(InpV).getVectorElementType(); if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy)) return LowerHvxSignExt(Op, DAG); return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Op), ResTy, InpV); } SDValue HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const { MVT ResTy = ty(Op); SDValue InpV = Op.getOperand(0); MVT ElemTy = ty(InpV).getVectorElementType(); if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy)) return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), false, DAG); return Op; } SDValue HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const { MVT ResTy = ty(Op); SDValue InpV = Op.getOperand(0); MVT ElemTy = ty(InpV).getVectorElementType(); if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy)) return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), true, DAG); return Op; } SDValue HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const { // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight): // cttz(x) = bitwidth(x) - ctlz(~x & (x-1)) const SDLoc &dl(Op); MVT ResTy = ty(Op); SDValue InpV = Op.getOperand(0); assert(ResTy == ty(InpV)); // Calculate the vectors of 1 and bitwidth(x). MVT ElemTy = ty(InpV).getVectorElementType(); unsigned ElemWidth = ElemTy.getSizeInBits(); SDValue Vec1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, DAG.getConstant(1, dl, MVT::i32)); SDValue VecW = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, DAG.getConstant(ElemWidth, dl, MVT::i32)); SDValue VecN1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, DAG.getConstant(-1, dl, MVT::i32)); // Do not use DAG.getNOT, because that would create BUILD_VECTOR with // a BITCAST. Here we can skip the BITCAST (so we don't have to handle // it separately in custom combine or selection). SDValue A = DAG.getNode(ISD::AND, dl, ResTy, {DAG.getNode(ISD::XOR, dl, ResTy, {InpV, VecN1}), DAG.getNode(ISD::SUB, dl, ResTy, {InpV, Vec1})}); return DAG.getNode(ISD::SUB, dl, ResTy, {VecW, DAG.getNode(ISD::CTLZ, dl, ResTy, A)}); } SDValue HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const { const SDLoc &dl(Op); MVT ResTy = ty(Op); assert(ResTy.getVectorElementType() == MVT::i32); SDValue Vs = Op.getOperand(0); SDValue Vt = Op.getOperand(1); SDVTList ResTys = DAG.getVTList(ResTy, ResTy); unsigned Opc = Op.getOpcode(); // On HVX v62+ producing the full product is cheap, so legalize MULH to LOHI. if (Opc == ISD::MULHU) return DAG.getNode(HexagonISD::UMUL_LOHI, dl, ResTys, {Vs, Vt}).getValue(1); if (Opc == ISD::MULHS) return DAG.getNode(HexagonISD::SMUL_LOHI, dl, ResTys, {Vs, Vt}).getValue(1); #ifndef NDEBUG Op.dump(&DAG); #endif llvm_unreachable("Unexpected mulh operation"); } SDValue HexagonTargetLowering::LowerHvxMulLoHi(SDValue Op, SelectionDAG &DAG) const { const SDLoc &dl(Op); unsigned Opc = Op.getOpcode(); SDValue Vu = Op.getOperand(0); SDValue Vv = Op.getOperand(1); // If the HI part is not used, convert it to a regular MUL. if (auto HiVal = Op.getValue(1); HiVal.use_empty()) { // Need to preserve the types and the number of values. SDValue Hi = DAG.getUNDEF(ty(HiVal)); SDValue Lo = DAG.getNode(ISD::MUL, dl, ty(Op), {Vu, Vv}); return DAG.getMergeValues({Lo, Hi}, dl); } bool SignedVu = Opc == HexagonISD::SMUL_LOHI; bool SignedVv = Opc == HexagonISD::SMUL_LOHI || Opc == HexagonISD::USMUL_LOHI; // Legal on HVX v62+, but lower it here because patterns can't handle multi- // valued nodes. if (Subtarget.useHVXV62Ops()) return emitHvxMulLoHiV62(Vu, SignedVu, Vv, SignedVv, dl, DAG); if (Opc == HexagonISD::SMUL_LOHI) { // Direct MULHS expansion is cheaper than doing the whole SMUL_LOHI, // for other signedness LOHI is cheaper. if (auto LoVal = Op.getValue(0); LoVal.use_empty()) { SDValue Hi = emitHvxMulHsV60(Vu, Vv, dl, DAG); SDValue Lo = DAG.getUNDEF(ty(LoVal)); return DAG.getMergeValues({Lo, Hi}, dl); } } return emitHvxMulLoHiV60(Vu, SignedVu, Vv, SignedVv, dl, DAG); } SDValue HexagonTargetLowering::LowerHvxBitcast(SDValue Op, SelectionDAG &DAG) const { SDValue Val = Op.getOperand(0); MVT ResTy = ty(Op); MVT ValTy = ty(Val); const SDLoc &dl(Op); if (isHvxBoolTy(ValTy) && ResTy.isScalarInteger()) { unsigned HwLen = Subtarget.getVectorLength(); MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4); SDValue VQ = compressHvxPred(Val, dl, WordTy, DAG); unsigned BitWidth = ResTy.getSizeInBits(); if (BitWidth < 64) { SDValue W0 = extractHvxElementReg(VQ, DAG.getConstant(0, dl, MVT::i32), dl, MVT::i32, DAG); if (BitWidth == 32) return W0; assert(BitWidth < 32u); return DAG.getZExtOrTrunc(W0, dl, ResTy); } // The result is >= 64 bits. The only options are 64 or 128. assert(BitWidth == 64 || BitWidth == 128); SmallVector Words; for (unsigned i = 0; i != BitWidth/32; ++i) { SDValue W = extractHvxElementReg( VQ, DAG.getConstant(i, dl, MVT::i32), dl, MVT::i32, DAG); Words.push_back(W); } SmallVector Combines; assert(Words.size() % 2 == 0); for (unsigned i = 0, e = Words.size(); i < e; i += 2) { SDValue C = getCombine(Words[i+1], Words[i], dl, MVT::i64, DAG); Combines.push_back(C); } if (BitWidth == 64) return Combines[0]; return DAG.getNode(ISD::BUILD_PAIR, dl, ResTy, Combines); } if (isHvxBoolTy(ResTy) && ValTy.isScalarInteger()) { // Handle bitcast from i128 -> v128i1 and i64 -> v64i1. unsigned BitWidth = ValTy.getSizeInBits(); unsigned HwLen = Subtarget.getVectorLength(); assert(BitWidth == HwLen); MVT ValAsVecTy = MVT::getVectorVT(MVT::i8, BitWidth / 8); SDValue ValAsVec = DAG.getBitcast(ValAsVecTy, Val); // Splat each byte of Val 8 times. // Bytes = [(b0)x8, (b1)x8, ...., (b15)x8] // where b0, b1,..., b15 are least to most significant bytes of I. SmallVector Bytes; // Tmp: 0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80, 0x01,0x02,0x04,0x08,... // These are bytes with the LSB rotated left with respect to their index. SmallVector Tmp; for (unsigned I = 0; I != HwLen / 8; ++I) { SDValue Idx = DAG.getConstant(I, dl, MVT::i32); SDValue Byte = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i8, ValAsVec, Idx); for (unsigned J = 0; J != 8; ++J) { Bytes.push_back(Byte); Tmp.push_back(DAG.getConstant(1ull << J, dl, MVT::i8)); } } MVT ConstantVecTy = MVT::getVectorVT(MVT::i8, HwLen); SDValue ConstantVec = DAG.getBuildVector(ConstantVecTy, dl, Tmp); SDValue I2V = buildHvxVectorReg(Bytes, dl, ConstantVecTy, DAG); // Each Byte in the I2V will be set iff corresponding bit is set in Val. I2V = DAG.getNode(ISD::AND, dl, ConstantVecTy, {I2V, ConstantVec}); return DAG.getNode(HexagonISD::V2Q, dl, ResTy, I2V); } return Op; } SDValue HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const { // Sign- and zero-extends are legal. assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG); return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(Op), ty(Op), Op.getOperand(0)); } SDValue HexagonTargetLowering::LowerHvxSelect(SDValue Op, SelectionDAG &DAG) const { MVT ResTy = ty(Op); if (ResTy.getVectorElementType() != MVT::i1) return Op; const SDLoc &dl(Op); unsigned HwLen = Subtarget.getVectorLength(); unsigned VecLen = ResTy.getVectorNumElements(); assert(HwLen % VecLen == 0); unsigned ElemSize = HwLen / VecLen; MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(ElemSize * 8), VecLen); SDValue S = DAG.getNode(ISD::SELECT, dl, VecTy, Op.getOperand(0), DAG.getNode(HexagonISD::Q2V, dl, VecTy, Op.getOperand(1)), DAG.getNode(HexagonISD::Q2V, dl, VecTy, Op.getOperand(2))); return DAG.getNode(HexagonISD::V2Q, dl, ResTy, S); } SDValue HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const { if (SDValue S = getVectorShiftByInt(Op, DAG)) return