//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the interfaces that Hexagon uses to lower LLVM code // into a selection DAG. // //===----------------------------------------------------------------------===// #include "HexagonISelLowering.h" #include "Hexagon.h" #include "HexagonMachineFunctionInfo.h" #include "HexagonRegisterInfo.h" #include "HexagonSubtarget.h" #include "HexagonTargetMachine.h" #include "HexagonTargetObjectFile.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RuntimeLibcalls.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/TargetCallingConv.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsHexagon.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "hexagon-lowering" static cl::opt EmitJumpTables("hexagon-emit-jump-tables", cl::init(true), cl::Hidden, cl::desc("Control jump table emission on Hexagon target")); static cl::opt EnableHexSDNodeSched("enable-hexagon-sdnode-sched", cl::Hidden, cl::desc("Enable Hexagon SDNode scheduling")); static cl::opt EnableFastMath("ffast-math", cl::Hidden, cl::desc("Enable Fast Math processing")); static cl::opt MinimumJumpTables("minimum-jump-tables", cl::Hidden, cl::init(5), cl::desc("Set minimum jump tables")); static cl::opt MaxStoresPerMemcpyCL("max-store-memcpy", cl::Hidden, cl::init(6), cl::desc("Max #stores to inline memcpy")); static cl::opt MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os", cl::Hidden, cl::init(4), cl::desc("Max #stores to inline memcpy")); static cl::opt MaxStoresPerMemmoveCL("max-store-memmove", cl::Hidden, cl::init(6), cl::desc("Max #stores to inline memmove")); static cl::opt MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os", cl::Hidden, cl::init(4), cl::desc("Max #stores to inline memmove")); static cl::opt MaxStoresPerMemsetCL("max-store-memset", cl::Hidden, cl::init(8), cl::desc("Max #stores to inline memset")); static cl::opt MaxStoresPerMemsetOptSizeCL("max-store-memset-Os", cl::Hidden, cl::init(4), cl::desc("Max #stores to inline memset")); static cl::opt AlignLoads("hexagon-align-loads", cl::Hidden, cl::init(false), cl::desc("Rewrite unaligned loads as a pair of aligned loads")); static cl::opt DisableArgsMinAlignment("hexagon-disable-args-min-alignment", cl::Hidden, cl::init(false), cl::desc("Disable minimum alignment of 1 for " "arguments passed by value on stack")); namespace { class HexagonCCState : public CCState { unsigned NumNamedVarArgParams = 0; public: HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF, SmallVectorImpl &locs, LLVMContext &C, unsigned NumNamedArgs) : CCState(CC, IsVarArg, MF, locs, C), NumNamedVarArgParams(NumNamedArgs) {} unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; } }; } // end anonymous namespace // Implement calling convention for Hexagon. static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { static const MCPhysReg ArgRegs[] = { Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4, Hexagon::R5 }; const unsigned NumArgRegs = std::size(ArgRegs); unsigned RegNum = State.getFirstUnallocated(ArgRegs); // RegNum is an index into ArgRegs: skip a register if RegNum is odd. if (RegNum != NumArgRegs && RegNum % 2 == 1) State.AllocateReg(ArgRegs[RegNum]); // Always return false here, as this function only makes sure that the first // unallocated register has an even register number and does not actually // allocate a register for the current argument. return false; } #include "HexagonGenCallingConv.inc" SDValue HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { return SDValue(); } /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified /// by "Src" to address "Dst" of size "Size". Alignment information is /// specified by the specific parameter attribute. The copy will be passed as /// a byval function parameter. Sometimes what we are copying is the end of a /// larger object, the part that does not fit in registers. static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, const SDLoc &dl) { SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); return DAG.getMemcpy( Chain, dl, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(), /*isVolatile=*/false, /*AlwaysInline=*/false, /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo()); } bool HexagonTargetLowering::CanLowerReturn( CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { SmallVector RVLocs; CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); if (MF.getSubtarget().useHVXOps()) return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX); return CCInfo.CheckReturn(Outs, RetCC_Hexagon); } // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is // passed by value, the function prototype is modified to return void and // the value is stored in memory pointed by a pointer passed by caller. SDValue HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &dl, SelectionDAG &DAG) const { // CCValAssign - represent the assignment of the return value to locations. SmallVector RVLocs; // CCState - Info about the registers and stack slot. CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); // Analyze return values of ISD::RET if (Subtarget.useHVXOps()) CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX); else CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon); SDValue Glue; SmallVector RetOps(1, Chain); // Copy the result values into the output registers. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; SDValue Val = OutVals[i]; switch (VA.getLocInfo()) { default: // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt. llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: Val = DAG.getBitcast(VA.getLocVT(), Val); break; case CCValAssign::SExt: Val = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Val); break; case CCValAssign::ZExt: Val = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Val); break; case CCValAssign::AExt: Val = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Val); break; } Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Val, Glue); // Guarantee that all emitted copies are stuck together with flags. Glue = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } RetOps[0] = Chain; // Update chain. // Add the glue if we have it. if (Glue.getNode()) RetOps.push_back(Glue); return DAG.getNode(HexagonISD::RET_GLUE, dl, MVT::Other, RetOps); } bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { // If either no tail call or told not to tail call at all, don't. return CI->isTailCall(); } Register HexagonTargetLowering::getRegisterByName( const char* RegName, LLT VT, const MachineFunction &) const { // Just support r19, the linux kernel uses it. Register Reg = StringSwitch(RegName) .Case("r0", Hexagon::R0) .Case("r1", Hexagon::R1) .Case("r2", Hexagon::R2) .Case("r3", Hexagon::R3) .Case("r4", Hexagon::R4) .Case("r5", Hexagon::R5) .Case("r6", Hexagon::R6) .Case("r7", Hexagon::R7) .Case("r8", Hexagon::R8) .Case("r9", Hexagon::R9) .Case("r10", Hexagon::R10) .Case("r11", Hexagon::R11) .Case("r12", Hexagon::R12) .Case("r13", Hexagon::R13) .Case("r14", Hexagon::R14) .Case("r15", Hexagon::R15) .Case("r16", Hexagon::R16) .Case("r17", Hexagon::R17) .Case("r18", Hexagon::R18) .Case("r19", Hexagon::R19) .Case("r20", Hexagon::R20) .Case("r21", Hexagon::R21) .Case("r22", Hexagon::R22) .Case("r23", Hexagon::R23) .Case("r24", Hexagon::R24) .Case("r25", Hexagon::R25) .Case("r26", Hexagon::R26) .Case("r27", Hexagon::R27) .Case("r28", Hexagon::R28) .Case("r29", Hexagon::R29) .Case("r30", Hexagon::R30) .Case("r31", Hexagon::R31) .Case("r1:0", Hexagon::D0) .Case("r3:2", Hexagon::D1) .Case("r5:4", Hexagon::D2) .Case("r7:6", Hexagon::D3) .Case("r9:8", Hexagon::D4) .Case("r11:10", Hexagon::D5) .Case("r13:12", Hexagon::D6) .Case("r15:14", Hexagon::D7) .Case("r17:16", Hexagon::D8) .Case("r19:18", Hexagon::D9) .Case("r21:20", Hexagon::D10) .Case("r23:22", Hexagon::D11) .Case("r25:24", Hexagon::D12) .Case("r27:26", Hexagon::D13) .Case("r29:28", Hexagon::D14) .Case("r31:30", Hexagon::D15) .Case("sp", Hexagon::R29) .Case("fp", Hexagon::R30) .Case("lr", Hexagon::R31) .Case("p0", Hexagon::P0) .Case("p1", Hexagon::P1) .Case("p2", Hexagon::P2) .Case("p3", Hexagon::P3) .Case("sa0", Hexagon::SA0) .Case("lc0", Hexagon::LC0) .Case("sa1", Hexagon::SA1) .Case("lc1", Hexagon::LC1) .Case("m0", Hexagon::M0) .Case("m1", Hexagon::M1) .Case("usr", Hexagon::USR) .Case("ugp", Hexagon::UGP) .Case("cs0", Hexagon::CS0) .Case("cs1", Hexagon::CS1) .Default(Register()); if (Reg) return Reg; report_fatal_error("Invalid register name global variable"); } /// LowerCallResult - Lower the result values of an ISD::CALL into the /// appropriate copies out of appropriate physical registers. This assumes that /// Chain/Glue are the input chain/glue to use, and that TheCall is the call /// being lowered. Returns a SDNode with the same number of values as the /// ISD::CALL. SDValue HexagonTargetLowering::LowerCallResult( SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals, const SmallVectorImpl &OutVals, SDValue Callee) const { // Assign locations to each value returned by this call. SmallVector RVLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); if (Subtarget.useHVXOps()) CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX); else CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { SDValue RetVal; if (RVLocs[i].getValVT() == MVT::i1) { // Return values of type MVT::i1 require special handling. The reason // is that MVT::i1 is associated with the PredRegs register class, but // values of that type are still returned in R0. Generate an explicit // copy into a predicate register from R0, and treat the value of the // predicate register as the call result. auto &MRI = DAG.getMachineFunction().getRegInfo(); SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), MVT::i32, Glue); // FR0 = (Value, Chain, Glue) Register PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR, FR0.getValue(0), FR0.getValue(2)); // TPR = (Chain, Glue) // Don't glue this CopyFromReg, because it copies from a virtual // register. If it is glued to the call, InstrEmitter will add it // as an implicit def to the call (EmitMachineNode). RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1); Glue = TPR.getValue(1); Chain = TPR.getValue(0); } else { RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), RVLocs[i].getValVT(), Glue); Glue = RetVal.getValue(2); Chain = RetVal.getValue(1); } InVals.push_back(RetVal.getValue(0)); } return Chain; } /// LowerCall - Functions arguments are copied from virtual regs to /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. SDValue HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &dl = CLI.DL; SmallVectorImpl &Outs = CLI.Outs; SmallVectorImpl &OutVals = CLI.OutVals; SmallVectorImpl &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; CallingConv::ID CallConv = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; bool DoesNotReturn = CLI.DoesNotReturn; bool IsStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); auto PtrVT = getPointerTy(MF.getDataLayout()); unsigned NumParams = CLI.CB ? CLI.CB->getFunctionType()->getNumParams() : 0; if (GlobalAddressSDNode *GAN = dyn_cast(Callee)) Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32); // Linux ABI treats var-arg calls the same way as regular ones. bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg; // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs, *DAG.getContext(), NumParams); if (Subtarget.useHVXOps()) CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX); else if (DisableArgsMinAlignment) CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_Legacy); else CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon); if (CLI.IsTailCall) { bool StructAttrFlag = MF.getFunction().hasStructRetAttr(); CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, IsVarArg, IsStructRet, StructAttrFlag, Outs, OutVals, Ins, DAG); for (const CCValAssign &VA : ArgLocs) { if (VA.isMemLoc()) { CLI.IsTailCall = false; break; } } LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n" : "Argument must be passed on stack. " "Not eligible for Tail Call\n")); } // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getStackSize(); SmallVector, 16> RegsToPass; SmallVector MemOpChains; const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT); bool NeedsArgAlign = false; Align LargestAlignSeen; // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; // Record if we need > 8 byte alignment on an argument. bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT()); NeedsArgAlign |= ArgAlign; // Promote the value if needed. switch (VA.getLocInfo()) { default: // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt. llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: Arg = DAG.getBitcast(VA.getLocVT(), Arg); break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); break; } if (VA.isMemLoc()) { unsigned LocMemOffset = VA.getLocMemOffset(); SDValue MemAddr = DAG.getConstant(LocMemOffset, dl, StackPtr.getValueType()); MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr); if (ArgAlign) LargestAlignSeen = std::max( LargestAlignSeen, Align(VA.getLocVT().getStoreSizeInBits() / 8)); if (Flags.isByVal()) { // The argument is a struct passed by value. According to LLVM, "Arg" // is a pointer. MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain, Flags, DAG, dl)); } else { MachinePointerInfo LocPI = MachinePointerInfo::getStack( DAG.getMachineFunction(), LocMemOffset); SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI); MemOpChains.push_back(S); } continue; } // Arguments that can be passed on register must be kept at RegsToPass // vector. if (VA.isRegLoc()) RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } if (NeedsArgAlign && Subtarget.hasV60Ops()) { LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n"); Align VecAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); LargestAlignSeen = std::max(LargestAlignSeen, VecAlign); MFI.ensureMaxAlignment(LargestAlignSeen); } // Transform all store nodes into one single node because all store // nodes are independent of each other. