//===- CSKYConstantIslandPass.cpp - Emit PC Relative loads ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // // Loading constants inline is expensive on CSKY and it's in general better // to place the constant nearby in code space and then it can be loaded with a // simple 16/32 bit load instruction like lrw. // // The constants can be not just numbers but addresses of functions and labels. // This can be particularly helpful in static relocation mode for embedded // non-linux targets. // //===----------------------------------------------------------------------===// #include "CSKY.h" #include "CSKYConstantPoolValue.h" #include "CSKYMachineFunctionInfo.h" #include "CSKYSubtarget.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/IR/Type.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "CSKY-constant-islands" STATISTIC(NumCPEs, "Number of constpool entries"); STATISTIC(NumSplit, "Number of uncond branches inserted"); STATISTIC(NumCBrFixed, "Number of cond branches fixed"); STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); namespace { using Iter = MachineBasicBlock::iterator; using ReverseIter = MachineBasicBlock::reverse_iterator; /// CSKYConstantIslands - Due to limited PC-relative displacements, CSKY /// requires constant pool entries to be scattered among the instructions /// inside a function. To do this, it completely ignores the normal LLVM /// constant pool; instead, it places constants wherever it feels like with /// special instructions. /// /// The terminology used in this pass includes: /// Islands - Clumps of constants placed in the function. /// Water - Potential places where an island could be formed. /// CPE - A constant pool entry that has been placed somewhere, which /// tracks a list of users. class CSKYConstantIslands : public MachineFunctionPass { /// BasicBlockInfo - Information about the offset and size of a single /// basic block. struct BasicBlockInfo { /// Offset - Distance from the beginning of the function to the beginning /// of this basic block. /// /// Offsets are computed assuming worst case padding before an aligned /// block. This means that subtracting basic block offsets always gives a /// conservative estimate of the real distance which may be smaller. /// /// Because worst case padding is used, the computed offset of an aligned /// block may not actually be aligned. unsigned Offset = 0; /// Size - Size of the basic block in bytes. If the block contains /// inline assembly, this is a worst case estimate. /// /// The size does not include any alignment padding whether from the /// beginning of the block, or from an aligned jump table at the end. unsigned Size = 0; BasicBlockInfo() = default; unsigned postOffset() const { return Offset + Size; } }; std::vector BBInfo; /// WaterList - A sorted list of basic blocks where islands could be placed /// (i.e. blocks that don't fall through to the following block, due /// to a return, unreachable, or unconditional branch). std::vector WaterList; /// NewWaterList - The subset of WaterList that was created since the /// previous iteration by inserting unconditional branches. SmallSet NewWaterList; using water_iterator = std::vector::iterator; /// CPUser - One user of a constant pool, keeping the machine instruction /// pointer, the constant pool being referenced, and the max displacement /// allowed from the instruction to the CP. The HighWaterMark records the /// highest basic block where a new CPEntry can be placed. To ensure this /// pass terminates, the CP entries are initially placed at the end of the /// function and then move monotonically to lower addresses. The /// exception to this rule is when the current CP entry for a particular /// CPUser is out of range, but there is another CP entry for the same /// constant value in range. We want to use the existing in-range CP /// entry, but if it later moves out of range, the search for new water /// should resume where it left off. The HighWaterMark is used to record /// that point. struct CPUser { MachineInstr *MI; MachineInstr *CPEMI; MachineBasicBlock *HighWaterMark; private: unsigned MaxDisp; public: bool NegOk; CPUser(MachineInstr *Mi, MachineInstr *Cpemi, unsigned Maxdisp, bool Neg) : MI(Mi), CPEMI(Cpemi), MaxDisp(Maxdisp), NegOk(Neg) { HighWaterMark = CPEMI->getParent(); } /// getMaxDisp - Returns the maximum displacement supported by MI. unsigned getMaxDisp() const { return MaxDisp - 16; } void setMaxDisp(unsigned Val) { MaxDisp = Val; } }; /// CPUsers - Keep track of all of the machine instructions that use various /// constant