S; return Op; } SDValue HexagonTargetLowering::LowerHvxFunnelShift(SDValue Op, SelectionDAG &DAG) const { unsigned Opc = Op.getOpcode(); assert(Opc == ISD::FSHL || Opc == ISD::FSHR); // Make sure the shift amount is within the range of the bitwidth // of the element type. SDValue A = Op.getOperand(0); SDValue B = Op.getOperand(1); SDValue S = Op.getOperand(2); MVT InpTy = ty(A); MVT ElemTy = InpTy.getVectorElementType(); const SDLoc &dl(Op); unsigned ElemWidth = ElemTy.getSizeInBits(); bool IsLeft = Opc == ISD::FSHL; // The expansion into regular shifts produces worse code for i8 and for // right shift of i32 on v65+. bool UseShifts = ElemTy != MVT::i8; if (Subtarget.useHVXV65Ops() && ElemTy == MVT::i32) UseShifts = false; if (SDValue SplatV = getSplatValue(S, DAG); SplatV && UseShifts) { // If this is a funnel shift by a scalar, lower it into regular shifts. SDValue Mask = DAG.getConstant(ElemWidth - 1, dl, MVT::i32); SDValue ModS = DAG.getNode(ISD::AND, dl, MVT::i32, {DAG.getZExtOrTrunc(SplatV, dl, MVT::i32), Mask}); SDValue NegS = DAG.getNode(ISD::SUB, dl, MVT::i32, {DAG.getConstant(ElemWidth, dl, MVT::i32), ModS}); SDValue IsZero = DAG.getSetCC(dl, MVT::i1, ModS, getZero(dl, MVT::i32, DAG), ISD::SETEQ); // FSHL A, B => A << | B >>n // FSHR A, B => A <> SDValue Part1 = DAG.getNode(HexagonISD::VASL, dl, InpTy, {A, IsLeft ? ModS : NegS}); SDValue Part2 = DAG.getNode(HexagonISD::VLSR, dl, InpTy, {B, IsLeft ? NegS : ModS}); SDValue Or = DAG.getNode(ISD::OR, dl, InpTy, {Part1, Part2}); // If the shift amount was 0, pick A or B, depending on the direction. // The opposite shift will also be by 0, so the "Or" will be incorrect. return DAG.getNode(ISD::SELECT, dl, InpTy, {IsZero, (IsLeft ? A : B), Or}); } SDValue Mask = DAG.getSplatBuildVector( InpTy, dl, DAG.getConstant(ElemWidth - 1, dl, ElemTy)); unsigned MOpc = Opc == ISD::FSHL ? HexagonISD::MFSHL : HexagonISD::MFSHR; return DAG.getNode(MOpc, dl, ty(Op), {A, B, DAG.getNode(ISD::AND, dl, InpTy, {S, Mask})}); } SDValue HexagonTargetLowering::LowerHvxIntrinsic(SDValue Op, SelectionDAG &DAG) const { const SDLoc &dl(Op); unsigned IntNo = cast(Op.getOperand(0))->getZExtValue(); SmallVector Ops(Op->ops().begin(), Op->ops().end()); auto Swap = [&](SDValue P) { return DAG.getMergeValues({P.getValue(1), P.getValue(0)}, dl); }; switch (IntNo) { case Intrinsic::hexagon_V6_pred_typecast: case Intrinsic::hexagon_V6_pred_typecast_128B: { MVT ResTy = ty(Op), InpTy = ty(Ops[1]); if (isHvxBoolTy(ResTy) && isHvxBoolTy(InpTy)) { if (ResTy == InpTy) return Ops[1]; return DAG.getNode(HexagonISD::TYPECAST, dl, ResTy, Ops[1]); } break; } case Intrinsic::hexagon_V6_vmpyss_parts: case Intrinsic::hexagon_V6_vmpyss_parts_128B: return Swap(DAG.getNode(HexagonISD::SMUL_LOHI, dl, Op->getVTList(), {Ops[1], Ops[2]})); case Intrinsic::hexagon_V6_vmpyuu_parts: case Intrinsic::hexagon_V6_vmpyuu_parts_128B: return Swap(DAG.getNode(HexagonISD::UMUL_LOHI, dl, Op->getVTList(), {Ops[1], Ops[2]})); case Intrinsic::hexagon_V6_vmpyus_parts: case Intrinsic::hexagon_V6_vmpyus_parts_128B: { return Swap(DAG.getNode(HexagonISD::USMUL_LOHI, dl, Op->getVTList(), {Ops[1], Ops[2]})); } } // switch return Op; } SDValue HexagonTargetLowering::LowerHvxMaskedOp(SDValue Op, SelectionDAG &DAG) const { const SDLoc &dl(Op); unsigned HwLen = Subtarget.getVectorLength(); MachineFunction &MF = DAG.getMachineFunction(); auto *MaskN = cast(Op.getNode()); SDValue Mask = MaskN->getMask(); SDValue Chain = MaskN->getChain(); SDValue Base = MaskN->getBasePtr(); auto *MemOp = MF.getMachineMemOperand(MaskN->getMemOperand(), 0, HwLen); unsigned Opc = Op->getOpcode(); assert(Opc == ISD::MLOAD || Opc == ISD::MSTORE); if (Opc == ISD::MLOAD) { MVT ValTy = ty(Op); SDValue Load = DAG.getLoad(ValTy, dl, Chain, Base, MemOp); SDValue Thru = cast(MaskN)->getPassThru(); if (isUndef(Thru)) return Load; SDValue VSel = DAG.getNode(ISD::VSELECT, dl, ValTy, Mask, Load, Thru); return DAG.getMergeValues({VSel, Load.getValue(1)}, dl); } // MSTORE // HVX only has aligned masked stores. // TODO: Fold negations of the mask into the store. unsigned StoreOpc = Hexagon::V6_vS32b_qpred_ai; SDValue Value = cast(MaskN)->getValue(); SDValue Offset0 = DAG.getTargetConstant(0, dl, ty(Base)); if (MaskN->getAlign().value() % HwLen == 0) { SDValue Store = getInstr(StoreOpc, dl, MVT::Other, {Mask, Base, Offset0, Value, Chain}, DAG); DAG.setNodeMemRefs(cast(Store.getNode()), {MemOp}); return Store; } // Unaligned case. auto StoreAlign = [&](SDValue V, SDValue A) { SDValue Z = getZero(dl, ty(V), DAG); // TODO: use funnel shifts? // vlalign(Vu,Vv,Rt) rotates the pair Vu:Vv left by Rt and takes the // upper half. SDValue LoV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {V, Z, A}, DAG); SDValue HiV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {Z, V, A}, DAG); return std::make_pair(LoV, HiV); }; MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); SDValue MaskV = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Mask); VectorPair Tmp = StoreAlign(MaskV, Base); VectorPair MaskU = {DAG.getNode(HexagonISD::V2Q, dl, BoolTy, Tmp.first), DAG.getNode(HexagonISD::V2Q, dl, BoolTy, Tmp.second)}; VectorPair ValueU = StoreAlign(Value, Base); SDValue Offset1 = DAG.getTargetConstant(HwLen, dl, MVT::i32); SDValue StoreLo = getInstr(StoreOpc, dl, MVT::Other, {MaskU.first, Base, Offset0, ValueU.first, Chain}, DAG); SDValue StoreHi = getInstr(StoreOpc, dl, MVT::Other, {MaskU.second, Base, Offset1, ValueU.second, Chain}, DAG); DAG.setNodeMemRefs(cast(StoreLo.getNode()), {MemOp}); DAG.setNodeMemRefs(cast(StoreHi.getNode()), {MemOp}); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, {StoreLo, StoreHi}); } SDValue HexagonTargetLowering::LowerHvxFpExtend(SDValue Op, SelectionDAG &DAG) const { // This conversion only applies to QFloat. IEEE extension from f16 to f32 // is legal (done via a pattern). assert(Subtarget.useHVXQFloatOps()); assert(Op->getOpcode() == ISD::FP_EXTEND); MVT VecTy = ty(Op); MVT ArgTy = ty(Op.getOperand(0)); const SDLoc &dl(Op); assert(VecTy == MVT::v64f32 && ArgTy == MVT::v64f16); SDValue F16Vec = Op.getOperand(0); APFloat FloatVal = APFloat(1.0f); bool Ignored; FloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); SDValue Fp16Ones = DAG.getConstantFP(FloatVal, dl, ArgTy); SDValue VmpyVec = getInstr(Hexagon::V6_vmpy_qf32_hf, dl, VecTy, {F16Vec, Fp16Ones}, DAG); MVT HalfTy = typeSplit(VecTy).first; VectorPair Pair = opSplit(VmpyVec, dl, DAG); SDValue LoVec = getInstr(Hexagon::V6_vconv_sf_qf32, dl, HalfTy, {Pair.first}, DAG); SDValue HiVec = getInstr(Hexagon::V6_vconv_sf_qf32, dl, HalfTy, {Pair.second}, DAG); SDValue ShuffVec = getInstr(Hexagon::V6_vshuffvdd, dl, VecTy, {HiVec, LoVec, DAG.getConstant(-4, dl, MVT::i32)}, DAG); return ShuffVec; } SDValue HexagonTargetLowering::LowerHvxFpToInt(SDValue Op, SelectionDAG &DAG) const { // Catch invalid conversion ops (just in case). assert(Op.getOpcode() == ISD::FP_TO_SINT || Op.getOpcode() == ISD::FP_TO_UINT); MVT ResTy = ty(Op); MVT FpTy = ty(Op.getOperand(0)).getVectorElementType(); MVT IntTy = ResTy.getVectorElementType(); if (Subtarget.useHVXIEEEFPOps()) { // There are only conversions from f16. if (FpTy == MVT::f16) { // Other int types aren't legal in HVX, so we shouldn't see them here. assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32); // Conversions to i8 and i16 are legal. if (IntTy == MVT::i8 || IntTy == MVT::i16) return Op; } } if (IntTy.getSizeInBits() != FpTy.getSizeInBits()) return EqualizeFpIntConversion(Op, DAG); return