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); SDValue Glue; if (!CLI.IsTailCall) { Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); Glue = Chain.getValue(1); } // Build a sequence of copy-to-reg nodes chained together with token // chain and flag operands which copy the outgoing args into registers. // The Glue is necessary since all emitted instructions must be // stuck together. if (!CLI.IsTailCall) { for (const auto &R : RegsToPass) { Chain = DAG.getCopyToReg(Chain, dl, R.first, R.second, Glue); Glue = Chain.getValue(1); } } else { // For tail calls lower the arguments to the 'real' stack slot. // // Force all the incoming stack arguments to be loaded from the stack // before any new outgoing arguments are stored to the stack, because the // outgoing stack slots may alias the incoming argument stack slots, and // the alias isn't otherwise explicit. This is slightly more conservative // than necessary, because it means that each store effectively depends // on every argument instead of just those arguments it would clobber. // // Do not flag preceding copytoreg stuff together with the following stuff. Glue = SDValue(); for (const auto &R : RegsToPass) { Chain = DAG.getCopyToReg(Chain, dl, R.first, R.second, Glue); Glue = Chain.getValue(1); } Glue = SDValue(); } bool LongCalls = MF.getSubtarget().useLongCalls(); unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0; // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. if (GlobalAddressSDNode *G = dyn_cast(Callee)) { Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags); } else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) { Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags); } // Returns a chain & a flag for retval copy to use. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are // known live into the call. for (const auto &R : RegsToPass) Ops.push_back(DAG.getRegister(R.first, R.second.getValueType())); const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); if (Glue.getNode()) Ops.push_back(Glue); if (CLI.IsTailCall) { MFI.setHasTailCall(); return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops); } // Set this here because we need to know this for "hasFP" in frame lowering. // The target-independent code calls getFrameRegister before setting it, and // getFrameRegister uses hasFP to determine whether the function has FP. MFI.setHasCalls(true); unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL; Chain = DAG.getNode(OpCode, dl, NodeTys, Ops); Glue = Chain.getValue(1); // Create the CALLSEQ_END node. Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, dl); Glue = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG, InVals, OutVals, Callee); } /// Returns true by value, base pointer and offset pointer and addressing /// mode by reference if this node can be combined with a load / store to /// form a post-indexed load / store. bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { LSBaseSDNode *LSN = dyn_cast(N); if (!LSN) return false; EVT VT = LSN->getMemoryVT(); if (!VT.isSimple()) return false; bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 || VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 || VT == MVT::v4i16 || VT == MVT::v8i8 || Subtarget.isHVXVectorType(VT.getSimpleVT()); if (!IsLegalType) return false; if (Op->getOpcode() != ISD::ADD) return false; Base = Op->getOperand(0); Offset = Op->getOperand(1); if (!isa(Offset.getNode())) return false; AM = ISD::POST_INC; int32_t V = cast(Offset.getNode())->getSExtValue(); return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V); } SDValue HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); auto &HMFI = *MF.getInfo(); const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); unsigned LR = HRI.getRARegister(); if ((Op.getOpcode() != ISD::INLINEASM && Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR()) return Op; unsigned NumOps = Op.getNumOperands(); if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue) --NumOps; // Ignore the flag operand. for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { const InlineAsm::Flag Flags(Op.getConstantOperandVal(i)); unsigned NumVals = Flags.getNumOperandRegisters(); ++i; // Skip the ID value. switch (Flags.getKind()) { default: llvm_unreachable("Bad flags!"); case InlineAsm::Kind::RegUse: case InlineAsm::Kind::Imm: case InlineAsm::Kind::Mem: i += NumVals; break; case InlineAsm::Kind::Clobber: case InlineAsm::Kind::RegDef: case InlineAsm::Kind::RegDefEarlyClobber: { for (; NumVals; --NumVals, ++i) { Register Reg = cast(Op.getOperand(i))->getReg(); if (Reg != LR) continue; HMFI.setHasClobberLR(true); return Op; } break; } } } return Op; } // Need to transform ISD::PREFETCH into something that doesn't inherit // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and // SDNPMayStore. SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Addr = Op.getOperand(1); // Lower it to DCFETCH($reg, #0). A "pat" will try to merge the offset in, // if the "reg" is fed by an "add". SDLoc DL(Op); SDValue Zero = DAG.getConstant(0, DL, MVT::i32); return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero); } // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode // is marked as having side-effects, while the register read on Hexagon does // not have any. TableGen refuses to accept the direct pattern from that node // to the A4_tfrcpp. SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDLoc dl(Op); SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain); } SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); unsigned IntNo = Op.getConstantOperandVal(1); // Lower the hexagon_prefetch builtin to DCFETCH, as above. if (IntNo == Intrinsic::hexagon_prefetch) { SDValue Addr = Op.getOperand(2); SDLoc DL(Op); SDValue Zero = DAG.getConstant(0, DL, MVT::i32); return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero); } return SDValue(); } SDValue HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); SDValue Align = Op.getOperand(2); SDLoc dl(Op); ConstantSDNode *AlignConst = dyn_cast(Align); assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC"); unsigned A = AlignConst->getSExtValue(); auto &HFI = *Subtarget.getFrameLowering(); // "Zero" means natural stack alignment. if (A == 0) A = HFI.getStackAlign().value(); LLVM_DEBUG({ dbgs () << __func__ << " Align: " << A << " Size: "; Size.getNode()->dump(&DAG); dbgs() << "\n"; }); SDValue AC = DAG.getConstant(A, dl, MVT::i32); SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC); DAG.ReplaceAllUsesOfValueWith(Op, AA); return AA; } SDValue HexagonTargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); // Linux ABI treats var-arg calls the same way as regular ones. bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg; // Assign locations to all of the incoming arguments. SmallVector ArgLocs; HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs, *DAG.getContext(), MF.getFunction().getFunctionType()->getNumParams()); if (Subtarget.useHVXOps()) CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX); else if (DisableArgsMinAlignment) CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_Legacy); else CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon); // For LLVM, in the case when returning a struct by value (>8byte), // the first argument is a pointer that points to the location on caller's // stack where the return value will be stored. For Hexagon, the location on // caller's stack is passed only when the struct size is smaller than (and // equal to) 8 bytes. If not, no address will be passed into callee and // callee return the result direclty through R0/R1. auto NextSingleReg = [] (const TargetRegisterClass &RC, unsigned Reg) { switch (RC.getID()) { case Hexagon::IntRegsRegClassID: return Reg - Hexagon::R0 + 1; case Hexagon::DoubleRegsRegClassID: return (Reg - Hexagon::D0 + 1) * 2; case Hexagon::HvxVRRegClassID: return Reg - Hexagon::V0 + 1; case Hexagon::HvxWRRegClassID: return (Reg - Hexagon::W0 + 1) * 2; } llvm_unreachable("Unexpected register class"); }; auto &HFL = const_cast(*Subtarget.getFrameLowering()); auto &HMFI = *MF.getInfo(); HFL.FirstVarArgSavedReg = 0; HMFI.setFirstNamedArgFrameIndex(-int(MFI.getNumFixedObjects())); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; ISD::ArgFlagsTy Flags = Ins[i].Flags; bool ByVal = Flags.isByVal(); // Arguments passed in registers: // 1. 32- and 64-bit values and HVX vectors are passed directly, // 2. Large structs are passed via an address, and the address is // passed in a register. if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8) llvm_unreachable("ByValSize must be bigger than 8 bytes"); bool InReg = VA.isRegLoc() && (!ByVal || (ByVal && Flags.getByValSize() > 8)); if (InReg) { MVT RegVT = VA.getLocVT(); if (VA.getLocInfo() == CCValAssign::BCvt) RegVT = VA.getValVT(); const TargetRegisterClass *RC = getRegClassFor(RegVT); Register VReg = MRI.createVirtualRegister(RC); SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); // Treat values of type MVT::i1 specially: they are passed in // registers of type i32, but they need to remain as values of // type i1 for consistency of the argument lowering. if (VA.getValVT() == MVT::i1) { assert(RegVT.getSizeInBits() <= 32); SDValue T = DAG.getNode(ISD::AND, dl, RegVT, Copy, DAG.getConstant(1, dl, RegVT)); Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT), ISD::SETNE); } else { #ifndef NDEBUG unsigned RegSize = RegVT.getSizeInBits(); assert(RegSize == 32 || RegSize == 64 || Subtarget.isHVXVectorType(RegVT)); #endif } InVals.push_back(Copy); MRI.addLiveIn(VA.getLocReg(), VReg); HFL.FirstVarArgSavedReg = NextSingleReg(*RC, VA.getLocReg()); } else { assert(VA.isMemLoc() && "Argument should be passed in memory"); // If it's a byval parameter, then we need to compute the // "real" size, not the size of the pointer. unsigned ObjSize = Flags.isByVal() ? Flags.getByValSize() : VA.getLocVT().getStoreSizeInBits() / 8; // Create the frame index object for this incoming parameter. int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset(); int FI = MFI.CreateFixedObject(ObjSize, Offset, true); SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); if (Flags.isByVal()) { // If it's a pass-by-value aggregate, then do not dereference the stack // location. Instead, we should generate a reference to the stack // location. InVals.push_back(FIN); } else { SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo::getFixedStack(MF, FI, 0)); InVals.push_back(L); } } } if (IsVarArg && Subtarget.isEnvironmentMusl()) { for (int i = HFL.FirstVarArgSavedReg; i < 6; i++) MRI.addLiveIn(Hexagon::R0+i); } if (IsVarArg && Subtarget.isEnvironmentMusl()) { HMFI.setFirstNamedArgFrameIndex(HMFI.getFirstNamedArgFrameIndex() - 1); HMFI.setLastNamedArgFrameIndex(-int(MFI.getNumFixedObjects())); // Create Frame index for the start of register saved area. int NumVarArgRegs = 6 - HFL.FirstVarArgSavedReg; bool RequiresPadding = (NumVarArgRegs & 1); int RegSaveAreaSizePlusPadding = RequiresPadding ? (NumVarArgRegs + 1) * 4 : NumVarArgRegs * 4; if (RegSaveAreaSizePlusPadding > 0) { // The offset to saved register area should be 8 byte aligned. int RegAreaStart = HEXAGON_LRFP_SIZE + CCInfo.getStackSize(); if (!(RegAreaStart % 8)) RegAreaStart = (RegAreaStart + 7) & -8; int RegSaveAreaFrameIndex = MFI.CreateFixedObject(RegSaveAreaSizePlusPadding, RegAreaStart, true); HMFI.setRegSavedAreaStartFrameIndex(RegSaveAreaFrameIndex); // This will point to the next argument passed via stack. int Offset = RegAreaStart + RegSaveAreaSizePlusPadding; int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true); HMFI.setVarArgsFrameIndex(FI); } else { // This will point to the next argument passed via stack, when // there is no saved register area. int Offset = HEXAGON_LRFP_SIZE + CCInfo.getStackSize(); int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true); HMFI.setRegSavedAreaStartFrameIndex(FI); HMFI.setVarArgsFrameIndex(FI); } } if (IsVarArg && !Subtarget.isEnvironmentMusl()) { // This will point to the next argument passed via stack. int Offset = HEXAGON_LRFP_SIZE + CCInfo.getStackSize(); int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true); HMFI.setVarArgsFrameIndex(FI); } return Chain; } SDValue HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { // VASTART stores the address of the VarArgsFrameIndex slot into the // memory location argument. MachineFunction &MF = DAG.getMachineFunction(); HexagonMachineFunctionInfo *QFI = MF.getInfo(); SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32); const Value *SV = cast(Op.getOperand(2))->getValue(); if (!Subtarget.isEnvironmentMusl()) { return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1), MachinePointerInfo(SV)); } auto &FuncInfo = *MF.getInfo(); auto &HFL = *Subtarget.getFrameLowering(); SDLoc DL(Op); SmallVector MemOps; // Get frame index of va_list. SDValue FIN = Op.getOperand(1); // If first Vararg register is odd, add 4 bytes to start of // saved register area to point to the first register location. // This is because the saved register area has to be 8 byte aligned. // Incase of an odd start register, there will be 4 bytes of padding in // the beginning of saved register area. If all registers area used up, // the following condition will handle it correctly. SDValue SavedRegAreaStartFrameIndex = DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(), MVT::i32); auto PtrVT = getPointerTy(DAG.getDataLayout()); if (HFL.FirstVarArgSavedReg & 1) SavedRegAreaStartFrameIndex = DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(), MVT::i32), DAG.getIntPtrConstant(4, DL)); // Store the saved register area start pointer. SDValue Store = DAG.getStore(Op.getOperand(0), DL, SavedRegAreaStartFrameIndex, FIN, MachinePointerInfo(SV)); MemOps.push_back(Store); // Store saved register area end pointer. FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL)); Store = DAG.getStore(Op.getOperand(0), DL, DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(), PtrVT), FIN, MachinePointerInfo(SV, 4)); MemOps.push_back(Store); // Store overflow area pointer. FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL)); Store = DAG.getStore(Op.getOperand(0), DL, DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(), PtrVT), FIN, MachinePointerInfo(SV, 8)); MemOps.push_back(Store); return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); } SDValue HexagonTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { // Assert that the linux ABI is enabled for the current compilation. assert(Subtarget.isEnvironmentMusl() && "Linux ABI should be enabled"); SDValue Chain = Op.getOperand(0); SDValue DestPtr = Op.getOperand(1); SDValue SrcPtr = Op.getOperand(2); const Value *DestSV = cast(Op.getOperand(3))->getValue(); const Value *SrcSV = cast(Op.getOperand(4))->getValue(); SDLoc DL(Op); // Size of the va_list is 12 bytes as it has 3 pointers. Therefore, // we need to memcopy 12 bytes from va_list to another similar list. return DAG.getMemcpy(Chain, DL, DestPtr, SrcPtr, DAG.getIntPtrConstant(12, DL), Align(4), /*isVolatile*/ false, false, false, MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV)); } SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { const SDLoc &dl(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); ISD::CondCode CC = cast(Op.getOperand(2))->get(); MVT ResTy = ty(Op); MVT OpTy = ty(LHS); if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) { MVT ElemTy = OpTy.getVectorElementType(); assert(ElemTy.isScalarInteger()); MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()), OpTy.getVectorNumElements()); return