pools and their max displacement. std::vector CPUsers; /// CPEntry - One per constant pool entry, keeping the machine instruction /// pointer, the constpool index, and the number of CPUser's which /// reference this entry. struct CPEntry { MachineInstr *CPEMI; unsigned CPI; unsigned RefCount; CPEntry(MachineInstr *Cpemi, unsigned Cpi, unsigned Rc = 0) : CPEMI(Cpemi), CPI(Cpi), RefCount(Rc) {} }; /// CPEntries - Keep track of all of the constant pool entry machine /// instructions. For each original constpool index (i.e. those that /// existed upon entry to this pass), it keeps a vector of entries. /// Original elements are cloned as we go along; the clones are /// put in the vector of the original element, but have distinct CPIs. std::vector> CPEntries; /// ImmBranch - One per immediate branch, keeping the machine instruction /// pointer, conditional or unconditional, the max displacement, /// and (if isCond is true) the corresponding unconditional branch /// opcode. struct ImmBranch { MachineInstr *MI; unsigned MaxDisp : 31; bool IsCond : 1; int UncondBr; ImmBranch(MachineInstr *Mi, unsigned Maxdisp, bool Cond, int Ubr) : MI(Mi), MaxDisp(Maxdisp), IsCond(Cond), UncondBr(Ubr) {} }; /// ImmBranches - Keep track of all the immediate branch instructions. /// std::vector ImmBranches; const CSKYSubtarget *STI = nullptr; const CSKYInstrInfo *TII; CSKYMachineFunctionInfo *MFI; MachineFunction *MF = nullptr; MachineConstantPool *MCP = nullptr; unsigned PICLabelUId; void initPICLabelUId(unsigned UId) { PICLabelUId = UId; } unsigned createPICLabelUId() { return PICLabelUId++; } public: static char ID; CSKYConstantIslands() : MachineFunctionPass(ID) {} StringRef getPassName() const override { return "CSKY Constant Islands"; } bool runOnMachineFunction(MachineFunction &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } void doInitialPlacement(std::vector &CPEMIs); CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); Align getCPEAlign(const MachineInstr &CPEMI); void initializeFunctionInfo(const std::vector &CPEMIs); unsigned getOffsetOf(MachineInstr *MI) const; unsigned getUserOffset(CPUser &) const; void dumpBBs(); bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, unsigned Disp, bool NegativeOK); bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, const CPUser &U); void computeBlockSize(MachineBasicBlock *MBB); MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI); void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); void adjustBBOffsetsAfter(MachineBasicBlock *BB); bool decrementCPEReferenceCount(unsigned CPI, MachineInstr *CPEMI); int findInRangeCPEntry(CPUser &U, unsigned UserOffset); bool findAvailableWater(CPUser &U, unsigned UserOffset, water_iterator &WaterIter); void createNewWater(unsigned CPUserIndex, unsigned UserOffset, MachineBasicBlock *&NewMBB); bool handleConstantPoolUser(unsigned CPUserIndex); void removeDeadCPEMI(MachineInstr *CPEMI); bool removeUnusedCPEntries(); bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, MachineInstr *CPEMI, unsigned Disp, bool NegOk, bool DoDump = false); bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, CPUser &U, unsigned &Growth); bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); bool fixupImmediateBr(ImmBranch &Br); bool fixupConditionalBr(ImmBranch &Br); bool fixupUnconditionalBr(ImmBranch &Br); }; } // end anonymous namespace char CSKYConstantIslands::ID = 0; bool CSKYConstantIslands::isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, const CPUser &U) { return isOffsetInRange(UserOffset, TrialOffset, U.getMaxDisp(), U.NegOk); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) /// print block size and offset information - debugging LLVM_DUMP_METHOD void CSKYConstantIslands::dumpBBs() { for (unsigned J = 0, E = BBInfo.size(); J != E; ++J) { const BasicBlockInfo &BBI = BBInfo[J]; dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) << format(" size=%#x\n", BBInfo[J].Size); } } #endif bool CSKYConstantIslands::runOnMachineFunction(MachineFunction &Mf) { MF = &Mf; MCP = Mf.getConstantPool(); STI = &static_cast(Mf.getSubtarget()); LLVM_DEBUG(dbgs() << "***** CSKYConstantIslands: " << MCP->getConstants().size() << " CP entries, aligned to " << MCP->getConstantPoolAlign().value() << " bytes *****\n"); TII = STI->getInstrInfo(); MFI = MF->getInfo(); // This pass invalidates liveness information when it splits basic blocks. MF->getRegInfo().invalidateLiveness(); // Renumber all of the machine basic blocks in the function, guaranteeing that // the numbers agree with the position of the block in the