ExpandHvxFpToInt(Op, DAG); } SDValue HexagonTargetLowering::LowerHvxIntToFp(SDValue Op, SelectionDAG &DAG) const { // Catch invalid conversion ops (just in case). assert(Op.getOpcode() == ISD::SINT_TO_FP || Op.getOpcode() == ISD::UINT_TO_FP); MVT ResTy = ty(Op); MVT IntTy = ty(Op.getOperand(0)).getVectorElementType(); MVT FpTy = ResTy.getVectorElementType(); if (Subtarget.useHVXIEEEFPOps()) { // There are only conversions to f16. if (FpTy == MVT::f16) { // Other int types aren't legal in HVX, so we shouldn't see them here. assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32); // i8, i16 -> f16 is legal. if (IntTy == MVT::i8 || IntTy == MVT::i16) return Op; } } if (IntTy.getSizeInBits() != FpTy.getSizeInBits()) return EqualizeFpIntConversion(Op, DAG); return ExpandHvxIntToFp(Op, DAG); } HexagonTargetLowering::TypePair HexagonTargetLowering::typeExtendToWider(MVT Ty0, MVT Ty1) const { // Compare the widths of elements of the two types, and extend the narrower // type to match the with of the wider type. For vector types, apply this // to the element type. assert(Ty0.isVector() == Ty1.isVector()); MVT ElemTy0 = Ty0.getScalarType(); MVT ElemTy1 = Ty1.getScalarType(); unsigned Width0 = ElemTy0.getSizeInBits(); unsigned Width1 = ElemTy1.getSizeInBits(); unsigned MaxWidth = std::max(Width0, Width1); auto getScalarWithWidth = [](MVT ScalarTy, unsigned Width) { if (ScalarTy.isInteger()) return MVT::getIntegerVT(Width); assert(ScalarTy.isFloatingPoint()); return MVT::getFloatingPointVT(Width); }; MVT WideETy0 = getScalarWithWidth(ElemTy0, MaxWidth); MVT WideETy1 = getScalarWithWidth(ElemTy1, MaxWidth); if (!Ty0.isVector()) { // Both types are scalars. return {WideETy0, WideETy1}; } // Vector types. unsigned NumElem = Ty0.getVectorNumElements(); assert(NumElem == Ty1.getVectorNumElements()); return {MVT::getVectorVT(WideETy0, NumElem), MVT::getVectorVT(WideETy1, NumElem)}; } HexagonTargetLowering::TypePair HexagonTargetLowering::typeWidenToWider(MVT Ty0, MVT Ty1) const { // Compare the numbers of elements of two vector types, and widen the // narrower one to match the number of elements in the wider one. assert(Ty0.isVector() && Ty1.isVector()); unsigned Len0 = Ty0.getVectorNumElements(); unsigned Len1 = Ty1.getVectorNumElements(); if (Len0 == Len1) return {Ty0, Ty1}; unsigned MaxLen = std::max(Len0, Len1); return {MVT::getVectorVT(Ty0.getVectorElementType(), MaxLen), MVT::getVectorVT(Ty1.getVectorElementType(), MaxLen)}; } MVT HexagonTargetLowering::typeLegalize(MVT Ty, SelectionDAG &DAG) const { EVT LegalTy = getTypeToTransformTo(*DAG.getContext(), Ty); assert(LegalTy.isSimple()); return LegalTy.getSimpleVT(); } MVT HexagonTargetLowering::typeWidenToHvx(MVT Ty) const { unsigned HwWidth = 8 * Subtarget.getVectorLength(); assert(Ty.getSizeInBits() <= HwWidth); if (Ty.getSizeInBits() == HwWidth) return Ty; MVT ElemTy = Ty.getScalarType(); return MVT::getVectorVT(ElemTy, HwWidth / ElemTy.getSizeInBits()); } HexagonTargetLowering::VectorPair HexagonTargetLowering::emitHvxAddWithOverflow(SDValue A, SDValue B, const SDLoc &dl, bool Signed, SelectionDAG &DAG) const { // Compute A+B, return {A+B, O}, where O = vector predicate indicating // whether an overflow has occured. MVT ResTy = ty(A); assert(ResTy == ty(B)); MVT PredTy = MVT::getVectorVT(MVT::i1, ResTy.getVectorNumElements()); if (!Signed) { // V62+ has V6_vaddcarry, but it requires input predicate, so it doesn't // save any instructions. SDValue Add = DAG.getNode(ISD::ADD, dl, ResTy, {A, B}); SDValue Ovf = DAG.getSetCC(dl, PredTy, Add, A, ISD::SETULT); return {Add, Ovf}; } // Signed overflow has happened, if: // (A, B have the same sign) and (A+B has a different sign from either) // i.e. (~A xor B) & ((A+B) xor B), then check the sign bit SDValue Add = DAG.getNode(ISD::ADD, dl, ResTy, {A, B}); SDValue NotA = DAG.getNode(ISD::XOR, dl, ResTy, {A, DAG.getConstant(-1, dl, ResTy)}); SDValue Xor0 = DAG.getNode(ISD::XOR, dl, ResTy, {NotA, B}); SDValue Xor1 = DAG.getNode(ISD::XOR, dl, ResTy, {Add, B}); SDValue And = DAG.getNode(ISD::AND, dl, ResTy, {Xor0, Xor1}); SDValue MSB = DAG.getSetCC(dl, PredTy, And, getZero(dl, ResTy, DAG), ISD::SETLT); return {Add, MSB}; } HexagonTargetLowering::VectorPair HexagonTargetLowering::emitHvxShiftRightRnd(SDValue Val, unsigned Amt, bool Signed, SelectionDAG &DAG) const { // Shift Val right by Amt bits, round the result to the nearest integer, // tie-break by rounding halves to even integer. const SDLoc &dl(Val); MVT ValTy = ty(Val); // This should also work for signed integers. // // uint tmp0 = inp + ((1 << (Amt-1)) - 1); // bool ovf = (inp > tmp0); // uint rup = inp & (1 << (Amt+1)); // // uint tmp1 = inp >> (Amt-1); // tmp1 == tmp2 iff // uint tmp2 = tmp0 >> (Amt-1); // the Amt-1 lower bits were all 0 // uint tmp3 = tmp2 + rup; // uint frac = (tmp1 != tmp2) ? tmp2 >> 1 : tmp3 >> 1; unsigned ElemWidth = ValTy.getVectorElementType().getSizeInBits(); MVT ElemTy = MVT::getIntegerVT(ElemWidth); MVT IntTy = tyVector(ValTy, ElemTy); MVT PredTy = MVT::getVectorVT(MVT::i1, IntTy.getVectorNumElements()); unsigned ShRight = Signed ? ISD::SRA : ISD::SRL; SDValue Inp = DAG.getBitcast(IntTy, Val); SDValue LowBits = DAG.getConstant((1ull << (Amt - 1)) - 1, dl, IntTy); SDValue AmtP1 = DAG.getConstant(1ull << Amt, dl, IntTy); SDValue And = DAG.getNode(ISD::AND, dl, IntTy, {Inp, AmtP1}); SDValue Zero = getZero(dl, IntTy, DAG); SDValue Bit = DAG.getSetCC(dl, PredTy, And, Zero, ISD::SETNE); SDValue Rup = DAG.getZExtOrTrunc(Bit, dl, IntTy); auto [Tmp0, Ovf] = emitHvxAddWithOverflow(Inp, LowBits, dl, Signed, DAG); SDValue AmtM1 = DAG.getConstant(Amt - 1, dl, IntTy); SDValue Tmp1 = DAG.getNode(ShRight, dl, IntTy, Inp, AmtM1); SDValue Tmp2 = DAG.getNode(ShRight, dl, IntTy, Tmp0, AmtM1); SDValue Tmp3 = DAG.getNode(ISD::ADD, dl, IntTy, Tmp2, Rup); SDValue Eq = DAG.getSetCC(dl, PredTy, Tmp1, Tmp2, ISD::SETEQ); SDValue One = DAG.getConstant(1, dl, IntTy); SDValue Tmp4 = DAG.getNode(ShRight, dl, IntTy, {Tmp2, One}); SDValue Tmp5 = DAG.getNode(ShRight, dl, IntTy, {Tmp3, One}); SDValue Mux = DAG.getNode(ISD::VSELECT, dl, IntTy, {Eq, Tmp5, Tmp4}); return {Mux, Ovf}; } SDValue HexagonTargetLowering::emitHvxMulHsV60(SDValue A, SDValue B, const SDLoc &dl, SelectionDAG &DAG) const { MVT VecTy = ty(A); MVT PairTy = typeJoin({VecTy, VecTy}); assert(VecTy.getVectorElementType() == MVT::i32); SDValue S16 = DAG.getConstant(16, dl, MVT::i32); // mulhs(A,B) = // = [(Hi(A)*2^16 + Lo(A)) *s (Hi(B)*2^16 + Lo(B))] >> 32 // = [Hi(A)*2^16 *s Hi(B)*2^16 + Hi(A) *su Lo(B)*2^16 // + Lo(A) *us (Hi(B)*2^16 + Lo(B))] >> 32 // = [Hi(A) *s Hi(B)*2^32 + Hi(A) *su Lo(B)*2^16 + Lo(A) *us B] >> 32 // The low half of Lo(A)*Lo(B) will be discarded (it's not added to // anything, so it cannot produce any carry over to higher bits), // so everything in [] can be shifted by 16 without loss of precision. // = [Hi(A) *s Hi(B)*2^16 + Hi(A)*su Lo(B) + Lo(A)*B >> 16] >> 16 // = [Hi(A) *s Hi(B)*2^16 + Hi(A)*su Lo(B) + V6_vmpyewuh(A,B)] >> 16 // The final additions need to make sure to properly maintain any carry- // out bits. // // Hi(B) Lo(B) // Hi(A) Lo(A) // -------------- // Lo(B)*Lo(A) | T0 = V6_vmpyewuh(B,A) does this, // Hi(B)*Lo(A) | + dropping the low 16 bits // Hi(A)*Lo(B) | T2 // Hi(B)*Hi(A) SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, VecTy, {B, A}, DAG); // T1 = get Hi(A) into low halves. SDValue T1 = getInstr(Hexagon::V6_vasrw, dl, VecTy, {A, S16}, DAG); // P0 = interleaved T1.h*B.uh (full precision product) SDValue P0 = getInstr(Hexagon::V6_vmpyhus, dl, PairTy, {T1, B}, DAG); // T2 = T1.even(h) * B.even(uh), i.e. Hi(A)*Lo(B) SDValue T2 = LoHalf(P0, DAG); // We need to add T0+T2, recording the carry-out, which will be 1<<16 // added to the final sum. // P1 = interleaved even/odd 32-bit (unsigned) sums of 16-bit halves SDValue P1 = getInstr(Hexagon::V6_vadduhw, dl, PairTy, {T0, T2}, DAG); // P2 = interleaved even/odd 32-bit (signed) sums of 16-bit halves SDValue P2 = getInstr(Hexagon::V6_vaddhw, dl, PairTy, {T0, T2}, DAG); // T3 = full-precision(T0+T2) >> 16 // The low halves are added-unsigned, the high ones are added-signed. SDValue T3 = getInstr(Hexagon::V6_vasrw_acc, dl, VecTy, {HiHalf(P2, DAG), LoHalf(P1, DAG), S16}, DAG); SDValue T4 = getInstr(Hexagon::V6_vasrw, dl, VecTy, {B, S16}, DAG); // P3 = interleaved Hi(B)*Hi(A) (full precision), // which is now Lo(T1)*Lo(T4), so we want to keep the even product. SDValue P3 = getInstr(Hexagon::V6_vmpyhv, dl, PairTy, {T1, T4}, DAG); SDValue T5 = LoHalf(P3, DAG); // Add: SDValue T6 = DAG.getNode(ISD::ADD, dl, VecTy, {T3, T5}); return T6; } SDValue HexagonTargetLowering::emitHvxMulLoHiV60(SDValue A, bool SignedA, SDValue B, bool SignedB, const SDLoc &dl, SelectionDAG &DAG) const { MVT VecTy = ty(A); MVT PairTy = typeJoin({VecTy, VecTy}); assert(VecTy.getVectorElementType() == MVT::i32); SDValue S16 = DAG.getConstant(16, dl, MVT::i32); if (SignedA && !SignedB) { // Make A:unsigned, B:signed. std::swap(A, B); std::swap(SignedA, SignedB); } // Do halfword-wise multiplications for unsigned*unsigned product, then // add corrections for signed and unsigned*signed. SDValue Lo, Hi; // P0:lo = (uu) products of low halves of A and B, // P0:hi = (uu) products of high halves. SDValue P0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {A, B}, DAG); // Swap low/high halves in B SDValue T0 = getInstr(Hexagon::V6_lvsplatw, dl, VecTy, {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG); SDValue T1 = getInstr(Hexagon::V6_vdelta, dl, VecTy, {B, T0}, DAG); // P1 = products of even/odd halfwords. // P1:lo = (uu) products of even(A.uh) * odd(B.uh) // P1:hi = (uu) products of odd(A.uh) * even(B.uh) SDValue P1 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {A, T1}, DAG); // P2:lo = low halves of P1:lo + P1:hi, // P2:hi = high halves of P1:lo + P1:hi. SDValue P2 = getInstr(Hexagon::V6_vadduhw, dl, PairTy, {HiHalf(P1, DAG), LoHalf(P1, DAG)}, DAG); // Still need to add the high halves of P0:lo to P2:lo SDValue T2 = getInstr(Hexagon::V6_vlsrw, dl, VecTy, {LoHalf(P0, DAG), S16}, DAG); SDValue T3 = DAG.getNode(ISD::ADD, dl, VecTy, {LoHalf(P2, DAG), T2}); // The high halves of T3 will contribute to the HI part of LOHI. SDValue T4 = getInstr(Hexagon::V6_vasrw_acc, dl, VecTy, {HiHalf(P2, DAG), T3, S16}, DAG); // The low halves of P2 need to be added to high halves of the LO part. Lo = getInstr(Hexagon::V6_vaslw_acc, dl, VecTy, {LoHalf(P0, DAG), LoHalf(P2, DAG), S16}, DAG); Hi = DAG.getNode(ISD::ADD, dl, VecTy, {HiHalf(P0, DAG), T4}); if (SignedA) { assert(SignedB && "Signed A and unsigned B should have been inverted"); MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); SDValue Zero = getZero(dl, VecTy, DAG); SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT); SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT); SDValue X0 = DAG.getNode(ISD::VSELECT, dl, VecTy, {Q0, B, Zero}); SDValue X1 = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q1, X0, A}, DAG); Hi = getInstr(Hexagon::V6_vsubw, dl, VecTy, {Hi, X1}, DAG); } else if (SignedB) { // Same correction as for mulhus: // mulhus(A.uw,B.w) = mulhu(A.uw,B.uw) - (A.w if B < 0) MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); SDValue Zero = getZero(dl, VecTy, DAG); SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT); Hi = getInstr(Hexagon::V6_vsubwq, dl, VecTy, {Q1, Hi, A}, DAG); } else { assert(!SignedA && !SignedB); } return DAG.getMergeValues({Lo, Hi}, dl); } SDValue HexagonTargetLowering::emitHvxMulLoHiV62(SDValue A, bool SignedA, SDValue B, bool SignedB, const SDLoc &dl, SelectionDAG &DAG) const { MVT VecTy = ty(A); MVT PairTy = typeJoin({VecTy, VecTy}); assert(VecTy.getVectorElementType() == MVT::i32); if (SignedA && !SignedB) { // Make A:unsigned, B:signed. std::swap(A, B); std::swap(SignedA, SignedB); } // Do S*S first, then make corrections for U*S or U*U if needed. SDValue P0 = getInstr(Hexagon::V6_vmpyewuh_64, dl, PairTy, {A, B}, DAG); SDValue P1 = getInstr(Hexagon::V6_vmpyowh_64_acc, dl, PairTy, {P0, A, B}, DAG); SDValue Lo = LoHalf(P1, DAG); SDValue Hi = HiHalf(P1, DAG); if (!SignedB) { assert(!SignedA && "Signed A and unsigned B should have been inverted"); SDValue Zero = getZero(dl, VecTy, DAG); MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); // Mulhu(X, Y) = Mulhs(X, Y) + (X, if Y < 0) + (Y, if X < 0). // def: Pat<(VecI32 (mulhu HVI32:$A, HVI32:$B)), // (V6_vaddw (HiHalf (Muls64O $A, $B)), // (V6_vaddwq (V6_vgtw (V6_vd0), $B), // (V6_vandvqv (V6_vgtw (V6_vd0), $A), $B), // $A))>; SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT); SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT); SDValue T0 = getInstr(Hexagon::V6_vandvqv, dl, VecTy, {Q0, B}, DAG); SDValue T1 = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q1, T0, A}, DAG); Hi = getInstr(Hexagon::V6_vaddw, dl, VecTy, {Hi, T1}, DAG); } else if (!SignedA) { SDValue Zero = getZero(dl, VecTy, DAG); MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); // Mulhus(unsigned X, signed Y) = Mulhs(X, Y) + (Y, if X < 0). // def: Pat<(VecI32 (HexagonMULHUS HVI32:$A, HVI32:$B)), // (V6_vaddwq (V6_vgtw (V6_vd0), $A), // (HiHalf (Muls64O $A, $B)), // $B)>; SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT); Hi = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q0, Hi, B}, DAG); } return DAG.getMergeValues({Lo, Hi}, dl); } SDValue HexagonTargetLowering::EqualizeFpIntConversion(SDValue Op, SelectionDAG &DAG) const { // Rewrite conversion between integer and floating-point in such a way that // the integer type is extended/narrowed to match the bitwidth of the // floating-point type, combined with additional integer-integer extensions // or narrowings to match the original input/result types. // E.g. f32 -> i8 ==> f32 -> i32 -> i8 // // The input/result types are not required to be legal, but if they are // legal, this function should not introduce illegal types. unsigned Opc = Op.getOpcode(); assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT || Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP); SDValue Inp = Op.getOperand(0); MVT InpTy = ty(Inp); MVT ResTy = ty(Op); if (InpTy == ResTy) return Op; const SDLoc &dl(Op); bool Signed = Opc == ISD::FP_TO_SINT || Opc == ISD::SINT_TO_FP; auto [WInpTy, WResTy] = typeExtendToWider(InpTy, ResTy); SDValue WInp = resizeToWidth(Inp, WInpTy, Signed, dl, DAG); SDValue Conv = DAG.getNode(Opc, dl, WResTy, WInp); SDValue Res = resizeToWidth(Conv, ResTy, Signed, dl, DAG); return Res; } SDValue HexagonTargetLowering::ExpandHvxFpToInt(SDValue Op, SelectionDAG &DAG) const { unsigned Opc = Op.getOpcode(); assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT); const SDLoc &dl(Op); SDValue Op0 = Op.getOperand(0); MVT InpTy = ty(Op0); MVT ResTy = ty(Op); assert(InpTy.changeTypeToInteger() == ResTy); // int32_t conv_f32_to_i32(uint32_t inp) { // // s | exp8 | frac23 // // int neg = (int32_t)inp < 0; // // // "expm1" is the actual exponent minus 1: instead of "bias", subtract // // "bias+1". When the encoded exp is "all-1" (i.e. inf/nan), this will // // produce