DAG.getSetCC(dl, ResTy, DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy), DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC); } // Treat all other vector types as legal. if (ResTy.isVector()) return Op; // Comparisons of short integers should use sign-extend, not zero-extend, // since we can represent small negative values in the compare instructions. // The LLVM default is to use zero-extend arbitrarily in these cases. auto isSExtFree = [this](SDValue N) { switch (N.getOpcode()) { case ISD::TRUNCATE: { // A sign-extend of a truncate of a sign-extend is free. SDValue Op = N.getOperand(0); if (Op.getOpcode() != ISD::AssertSext) return false; EVT OrigTy = cast(Op.getOperand(1))->getVT(); unsigned ThisBW = ty(N).getSizeInBits(); unsigned OrigBW = OrigTy.getSizeInBits(); // The type that was sign-extended to get the AssertSext must be // narrower than the type of N (so that N has still the same value // as the original). return ThisBW >= OrigBW; } case ISD::LOAD: // We have sign-extended loads. return true; } return false; }; if (OpTy == MVT::i8 || OpTy == MVT::i16) { ConstantSDNode *C = dyn_cast(RHS); bool IsNegative = C && C->getAPIntValue().isNegative(); if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS)) return DAG.getSetCC(dl, ResTy, DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32), DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC); } return SDValue(); } SDValue HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const { SDValue PredOp = Op.getOperand(0); SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2); MVT OpTy = ty(Op1); const SDLoc &dl(Op); if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) { MVT ElemTy = OpTy.getVectorElementType(); assert(ElemTy.isScalarInteger()); MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()), OpTy.getVectorNumElements()); // Generate (trunc (select (_, sext, sext))). return DAG.getSExtOrTrunc( DAG.getSelect(dl, WideTy, PredOp, DAG.getSExtOrTrunc(Op1, dl, WideTy), DAG.getSExtOrTrunc(Op2, dl, WideTy)), dl, OpTy); } return SDValue(); } SDValue HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { EVT ValTy = Op.getValueType(); ConstantPoolSDNode *CPN = cast(Op); Constant *CVal = nullptr; bool isVTi1Type = false; if (auto *CV = dyn_cast(CPN->getConstVal())) { if (cast(CV->getType())->getElementType()->isIntegerTy(1)) { IRBuilder<> IRB(CV->getContext()); SmallVector NewConst; unsigned VecLen = CV->getNumOperands(); assert(isPowerOf2_32(VecLen) && "conversion only supported for pow2 VectorSize"); for (unsigned i = 0; i < VecLen; ++i) NewConst.push_back(IRB.getInt8(CV->getOperand(i)->isZeroValue())); CVal = ConstantVector::get(NewConst); isVTi1Type = true; } } Align Alignment = CPN->getAlign(); bool IsPositionIndependent = isPositionIndependent(); unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0; unsigned Offset = 0; SDValue T; if (CPN->isMachineConstantPoolEntry()) T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Alignment, Offset, TF); else if (isVTi1Type) T = DAG.getTargetConstantPool(CVal, ValTy, Alignment, Offset, TF); else T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Alignment, Offset, TF); assert(cast(T)->getTargetFlags() == TF && "Inconsistent target flag encountered"); if (IsPositionIndependent) return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T); return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T); } SDValue HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); int Idx = cast(Op)->getIndex(); if (isPositionIndependent()) { SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T); } SDValue T = DAG.getTargetJumpTable(Idx, VT); return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T); } SDValue HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MFI.setReturnAddressIsTaken(true); if (verifyReturnAddressArgumentIsConstant(Op, DAG)) return SDValue(); EVT VT = Op.getValueType(); SDLoc dl(Op); unsigned Depth = Op.getConstantOperandVal(0); if (Depth) { SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); SDValue Offset = DAG.getConstant(4, dl, MVT::i32); return DAG.getLoad(VT, dl, DAG.getEntryNode(), DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), MachinePointerInfo()); } // Return LR, which contains the return address. Mark it an implicit live-in. Register Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32)); return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); } SDValue HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); MFI.setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc dl(Op); unsigned Depth = Op.getConstantOperandVal(0); SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, HRI.getFrameRegister(), VT); while (Depth--) FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, MachinePointerInfo()); return FrameAddr; } SDValue HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const { SDLoc dl(Op); return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0)); } SDValue HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); auto *GAN = cast(Op); auto PtrVT = getPointerTy(DAG.getDataLayout()); auto *GV = GAN->getGlobal(); int64_t Offset = GAN->getOffset(); auto &HLOF = *HTM.getObjFileLowering(); Reloc::Model RM = HTM.getRelocationModel(); if (RM == Reloc::Static) { SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset); const GlobalObject *GO = GV->getAliaseeObject(); if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM)) return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA); return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA); } bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); if (UsePCRel) { SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset, HexagonII::MO_PCREL); return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA); } // Use GOT index. SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT); SDValue Off = DAG.getConstant(Offset, dl, MVT::i32); return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off); } // Specifies that for loads and stores VT can be promoted to PromotedLdStVT. SDValue HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { const BlockAddress *BA = cast(Op)->getBlockAddress(); SDLoc dl(Op); EVT PtrVT = getPointerTy(DAG.getDataLayout()); Reloc::Model RM = HTM.getRelocationModel(); if (RM == Reloc::Static) { SDValue A = DAG.getTargetBlockAddress(BA, PtrVT); return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A); } SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL); return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A); } SDValue HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT, HexagonII::MO_PCREL); return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym); } SDValue HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg, unsigned char OperandFlags) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SDLoc dl(GA); SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), GA->getOffset(), OperandFlags); // Create Operands for the call.The Operands should have the following: // 1. Chain SDValue // 2. Callee which in this case is the Global address value. // 3. Registers live into the call.In this case its R0, as we // have just one argument to be passed. // 4. Glue. // Note: The order is important. const auto &HRI = *Subtarget.getRegisterInfo(); const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C); assert(Mask && "Missing call preserved mask for calling convention"); SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT), DAG.getRegisterMask(Mask), Glue }; Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops); // Inform MFI that function has calls. MFI.setAdjustsStack(true); Glue = Chain.getValue(1); return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue); } // // Lower using the intial executable model for TLS addresses // SDValue HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG) const { SDLoc dl(GA); int64_t Offset = GA->getOffset(); auto PtrVT = getPointerTy(DAG.getDataLayout()); // Get the thread pointer. SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT); bool IsPositionIndependent = isPositionIndependent(); unsigned char TF = IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE; // First generate the TLS symbol address SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset, TF); SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); if (IsPositionIndependent) { // Generate the GOT pointer in case of position independent code SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG); // Add the TLS Symbol address to GOT pointer.This gives // GOT relative relocation for the symbol. Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym); } // Load the offset value for TLS symbol.This offset is relative to // thread pointer. SDValue LoadOffset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo()); // Address of the thread local variable is the add of thread // pointer and the offset of the variable. return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset); } // // Lower using the local executable model for TLS addresses // SDValue HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG) const { SDLoc dl(GA); int64_t Offset = GA->getOffset(); auto PtrVT = getPointerTy(DAG.getDataLayout()); // Get the thread pointer. SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT); // Generate the TLS symbol address SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset, HexagonII::MO_TPREL); SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); // Address of the thread local variable is the add of thread // pointer and the offset of the variable. return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym); } // // Lower using the general dynamic model for TLS addresses // SDValue HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG) const { SDLoc dl(GA); int64_t Offset = GA->getOffset(); auto PtrVT = getPointerTy(DAG.getDataLayout()); // First generate the TLS symbol address SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset, HexagonII::MO_GDGOT); // Then, generate the GOT pointer SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG); // Add the TLS symbol and the GOT pointer SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym); // Copy over the argument to R0 SDValue InGlue; Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InGlue); InGlue = Chain.getValue(1); unsigned Flags = DAG.getSubtarget().useLongCalls() ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended : HexagonII::MO_GDPLT; return GetDynamicTLSAddr(DAG, Chain, GA, InGlue, PtrVT, Hexagon::R0, Flags); } // // Lower TLS addresses. // // For now for dynamic models, we only support the general dynamic model. // SDValue HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { GlobalAddressSDNode *GA = cast(Op); switch (HTM.getTLSModel(GA->getGlobal())) { case TLSModel::GeneralDynamic: case TLSModel::LocalDynamic: return LowerToTLSGeneralDynamicModel(GA, DAG); case TLSModel::InitialExec: return LowerToTLSInitialExecModel(GA, DAG); case TLSModel::LocalExec: return LowerToTLSLocalExecModel(GA, DAG); } llvm_unreachable("Bogus TLS model"); } //===----------------------------------------------------------------------===// // TargetLowering Implementation //===----------------------------------------------------------------------===// HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM, const HexagonSubtarget &ST) : TargetLowering(TM), HTM(static_cast(TM)), Subtarget(ST) { auto &HRI = *Subtarget.getRegisterInfo(); setPrefLoopAlignment(Align(16)); setMinFunctionAlignment(Align(4)); setPrefFunctionAlignment(Align(16)); setStackPointerRegisterToSaveRestore(HRI.getStackRegister()); setBooleanContents(TargetLoweringBase::UndefinedBooleanContent); setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent); setMaxAtomicSizeInBitsSupported(64); setMinCmpXchgSizeInBits(32); if (EnableHexSDNodeSched) setSchedulingPreference(Sched::VLIW); else setSchedulingPreference(Sched::Source); // Limits for inline expansion of memcpy/memmove MaxStoresPerMemcpy = MaxStoresPerMemcpyCL; MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL; MaxStoresPerMemmove = MaxStoresPerMemmoveCL; MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL; MaxStoresPerMemset = MaxStoresPerMemsetCL; MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL; // // Set up register classes. // addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass); addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass); addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass); addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass); addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass); addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass); addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass); addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass); addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass); addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass); // // Handling of scalar operations. // // All operations default to "legal", except: // - indexed loads and stores (pre-/post-incremented), // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS, // ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN, // FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP, // FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG, // which default to "expand" for at least one type. // Misc operations. setOperationAction(ISD::ConstantFP, MVT::f32, Legal); setOperationAction(ISD::ConstantFP, MVT::f64, Legal); setOperationAction(ISD::TRAP, MVT::Other, Legal); setOperationAction(ISD::ConstantPool, MVT::i32, Custom); setOperationAction(ISD::JumpTable, MVT::i32, Custom); setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); setOperationAction(ISD::INLINEASM, MVT::Other, Custom); setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); setOperationAction(ISD::PREFETCH, MVT::Other, Custom); setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); // Custom legalize GlobalAddress nodes into CONST32. setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::GlobalAddress, MVT::i8, Custom); setOperationAction(ISD::BlockAddress, MVT::i32, Custom); // Hexagon needs to optimize cases with negative constants. setOperationAction(ISD::SETCC, MVT::i8, Custom); setOperationAction(ISD::SETCC, MVT::i16, Custom); setOperationAction(ISD::SETCC, MVT::v4i8, Custom); setOperationAction(ISD::SETCC, MVT::v2i16, Custom); // VASTART needs to be custom lowered to use the VarArgsFrameIndex. setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VAEND, MVT::Other, Expand); setOperationAction(ISD::VAARG, MVT::Other, Expand); if (Subtarget.isEnvironmentMusl()) setOperationAction(ISD::VACOPY, MVT::Other, Custom); else