function. MF->RenumberBlocks(); bool MadeChange = false; // Perform the initial placement of the constant pool entries. To start with, // we put them all at the end of the function. std::vector CPEMIs; if (!MCP->isEmpty()) doInitialPlacement(CPEMIs); /// The next UID to take is the first unused one. initPICLabelUId(CPEMIs.size()); // Do the initial scan of the function, building up information about the // sizes of each block, the location of all the water, and finding all of the // constant pool users. initializeFunctionInfo(CPEMIs); CPEMIs.clear(); LLVM_DEBUG(dumpBBs()); /// Remove dead constant pool entries. MadeChange |= removeUnusedCPEntries(); // Iteratively place constant pool entries and fix up branches until there // is no change. unsigned NoCPIters = 0, NoBRIters = 0; (void)NoBRIters; while (true) { LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); bool CPChange = false; for (unsigned I = 0, E = CPUsers.size(); I != E; ++I) CPChange |= handleConstantPoolUser(I); if (CPChange && ++NoCPIters > 30) report_fatal_error("Constant Island pass failed to converge!"); LLVM_DEBUG(dumpBBs()); // Clear NewWaterList now. If we split a block for branches, it should // appear as "new water" for the next iteration of constant pool placement. NewWaterList.clear(); LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); bool BRChange = false; for (unsigned I = 0, E = ImmBranches.size(); I != E; ++I) BRChange |= fixupImmediateBr(ImmBranches[I]); if (BRChange && ++NoBRIters > 30) report_fatal_error("Branch Fix Up pass failed to converge!"); LLVM_DEBUG(dumpBBs()); if (!CPChange && !BRChange) break; MadeChange = true; } LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); BBInfo.clear(); WaterList.clear(); CPUsers.clear(); CPEntries.clear(); ImmBranches.clear(); return MadeChange; } /// doInitialPlacement - Perform the initial placement of the constant pool /// entries. To start with, we put them all at the end of the function. void CSKYConstantIslands::doInitialPlacement( std::vector &CPEMIs) { // Create the basic block to hold the CPE's. MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); MF->push_back(BB); // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). const Align MaxAlign = MCP->getConstantPoolAlign(); // Mark the basic block as required by the const-pool. BB->setAlignment(Align(2)); // The function needs to be as aligned as the basic blocks. The linker may // move functions around based on their alignment. MF->ensureAlignment(BB->getAlignment()); // Order the entries in BB by descending alignment. That ensures correct // alignment of all entries as long as BB is sufficiently aligned. Keep // track of the insertion point for each alignment. We are going to bucket // sort the entries as they are created. SmallVector InsPoint(Log2(MaxAlign) + 1, BB->end()); // Add all of the constants from the constant pool to the end block, use an // identity mapping of CPI's to CPE's. const std::vector &CPs = MCP->getConstants(); const DataLayout &TD = MF->getDataLayout(); for (unsigned I = 0, E = CPs.size(); I != E; ++I) { unsigned Size = CPs[I].getSizeInBytes(TD); assert(Size >= 4 && "Too small constant pool entry"); Align Alignment = CPs[I].getAlign(); // Verify that all constant pool entries are a multiple of their alignment. // If not, we would have to pad them out so that instructions stay aligned. assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!"); // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. unsigned LogAlign = Log2(Alignment); MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; MachineInstr *CPEMI = BuildMI(*BB, InsAt, DebugLoc(), TII->get(CSKY::CONSTPOOL_ENTRY)) .addImm(I) .addConstantPoolIndex(I) .addImm(Size); CPEMIs.push_back(CPEMI); // Ensure that future entries with higher alignment get inserted before // CPEMI. This is bucket sort with iterators. for (unsigned A = LogAlign + 1; A <= Log2(MaxAlign); ++A) if (InsPoint[A] == InsAt) InsPoint[A] = CPEMI; // Add a new CPEntry, but no corresponding CPUser yet. CPEntries.emplace_back(1, CPEntry(CPEMI, I)); ++NumCPEs; LLVM_DEBUG(dbgs() << "Moved CPI#" << I << " to end of function, size = " << Size << ", align = " << Alignment.value() << '\n'); } LLVM_DEBUG(BB->dump()); } /// BBHasFallthrough - Return true if the specified basic block can fallthrough /// into the block immediately after it. static bool bbHasFallthrough(MachineBasicBlock *MBB) { // Get the next machine basic block in the function. MachineFunction::iterator MBBI = MBB->getIterator(); // Can't fall off end of function. if (std::next(MBBI) == MBB->getParent()->end()) return false; MachineBasicBlock *NextBB = &*std::next(MBBI); for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) if (*I == NextBB) return true; return false; } /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, /// look up the corresponding CPEntry. CSKYConstantIslands::CPEntry * CSKYConstantIslands::findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI) { std::vector &CPEs = CPEntries[CPI]; // Number of entries per constpool index should be small, just do a // linear search. for (unsigned I = 0, E = CPEs.size(); I != E; ++I) { if (CPEs[I].CPEMI == CPEMI) return &CPEs[I]; } return nullptr; } /// getCPEAlign - Returns the required alignment of the constant pool entry /// represented by CPEMI. Alignment is measured in log2(bytes) units. Align CSKYConstantIslands::getCPEAlign(const MachineInstr &CPEMI) { assert(CPEMI.getOpcode() == CSKY::CONSTPOOL_ENTRY); unsigned CPI = CPEMI.getOperand(1).getIndex(); assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); return MCP->getConstants()[CPI].getAlign(); } /// initializeFunctionInfo - Do the initial scan of the function, building up /// information about the sizes of each block, the location of all the water, /// and finding all of the constant pool users. void CSKYConstantIslands::initializeFunctionInfo( const std::vector &CPEMIs) { BBInfo.clear(); BBInfo.resize(MF->getNumBlockIDs()); // First thing, compute the size of all basic blocks, and see if the function // has any inline assembly in it. If so, we have to be conservative about // alignment assumptions, as we don't know for sure the size of any // instructions in the inline assembly. for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) computeBlockSize(&*I); // Compute block offsets. adjustBBOffsetsAfter(&MF->front()); // Now go back through the instructions and build up our data structures. for (MachineBasicBlock &MBB : *MF) { // If this block doesn't fall through into the next MBB, then this is // 'water' that a constant pool island could be placed. if (!bbHasFallthrough(&MBB)) WaterList.push_back(&MBB); for (MachineInstr &MI : MBB) { if (MI.isDebugInstr()) continue; int Opc = MI.getOpcode(); if (MI.isBranch() && !MI.isIndirectBranch()) { bool IsCond = MI.isConditionalBranch(); unsigned Bits = 0; unsigned Scale = 1; int UOpc = CSKY::BR32; switch (MI.getOpcode()) { case CSKY::BR16: case CSKY::BF16: case CSKY::BT16: Bits = 10; Scale = 2; break; default: Bits = 16; Scale = 2; break; } // Record this immediate branch. unsigned MaxOffs = ((1 << (Bits - 1)) - 1) * Scale; ImmBranches.push_back(ImmBranch(&MI, MaxOffs, IsCond, UOpc)); } if (Opc == CSKY::CONSTPOOL_ENTRY) continue; // Scan the instructions for constant pool operands. for (unsigned Op = 0, E = MI.getNumOperands(); Op != E; ++Op) if (MI.getOperand(Op).isCPI()) { // We found one. The addressing mode tells us the max displacement // from the PC that this instruction permits. // Basic size info comes from the TSFlags field. unsigned Bits = 0; unsigned Scale = 1; bool NegOk = false; switch (Opc) { default: llvm_unreachable("Unknown addressing mode for CP reference!"); case CSKY::MOVIH32: case CSKY::ORI32: continue; case CSKY::PseudoTLSLA32: case CSKY::JSRI32: case CSKY::JMPI32: case CSKY::LRW32: case CSKY::LRW32_Gen: Bits = 16; Scale = 4; break; case CSKY::f2FLRW_S: case CSKY::f2FLRW_D: Bits = 8; Scale = 4; break; case CSKY::GRS32: Bits = 17; Scale = 2; NegOk = true; break; } // Remember that this is a user of a CP entry. unsigned CPI = MI.getOperand(Op).getIndex(); MachineInstr *CPEMI = CPEMIs[CPI]; unsigned MaxOffs = ((1 << Bits) - 1) * Scale; CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk)); // Increment corresponding CPEntry reference count. CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); assert(CPE && "Cannot find a corresponding CPEntry!"); CPE->RefCount++; // Instructions can only use one CP entry, don't bother scanning the // rest of the operands. break; } } } } /// computeBlockSize - Compute the size and some alignment information for MBB. /// This function updates BBInfo directly. void CSKYConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; BBI.Size = 0; for (const MachineInstr &MI : *MBB) BBI.Size += TII->getInstSizeInBytes(MI); } /// getOffsetOf - Return the current offset of the specified machine instruction /// from the start of the function. This offset changes as stuff is moved /// around inside the function. unsigned CSKYConstantIslands::getOffsetOf(MachineInstr *MI) const { MachineBasicBlock *MBB = MI->getParent(); // The offset is composed of two