a large positive "expm1", which will result in max u/int. // // In all IEEE formats, bias is the largest positive number that can be // // represented in bias-width bits (i.e. 011..1). // int32_t expm1 = (inp << 1) - 0x80000000; // expm1 >>= 24; // // // Always insert the "implicit 1". Subnormal numbers will become 0 // // regardless. // uint32_t frac = (inp << 8) | 0x80000000; // // // "frac" is the fraction part represented as Q1.31. If it was // // interpreted as uint32_t, it would be the fraction part multiplied // // by 2^31. // // // Calculate the amount of right shift, since shifting further to the // // left would lose significant bits. Limit it to 32, because we want // // shifts by 32+ to produce 0, whereas V6_vlsrwv treats the shift // // amount as a 6-bit signed value (so 33 is same as -31, i.e. shift // // left by 31). "rsh" can be negative. // int32_t rsh = min(31 - (expm1 + 1), 32); // // frac >>= rsh; // rsh == 32 will produce 0 // // // Everything up to this point is the same for conversion to signed // // unsigned integer. // // if (neg) // Only for signed int // frac = -frac; // // if (rsh <= 0 && neg) // bound = neg ? 0x80000000 : 0x7fffffff // frac = 0x80000000; // frac = rsh <= 0 ? bound : frac // if (rsh <= 0 && !neg) // // frac = 0x7fffffff; // // // if (neg) // Only for unsigned int // frac = 0; // // if (rsh < 0 && !neg) // frac = rsh < 0 ? 0x7fffffff : frac; // frac = 0x7fffffff; // frac = neg ? 0 : frac; // // return frac; // } MVT PredTy = MVT::getVectorVT(MVT::i1, ResTy.getVectorElementCount()); // Zero = V6_vd0(); // Neg = V6_vgtw(Zero, Inp); // One = V6_lvsplatw(1); // M80 = V6_lvsplatw(0x80000000); // Exp00 = V6_vaslwv(Inp, One); // Exp01 = V6_vsubw(Exp00, M80); // ExpM1 = V6_vasrw(Exp01, 24); // Frc00 = V6_vaslw(Inp, 8); // Frc01 = V6_vor(Frc00, M80); // Rsh00 = V6_vsubw(V6_lvsplatw(30), ExpM1); // Rsh01 = V6_vminw(Rsh00, V6_lvsplatw(32)); // Frc02 = V6_vlsrwv(Frc01, Rsh01); // if signed int: // Bnd = V6_vmux(Neg, M80, V6_lvsplatw(0x7fffffff)) // Pos = V6_vgtw(Rsh01, Zero); // Frc13 = V6_vsubw(Zero, Frc02); // Frc14 = V6_vmux(Neg, Frc13, Frc02); // Int = V6_vmux(Pos, Frc14, Bnd); // // if unsigned int: // Rsn = V6_vgtw(Zero, Rsh01) // Frc23 = V6_vmux(Rsn, V6_lvsplatw(0x7fffffff), Frc02) // Int = V6_vmux(Neg, Zero, Frc23) auto [ExpWidth, ExpBias, FracWidth] = getIEEEProperties(InpTy); unsigned ElemWidth = 1 + ExpWidth + FracWidth; assert((1ull << (ExpWidth - 1)) == (1 + ExpBias)); SDValue Inp = DAG.getBitcast(ResTy, Op0); SDValue Zero = getZero(dl, ResTy, DAG); SDValue Neg = DAG.getSetCC(dl, PredTy, Inp, Zero, ISD::SETLT); SDValue M80 = DAG.getConstant(1ull << (ElemWidth - 1), dl, ResTy); SDValue M7F = DAG.getConstant((1ull << (ElemWidth - 1)) - 1, dl, ResTy); SDValue One = DAG.getConstant(1, dl, ResTy); SDValue Exp00 = DAG.getNode(ISD::SHL, dl, ResTy, {Inp, One}); SDValue Exp01 = DAG.getNode(ISD::SUB, dl, ResTy, {Exp00, M80}); SDValue MNE = DAG.getConstant(ElemWidth - ExpWidth, dl, ResTy); SDValue ExpM1 = DAG.getNode(ISD::SRA, dl, ResTy, {Exp01, MNE}); SDValue ExpW = DAG.getConstant(ExpWidth, dl, ResTy); SDValue Frc00 = DAG.getNode(ISD::SHL, dl, ResTy, {Inp, ExpW}); SDValue Frc01 = DAG.getNode(ISD::OR, dl, ResTy, {Frc00, M80}); SDValue MN2 = DAG.getConstant(ElemWidth - 2, dl, ResTy); SDValue Rsh00 = DAG.getNode(ISD::SUB, dl, ResTy, {MN2, ExpM1}); SDValue MW = DAG.getConstant(ElemWidth, dl, ResTy); SDValue Rsh01 = DAG.getNode(ISD::SMIN, dl, ResTy, {Rsh00, MW}); SDValue Frc02 = DAG.getNode(ISD::SRL, dl, ResTy, {Frc01, Rsh01}); SDValue Int; if (Opc == ISD::FP_TO_SINT) { SDValue Bnd = DAG.getNode(ISD::VSELECT, dl, ResTy, {Neg, M80, M7F}); SDValue Pos = DAG.getSetCC(dl, PredTy, Rsh01, Zero, ISD::SETGT); SDValue Frc13 = DAG.getNode(ISD::SUB, dl, ResTy, {Zero, Frc02}); SDValue Frc14 = DAG.getNode(ISD::VSELECT, dl, ResTy, {Neg, Frc13, Frc02}); Int = DAG.getNode(ISD::VSELECT, dl, ResTy, {Pos, Frc14, Bnd}); } else { assert(Opc == ISD::FP_TO_UINT); SDValue Rsn = DAG.getSetCC(dl, PredTy, Rsh01, Zero, ISD::SETLT); SDValue Frc23 = DAG.getNode(ISD::VSELECT, dl, ResTy, Rsn, M7F, Frc02); Int = DAG.getNode(ISD::VSELECT, dl, ResTy, Neg, Zero, Frc23); } return Int; } SDValue HexagonTargetLowering::ExpandHvxIntToFp(SDValue Op, SelectionDAG &DAG) const { unsigned Opc = Op.getOpcode(); assert(Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP); const SDLoc &dl(Op); SDValue Op0 = Op.getOperand(0); MVT InpTy = ty(Op0); MVT ResTy = ty(Op); assert(ResTy.changeTypeToInteger() == InpTy); // uint32_t vnoc1_rnd(int32_t w) { // int32_t iszero = w == 0; // int32_t isneg = w < 0; // uint32_t u = __builtin_HEXAGON_A2_abs(w); // // uint32_t norm_left = __builtin_HEXAGON_S2_cl0(u) + 1; // uint32_t frac0 = (uint64_t)u << norm_left; // // // Rounding: // uint32_t frac1 = frac0 + ((1 << 8) - 1); // uint32_t renorm = (frac0 > frac1); // uint32_t rup = (int)(frac0 << 22) < 0; // // uint32_t frac2 = frac0 >> 8; // uint32_t frac3 = frac1 >> 8; // uint32_t frac = (frac2 != frac3) ? frac3 >> 1 : (frac3 + rup) >> 1; // // int32_t exp = 32 - norm_left + renorm + 127; // exp <<= 23; // // uint32_t sign = 0x80000000 * isneg; // uint32_t f = sign | exp | frac; // return iszero ? 0 : f; // } MVT PredTy = MVT::getVectorVT(MVT::i1, InpTy.getVectorElementCount()); bool Signed = Opc == ISD::SINT_TO_FP; auto [ExpWidth, ExpBias, FracWidth] = getIEEEProperties(ResTy); unsigned ElemWidth = 1 + ExpWidth + FracWidth; SDValue Zero = getZero(dl, InpTy, DAG); SDValue One = DAG.getConstant(1, dl, InpTy); SDValue IsZero = DAG.getSetCC(dl, PredTy, Op0, Zero, ISD::SETEQ); SDValue Abs = Signed ? DAG.getNode(ISD::ABS, dl, InpTy, Op0) : Op0; SDValue Clz = DAG.getNode(ISD::CTLZ, dl, InpTy, Abs); SDValue NLeft = DAG.getNode(ISD::ADD, dl, InpTy, {Clz, One}); SDValue Frac0 = DAG.getNode(ISD::SHL, dl, InpTy, {Abs, NLeft}); auto [Frac, Ovf] = emitHvxShiftRightRnd(Frac0, ExpWidth + 1, false, DAG); if (Signed) { SDValue IsNeg = DAG.getSetCC(dl, PredTy, Op0, Zero, ISD::SETLT); SDValue M80 = DAG.getConstant(1ull << (ElemWidth - 1), dl, InpTy); SDValue Sign = DAG.getNode(ISD::VSELECT, dl, InpTy, {IsNeg, M80, Zero}); Frac = DAG.getNode(ISD::OR, dl, InpTy, {Sign, Frac}); } SDValue Rnrm = DAG.getZExtOrTrunc(Ovf, dl, InpTy); SDValue Exp0 = DAG.getConstant(ElemWidth + ExpBias, dl, InpTy); SDValue Exp1 = DAG.getNode(ISD::ADD, dl, InpTy, {Rnrm, Exp0}); SDValue Exp2 = DAG.getNode(ISD::SUB, dl, InpTy, {Exp1, NLeft}); SDValue Exp3 = DAG.getNode(ISD::SHL, dl, InpTy, {Exp2, DAG.getConstant(FracWidth, dl, InpTy)}); SDValue Flt0 = DAG.getNode(ISD::OR, dl, InpTy, {Frac, Exp3}); SDValue Flt1 = DAG.getNode(ISD::VSELECT, dl, InpTy, {IsZero, Zero, Flt0}); SDValue Flt = DAG.getBitcast(ResTy, Flt1); return Flt; } SDValue HexagonTargetLowering::CreateTLWrapper(SDValue Op, SelectionDAG &DAG) const { unsigned Opc = Op.getOpcode(); unsigned TLOpc; switch (Opc) { case ISD::ANY_EXTEND: case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: TLOpc = HexagonISD::TL_EXTEND; break; case ISD::TRUNCATE: TLOpc = HexagonISD::TL_TRUNCATE; break; #ifndef NDEBUG Op.dump(&DAG); #endif llvm_unreachable("Unepected operator"); } const SDLoc &dl(Op); return DAG.getNode(TLOpc, dl, ty(Op), Op.getOperand(0), DAG.getUNDEF(MVT::i128), // illegal type DAG.getConstant(Opc, dl, MVT::i32)); } SDValue HexagonTargetLowering::RemoveTLWrapper(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOpcode() == HexagonISD::TL_EXTEND || Op.getOpcode() == HexagonISD::TL_TRUNCATE); unsigned Opc = cast(Op.getOperand(2))->getZExtValue(); return