setOperationAction(ISD::VACOPY, MVT::Other, Expand); setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); if (EmitJumpTables) setMinimumJumpTableEntries(MinimumJumpTables); else setMinimumJumpTableEntries(std::numeric_limits::max()); setOperationAction(ISD::BR_JT, MVT::Other, Expand); for (unsigned LegalIntOp : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) { setOperationAction(LegalIntOp, MVT::i32, Legal); setOperationAction(LegalIntOp, MVT::i64, Legal); } // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit, // but they only operate on i64. for (MVT VT : MVT::integer_valuetypes()) { setOperationAction(ISD::UADDO, VT, Custom); setOperationAction(ISD::USUBO, VT, Custom); setOperationAction(ISD::SADDO, VT, Expand); setOperationAction(ISD::SSUBO, VT, Expand); setOperationAction(ISD::UADDO_CARRY, VT, Expand); setOperationAction(ISD::USUBO_CARRY, VT, Expand); } setOperationAction(ISD::UADDO_CARRY, MVT::i64, Custom); setOperationAction(ISD::USUBO_CARRY, MVT::i64, Custom); setOperationAction(ISD::CTLZ, MVT::i8, Promote); setOperationAction(ISD::CTLZ, MVT::i16, Promote); setOperationAction(ISD::CTTZ, MVT::i8, Promote); setOperationAction(ISD::CTTZ, MVT::i16, Promote); // Popcount can count # of 1s in i64 but returns i32. setOperationAction(ISD::CTPOP, MVT::i8, Promote); setOperationAction(ISD::CTPOP, MVT::i16, Promote); setOperationAction(ISD::CTPOP, MVT::i32, Promote); setOperationAction(ISD::CTPOP, MVT::i64, Legal); setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); setOperationAction(ISD::BSWAP, MVT::i32, Legal); setOperationAction(ISD::BSWAP, MVT::i64, Legal); setOperationAction(ISD::FSHL, MVT::i32, Legal); setOperationAction(ISD::FSHL, MVT::i64, Legal); setOperationAction(ISD::FSHR, MVT::i32, Legal); setOperationAction(ISD::FSHR, MVT::i64, Legal); for (unsigned IntExpOp : {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR, ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS, ISD::SMUL_LOHI, ISD::UMUL_LOHI}) { for (MVT VT : MVT::integer_valuetypes()) setOperationAction(IntExpOp, VT, Expand); } for (unsigned FPExpOp : {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FCOPYSIGN}) { for (MVT VT : MVT::fp_valuetypes()) setOperationAction(FPExpOp, VT, Expand); } // No extending loads from i32. for (MVT VT : MVT::integer_valuetypes()) { setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); } // Turn FP truncstore into trunc + store. setTruncStoreAction(MVT::f64, MVT::f32, Expand); // Turn FP extload into load/fpextend. for (MVT VT : MVT::fp_valuetypes()) setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); // Expand BR_CC and SELECT_CC for all integer and fp types. for (MVT VT : MVT::integer_valuetypes()) { setOperationAction(ISD::BR_CC, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Expand); } for (MVT VT : MVT::fp_valuetypes()) { setOperationAction(ISD::BR_CC, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Expand); } setOperationAction(ISD::BR_CC, MVT::Other, Expand); // // Handling of vector operations. // // Set the action for vector operations to "expand", then override it with // either "custom" or "legal" for specific cases. static const unsigned VectExpOps[] = { // Integer arithmetic: ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::SADDO, ISD::UADDO, ISD::SSUBO, ISD::USUBO, ISD::SMUL_LOHI, ISD::UMUL_LOHI, // Logical/bit: ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR, ISD::CTPOP, ISD::CTLZ, ISD::CTTZ, ISD::BSWAP, ISD::BITREVERSE, // Floating point arithmetic/math functions: ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV, ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FPOW, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR, ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS, ISD::FLDEXP, // Misc: ISD::BR_CC, ISD::SELECT_CC, ISD::ConstantPool, // Vector: ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR, ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE, ISD::SPLAT_VECTOR, }; for (MVT VT : MVT::fixedlen_vector_valuetypes()) { for (unsigned VectExpOp : VectExpOps) setOperationAction(VectExpOp, VT, Expand); // Expand all extending loads and truncating stores: for (MVT TargetVT : MVT::fixedlen_vector_valuetypes()) { if (TargetVT == VT) continue; setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand); setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand); setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand); setTruncStoreAction(VT, TargetVT, Expand); } // Normalize all inputs to SELECT to be vectors of i32. if (VT.getVectorElementType() != MVT::i32) { MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32); setOperationAction(ISD::SELECT, VT, Promote); AddPromotedToType(ISD::SELECT, VT, VT32); } setOperationAction(ISD::SRA, VT, Custom); setOperationAction(ISD::SHL, VT, Custom); setOperationAction(ISD::SRL, VT, Custom); } // Extending loads from (native) vectors of i8 into (native) vectors of i16 // are legal. setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, MVT::v2i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal); setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, MVT::v4i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); // Types natively supported: for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8, MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) { setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom); setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom); setOperationAction(ISD::ADD, NativeVT, Legal); setOperationAction(ISD::SUB, NativeVT, Legal); setOperationAction(ISD::MUL, NativeVT, Legal); setOperationAction(ISD::AND, NativeVT, Legal); setOperationAction(ISD::OR, NativeVT, Legal); setOperationAction(ISD::XOR, NativeVT, Legal); if (NativeVT.getVectorElementType() != MVT::i1) { setOperationAction(ISD::SPLAT_VECTOR, NativeVT, Legal); setOperationAction(ISD::BSWAP, NativeVT, Legal); setOperationAction(ISD::BITREVERSE, NativeVT, Legal); } } for (MVT VT : {MVT::v8i8, MVT::v4i16, MVT::v2i32}) { setOperationAction(ISD::SMIN, VT, Legal); setOperationAction(ISD::SMAX, VT, Legal); setOperationAction(ISD::UMIN, VT, Legal); setOperationAction(ISD::UMAX, VT, Legal); } // Custom lower unaligned loads. // Also, for both loads and stores, verify the alignment of the address // in case it is a compile-time constant. This is a usability feature to // provide a meaningful error message to users. for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) { setOperationAction(ISD::LOAD, VT, Custom); setOperationAction(ISD::STORE, VT, Custom); } // Custom-lower load/stores of boolean vectors. for (MVT VT : {MVT::v2i1, MVT::v4i1, MVT::v8i1}) { setOperationAction(ISD::LOAD, VT, Custom); setOperationAction(ISD::STORE, VT, Custom); } // Normalize integer compares to EQ/GT/UGT for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16, MVT::v2i32}) { setCondCodeAction(ISD::SETNE, VT, Expand); setCondCodeAction(ISD::SETLE, VT, Expand); setCondCodeAction(ISD::SETGE, VT, Expand); setCondCodeAction(ISD::SETLT, VT, Expand); setCondCodeAction(ISD::SETULE, VT, Expand); setCondCodeAction(ISD::SETUGE, VT, Expand); setCondCodeAction(ISD::SETULT, VT, Expand); } // Normalize boolean compares to [U]LE/[U]LT for (MVT VT : {MVT::i1, MVT::v2i1, MVT::v4i1, MVT::v8i1}) { setCondCodeAction(ISD::SETGE, VT, Expand); setCondCodeAction(ISD::SETGT, VT, Expand); setCondCodeAction(ISD::SETUGE, VT, Expand); setCondCodeAction(ISD::SETUGT, VT, Expand); } // Custom-lower bitcasts from i8 to v8i1. setOperationAction(ISD::BITCAST, MVT::i8, Custom); setOperationAction(ISD::SETCC, MVT::v2i16, Custom); setOperationAction(ISD::VSELECT, MVT::v4i8, Custom); setOperationAction(ISD::VSELECT, MVT::v2i16, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); // V5+. setOperationAction(ISD::FMA, MVT::f64, Expand); setOperationAction(ISD::FADD, MVT::f64, Expand); setOperationAction(ISD::FSUB, MVT::f64, Expand); setOperationAction(ISD::FMUL, MVT::f64, Expand); setOperationAction(ISD::FMINNUM, MVT::f32, Legal); setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote); setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote); setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote); setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); // Special handling for half-precision floating point conversions. // Lower half float conversions into library calls. setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); setTruncStoreAction(MVT::f32, MVT::f16, Expand); setTruncStoreAction(MVT::f64, MVT::f16, Expand); // Handling of indexed loads/stores: default is "expand". // for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64, MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) { setIndexedLoadAction(ISD::POST_INC, VT, Legal); setIndexedStoreAction(ISD::POST_INC, VT, Legal); } // Subtarget-specific operation actions. // if (Subtarget.hasV60Ops()) { setOperationAction(ISD::ROTL, MVT::i32, Legal); setOperationAction(ISD::ROTL, MVT::i64, Legal); setOperationAction(ISD::ROTR, MVT::i32, Legal); setOperationAction(ISD::ROTR, MVT::i64, Legal); } if (Subtarget.hasV66Ops()) { setOperationAction(ISD::FADD, MVT::f64, Legal); setOperationAction(ISD::FSUB, MVT::f64, Legal); } if (Subtarget.hasV67Ops()) { setOperationAction(ISD::FMINNUM, MVT::f64, Legal); setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); setOperationAction(ISD::FMUL, MVT::f64, Legal); } setTargetDAGCombine(ISD::OR); setTargetDAGCombine(ISD::TRUNCATE); setTargetDAGCombine(ISD::VSELECT); if (Subtarget.useHVXOps()) initializeHVXLowering(); computeRegisterProperties(&HRI); // // Library calls for unsupported operations // bool FastMath = EnableFastMath; setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3"); setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3"); setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3"); setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3"); setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3"); setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3"); setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3"); setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3"); setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf"); setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf"); setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti"); setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti"); setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti"); setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti"); // This is the only fast library function for sqrtd. if (FastMath) setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2"); // Prefix is: nothing for "slow-math", // "fast2_" for V5+ fast-math double-precision // (actually, keep fast-math and fast-math2 separate for now) if (FastMath) { setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3"); setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3"); setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3"); setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3"); setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3"); } else { setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3"); setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3"); setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3"); setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3"); setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3"); } if (FastMath) setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf"); else setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf"); // Routines to handle fp16 storage type. setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); setLibcallName(RTLIB::FPROUND_F64_F16, "__truncdfhf2"); setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); // These cause problems when the shift amount is non-constant. setLibcallName(RTLIB::SHL_I128, nullptr); setLibcallName(RTLIB::SRL_I128, nullptr); setLibcallName(RTLIB::SRA_I128, nullptr); } const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const { switch ((HexagonISD::NodeType)Opcode) { case HexagonISD::ADDC: return "HexagonISD::ADDC"; case HexagonISD::SUBC: return "HexagonISD::SUBC"; case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA"; case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT"; case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL"; case HexagonISD::BARRIER: return "HexagonISD::BARRIER"; case HexagonISD::CALL: return "HexagonISD::CALL"; case HexagonISD::CALLnr: return "HexagonISD::CALLnr"; case HexagonISD::CALLR: return "HexagonISD::CALLR"; case HexagonISD::COMBINE: return "HexagonISD::COMBINE"; case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP"; case HexagonISD::CONST32: return "HexagonISD::CONST32"; case HexagonISD::CP: return "HexagonISD::CP"; case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH"; case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN"; case HexagonISD::TSTBIT: return "HexagonISD::TSTBIT"; case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU"; case HexagonISD::INSERT: return "HexagonISD::INSERT"; case HexagonISD::JT: return "HexagonISD::JT"; case HexagonISD::RET_GLUE: return "HexagonISD::RET_GLUE"; case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN"; case HexagonISD::VASL: return "HexagonISD::VASL"; case HexagonISD::VASR: return "HexagonISD::VASR"; case HexagonISD::VLSR: return "HexagonISD::VLSR"; case HexagonISD::MFSHL: return "HexagonISD::MFSHL"; case HexagonISD::MFSHR: return "HexagonISD::MFSHR"; case HexagonISD::SSAT: return "HexagonISD::SSAT"; case HexagonISD::USAT: return "HexagonISD::USAT"; case HexagonISD::SMUL_LOHI: return "HexagonISD::SMUL_LOHI"; case HexagonISD::UMUL_LOHI: return "HexagonISD::UMUL_LOHI"; case HexagonISD::USMUL_LOHI: return "HexagonISD::USMUL_LOHI"; case HexagonISD::VEXTRACTW: return "HexagonISD::VEXTRACTW"; case HexagonISD::VINSERTW0: return "HexagonISD::VINSERTW0"; case HexagonISD::VROR: return "HexagonISD::VROR"; case HexagonISD::READCYCLE: return "HexagonISD::READCYCLE"; case HexagonISD::PTRUE: return "HexagonISD::PTRUE"; case HexagonISD::PFALSE: return "HexagonISD::PFALSE"; case HexagonISD::D2P: return "HexagonISD::D2P"; case HexagonISD::P2D: return "HexagonISD::P2D"; case HexagonISD::V2Q: return "HexagonISD::V2Q"; case HexagonISD::Q2V: return "HexagonISD::Q2V"; case HexagonISD::QCAT: return "HexagonISD::QCAT"; case HexagonISD::QTRUE: return "HexagonISD::QTRUE"; case HexagonISD::QFALSE: return "HexagonISD::QFALSE"; case HexagonISD::TL_EXTEND: return "HexagonISD::TL_EXTEND"; case HexagonISD::TL_TRUNCATE: return "HexagonISD::TL_TRUNCATE"; case HexagonISD::TYPECAST: return "HexagonISD::TYPECAST"; case HexagonISD::VALIGN: return "HexagonISD::VALIGN"; case HexagonISD::VALIGNADDR: return "HexagonISD::VALIGNADDR"; case HexagonISD::ISEL: return "HexagonISD::ISEL"; case