things: the sum of the sizes of all MBB's // before this instruction's block, and the offset from the start of the block // it is in. unsigned Offset = BBInfo[MBB->getNumber()].Offset; // Sum instructions before MI in MBB. for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { assert(I != MBB->end() && "Didn't find MI in its own basic block?"); Offset += TII->getInstSizeInBytes(*I); } return Offset; } /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB /// ID. static bool compareMbbNumbers(const MachineBasicBlock *LHS, const MachineBasicBlock *RHS) { return LHS->getNumber() < RHS->getNumber(); } /// updateForInsertedWaterBlock - When a block is newly inserted into the /// machine function, it upsets all of the block numbers. Renumber the blocks /// and update the arrays that parallel this numbering. void CSKYConstantIslands::updateForInsertedWaterBlock( MachineBasicBlock *NewBB) { // Renumber the MBB's to keep them consecutive. NewBB->getParent()->RenumberBlocks(NewBB); // Insert an entry into BBInfo to align it properly with the (newly // renumbered) block numbers. BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); // Next, update WaterList. Specifically, we need to add NewMBB as having // available water after it. water_iterator IP = llvm::lower_bound(WaterList, NewBB, compareMbbNumbers); WaterList.insert(IP, NewBB); } unsigned CSKYConstantIslands::getUserOffset(CPUser &U) const { unsigned UserOffset = getOffsetOf(U.MI); UserOffset &= ~3u; return UserOffset; } /// Split the basic block containing MI into two blocks, which are joined by /// an unconditional branch. Update data structures and renumber blocks to /// account for this change and returns the newly created block. MachineBasicBlock * CSKYConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) { MachineBasicBlock *OrigBB = MI.getParent(); // Create a new MBB for the code after the OrigBB. MachineBasicBlock *NewBB = MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); MachineFunction::iterator MBBI = ++OrigBB->getIterator(); MF->insert(MBBI, NewBB); // Splice the instructions starting with MI over to NewBB. NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); // Add an unconditional branch from OrigBB to NewBB. // Note the new unconditional branch is not being recorded. // There doesn't seem to be meaningful DebugInfo available; this doesn't // correspond to anything in the source. // TODO: Add support for 16bit instr. BuildMI(OrigBB, DebugLoc(), TII->get(CSKY::BR32)).addMBB(NewBB); ++NumSplit; // Update the CFG. All succs of OrigBB are now succs of NewBB. NewBB->transferSuccessors(OrigBB); // OrigBB branches to NewBB. OrigBB->addSuccessor(NewBB); // Update internal data structures to account for the newly inserted MBB. // This is almost the same as updateForInsertedWaterBlock, except that // the Water goes after OrigBB, not NewBB. MF->RenumberBlocks(NewBB); // Insert an entry into BBInfo to align it properly with the (newly // renumbered) block numbers. BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); // Next, update WaterList. Specifically, we need to add OrigMBB as having // available water after it (but not if it's already there, which happens // when splitting before a conditional branch that is followed by an // unconditional branch - in that case we want to insert NewBB). water_iterator IP = llvm::lower_bound(WaterList, OrigBB, compareMbbNumbers); MachineBasicBlock *WaterBB = *IP; if (WaterBB == OrigBB) WaterList.insert(std::next(IP), NewBB); else WaterList.insert(IP, OrigBB); NewWaterList.insert(OrigBB); // Figure out how large the OrigBB is. As the first half of the original // block, it cannot contain a tablejump. The size includes // the new jump we added. (It should be possible to do this without // recounting everything, but it's very confusing, and this is rarely // executed.) computeBlockSize(OrigBB); // Figure out how large the NewMBB is. As the second half of the original // block, it may contain a tablejump. computeBlockSize(NewBB); // All BBOffsets following these blocks must be modified. adjustBBOffsetsAfter(OrigBB); return NewBB; } /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool /// reference) is within MaxDisp of TrialOffset (a proposed location of a /// constant pool entry). bool CSKYConstantIslands::isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, unsigned MaxDisp, bool NegativeOK) { if (UserOffset <= TrialOffset) { // User before the Trial. if (TrialOffset - UserOffset <= MaxDisp) return true; } else if (NegativeOK) { if (UserOffset - TrialOffset <= MaxDisp) return