DAG.getNode(Opc, SDLoc(Op), ty(Op), Op.getOperand(0)); } HexagonTargetLowering::VectorPair HexagonTargetLowering::SplitVectorOp(SDValue Op, SelectionDAG &DAG) const { assert(!Op.isMachineOpcode()); SmallVector OpsL, OpsH; const SDLoc &dl(Op); auto SplitVTNode = [&DAG, this](const VTSDNode *N) { MVT Ty = typeSplit(N->getVT().getSimpleVT()).first; SDValue TV = DAG.getValueType(Ty); return std::make_pair(TV, TV); }; for (SDValue A : Op.getNode()->ops()) { auto [Lo, Hi] = ty(A).isVector() ? opSplit(A, dl, DAG) : std::make_pair(A, A); // Special case for type operand. switch (Op.getOpcode()) { case ISD::SIGN_EXTEND_INREG: case HexagonISD::SSAT: case HexagonISD::USAT: if (const auto *N = dyn_cast(A.getNode())) std::tie(Lo, Hi) = SplitVTNode(N); break; } OpsL.push_back(Lo); OpsH.push_back(Hi); } MVT ResTy = ty(Op); MVT HalfTy = typeSplit(ResTy).first; SDValue L = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsL); SDValue H = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsH); return {L, H}; } SDValue HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const { auto *MemN = cast(Op.getNode()); MVT MemTy = MemN->getMemoryVT().getSimpleVT(); if (!isHvxPairTy(MemTy)) return Op; const SDLoc &dl(Op); unsigned HwLen = Subtarget.getVectorLength(); MVT SingleTy = typeSplit(MemTy).first; SDValue Chain = MemN->getChain(); SDValue Base0 = MemN->getBasePtr(); SDValue Base1 = DAG.getMemBasePlusOffset(Base0, TypeSize::Fixed(HwLen), dl); unsigned MemOpc = MemN->getOpcode(); MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr; if (MachineMemOperand *MMO = MemN->getMemOperand()) { MachineFunction &MF = DAG.getMachineFunction(); uint64_t MemSize = (MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE) ? (uint64_t)MemoryLocation::UnknownSize : HwLen; MOp0 = MF.getMachineMemOperand(MMO, 0, MemSize); MOp1 = MF.getMachineMemOperand(MMO, HwLen, MemSize); } if (MemOpc == ISD::LOAD) { assert(cast(Op)->isUnindexed()); SDValue Load0 = DAG.getLoad(SingleTy, dl, Chain, Base0, MOp0); SDValue Load1 = DAG.getLoad(SingleTy, dl, Chain, Base1, MOp1); return DAG.getMergeValues( { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1), DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Load0.getValue(1), Load1.getValue(1)) }, dl); } if (MemOpc == ISD::STORE) { assert(cast(Op)->isUnindexed()); VectorPair Vals = opSplit(cast(Op)->getValue(), dl, DAG); SDValue Store0 = DAG.getStore(Chain, dl, Vals.first, Base0, MOp0); SDValue Store1 = DAG.getStore(Chain, dl, Vals.second, Base1, MOp1); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1); } assert(MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE); auto MaskN = cast(Op); assert(MaskN->isUnindexed()); VectorPair Masks = opSplit(MaskN->getMask(), dl, DAG); SDValue Offset = DAG.getUNDEF(MVT::i32); if (MemOpc == ISD::MLOAD) { VectorPair Thru = opSplit(cast(Op)->getPassThru(), dl, DAG); SDValue MLoad0 = DAG.getMaskedLoad(SingleTy, dl, Chain, Base0, Offset, Masks.first, Thru.first, SingleTy, MOp0, ISD::UNINDEXED, ISD::NON_EXTLOAD, false); SDValue MLoad1 = DAG.getMaskedLoad(SingleTy, dl, Chain, Base1, Offset, Masks.second, Thru.second, SingleTy, MOp1, ISD::UNINDEXED, ISD::NON_EXTLOAD, false); return DAG.getMergeValues( { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, MLoad0, MLoad1), DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MLoad0.getValue(1), MLoad1.getValue(1)) }, dl); } if (MemOpc == ISD::MSTORE) { VectorPair Vals = opSplit(cast(Op)->getValue(), dl, DAG); SDValue MStore0 = DAG.getMaskedStore(Chain, dl, Vals.first, Base0, Offset, Masks.first, SingleTy, MOp0, ISD::UNINDEXED, false, false); SDValue MStore1 = DAG.getMaskedStore(Chain, dl, Vals.second, Base1, Offset, Masks.second, SingleTy, MOp1, ISD::UNINDEXED, false, false); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MStore0, MStore1); } std::string Name = "Unexpected operation: " + Op->getOperationName(&DAG); llvm_unreachable(Name.c_str()); } SDValue HexagonTargetLowering::WidenHvxLoad(SDValue Op, SelectionDAG &DAG) const { const SDLoc &dl(Op); auto *LoadN = cast(Op.getNode()); assert(LoadN->isUnindexed() && "Not widening indexed loads yet"); assert(LoadN->getMemoryVT().getVectorElementType() != MVT::i1 && "Not widening loads of i1 yet"); SDValue Chain = LoadN->getChain(); SDValue Base = LoadN->getBasePtr(); SDValue Offset = DAG.getUNDEF(MVT::i32); MVT ResTy = ty(Op); unsigned HwLen = Subtarget.getVectorLength(); unsigned ResLen = ResTy.getStoreSize(); assert(ResLen < HwLen && "vsetq(v1) prerequisite"); MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, {DAG.getConstant(ResLen, dl, MVT::i32)}, DAG); MVT LoadTy = MVT::getVectorVT(MVT::i8, HwLen); MachineFunction &MF = DAG.getMachineFunction(); auto *MemOp = MF.getMachineMemOperand(LoadN->getMemOperand(), 0, HwLen); SDValue Load = DAG.getMaskedLoad(LoadTy, dl, Chain, Base, Offset, Mask, DAG.getUNDEF(LoadTy), LoadTy, MemOp, ISD::UNINDEXED, ISD::NON_EXTLOAD, false); SDValue Value = opCastElem(Load, ResTy.getVectorElementType(), DAG); return DAG.getMergeValues({Value, Load.getValue(1)}, dl); } SDValue HexagonTargetLowering::WidenHvxStore(SDValue Op, SelectionDAG &DAG) const { const SDLoc &dl(Op); auto *StoreN = cast(Op.getNode()); assert(StoreN->isUnindexed() && "Not widening indexed stores yet"); assert(StoreN->getMemoryVT().getVectorElementType() != MVT::i1 && "Not widening stores of i1 yet"); SDValue Chain = StoreN->getChain(); SDValue Base = StoreN->getBasePtr(); SDValue Offset = DAG.getUNDEF(MVT::i32); SDValue Value = opCastElem(StoreN->getValue(), MVT::i8, DAG); MVT ValueTy = ty(Value); unsigned ValueLen = ValueTy.getVectorNumElements(); unsigned HwLen = Subtarget.getVectorLength(); assert(isPowerOf2_32(ValueLen)); for (unsigned Len = ValueLen; Len < HwLen; ) { Value = opJoin({Value, DAG.getUNDEF(ty(Value))}, dl, DAG); Len = ty(Value).getVectorNumElements(); // This is Len *= 2 } assert(ty(Value).getVectorNumElements() == HwLen); // Paranoia assert(ValueLen < HwLen && "vsetq(v1) prerequisite"); MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, {DAG.getConstant(ValueLen, dl, MVT::i32)}, DAG); MachineFunction &MF = DAG.getMachineFunction(); auto *MemOp = MF.getMachineMemOperand(StoreN->getMemOperand(), 0, HwLen); return DAG.getMaskedStore(Chain, dl, Value, Base, Offset, Mask, ty(Value), MemOp, ISD::UNINDEXED, false, false); } SDValue HexagonTargetLowering::WidenHvxSetCC(SDValue Op, SelectionDAG &DAG) const { const SDLoc &dl(Op); SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); MVT ElemTy = ty(Op0).getVectorElementType(); unsigned HwLen = Subtarget.getVectorLength(); unsigned WideOpLen = (8 * HwLen) / ElemTy.getSizeInBits(); assert(WideOpLen * ElemTy.getSizeInBits() == 8 * HwLen); MVT WideOpTy = MVT::getVectorVT(ElemTy, WideOpLen); if (!Subtarget.isHVXVectorType(WideOpTy, true)) return SDValue(); SDValue WideOp0 = appendUndef(Op0, WideOpTy, DAG); SDValue WideOp1 = appendUndef(Op1, WideOpTy, DAG); EVT ResTy = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), WideOpTy); SDValue SetCC = DAG.getNode(ISD::SETCC, dl, ResTy, {WideOp0, WideOp1, Op.getOperand(2)}); EVT RetTy = typeLegalize(ty(Op), DAG); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, RetTy, {SetCC, getZero(dl, MVT::i32, DAG)}); } SDValue HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const { unsigned Opc = Op.getOpcode(); bool IsPairOp = isHvxPairTy(ty(Op)) || llvm::any_of(Op.getNode()->ops(), [this] (SDValue V) { return isHvxPairTy(ty(V)); }); if (IsPairOp) { switch (Opc) { default: break; case ISD::LOAD: case ISD::STORE: case