HexagonISD::OP_END: break; } return nullptr; } bool HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, Align NeedAlign, const SDLoc &dl, SelectionDAG &DAG) const { auto *CA = dyn_cast(Ptr); if (!CA) return true; unsigned Addr = CA->getZExtValue(); Align HaveAlign = Addr != 0 ? Align(1ull << llvm::countr_zero(Addr)) : NeedAlign; if (HaveAlign >= NeedAlign) return true; static int DK_MisalignedTrap = llvm::getNextAvailablePluginDiagnosticKind(); struct DiagnosticInfoMisalignedTrap : public DiagnosticInfo { DiagnosticInfoMisalignedTrap(StringRef M) : DiagnosticInfo(DK_MisalignedTrap, DS_Remark), Msg(M) {} void print(DiagnosticPrinter &DP) const override { DP << Msg; } static bool classof(const DiagnosticInfo *DI) { return DI->getKind() == DK_MisalignedTrap; } StringRef Msg; }; std::string ErrMsg; raw_string_ostream O(ErrMsg); O << "Misaligned constant address: " << format_hex(Addr, 10) << " has alignment " << HaveAlign.value() << ", but the memory access requires " << NeedAlign.value(); if (DebugLoc DL = dl.getDebugLoc()) DL.print(O << ", at "); O << ". The instruction has been replaced with a trap."; DAG.getContext()->diagnose(DiagnosticInfoMisalignedTrap(O.str())); return false; } SDValue HexagonTargetLowering::replaceMemWithUndef(SDValue Op, SelectionDAG &DAG) const { const SDLoc &dl(Op); auto *LS = cast(Op.getNode()); assert(!LS->isIndexed() && "Not expecting indexed ops on constant address"); SDValue Chain = LS->getChain(); SDValue Trap = DAG.getNode(ISD::TRAP, dl, MVT::Other, Chain); if (LS->getOpcode() == ISD::LOAD) return DAG.getMergeValues({DAG.getUNDEF(ty(Op)), Trap}, dl); return Trap; } // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load // intrinsic. static bool isBrevLdIntrinsic(const Value *Inst) { unsigned ID = cast(Inst)->getIntrinsicID(); return (ID == Intrinsic::hexagon_L2_loadrd_pbr || ID == Intrinsic::hexagon_L2_loadri_pbr || ID == Intrinsic::hexagon_L2_loadrh_pbr || ID == Intrinsic::hexagon_L2_loadruh_pbr || ID == Intrinsic::hexagon_L2_loadrb_pbr || ID == Intrinsic::hexagon_L2_loadrub_pbr); } // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous // instruction. So far we only handle bitcast, extract value and bit reverse // load intrinsic instructions. Should we handle CGEP ? static Value *getBrevLdObject(Value *V) { if (Operator::getOpcode(V) == Instruction::ExtractValue || Operator::getOpcode(V) == Instruction::BitCast) V = cast(V)->getOperand(0); else if (isa(V) && isBrevLdIntrinsic(V)) V = cast(V)->getOperand(0); return V; } // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or // a back edge. If the back edge comes from the intrinsic itself, the incoming // edge is returned. static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) { const BasicBlock *Parent = PN->getParent(); int Idx = -1; for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) { BasicBlock *Blk = PN->getIncomingBlock(i); // Determine if the back edge is originated from intrinsic. if (Blk == Parent) { Value *BackEdgeVal = PN->getIncomingValue(i); Value *BaseVal; // Loop over till we return the same Value or we hit the IntrBaseVal. do { BaseVal = BackEdgeVal; BackEdgeVal = getBrevLdObject(BackEdgeVal); } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal)); // If the getBrevLdObject returns IntrBaseVal, we should return the // incoming edge. if (IntrBaseVal == BackEdgeVal) continue; Idx = i; break; } else // Set the node to incoming edge. Idx = i; } assert(Idx >= 0 && "Unexpected index to incoming argument in PHI"); return PN->getIncomingValue(Idx); } // Bit-reverse Load Intrinsic: Figure out the underlying object the base // pointer points to, for the bit-reverse load intrinsic. Setting this to // memoperand might help alias analysis to figure out the dependencies. static Value *getUnderLyingObjectForBrevLdIntr(Value *V) { Value *IntrBaseVal = V; Value *BaseVal; // Loop over till we return the same Value, implies we either figure out // the object or we hit a PHI do { BaseVal = V; V = getBrevLdObject(V); } while (BaseVal != V); // Identify the object from PHINode. if (const PHINode *PN = dyn_cast(V)) return returnEdge(PN, IntrBaseVal); // For non PHI nodes, the object is the last value returned by getBrevLdObject else return V; } /// Given an intrinsic, checks if on the target the intrinsic will need to map /// to a MemIntrinsicNode (touches memory). If this is the case, it returns /// true and store the intrinsic information into the IntrinsicInfo that was /// passed to the function. bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const { switch (Intrinsic) { case Intrinsic::hexagon_L2_loadrd_pbr: case Intrinsic::hexagon_L2_loadri_pbr: case Intrinsic::hexagon_L2_loadrh_pbr: case Intrinsic::hexagon_L2_loadruh_pbr: case Intrinsic::hexagon_L2_loadrb_pbr: case Intrinsic::hexagon_L2_loadrub_pbr: { Info.opc = ISD::INTRINSIC_W_CHAIN; auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); auto &Cont = I.getCalledFunction()->getParent()->getContext(); // The intrinsic function call is of the form { ElTy, i8* } // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type // should be derived from ElTy. Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0); Info.memVT = MVT::getVT(ElTy); llvm::Value *BasePtrVal = I.getOperand(0); Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal); // The offset value comes through Modifier register. For now, assume the // offset is 0. Info.offset = 0; Info.align = DL.getABITypeAlign(Info.memVT.getTypeForEVT(Cont)); Info.flags = MachineMemOperand::MOLoad; return true; } case Intrinsic::hexagon_V6_vgathermw: case Intrinsic::hexagon_V6_vgathermw_128B: case Intrinsic::hexagon_V6_vgathermh: case Intrinsic::hexagon_V6_vgathermh_128B: case Intrinsic::hexagon_V6_vgathermhw: case Intrinsic::hexagon_V6_vgathermhw_128B: case Intrinsic::hexagon_V6_vgathermwq: case Intrinsic::hexagon_V6_vgathermwq_128B: case Intrinsic::hexagon_V6_vgathermhq: case Intrinsic::hexagon_V6_vgathermhq_128B: case Intrinsic::hexagon_V6_vgathermhwq: case Intrinsic::hexagon_V6_vgathermhwq_128B: { const Module &M = *I.getParent()->getParent()->getParent(); Info.opc = ISD::INTRINSIC_W_CHAIN; Type *VecTy = I.getArgOperand(1)->getType(); Info.memVT = MVT::getVT(VecTy); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = MaybeAlign(M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8); Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; return true; } default: break; } return false; } bool HexagonTargetLowering::hasBitTest(SDValue X, SDValue Y) const { return X.getValueType().isScalarInteger(); // 'tstbit' } bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2)); } bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { if (!VT1.isSimple() || !VT2.isSimple()) return false; return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32; } bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd( const MachineFunction &MF, EVT VT) const { return isOperationLegalOrCustom(ISD::FMA, VT); } // Should we expand the build vector with shuffles? bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT, unsigned DefinedValues) const { return false; } bool HexagonTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const { assert(ResVT.getVectorElementType() == SrcVT.getVectorElementType()); if (!ResVT.isSimple() || !SrcVT.isSimple()) return false; MVT ResTy = ResVT.getSimpleVT(), SrcTy = SrcVT.getSimpleVT(); if (ResTy.getVectorElementType() != MVT::i1) return true; // Non-HVX bool vectors are relatively cheap. return SrcTy.getVectorNumElements() <= 8; } bool HexagonTargetLowering::isTargetCanonicalConstantNode(SDValue Op) const { return Op.getOpcode() == ISD::CONCAT_VECTORS || TargetLowering::isTargetCanonicalConstantNode(Op); } bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef Mask, EVT VT) const { return true; } TargetLoweringBase::LegalizeTypeAction HexagonTargetLowering::getPreferredVectorAction(MVT VT) const { unsigned VecLen = VT.getVectorMinNumElements(); MVT ElemTy = VT.getVectorElementType(); if (VecLen == 1 || VT.isScalableVector()) return TargetLoweringBase::TypeScalarizeVector; if (Subtarget.useHVXOps()) { unsigned Action = getPreferredHvxVectorAction(VT); if (Action != ~0u) return static_cast(Action); } // Always widen (remaining) vectors of i1. if (ElemTy == MVT::i1) return TargetLoweringBase::TypeWidenVector; // Widen non-power-of-2 vectors. Such types cannot be split right now, // and computeRegisterProperties will override "split" with "widen", // which can cause other issues. if (!isPowerOf2_32(VecLen)) return TargetLoweringBase::TypeWidenVector; return TargetLoweringBase::TypeSplitVector; } TargetLoweringBase::LegalizeAction HexagonTargetLowering::getCustomOperationAction(SDNode &Op) const { if (Subtarget.useHVXOps()) { unsigned Action = getCustomHvxOperationAction(Op); if (Action != ~0u) return static_cast(Action); } return TargetLoweringBase::Legal; } std::pair HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const { if (Addr.getOpcode() == ISD::ADD) { SDValue Op1 = Addr.getOperand(1); if (auto *CN = dyn_cast(Op1.getNode())) return { Addr.getOperand(0), CN->getSExtValue() }; } return { Addr, 0 }; } // Lower a vector shuffle (V1, V2, V3). V1 and V2 are the two vectors // to select data from, V3 is the permutation. SDValue HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { const auto *SVN = cast(Op); ArrayRef AM = SVN->getMask(); assert(AM.size() <= 8 && "Unexpected shuffle mask"); unsigned VecLen = AM.size(); MVT VecTy = ty(Op); assert(!Subtarget.isHVXVectorType(VecTy, true) && "HVX shuffles should be legal"); assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length"); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); const SDLoc &dl(Op); // If the inputs are not the same as the output, bail. This is not an // error situation, but complicates the handling and the default expansion // (into BUILD_VECTOR) should be adequate. if (ty(Op0) != VecTy || ty(Op1) != VecTy) return SDValue(); // Normalize the mask so that the first non-negative index comes from // the first operand. SmallVector Mask(AM.begin(), AM.end()); unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data(); if (F == AM.size()) return DAG.getUNDEF(VecTy); if (AM[F] >= int(VecLen)) { ShuffleVectorSDNode::commuteMask(Mask); std::swap(Op0, Op1); } // Express the shuffle mask in terms of bytes. SmallVector ByteMask; unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8; for (int M : Mask) { if (M < 0) { for (unsigned j = 0; j != ElemBytes; ++j) ByteMask.push_back(-1); } else { for (unsigned j = 0; j != ElemBytes; ++j) ByteMask.push_back(M*ElemBytes + j); } } assert(ByteMask.size() <= 8); // All non-undef (non-negative) indexes are well within [0..127], so they // fit in a single byte. Build two 64-bit words: // - MaskIdx where each byte is the corresponding index (for non-negative // indexes), and 0xFF for negative indexes, and // - MaskUnd that has 0xFF for each negative index. uint64_t MaskIdx = 0; uint64_t MaskUnd = 0; for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) { unsigned S = 8*i; uint64_t M = ByteMask[i] & 0xFF; if (M == 0xFF) MaskUnd |= M << S; MaskIdx |= M << S; } if (ByteMask.size() == 4) { // Identity. if (MaskIdx == (0x03020100 | MaskUnd)) return Op0; // Byte swap. if (MaskIdx == (0x00010203 | MaskUnd)) { SDValue T0 = DAG.getBitcast(MVT::i32, Op0); SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0); return DAG.getBitcast(VecTy, T1); } // Byte packs. SDValue Concat10 = getCombine(Op1, Op0, dl, typeJoin({ty(Op1), ty(Op0)}), DAG); if (MaskIdx == (0x06040200 | MaskUnd)) return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG); if (MaskIdx == (0x07050301 | MaskUnd)) return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG); SDValue Concat01 = getCombine(Op0, Op1, dl, typeJoin({ty(Op0), ty(Op1)}), DAG); if (MaskIdx == (0x02000604 | MaskUnd)) return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG); if (MaskIdx == (0x03010705 | MaskUnd)) return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG); } if (ByteMask.size() == 8) { // Identity. if (MaskIdx == (0x0706050403020100ull | MaskUnd)) return Op0; // Byte swap. if (MaskIdx == (0x0001020304050607ull | MaskUnd)) { SDValue T0 = DAG.getBitcast(MVT::i64, Op0); SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0); return DAG.getBitcast(VecTy, T1); } // Halfword picks. if (MaskIdx == (0x0d0c050409080100ull | MaskUnd)) return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG); if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd)) return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG); if (MaskIdx == (0x0d0c090805040100ull | MaskUnd)) return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG); if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd)) return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG); if (MaskIdx == (0x0706030205040100ull | MaskUnd)) { VectorPair P = opSplit(Op0, dl, DAG); return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG); } // Byte packs. if (MaskIdx == (0x0e060c040a020800ull | MaskUnd)) return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG); if (MaskIdx == (0x0f070d050b030901ull | MaskUnd)) return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG); } return SDValue(); } SDValue HexagonTargetLowering::getSplatValue(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { case ISD::BUILD_VECTOR: if (SDValue S = cast(Op)->getSplatValue()) return S; break; case ISD::SPLAT_VECTOR: return Op.getOperand(0); } return SDValue(); } // Create a Hexagon-specific node for shifting a vector by an integer. SDValue HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG) const { unsigned NewOpc; switch (Op.getOpcode()) { case ISD::SHL: NewOpc = HexagonISD::VASL; break; case ISD::SRA: NewOpc = HexagonISD::VASR; break; case ISD::SRL: NewOpc = HexagonISD::VLSR; break; default: llvm_unreachable("Unexpected shift opcode"); } if (SDValue Sp = getSplatValue(Op.getOperand(1), DAG)) return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), Sp); return SDValue(); } SDValue HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const { const SDLoc &dl(Op); // First try to convert the shift (by vector) to a shift by a scalar. // If we first split the shift, the shift amount will become 'extract // subvector', and will no longer be recognized as scalar. SDValue Res = Op; if (SDValue S = getVectorShiftByInt(Op, DAG)) Res = S; unsigned Opc = Res.getOpcode(); switch (Opc) { case HexagonISD::VASR: case HexagonISD::VLSR: case HexagonISD::VASL: break; default: // No instructions for shifts by non-scalars. return SDValue(); } MVT ResTy = ty(Res); if (ResTy.getVectorElementType() != MVT::i8) return Res; // For shifts of i8, extend the inputs to i16, then truncate back to i8. assert(ResTy.getVectorElementType() == MVT::i8); SDValue Val = Res.getOperand(0), Amt = Res.getOperand(1); auto ShiftPartI8 = [&dl, &DAG, this](unsigned Opc, SDValue V, SDValue A) { MVT Ty = ty(V); MVT ExtTy = MVT::getVectorVT(MVT::i16, Ty.getVectorNumElements()); SDValue ExtV = Opc == HexagonISD::VASR ? DAG.getSExtOrTrunc(V, dl, ExtTy) : DAG.getZExtOrTrunc(V, dl, ExtTy); SDValue ExtS = DAG.getNode(Opc, dl, ExtTy, {ExtV, A}); return DAG.getZExtOrTrunc(ExtS, dl, Ty); }; if (ResTy.getSizeInBits() == 32) return ShiftPartI8(Opc, Val, Amt); auto [LoV, HiV] = opSplit(Val, dl, DAG); return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, {ShiftPartI8(Opc, LoV, Amt), ShiftPartI8(Opc, HiV, Amt)}); } SDValue HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { if (isa(Op.getOperand(1).getNode())) return Op; return SDValue(); } SDValue HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { MVT ResTy = ty(Op); SDValue InpV = Op.getOperand(0); MVT InpTy = ty(InpV); assert(ResTy.getSizeInBits() == InpTy.getSizeInBits()); const SDLoc &dl(Op); // Handle conversion from i8 to v8i1. if (InpTy == MVT::i8) { if (ResTy == MVT::v8i1) { SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV); SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32); return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG); } return SDValue(); } return Op; } bool HexagonTargetLowering::getBuildVectorConstInts(ArrayRef Values, MVT VecTy, SelectionDAG &DAG, MutableArrayRef Consts) const { MVT ElemTy = VecTy.getVectorElementType(); unsigned ElemWidth = ElemTy.getSizeInBits(); IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth); bool AllConst = true; for (unsigned i = 0, e = Values.size(); i != e; ++i) { SDValue V = Values[i]; if (V.isUndef()) { Consts[i] = ConstantInt::get(IntTy, 0); continue; } // Make sure to always cast to IntTy. if (auto *CN = dyn_cast(V.getNode())) { const ConstantInt *CI = CN->getConstantIntValue(); Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue()); } else if (auto *CN = dyn_cast(V.getNode())) { const ConstantFP *CF = CN->getConstantFPValue(); APInt A = CF->getValueAPF().bitcastToAPInt(); Consts[i] = ConstantInt::get(IntTy, A.getZExtValue()); } else { AllConst = false; } } return AllConst; } SDValue HexagonTargetLowering::buildVector32(ArrayRef Elem, const SDLoc &dl, MVT VecTy, SelectionDAG &DAG) const { MVT ElemTy = VecTy.getVectorElementType(); assert(VecTy.getVectorNumElements() == Elem.size()); SmallVector Consts(Elem.size()); bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts); unsigned First, Num = Elem.size(); for (First = 0; First != Num; ++First) { if (!isUndef(Elem[First])) break; } if (First == Num) return DAG.getUNDEF(VecTy); if (AllConst && llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); })) return getZero(dl, VecTy, DAG); if (ElemTy == MVT::i16 || ElemTy == MVT::f16) { assert(Elem.size() == 2); if (AllConst) { // The 'Consts' array will have all values as integers regardless // of the vector element type. uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) | Consts[1]->getZExtValue() << 16; return DAG.getBitcast(VecTy, DAG.getConstant(V, dl, MVT::i32)); } SDValue E0, E1; if (ElemTy == MVT::f16) { E0 = DAG.getZExtOrTrunc(DAG.getBitcast(MVT::i16, Elem[0]), dl, MVT::i32); E1 = DAG.getZExtOrTrunc(DAG.getBitcast(MVT::i16, Elem[1]), dl, MVT::i32); } else { E0 = Elem[0]; E1 = Elem[1]; } SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {E1, E0}, DAG); return DAG.getBitcast(VecTy, N); } if (ElemTy == MVT::i8) { // First try generating a constant. if (AllConst) { int32_t V = (Consts[0]->getZExtValue() & 0xFF) | (Consts[1]->getZExtValue() & 0xFF) << 8 | (Consts[2]->getZExtValue() & 0xFF) << 16 | Consts[3]->getZExtValue() << 24; return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32)); } // Then try splat. bool IsSplat = true; for (unsigned i = First+1; i != Num; ++i) { if (Elem[i] == Elem[First] || isUndef(Elem[i])) continue; IsSplat = false; break; } if (IsSplat) { // Legalize the operand of SPLAT_VECTOR. SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32); return DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Ext); } // Generate // (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) | // (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16 assert(Elem.size() == 4); SDValue Vs[4]; for (unsigned i = 0; i != 4; ++i) { Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32); Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8); } SDValue S8 = DAG.getConstant(8, dl, MVT::i32); SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8}); SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8}); SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0}); SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1}); SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG); return DAG.getBitcast(MVT::v4i8, R); } #ifndef NDEBUG dbgs() << "VecTy: " << VecTy << '\n'; #endif llvm_unreachable("Unexpected vector element type"); } SDValue HexagonTargetLowering::buildVector64(ArrayRef Elem, const SDLoc &dl, MVT VecTy, SelectionDAG &DAG) const { MVT ElemTy = VecTy.getVectorElementType(); assert(VecTy.getVectorNumElements() == Elem.size()); SmallVector Consts(Elem.size()); bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts); unsigned First, Num = Elem.size(); for (First = 0; First != Num; ++First) { if (!isUndef(Elem[First])) break; } if (First == Num) return DAG.getUNDEF(VecTy); if (AllConst && llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); })) return getZero(dl, VecTy, DAG); // First try splat if possible. if (ElemTy == MVT::i16 || ElemTy == MVT::f16) { bool IsSplat = true; for (unsigned i = First+1; i != Num; ++i) { if (Elem[i] == Elem[First] || isUndef(Elem[i])) continue; IsSplat = false; break; } if (IsSplat) { // Legalize the operand of SPLAT_VECTOR SDValue S = ElemTy == MVT::f16 ? DAG.getBitcast(MVT::i16, Elem[First]) : Elem[First]; SDValue Ext = DAG.getZExtOrTrunc(S, dl, MVT::i32); return DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Ext); } } // Then try constant. if (AllConst) { uint64_t Val = 0; unsigned W = ElemTy.getSizeInBits(); uint64_t Mask = (1ull << W) - 1; for (unsigned i = 0; i != Num; ++i) Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask); SDValue V0 = DAG.getConstant(Val, dl, MVT::i64); return DAG.getBitcast(VecTy, V0); } // Build two 32-bit vectors and concatenate. MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2); SDValue L = (ElemTy == MVT::i32) ? Elem[0] : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG); SDValue H = (ElemTy == MVT::i32) ? Elem[1] : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG); return getCombine(H, L, dl, VecTy, DAG); } SDValue HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV, const SDLoc &dl, MVT ValTy, MVT ResTy, SelectionDAG &DAG) const { MVT VecTy = ty(VecV); assert(!ValTy.isVector() || VecTy.getVectorElementType() == ValTy.getVectorElementType()); if (VecTy.getVectorElementType() == MVT::i1) return extractVectorPred(VecV, IdxV, dl, ValTy, ResTy, DAG); unsigned VecWidth = VecTy.getSizeInBits(); unsigned ValWidth = ValTy.getSizeInBits(); unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits(); assert((VecWidth % ElemWidth) == 0); assert(VecWidth == 32 || VecWidth == 64); // Cast everything to scalar integer types. MVT ScalarTy = tyScalar(VecTy); VecV = DAG.getBitcast(ScalarTy, VecV); SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32); SDValue ExtV; if (auto *IdxN = dyn_cast(IdxV)) { unsigned Off = IdxN->getZExtValue() * ElemWidth; if (VecWidth == 64 && ValWidth == 32) { assert(Off == 0 || Off == 32); ExtV = Off == 0 ? LoHalf(VecV, DAG) : HiHalf(VecV, DAG); } else if (Off == 0 && (ValWidth % 8) == 0) { ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy)); } else { SDValue OffV = DAG.getConstant(Off, dl, MVT::i32); // The return type of EXTRACTU must be the same as the type of the // input vector. ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy, {VecV, WidthV, OffV}); } } else { if (ty(IdxV) != MVT::i32) IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32); SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, DAG.getConstant(ElemWidth, dl, MVT::i32)); ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy, {VecV, WidthV, OffV}); } // Cast ExtV to the requested result type. ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy)); ExtV = DAG.getBitcast(ResTy, ExtV); return ExtV; } SDValue HexagonTargetLowering::extractVectorPred(SDValue VecV, SDValue IdxV, const SDLoc &dl, MVT ValTy, MVT ResTy, SelectionDAG &DAG) const { // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon // without any coprocessors). MVT VecTy = ty(VecV); unsigned VecWidth = VecTy.getSizeInBits(); unsigned ValWidth = ValTy.getSizeInBits(); assert(VecWidth == VecTy.getVectorNumElements() && "Vector elements should equal vector width size"); assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2); // Check if this is an extract of the lowest bit. if (isNullConstant(IdxV) && ValTy.getSizeInBits() == 1) { // Extracting the lowest bit is a no-op, but it changes the type, // so it must be kept as an operation to avoid errors related to // type mismatches. return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV); } // If the value extracted is a single bit, use tstbit. if (ValWidth == 1) { SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG); SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32); SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0); return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0); } // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in // a predicate register. The elements of the vector are repeated // in the register (if necessary) so that the total number is 8. // The extracted subvector will need to be expanded in such a way. unsigned Scale = VecWidth / ValWidth; // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to // position 0. assert(ty(IdxV) == MVT::i32); unsigned VecRep = 8 / VecWidth; SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, DAG.getConstant(8*VecRep, dl, MVT::i32)); SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV); SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0); while (Scale > 1) { // The longest possible subvector is at most 32 bits, so it is always // contained in the low subregister. T1 = LoHalf(T1, DAG); T1 = expandPredicate(T1, dl, DAG); Scale /= 2; } return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1); } SDValue HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV, const SDLoc &dl, MVT ValTy, SelectionDAG &DAG) const { MVT VecTy = ty(VecV); if (VecTy.getVectorElementType() == MVT::i1) return insertVectorPred(VecV, ValV, IdxV, dl, ValTy, DAG); unsigned VecWidth = VecTy.getSizeInBits(); unsigned ValWidth = ValTy.getSizeInBits(); assert(VecWidth == 32 || VecWidth == 64); assert((VecWidth % ValWidth) == 0); // Cast everything to scalar integer types. MVT ScalarTy = MVT::getIntegerVT(VecWidth); // The actual type of ValV may be different than ValTy (which is related // to the vector type). unsigned VW = ty(ValV).getSizeInBits(); ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV); VecV = DAG.getBitcast(ScalarTy, VecV); if (VW != VecWidth) ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy); SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32); SDValue InsV; if (ConstantSDNode *C = dyn_cast(IdxV)) { unsigned W = C->getZExtValue() * ValWidth; SDValue OffV = DAG.getConstant(W, dl, MVT::i32); InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy, {VecV, ValV, WidthV, OffV}); } else { if (ty(IdxV) != MVT::i32) IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32); SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV); InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy, {VecV, ValV, WidthV, OffV}); } return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV); } SDValue HexagonTargetLowering::insertVectorPred(SDValue VecV, SDValue ValV, SDValue IdxV, const SDLoc &dl, MVT ValTy, SelectionDAG &DAG) const { MVT VecTy = ty(VecV); unsigned VecLen = VecTy.getVectorNumElements(); if (ValTy == MVT::i1) { SDValue ToReg = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG); SDValue Ext = DAG.getSExtOrTrunc(ValV, dl, MVT::i32); SDValue Width = DAG.getConstant(8 / VecLen, dl, MVT::i32); SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, Width); SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, {ToReg, Ext, Width, Idx}); return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Ins}, DAG); } assert(ValTy.getVectorElementType() == MVT::i1); SDValue ValR = ValTy.isVector() ? DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV) : DAG.getSExtOrTrunc(ValV, dl, MVT::i64); unsigned Scale = VecLen / ValTy.getVectorNumElements(); assert(Scale > 1); for (unsigned R = Scale; R > 1; R /= 2) { ValR = contractPredicate(ValR, dl, DAG); ValR = getCombine(DAG.getUNDEF(MVT::i32), ValR, dl, MVT::i64, DAG); } SDValue Width = DAG.getConstant(64 / Scale, dl, MVT::i32); SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, Width); SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV); SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i64, {VecR, ValR, Width, Idx}); return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins); } SDValue HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl, SelectionDAG &DAG) const { assert(ty(Vec32).getSizeInBits() == 32); if (isUndef(Vec32)) return DAG.getUNDEF(MVT::i64); SDValue P = DAG.getBitcast(MVT::v4i8, Vec32); SDValue X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i16, P); return DAG.getBitcast(MVT::i64, X); } SDValue HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl, SelectionDAG &DAG) const { assert(ty(Vec64).getSizeInBits() == 64); if (isUndef(Vec64)) return DAG.getUNDEF(MVT::i32); // Collect even bytes: SDValue A = DAG.getBitcast(MVT::v8i8, Vec64); SDValue S = DAG.getVectorShuffle(MVT::v8i8, dl, A, DAG.getUNDEF(MVT::v8i8), {0, 2, 4, 6, 1, 3, 5, 7}); return extractVector(S, DAG.getConstant(0, dl, MVT::i32), dl, MVT::v4i8, MVT::i32, DAG); } SDValue HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG) const { if (Ty.isVector()) { unsigned W = Ty.getSizeInBits(); if (W <= 64) return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W))); return DAG.getNode(ISD::SPLAT_VECTOR, dl, Ty, getZero(dl, MVT::i32, DAG)); } if (Ty.isInteger()) return DAG.getConstant(0, dl, Ty); if (Ty.isFloatingPoint()) return DAG.getConstantFP(0.0, dl, Ty); llvm_unreachable("Invalid type for zero"); } SDValue HexagonTargetLowering::appendUndef(SDValue Val, MVT ResTy, SelectionDAG &DAG) const { MVT ValTy = ty(Val); assert(ValTy.getVectorElementType() == ResTy.getVectorElementType()); unsigned ValLen = ValTy.getVectorNumElements(); unsigned ResLen = ResTy.getVectorNumElements(); if (ValLen == ResLen) return Val; const SDLoc &dl(Val); assert(ValLen < ResLen); assert(ResLen % ValLen == 0); SmallVector Concats = {Val}; for (unsigned i = 1, e = ResLen / ValLen; i < e; ++i) Concats.push_back(DAG.getUNDEF(ValTy)); return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, Concats); } SDValue HexagonTargetLowering::getCombine(SDValue Hi, SDValue Lo, const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { MVT ElemTy = ty(Hi); assert(ElemTy == ty(Lo)); if (!ElemTy.isVector()) { assert(ElemTy.isScalarInteger()); MVT PairTy = MVT::getIntegerVT(2 * ElemTy.getSizeInBits()); SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, PairTy, Lo, Hi); return DAG.getBitcast(ResTy, Pair); } unsigned Width = ElemTy.getSizeInBits(); MVT IntTy = MVT::getIntegerVT(Width); MVT PairTy = MVT::getIntegerVT(2 * Width); SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, PairTy, {DAG.getBitcast(IntTy, Lo), DAG.getBitcast(IntTy, Hi)}); return DAG.getBitcast(ResTy, Pair); } SDValue HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { MVT VecTy = ty(Op); unsigned BW = VecTy.getSizeInBits(); const SDLoc &dl(Op); SmallVector Ops; for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) Ops.push_back(Op.getOperand(i)); if (BW == 32) return buildVector32(Ops, dl, VecTy, DAG); if (BW == 64) return buildVector64(Ops, dl, VecTy, DAG); if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) { // Check if this is a special case or all-0 or all-1. bool All0 = true, All1 = true; for (SDValue P : Ops) { auto *CN = dyn_cast(P.getNode()); if (CN == nullptr) { All0 = All1 = false; break; } uint32_t C = CN->getZExtValue(); All0 &= (C == 0); All1 &= (C == 1); } if (All0) return DAG.getNode(HexagonISD::PFALSE, dl, VecTy); if (All1) return DAG.getNode(HexagonISD::PTRUE, dl, VecTy); // For each i1 element in the resulting predicate register, put 1 // shifted by the index of the element into a general-purpose register, // then or them together and transfer it back into a predicate register. SDValue Rs[8]; SDValue Z = getZero(dl, MVT::i32, DAG); // Always produce 8 bits, repeat inputs if necessary. unsigned Rep = 8 / VecTy.getVectorNumElements(); for (unsigned i = 0; i != 8; ++i) { SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32); Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z); } for (ArrayRef A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) { for (unsigned i = 0, e = A.size()/2; i != e; ++i) Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]); } // Move the value directly to a predicate register. return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG); } return SDValue(); } SDValue HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { MVT VecTy = ty(Op); const SDLoc &dl(Op); if (VecTy.getSizeInBits() == 64) { assert(Op.getNumOperands() == 2); return getCombine(Op.getOperand(1), Op.getOperand(0), dl, VecTy, DAG); } MVT ElemTy = VecTy.getVectorElementType(); if (ElemTy == MVT::i1) { assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1); MVT OpTy = ty(Op.getOperand(0)); // Scale is how many times the operands need to be contracted to match // the representation in the target register. unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements(); assert(Scale == Op.getNumOperands() && Scale > 1); // First, convert all bool vectors to integers, then generate pairwise // inserts to form values of doubled length. Up until there are only // two values left to concatenate, all of these values will fit in a // 32-bit integer, so keep them as i32 to use 32-bit inserts. SmallVector Words[2]; unsigned IdxW = 0; for (SDValue P : Op.getNode()->op_values()) { SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P); for (unsigned R = Scale; R > 1; R /= 2) { W = contractPredicate(W, dl, DAG); W = getCombine(DAG.getUNDEF(MVT::i32), W, dl, MVT::i64, DAG); } W = LoHalf(W, DAG); Words[IdxW].push_back(W); } while (Scale > 2) { SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32); Words[IdxW ^ 1].clear(); for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) { SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1]; // Insert W1 into W0 right next to the significant bits of W0. SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, {W0, W1, WidthV, WidthV}); Words[IdxW ^ 1].push_back(T); } IdxW ^= 1; Scale /= 2; } // At this point there should only be two words left, and Scale should be 2. assert(Scale == 2 && Words[IdxW].size() == 2); SDValue WW = getCombine(Words[IdxW][1], Words[IdxW][0], dl, MVT::i64, DAG); return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW); } return SDValue(); } SDValue HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { SDValue Vec = Op.getOperand(0); MVT ElemTy = ty(Vec).getVectorElementType(); return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG); } SDValue HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op), ty(Op), ty(Op), DAG); } SDValue HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2), SDLoc(Op), ty(Op).getVectorElementType(), DAG); } SDValue HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { SDValue ValV = Op.getOperand(1); return insertVector(Op.getOperand(0), ValV, Op.getOperand(2), SDLoc(Op), ty(ValV), DAG); } bool HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { // Assuming the caller does not have either a signext or zeroext modifier, and // only one value is accepted, any reasonable truncation is allowed. if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; // FIXME: in principle up to 64-bit could be made safe, but it would be very // fragile at the moment: any support for multiple value returns would be // liable to disallow tail calls involving i64 -> iN truncation in many cases. return Ty1->getPrimitiveSizeInBits() <= 32; } SDValue HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const { MVT Ty = ty(Op); const SDLoc &dl(Op); LoadSDNode *LN = cast(Op.getNode()); MVT MemTy = LN->getMemoryVT().getSimpleVT(); ISD::LoadExtType ET = LN->getExtensionType(); bool LoadPred = MemTy == MVT::v2i1 || MemTy == MVT::v4i1 || MemTy == MVT::v8i1; if (LoadPred) { SDValue NL = DAG.getLoad( LN->getAddressingMode(), ISD::ZEXTLOAD, MVT::i32, dl, LN->getChain(), LN->getBasePtr(), LN->getOffset(), LN->getPointerInfo(), /*MemoryVT*/ MVT::i8, LN->getAlign(), LN->getMemOperand()->getFlags(), LN->getAAInfo(), LN->getRanges()); LN = cast(NL.getNode()); } Align ClaimAlign = LN->getAlign(); if (!validateConstPtrAlignment(LN->getBasePtr(), ClaimAlign, dl, DAG)) return replaceMemWithUndef(Op, DAG); // Call LowerUnalignedLoad for all loads, it recognizes loads that // don't need extra aligning. SDValue LU = LowerUnalignedLoad(SDValue(LN, 0), DAG); if (LoadPred) { SDValue TP = getInstr(Hexagon::C2_tfrrp, dl, MemTy, {LU}, DAG); if (ET == ISD::SEXTLOAD) { TP = DAG.getSExtOrTrunc(TP, dl, Ty); } else if (ET != ISD::NON_EXTLOAD) { TP = DAG.getZExtOrTrunc(TP, dl, Ty); } SDValue Ch = cast(LU.getNode())->getChain(); return DAG.getMergeValues({TP, Ch}, dl); } return LU; } SDValue HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const { const SDLoc &dl(Op); StoreSDNode *SN = cast(Op.getNode()); SDValue Val = SN->getValue(); MVT Ty = ty(Val); if (Ty == MVT::v2i1 || Ty == MVT::v4i1 || Ty == MVT::v8i1) { // Store the exact predicate (all bits). SDValue TR = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {Val}, DAG); SDValue NS = DAG.getTruncStore(SN->getChain(), dl, TR, SN->getBasePtr(), MVT::i8, SN->getMemOperand()); if (SN->isIndexed()) { NS = DAG.getIndexedStore(NS, dl, SN->getBasePtr(), SN->getOffset(), SN->getAddressingMode()); } SN = cast(NS.getNode()); } Align ClaimAlign = SN->getAlign(); if (!validateConstPtrAlignment(SN->getBasePtr(), ClaimAlign, dl, DAG)) return replaceMemWithUndef(Op, DAG); MVT StoreTy = SN->getMemoryVT().getSimpleVT(); Align NeedAlign = Subtarget.getTypeAlignment(StoreTy); if (ClaimAlign < NeedAlign) return expandUnalignedStore(SN, DAG); return SDValue(SN, 0); } SDValue HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG) const { LoadSDNode *LN = cast(Op.getNode()); MVT LoadTy = ty(Op); unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy).value(); unsigned HaveAlign = LN->getAlign().value(); if (HaveAlign >= NeedAlign) return Op; const SDLoc &dl(Op); const DataLayout &DL = DAG.getDataLayout(); LLVMContext &Ctx = *DAG.getContext(); // If the load aligning is disabled or the load can be broken up into two // smaller legal loads, do the default (target-independent) expansion. bool DoDefault = false; // Handle it in the default way if this is an indexed load. if (!LN->isUnindexed()) DoDefault = true; if (!AlignLoads) { if (allowsMemoryAccessForAlignment(Ctx, DL, LN->getMemoryVT(), *LN->getMemOperand())) return Op; DoDefault = true; } if (!DoDefault && (2 * HaveAlign) == NeedAlign) { // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)". MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign) : MVT::getVectorVT(MVT::i8, HaveAlign); DoDefault = allowsMemoryAccessForAlignment(Ctx, DL, PartTy, *LN->getMemOperand()); } if (DoDefault) { std::pair P = expandUnalignedLoad(LN, DAG); return DAG.getMergeValues({P.first, P.second}, dl); } // The code below generates two loads, both aligned as NeedAlign, and // with the distance of NeedAlign between them. For that to cover the // bits that need to be loaded (and without overlapping), the size of // the loads should be equal to NeedAlign. This is true for all loadable // types, but add an assertion in case something changes in the future. assert(LoadTy.getSizeInBits() == 8*NeedAlign); unsigned LoadLen = NeedAlign; SDValue Base = LN->getBasePtr(); SDValue Chain = LN->getChain(); auto BO = getBaseAndOffset(Base); unsigned BaseOpc = BO.first.getOpcode(); if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0) return Op; if (BO.second % LoadLen != 0) { BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first, DAG.getConstant(BO.second % LoadLen, dl, MVT::i32)); BO.second -= BO.second % LoadLen; } SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR) ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first, DAG.getConstant(NeedAlign, dl, MVT::i32)) : BO.first; SDValue Base0 = DAG.getMemBasePlusOffset(BaseNoOff, TypeSize::getFixed(BO.second), dl); SDValue Base1 = DAG.getMemBasePlusOffset( BaseNoOff, TypeSize::getFixed(BO.second + LoadLen), dl); MachineMemOperand *WideMMO = nullptr; if (MachineMemOperand *MMO = LN->getMemOperand()) { MachineFunction &MF = DAG.getMachineFunction(); WideMMO = MF.getMachineMemOperand( MMO->getPointerInfo(), MMO->getFlags(), 2 * LoadLen, Align(LoadLen), MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), MMO->getFailureOrdering()); } SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO); SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO); SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy, {Load1, Load0, BaseNoOff.getOperand(0)}); SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Load0.getValue(1), Load1.getValue(1)); SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl); return M; } SDValue HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const { SDValue X = Op.getOperand(0), Y = Op.getOperand(1); auto *CY = dyn_cast(Y); if (!CY) return SDValue(); const SDLoc &dl(Op); SDVTList VTs = Op.getNode()->getVTList(); assert(VTs.NumVTs == 2); assert(VTs.VTs[1] == MVT::i1); unsigned Opc = Op.getOpcode(); if (CY) { uint64_t VY = CY->getZExtValue(); assert(VY != 0 && "This should have been folded"); // X +/- 1 if (VY != 1) return SDValue(); if (Opc == ISD::UADDO) { SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y}); SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG), ISD::SETEQ); return DAG.getMergeValues({Op, Ov}, dl); } if (Opc == ISD::USUBO) { SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y}); SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ); return DAG.getMergeValues({Op, Ov}, dl); } } return SDValue(); } SDValue HexagonTargetLowering::LowerUAddSubOCarry(SDValue Op, SelectionDAG &DAG) const { const SDLoc &dl(Op); unsigned Opc = Op.getOpcode(); SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2); if (Opc == ISD::UADDO_CARRY) return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(), { X, Y, C }); EVT CarryTy = C.getValueType(); SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(), { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) }); SDValue Out[] = { SubC.getValue(0), DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) }; return DAG.getMergeValues(Out, dl); } SDValue HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Offset = Op.getOperand(1); SDValue Handler = Op.getOperand(2); SDLoc dl(Op); auto PtrVT = getPointerTy(DAG.getDataLayout()); // Mark function as containing a call to EH_RETURN. HexagonMachineFunctionInfo *FuncInfo = DAG.getMachineFunction().getInfo(); FuncInfo->setHasEHReturn(); unsigned OffsetReg = Hexagon::R28; SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT), DAG.getIntPtrConstant(4, dl)); Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo()); Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset); // Not needed we already use it as explict input to EH_RETURN. // MF.getRegInfo().addLiveOut(OffsetReg); return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain); } SDValue HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { unsigned Opc = Op.getOpcode(); // Handle INLINEASM first. if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR) return LowerINLINEASM(Op, DAG); if (isHvxOperation(Op.getNode(), DAG)) { // If HVX lowering returns nothing, try the default lowering. if (SDValue V = LowerHvxOperation(Op, DAG)) return V; } switch (Opc) { default: #ifndef NDEBUG Op.getNode()->dumpr(&DAG); if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END) errs() << "Error: check for a non-legal type in this operation\n"; #endif llvm_unreachable("Should not custom lower this!"); case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG); case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::BITCAST: return LowerBITCAST(Op, DAG); case ISD::LOAD: return LowerLoad(Op, DAG); case ISD::STORE: return LowerStore(Op, DAG); case ISD::UADDO: case ISD::USUBO: return LowerUAddSubO(Op, DAG); case ISD::UADDO_CARRY: case ISD::USUBO_CARRY: return LowerUAddSubOCarry(Op, DAG); case ISD::SRA: case ISD::SHL: case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG); case ISD::ROTL: return LowerROTL(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); case ISD::VACOPY: return LowerVACOPY(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::VSELECT: return LowerVSELECT(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); case ISD::PREFETCH: return LowerPREFETCH(Op, DAG); case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG); break; } return SDValue(); } void HexagonTargetLowering::LowerOperationWrapper(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { if (isHvxOperation(N, DAG)) { LowerHvxOperationWrapper(N, Results, DAG); if (!Results.empty()) return; } SDValue Op(N, 0); unsigned Opc = N->getOpcode(); switch (Opc) { case HexagonISD::SSAT: case HexagonISD::USAT: Results.push_back(opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG)); break; case ISD::STORE: // We are only custom-lowering stores to verify the alignment of the // address if it is a compile-time constant. Since a store can be // modified during type-legalization (the value being stored may need // legalization), return empty Results here to indicate that we don't // really make any changes in the custom lowering. return; default: TargetLowering::LowerOperationWrapper(N, Results, DAG); break; } } void HexagonTargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { if (isHvxOperation(N, DAG)) { ReplaceHvxNodeResults(N, Results, DAG); if (!Results.empty()) return; } const SDLoc &dl(N); switch (N->getOpcode()) { case ISD::SRL: case ISD::SRA: case ISD::SHL: return; case ISD::BITCAST: // Handle a bitcast from v8i1 to i8. if (N->getValueType(0) == MVT::i8) { if (N->getOperand(0).getValueType() == MVT::v8i1) { SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, N->getOperand(0), DAG); SDValue T = DAG.getAnyExtOrTrunc(P, dl, MVT::i8); Results.push_back(T); } } break; } } SDValue HexagonTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (isHvxOperation(N, DCI.DAG)) { if (SDValue V = PerformHvxDAGCombine(N, DCI)) return V; return SDValue(); } SDValue Op(N, 0); const SDLoc &dl(Op); unsigned Opc = Op.getOpcode(); if (Opc == ISD::TRUNCATE) { SDValue Op0 = Op.getOperand(0); // fold (truncate (build pair x, y)) -> (truncate x) or x if (Op0.getOpcode() == ISD::BUILD_PAIR) { EVT TruncTy = Op.getValueType(); SDValue Elem0 = Op0.getOperand(0); // if we match the low element of the pair, just return it. if (Elem0.getValueType() == TruncTy) return Elem0; // otherwise, if the low part is still too large, apply the truncate. if (Elem0.getValueType().bitsGT(TruncTy)) return DCI.DAG.getNode(ISD::TRUNCATE, dl, TruncTy, Elem0); } } if (DCI.isBeforeLegalizeOps()) return SDValue(); if (Opc == HexagonISD::P2D) { SDValue P = Op.getOperand(0); switch (P.getOpcode()) { case HexagonISD::PTRUE: return DCI.DAG.getConstant(-1, dl, ty(Op)); case HexagonISD::PFALSE: return getZero(dl, ty(Op), DCI.DAG); default: break; } } else if (Opc == ISD::VSELECT) { // This is pretty much duplicated in HexagonISelLoweringHVX... // // (vselect (xor x, ptrue), v0, v1) -> (vselect x, v1, v0) SDValue Cond = Op.getOperand(0); if (Cond->getOpcode() == ISD::XOR) { SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1); if (C1->getOpcode() == HexagonISD::PTRUE) { SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0, Op.getOperand(2), Op.getOperand(1)); return VSel; } } } else if (Opc == ISD::TRUNCATE) { SDValue Op0 = Op.getOperand(0); // fold (truncate (build pair x, y)) -> (truncate x) or x if (Op0.getOpcode() == ISD::BUILD_PAIR) { MVT TruncTy = ty(Op); SDValue Elem0 = Op0.getOperand(0); // if we match the low element of the pair, just return it. if (ty(Elem0) == TruncTy) return Elem0; // otherwise, if the low part is still too large, apply the truncate. if (ty(Elem0).bitsGT(TruncTy)) return DCI.DAG.getNode(ISD::TRUNCATE, dl, TruncTy, Elem0); } } else if (Opc == ISD::OR) { // fold (or (shl xx, s), (zext y)) -> (COMBINE (shl xx, s-32), y) // if s >= 32 auto fold0 = [&, this](SDValue Op) { if (ty(Op) != MVT::i64) return SDValue(); SDValue Shl = Op.getOperand(0); SDValue Zxt = Op.getOperand(1); if (Shl.getOpcode() != ISD::SHL) std::swap(Shl, Zxt); if (Shl.getOpcode() != ISD::SHL || Zxt.getOpcode() != ISD::ZERO_EXTEND) return SDValue(); SDValue Z = Zxt.getOperand(0); auto *Amt = dyn_cast(Shl.getOperand(1)); if (Amt && Amt->getZExtValue() >= 32 && ty(Z).getSizeInBits() <= 32) { unsigned A = Amt->getZExtValue(); SDValue S = Shl.getOperand(0); SDValue T0 = DCI.DAG.getNode(ISD::SHL, dl, ty(S), S, DCI.DAG.getConstant(32 - A, dl, MVT::i32)); SDValue T1 = DCI.DAG.getZExtOrTrunc(T0, dl, MVT::i32); SDValue T2 = DCI.DAG.getZExtOrTrunc(Z, dl, MVT::i32); return DCI.DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {T1, T2}); } return SDValue(); }; if (SDValue R = fold0(Op)) return R; } return SDValue(); } /// Returns relocation base for the given PIC jumptable. SDValue HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const { int Idx = cast(Table)->getIndex(); EVT VT = Table.getValueType(); SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T); } //===----------------------------------------------------------------------===// // Inline Assembly Support //===----------------------------------------------------------------------===// TargetLowering::ConstraintType HexagonTargetLowering::getConstraintType(StringRef Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'q': case 'v': if (Subtarget.useHVXOps()) return C_RegisterClass; break; case 'a': return C_RegisterClass; default: break; } } return TargetLowering::getConstraintType(Constraint); } std::pair HexagonTargetLowering::getRegForInlineAsmConstraint( const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'r': // R0-R31 switch (VT.SimpleTy) { default: return {0u, nullptr}; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::f32: return {0u, &Hexagon::IntRegsRegClass}; case MVT::i64: case MVT::f64: return {0u, &Hexagon::DoubleRegsRegClass}; } break; case 'a': // M0-M1 if (VT != MVT::i32) return {0u, nullptr}; return {0u, &Hexagon::ModRegsRegClass}; case 'q': // q0-q3 switch (VT.getSizeInBits()) { default: return {0u, nullptr}; case 64: case 128: return {0u, &Hexagon::HvxQRRegClass}; } break; case 'v': // V0-V31 switch (VT.getSizeInBits()) { default: return {0u, nullptr}; case 512: return {0u, &Hexagon::HvxVRRegClass}; case 1024: if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps()) return {0u, &Hexagon::HvxVRRegClass}; return {0u, &Hexagon::HvxWRRegClass}; case 2048: return {0u, &Hexagon::HvxWRRegClass}; } break; default: return {0u, nullptr}; } } return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); } /// isFPImmLegal - Returns true if the target can instruction select the /// specified FP immediate natively. If false, the legalizer will /// materialize the FP immediate as a load from a constant pool. bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize) const { return true; } /// isLegalAddressingMode - Return true if the addressing mode represented by /// AM is legal for this target, for a load/store of the specified type. bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { if (Ty->isSized()) { // When LSR detects uses of the same base address to access different // types (e.g. unions), it will assume a conservative type for these // uses: // LSR Use: Kind=Address of void in addrspace(4294967295), ... // The type Ty passed here would then be "void". Skip the alignment // checks, but do not return false right away, since that confuses // LSR into crashing. Align A = DL.getABITypeAlign(Ty); // The base offset must be a multiple of the alignment. if (!isAligned(A, AM.BaseOffs)) return false; // The shifted offset must fit in 11 bits. if (!isInt<11>(AM.BaseOffs >> Log2(A))) return false; } // No global is ever allowed as a base. if (AM.BaseGV) return false; int Scale = AM.Scale; if (Scale < 0) Scale = -Scale; switch (Scale) { case 0: // No scale reg, "r+i", "r", or just "i". break; default: // No scaled addressing mode. return false; } return true; } /// Return true if folding a constant offset with the given GlobalAddress is /// legal. It is frequently not legal in PIC relocation models. bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { return HTM.getRelocationModel() == Reloc::Static; } /// isLegalICmpImmediate - Return true if the specified immediate is legal /// icmp immediate, that is the target has icmp instructions which can compare /// a register against the immediate without having to materialize the /// immediate into a register. bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const { return Imm >= -512 && Imm <= 511; } /// IsEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. Targets which want to do tail call /// optimization should implement this function. bool HexagonTargetLowering::IsEligibleForTailCallOptimization( SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, bool IsCalleeStructRet, bool IsCallerStructRet, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SelectionDAG& DAG) const { const Function &CallerF = DAG.getMachineFunction().getFunction(); CallingConv::ID CallerCC = CallerF.getCallingConv(); bool CCMatch = CallerCC == CalleeCC; // *************************************************************************** // Look for obvious safe cases to perform tail call optimization that do not // require ABI changes. // *************************************************************************** // If this is a tail call via a function pointer, then don't do it! if (!isa(Callee) && !isa(Callee)) { return false; } // Do not optimize if the calling conventions do not match and the conventions // used are not C or Fast. if (!CCMatch) { bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast); bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast); // If R & E, then ok. if (!R || !E) return false; } // Do not tail call optimize vararg calls. if (IsVarArg) return false; // Also avoid tail call optimization if either caller or callee uses struct // return semantics. if (IsCalleeStructRet || IsCallerStructRet) return false; // In addition to the cases above, we also disable Tail Call Optimization if // the calling convention code that at least one outgoing argument needs to // go on the stack. We cannot check that here because at this point that // information is not available. return true; } /// Returns the target specific optimal type for load and store operations as /// a result of memset, memcpy, and memmove lowering. /// /// If DstAlign is zero that means it's safe to destination alignment can /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't /// a need to check it against alignment requirement, probably because the /// source does not need to be loaded. If 'IsMemset' is true, that means it's /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it /// does not need to be loaded. It returns EVT::Other if the type should be /// determined using generic target-independent logic. EVT HexagonTargetLowering::getOptimalMemOpType( const MemOp &Op, const AttributeList &FuncAttributes) const { if (Op.size() >= 8 && Op.isAligned(Align(8))) return MVT::i64; if (Op.size() >= 4 && Op.isAligned(Align(4))) return MVT::i32; if (Op.size() >= 2 && Op.isAligned(Align(2))) return MVT::i16; return MVT::Other; } bool HexagonTargetLowering::allowsMemoryAccess( LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const { MVT SVT = VT.getSimpleVT(); if (Subtarget.isHVXVectorType(SVT, true)) return allowsHvxMemoryAccess(SVT, Flags, Fast); return TargetLoweringBase::allowsMemoryAccess( Context, DL, VT, AddrSpace, Alignment, Flags, Fast); } bool HexagonTargetLowering::allowsMisalignedMemoryAccesses( EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const { MVT SVT = VT.getSimpleVT(); if (Subtarget.isHVXVectorType(SVT, true)) return allowsHvxMisalignedMemoryAccesses(SVT, Flags, Fast); if (Fast) *Fast = 0; return false; } std::pair HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const { if (Subtarget.isHVXVectorType(VT, true)) { unsigned BitWidth = VT.getSizeInBits(); unsigned VecWidth = Subtarget.getVectorLength() * 8; if (VT.getVectorElementType() == MVT::i1) return std::make_pair(&Hexagon::HvxQRRegClass, 1); if (BitWidth == VecWidth) return std::make_pair(&Hexagon::HvxVRRegClass, 1); assert(BitWidth == 2 * VecWidth); return std::make_pair(&Hexagon::HvxWRRegClass, 1); } return TargetLowering::findRepresentativeClass(TRI, VT); } bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT) const { // TODO: This may be worth removing. Check regression tests for diffs. if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT)) return false; auto *L = cast(Load); std::pair BO = getBaseAndOffset(L->getBasePtr()); // Small-data object, do not shrink. if (BO.first.getOpcode() == HexagonISD::CONST32_GP) return false; if (GlobalAddressSDNode *GA = dyn_cast(BO.first)) { auto &HTM = static_cast(getTargetMachine()); const auto *GO = dyn_cast_or_null(GA->getGlobal()); return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM); } return true; } void HexagonTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const { AdjustHvxInstrPostInstrSelection(MI, Node); } Value *HexagonTargetLowering::emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy, Value *Addr, AtomicOrdering Ord) const { BasicBlock *BB = Builder.GetInsertBlock(); Module *M = BB->getParent()->getParent(); unsigned SZ = ValueTy->getPrimitiveSizeInBits(); assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported"); Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked : Intrinsic::hexagon_L4_loadd_locked; Function *Fn = Intrinsic::getDeclaration(M, IntID); Value *Call = Builder.CreateCall(Fn, Addr, "larx"); return Builder.CreateBitCast(Call, ValueTy); } /// Perform a store-conditional operation to Addr. Return the status of the /// store. This should be 0 if the store succeeded, non-zero otherwise. Value *HexagonTargetLowering::emitStoreConditional(IRBuilderBase &Builder, Value *Val, Value *Addr, AtomicOrdering Ord) const { BasicBlock *BB = Builder.GetInsertBlock(); Module *M = BB->getParent()->getParent(); Type *Ty = Val->getType(); unsigned SZ = Ty->getPrimitiveSizeInBits(); Type *CastTy = Builder.getIntNTy(SZ); assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported"); Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked : Intrinsic::hexagon_S4_stored_locked; Function *Fn = Intrinsic::getDeclaration(M, IntID); Val = Builder.CreateBitCast(Val, CastTy); Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx"); Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), ""); Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext())); return Ext; } TargetLowering::AtomicExpansionKind HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { // Do not expand loads and stores that don't exceed 64 bits. return LI->getType()->getPrimitiveSizeInBits() > 64 ? AtomicExpansionKind::LLOnly : AtomicExpansionKind::None; } TargetLowering::AtomicExpansionKind HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { // Do not expand loads and stores that don't exceed 64 bits. return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64 ? AtomicExpansionKind::Expand : AtomicExpansionKind::None; } TargetLowering::AtomicExpansionKind HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR( AtomicCmpXchgInst *AI) const { return AtomicExpansionKind::LLSC; }