true; } return false; } /// isWaterInRange - Returns true if a CPE placed after the specified /// Water (a basic block) will be in range for the specific MI. /// /// Compute how much the function will grow by inserting a CPE after Water. bool CSKYConstantIslands::isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, CPUser &U, unsigned &Growth) { unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(); unsigned NextBlockOffset; Align NextBlockAlignment; MachineFunction::const_iterator NextBlock = ++Water->getIterator(); if (NextBlock == MF->end()) { NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); NextBlockAlignment = Align(4); } else { NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; NextBlockAlignment = NextBlock->getAlignment(); } unsigned Size = U.CPEMI->getOperand(2).getImm(); unsigned CPEEnd = CPEOffset + Size; // The CPE may be able to hide in the alignment padding before the next // block. It may also cause more padding to be required if it is more aligned // that the next block. if (CPEEnd > NextBlockOffset) { Growth = CPEEnd - NextBlockOffset; // Compute the padding that would go at the end of the CPE to align the next // block. Growth += offsetToAlignment(CPEEnd, NextBlockAlignment); // If the CPE is to be inserted before the instruction, that will raise // the offset of the instruction. Also account for unknown alignment padding // in blocks between CPE and the user. if (CPEOffset < UserOffset) UserOffset += Growth; } else // CPE fits in existing padding. Growth = 0; return isOffsetInRange(UserOffset, CPEOffset, U); } /// isCPEntryInRange - Returns true if the distance between specific MI and /// specific ConstPool entry instruction can fit in MI's displacement field. bool CSKYConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, MachineInstr *CPEMI, unsigned MaxDisp, bool NegOk, bool DoDump) { unsigned CPEOffset = getOffsetOf(CPEMI); if (DoDump) { LLVM_DEBUG({ unsigned Block = MI->getParent()->getNumber(); const BasicBlockInfo &BBI = BBInfo[Block]; dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() << " max delta=" << MaxDisp << format(" insn address=%#x", UserOffset) << " in " << printMBBReference(*MI->getParent()) << ": " << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI << format("CPE address=%#x offset=%+d: ", CPEOffset, int(CPEOffset - UserOffset)); }); } return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); } #ifndef NDEBUG /// BBIsJumpedOver - Return true of the specified basic block's only predecessor /// unconditionally branches to its only successor. static bool bbIsJumpedOver(MachineBasicBlock *MBB) { if (MBB->pred_size() != 1 || MBB->succ_size() != 1) return false; MachineBasicBlock *Succ = *MBB->succ_begin(); MachineBasicBlock *Pred = *MBB->pred_begin(); MachineInstr *PredMI = &Pred->back(); if (PredMI->getOpcode() == CSKY::BR32 /*TODO: change to 16bit instr. */) return PredMI->getOperand(0).getMBB() == Succ; return false; } #endif void CSKYConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { unsigned BBNum = BB->getNumber(); for (unsigned I = BBNum + 1, E = MF->getNumBlockIDs(); I < E; ++I) { // Get the offset and known bits at the end of the layout predecessor. // Include the alignment of the current block. unsigned Offset = BBInfo[I - 1].Offset + BBInfo[I - 1].Size; BBInfo[I].Offset = Offset; } } /// decrementCPEReferenceCount - find the constant pool entry with index CPI /// and instruction CPEMI, and decrement its refcount. If the refcount /// becomes 0 remove the entry and instruction. Returns true if we removed /// the entry, false if we didn't. bool CSKYConstantIslands::decrementCPEReferenceCount(unsigned CPI, MachineInstr *CPEMI) { // Find the old entry. Eliminate it if it is no longer used. CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); assert(CPE && "Unexpected!"); if (--CPE->RefCount == 0) { removeDeadCPEMI(CPEMI); CPE->CPEMI = nullptr; --NumCPEs; return true; } return false; } /// LookForCPEntryInRange - see if the currently referenced CPE is in range; /// if not, see if an in-range clone of the CPE is in range, and if so, /// change the data structures so the user references the clone. Returns: /// 0 = no existing entry found /// 1 = entry found, and there were no code insertions or deletions /// 2 = entry found, and there were code insertions or deletions int CSKYConstantIslands::findInRangeCPEntry(CPUser &U, unsigned UserOffset) { MachineInstr *UserMI = U.MI; MachineInstr *CPEMI = U.CPEMI; // Check to see if the CPE is already in-range. if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, true)) { LLVM_DEBUG(dbgs() << "In