ISD::MLOAD: case ISD::MSTORE: return SplitHvxMemOp(Op, DAG); case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: if (ty(Op).getSizeInBits() == ty(Op.getOperand(0)).getSizeInBits()) return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); break; case ISD::ABS: case ISD::CTPOP: case ISD::CTLZ: case ISD::CTTZ: case ISD::MUL: case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FMINNUM: case ISD::FMAXNUM: case ISD::MULHS: case ISD::MULHU: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::SRA: case ISD::SHL: case ISD::SRL: case ISD::FSHL: case ISD::FSHR: case ISD::SMIN: case ISD::SMAX: case ISD::UMIN: case ISD::UMAX: case ISD::SETCC: case ISD::VSELECT: case ISD::SIGN_EXTEND_INREG: case ISD::SPLAT_VECTOR: return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: // In general, sign- and zero-extends can't be split and still // be legal. The only exception is extending bool vectors. if (ty(Op.getOperand(0)).getVectorElementType() == MVT::i1) return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); break; } } switch (Opc) { default: break; case ISD::BUILD_VECTOR: return LowerHvxBuildVector(Op, DAG); case ISD::SPLAT_VECTOR: return LowerHvxSplatVector(Op, DAG); case ISD::CONCAT_VECTORS: return LowerHvxConcatVectors(Op, DAG); case ISD::INSERT_SUBVECTOR: return LowerHvxInsertSubvector(Op, DAG); case ISD::INSERT_VECTOR_ELT: return LowerHvxInsertElement(Op, DAG); case ISD::EXTRACT_SUBVECTOR: return LowerHvxExtractSubvector(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return LowerHvxExtractElement(Op, DAG); case ISD::BITCAST: return LowerHvxBitcast(Op, DAG); case ISD::ANY_EXTEND: return LowerHvxAnyExt(Op, DAG); case ISD::SIGN_EXTEND: return LowerHvxSignExt(Op, DAG); case ISD::ZERO_EXTEND: return LowerHvxZeroExt(Op, DAG); case ISD::CTTZ: return LowerHvxCttz(Op, DAG); case ISD::SELECT: return LowerHvxSelect(Op, DAG); case ISD::SRA: case ISD::SHL: case ISD::SRL: return LowerHvxShift(Op, DAG); case ISD::FSHL: case ISD::FSHR: return LowerHvxFunnelShift(Op, DAG); case ISD::MULHS: case ISD::MULHU: return LowerHvxMulh(Op, DAG); case ISD::SMUL_LOHI: case ISD::UMUL_LOHI: return LowerHvxMulLoHi(Op, DAG); case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG); case ISD::SETCC: case ISD::INTRINSIC_VOID: return Op; case ISD::INTRINSIC_WO_CHAIN: return LowerHvxIntrinsic(Op, DAG); case ISD::MLOAD: case ISD::MSTORE: return LowerHvxMaskedOp(Op, DAG); // Unaligned loads will be handled by the default lowering. case ISD::LOAD: return SDValue(); case ISD::FP_EXTEND: return LowerHvxFpExtend(Op, DAG); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: return LowerHvxFpToInt(Op, DAG); case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: return LowerHvxIntToFp(Op, DAG); // Special nodes: case HexagonISD::SMUL_LOHI: case HexagonISD::UMUL_LOHI: case HexagonISD::USMUL_LOHI: return LowerHvxMulLoHi(Op, DAG); } #ifndef NDEBUG Op.dumpr(&DAG); #endif llvm_unreachable("Unhandled HVX operation"); } SDValue HexagonTargetLowering::ExpandHvxResizeIntoSteps(SDValue Op, SelectionDAG &DAG) const { // Rewrite the extension/truncation/saturation op into steps where each // step changes the type widths by a factor of 2. // E.g. i8 -> i16 remains unchanged, but i8 -> i32 ==> i8 -> i16 -> i32. // // Some of the vector types in Op may not be legal. unsigned Opc = Op.getOpcode(); switch (Opc) { case HexagonISD::SSAT: case HexagonISD::USAT: case HexagonISD::TL_EXTEND: case HexagonISD::TL_TRUNCATE: break; case ISD::ANY_EXTEND: case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND: case ISD::TRUNCATE: llvm_unreachable("ISD:: ops will be auto-folded"); break; #ifndef NDEBUG Op.dump(&DAG); #endif llvm_unreachable("Unexpected operation"); } SDValue Inp = Op.getOperand(0); MVT InpTy = ty(Inp); MVT ResTy = ty(Op); unsigned InpWidth = InpTy.getVectorElementType().getSizeInBits(); unsigned ResWidth = ResTy.getVectorElementType().getSizeInBits(); assert(InpWidth != ResWidth); if (InpWidth == 2 * ResWidth || ResWidth == 2 * InpWidth) return Op; const SDLoc &dl(Op); unsigned NumElems = InpTy.getVectorNumElements(); assert(NumElems == ResTy.getVectorNumElements()); auto repeatOp = [&](unsigned NewWidth, SDValue Arg) { MVT Ty = MVT::getVectorVT(MVT::getIntegerVT(NewWidth), NumElems); switch (Opc) { case HexagonISD::SSAT: case HexagonISD::USAT: return DAG.getNode(Opc, dl, Ty, {Arg, DAG.getValueType(Ty)}); case HexagonISD::TL_EXTEND: case HexagonISD::TL_TRUNCATE: return DAG.getNode(Opc, dl, Ty, {Arg, Op.getOperand(1), Op.getOperand(2)}); default: llvm_unreachable("Unexpected opcode"); } }; SDValue S = Inp; if (InpWidth < ResWidth) { assert(ResWidth % InpWidth == 0 && isPowerOf2_32(ResWidth / InpWidth)); while (InpWidth * 2 <= ResWidth) S = repeatOp(InpWidth *= 2, S); } else { // InpWidth > ResWidth assert(InpWidth % ResWidth == 0 && isPowerOf2_32(InpWidth / ResWidth)); while (InpWidth / 2 >= ResWidth) S = repeatOp(InpWidth /= 2, S); } return S; } SDValue HexagonTargetLowering::LegalizeHvxResize(SDValue Op, SelectionDAG &DAG) const { SDValue Inp0 = Op.getOperand(0); MVT InpTy = ty(Inp0); MVT ResTy = ty(Op); unsigned InpWidth = InpTy.getSizeInBits(); unsigned ResWidth = ResTy.getSizeInBits(); unsigned Opc = Op.getOpcode(); if (shouldWidenToHvx(InpTy, DAG) || shouldWidenToHvx(ResTy, DAG)) { // First, make sure that the narrower type is widened to HVX. // This may cause the result to be wider than what the legalizer // expects, so insert EXTRACT_SUBVECTOR to bring it back to the // desired type. auto [WInpTy, WResTy] = InpWidth < ResWidth ? typeWidenToWider(typeWidenToHvx(InpTy), ResTy) : typeWidenToWider(InpTy, typeWidenToHvx(ResTy)); SDValue W = appendUndef(Inp0, WInpTy, DAG); SDValue S; if (Opc == HexagonISD::TL_EXTEND || Opc == HexagonISD::TL_TRUNCATE) { S = DAG.getNode(Opc, SDLoc(Op), WResTy, W, Op.getOperand(1), Op.getOperand(2)); } else { S = DAG.getNode(Opc, SDLoc(Op), WResTy, W, DAG.getValueType(WResTy)); } SDValue T = ExpandHvxResizeIntoSteps(S, DAG); return extractSubvector(T, typeLegalize(ResTy, DAG), 0, DAG); } else if (shouldSplitToHvx(InpWidth < ResWidth ? ResTy : InpTy, DAG)) { return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); } else { assert(isTypeLegal(InpTy) && isTypeLegal(ResTy)); return RemoveTLWrapper(Op, DAG); } llvm_unreachable("Unexpected situation"); } void HexagonTargetLowering::LowerHvxOperationWrapper(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { unsigned Opc = N->getOpcode(); SDValue Op(N, 0); SDValue Inp0; // Optional first argument. if (N->getNumOperands() > 0) Inp0 = Op.getOperand(0); switch (Opc) { case ISD::ANY_EXTEND: case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::TRUNCATE: if (Subtarget.isHVXElementType(ty(Op)) && Subtarget.isHVXElementType(ty(Inp0))) { Results.push_back(CreateTLWrapper(Op, DAG)); } break; case ISD::SETCC: if (shouldWidenToHvx(ty(Inp0), DAG)) { if (SDValue T = WidenHvxSetCC(Op, DAG)) Results.push_back(T); } break; case ISD::STORE: { if (shouldWidenToHvx(ty(cast(N)->getValue()), DAG)) { SDValue Store = WidenHvxStore(Op, DAG); Results.push_back(Store); } break; } case ISD::MLOAD: if (isHvxPairTy(ty(Op))) { SDValue S = SplitHvxMemOp(Op, DAG); assert(S->getOpcode() == ISD::MERGE_VALUES); Results.push_back(S.getOperand(0)); Results.push_back(S.getOperand(1)); } break; case ISD::MSTORE: if (isHvxPairTy(ty(Op->getOperand(1)))) { // Stored value SDValue S = SplitHvxMemOp(Op, DAG); Results.push_back(S); } break; case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: if (ty(Op).getSizeInBits() != ty(Inp0).getSizeInBits()) { SDValue T = EqualizeFpIntConversion(Op, DAG); Results.push_back(T); } break; case HexagonISD::SSAT: case HexagonISD::USAT: case HexagonISD::TL_EXTEND: case HexagonISD::TL_TRUNCATE: Results.push_back(LegalizeHvxResize(Op, DAG)); break; default: break; } } void HexagonTargetLowering::ReplaceHvxNodeResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { unsigned Opc = N->getOpcode(); SDValue Op(N, 0); SDValue Inp0; // Optional first argument. if (N->getNumOperands() > 0) Inp0 = Op.getOperand(0); switch (Opc) { case ISD::ANY_EXTEND: case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::TRUNCATE: if (Subtarget.isHVXElementType(ty(Op)) && Subtarget.isHVXElementType(ty(Inp0))) { Results.push_back(CreateTLWrapper(Op, DAG)); } break; case ISD::SETCC: if (shouldWidenToHvx(ty(Op), DAG)) { if (SDValue T = WidenHvxSetCC(Op, DAG)) Results.push_back(T); } break; case ISD::LOAD: { if (shouldWidenToHvx(ty(Op), DAG)) { SDValue Load = WidenHvxLoad(Op, DAG); assert(Load->getOpcode() == ISD::MERGE_VALUES); Results.push_back(Load.getOperand(0)); Results.push_back(Load.getOperand(1)); } break; } case ISD::BITCAST: if (isHvxBoolTy(ty(Inp0))) { SDValue C = LowerHvxBitcast(Op, DAG); Results.push_back(C); } break; case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: if (ty(Op).getSizeInBits() != ty(Inp0).getSizeInBits()) { SDValue T = EqualizeFpIntConversion(Op, DAG); Results.push_back(T); } break; case HexagonISD::SSAT: case HexagonISD::USAT: case HexagonISD::TL_EXTEND: case HexagonISD::TL_TRUNCATE: Results.push_back(LegalizeHvxResize(Op, DAG)); break; default: break; } } SDValue HexagonTargetLowering::combineTruncateBeforeLegal(SDValue Op, DAGCombinerInfo &DCI) const { // Simplify V:v2NiB --(bitcast)--> vNi2B --(truncate)--> vNiB // to extract-subvector (shuffle V, pick even, pick odd) assert(Op.getOpcode() == ISD::TRUNCATE); SelectionDAG &DAG = DCI.DAG; const SDLoc &dl(Op); if (Op.getOperand(0).getOpcode() == ISD::BITCAST) return SDValue(); SDValue Cast = Op.getOperand(0); SDValue Src = Cast.getOperand(0); EVT TruncTy = Op.getValueType(); EVT CastTy = Cast.getValueType(); EVT SrcTy = Src.getValueType(); if (SrcTy.isSimple()) return SDValue(); if (SrcTy.getVectorElementType() != TruncTy.getVectorElementType()) return SDValue(); unsigned SrcLen = SrcTy.getVectorNumElements(); unsigned CastLen = CastTy.getVectorNumElements(); if (2 * CastLen != SrcLen) return SDValue(); SmallVector Mask(SrcLen); for (int i = 0; i != static_cast(CastLen); ++i) { Mask[i] = 2 * i; Mask[i + CastLen] = 2 * i + 1; } SDValue Deal = DAG.getVectorShuffle(SrcTy, dl, Src, DAG.getUNDEF(SrcTy), Mask); return opSplit(Deal, dl, DAG).first; } SDValue HexagonTargetLowering::combineConcatVectorsBeforeLegal( SDValue Op, DAGCombinerInfo &DCI) const { // Fold // concat (shuffle x, y, m1), (shuffle x, y, m2) // into // shuffle (concat x, y), undef, m3 if (Op.getNumOperands() != 2) return SDValue(); SelectionDAG &DAG = DCI.DAG; const SDLoc &dl(Op); SDValue V0 = Op.getOperand(0); SDValue V1 = Op.getOperand(1); if (V0.getOpcode() != ISD::VECTOR_SHUFFLE) return SDValue(); if (V1.getOpcode() != ISD::VECTOR_SHUFFLE) return SDValue(); SetVector Order; Order.insert(V0.getOperand(0)); Order.insert(V0.getOperand(1)); Order.insert(V1.getOperand(0)); Order.insert(V1.getOperand(1)); if (Order.size() > 2) return SDValue(); // In ISD::VECTOR_SHUFFLE, the types of each input and the type of the // result must be the same. EVT InpTy = V0.getValueType(); assert(InpTy.isVector()); unsigned InpLen = InpTy.getVectorNumElements(); SmallVector LongMask; auto AppendToMask = [&](SDValue Shuffle) { auto *SV = cast(Shuffle.getNode()); ArrayRef Mask = SV->getMask(); SDValue X = Shuffle.getOperand(0); SDValue Y = Shuffle.getOperand(1); for (int M : Mask) { if (M == -1) { LongMask.push_back(M); continue; } SDValue Src = static_cast(M) < InpLen ? X : Y; if (static_cast(M) >= InpLen) M -= InpLen; int OutOffset = Order[0] == Src ? 0 : InpLen; LongMask.push_back(M + OutOffset); } }; AppendToMask(V0); AppendToMask(V1); SDValue C0 = Order.front(); SDValue C1 = Order.back(); // Can be same as front EVT LongTy = InpTy.getDoubleNumVectorElementsVT(*DAG.getContext()); SDValue Cat = DAG.getNode(ISD::CONCAT_VECTORS, dl, LongTy, {C0, C1}); return DAG.getVectorShuffle(LongTy, dl, Cat, DAG.getUNDEF(LongTy), LongMask); } SDValue HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { const SDLoc &dl(N); SelectionDAG &DAG = DCI.DAG; SDValue Op(N, 0); unsigned Opc = Op.getOpcode(); SmallVector Ops(N->ops().begin(), N->ops().end()); if (Opc == ISD::TRUNCATE) return combineTruncateBeforeLegal(Op, DCI); if (Opc == ISD::CONCAT_VECTORS) return combineConcatVectorsBeforeLegal(Op, DCI); if (DCI.isBeforeLegalizeOps()) return SDValue(); switch (Opc) { case ISD::VSELECT: { // (vselect (xor x, qtrue), v0, v1) -> (vselect x, v1, v0) SDValue Cond = Ops[0]; if (Cond->getOpcode() == ISD::XOR) { SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1); if (C1->getOpcode() == HexagonISD::QTRUE) return DAG.getNode(ISD::VSELECT, dl, ty(Op), C0, Ops[2], Ops[1]); } break; } case HexagonISD::V2Q: if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR) { if (const auto *C = dyn_cast(Ops[0].getOperand(0))) return C->isZero() ? DAG.getNode(HexagonISD::QFALSE, dl, ty(Op)) : DAG.getNode(HexagonISD::QTRUE, dl, ty(Op)); } break; case HexagonISD::Q2V: if (Ops[0].getOpcode() == HexagonISD::QTRUE) return DAG.getNode(ISD::SPLAT_VECTOR, dl, ty(Op), DAG.getConstant(-1, dl, MVT::i32)); if (Ops[0].getOpcode() == HexagonISD::QFALSE) return getZero(dl, ty(Op), DAG); break; case HexagonISD::VINSERTW0: if (isUndef(Ops[1])) return Ops[0]; break; case HexagonISD::VROR: { if (Ops[0].getOpcode() == HexagonISD::VROR) { SDValue Vec = Ops[0].getOperand(0); SDValue Rot0 = Ops[1], Rot1 = Ops[0].getOperand(1); SDValue Rot = DAG.getNode(ISD::ADD, dl, ty(Rot0), {Rot0, Rot1}); return DAG.getNode(HexagonISD::VROR, dl, ty(Op), {Vec, Rot}); } break; } } return SDValue(); } bool HexagonTargetLowering::shouldSplitToHvx(MVT Ty, SelectionDAG &DAG) const { if (Subtarget.isHVXVectorType(Ty, true)) return false; auto Action = getPreferredHvxVectorAction(Ty); if (Action == TargetLoweringBase::TypeSplitVector) return Subtarget.isHVXVectorType(typeLegalize(Ty, DAG), true); return false; } bool HexagonTargetLowering::shouldWidenToHvx(MVT Ty, SelectionDAG &DAG) const { if (Subtarget.isHVXVectorType(Ty, true)) return false; auto Action = getPreferredHvxVectorAction(Ty); if (Action == TargetLoweringBase::TypeWidenVector) return Subtarget.isHVXVectorType(typeLegalize(Ty, DAG), true); return false; } bool HexagonTargetLowering::isHvxOperation(SDNode *N, SelectionDAG &DAG) const { if (!Subtarget.useHVXOps()) return false; // If the type of any result, or any operand type are HVX vector types, // this is an HVX operation. auto IsHvxTy = [this](EVT Ty) { return Ty.isSimple() && Subtarget.isHVXVectorType(Ty.getSimpleVT(), true); }; auto IsHvxOp = [this](SDValue Op) { return Op.getValueType().isSimple() && Subtarget.isHVXVectorType(ty(Op), true); }; if (llvm::any_of(N->values(), IsHvxTy) || llvm::any_of(N->ops(), IsHvxOp)) return true; // Check if this could be an HVX operation after type widening. auto IsWidenedToHvx = [this, &DAG](SDValue Op) { if (!Op.getValueType().isSimple()) return false; MVT ValTy = ty(Op); return ValTy.isVector() && shouldWidenToHvx(ValTy, DAG); }; for (int i = 0, e = N->getNumValues(); i != e; ++i) { if (IsWidenedToHvx(SDValue(N, i))) return true; } return llvm::any_of(N->ops(), IsWidenedToHvx); }