range\n"); return 1; } // No. Look for previously created clones of the CPE that are in range. unsigned CPI = CPEMI->getOperand(1).getIndex(); std::vector &CPEs = CPEntries[CPI]; for (unsigned I = 0, E = CPEs.size(); I != E; ++I) { // We already tried this one if (CPEs[I].CPEMI == CPEMI) continue; // Removing CPEs can leave empty entries, skip if (CPEs[I].CPEMI == nullptr) continue; if (isCPEntryInRange(UserMI, UserOffset, CPEs[I].CPEMI, U.getMaxDisp(), U.NegOk)) { LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" << CPEs[I].CPI << "\n"); // Point the CPUser node to the replacement U.CPEMI = CPEs[I].CPEMI; // Change the CPI in the instruction operand to refer to the clone. for (unsigned J = 0, E = UserMI->getNumOperands(); J != E; ++J) if (UserMI->getOperand(J).isCPI()) { UserMI->getOperand(J).setIndex(CPEs[I].CPI); break; } // Adjust the refcount of the clone... CPEs[I].RefCount++; // ...and the original. If we didn't remove the old entry, none of the // addresses changed, so we don't need another pass. return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; } } return 0; } /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in /// the specific unconditional branch instruction. static inline unsigned getUnconditionalBrDisp(int Opc) { unsigned Bits, Scale; switch (Opc) { case CSKY::BR16: Bits = 10; Scale = 2; break; case CSKY::BR32: Bits = 16; Scale = 2; break; default: assert(0); break; } unsigned MaxOffs = ((1 << (Bits - 1)) - 1) * Scale; return MaxOffs; } /// findAvailableWater - Look for an existing entry in the WaterList in which /// we can place the CPE referenced from U so it's within range of U's MI. /// Returns true if found, false if not. If it returns true, WaterIter /// is set to the WaterList entry. /// To ensure that this pass /// terminates, the CPE location for a particular CPUser is only allowed to /// move to a lower address, so search backward from the end of the list and /// prefer the first water that is in range. bool CSKYConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, water_iterator &WaterIter) { if (WaterList.empty()) return false; unsigned BestGrowth = ~0u; for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; --IP) { MachineBasicBlock *WaterBB = *IP; // Check if water is in range and is either at a lower address than the // current "high water mark" or a new water block that was created since // the previous iteration by inserting an unconditional branch. In the // latter case, we want to allow resetting the high water mark back to // this new water since we haven't seen it before. Inserting branches // should be relatively uncommon and when it does happen, we want to be // sure to take advantage of it for all the CPEs near that block, so that // we don't insert more branches than necessary. unsigned Growth; if (isWaterInRange(UserOffset, WaterBB, U, Growth) && (WaterBB->getNumber() < U.HighWaterMark->getNumber() || NewWaterList.count(WaterBB)) && Growth < BestGrowth) { // This is the least amount of required padding seen so far. BestGrowth = Growth; WaterIter = IP; LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) << " Growth=" << Growth << '\n'); // Keep looking unless it is perfect. if (BestGrowth == 0) return true; } if (IP == B) break; } return BestGrowth != ~0u; } /// createNewWater - No existing WaterList entry will work for /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the /// block is used if in range, and the conditional branch munged so control /// flow is correct. Otherwise the block is split to create a hole with an /// unconditional branch around it. In either case NewMBB is set to a /// block following which the new island can be inserted (the WaterList /// is not adjusted). void CSKYConstantIslands::createNewWater(unsigned CPUserIndex, unsigned UserOffset, MachineBasicBlock *&NewMBB) { CPUser &U = CPUsers[CPUserIndex]; MachineInstr *UserMI = U.MI; MachineInstr *CPEMI = U.CPEMI; MachineBasicBlock *UserMBB = UserMI->getParent(); const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; // If the block does not end in an unconditional branch already, and if the // end of the block is within range, make new water there. if (bbHasFallthrough(UserMBB)) { // Size of branch to insert. unsigned Delta = 4; // Compute the offset where the CPE will begin. unsigned CPEOffset = UserBBI.postOffset() + Delta; if (isOffsetInRange(UserOffset, CPEOffset, U)) { LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) << format(", expected CPE offset %#x\n", CPEOffset)); NewMBB = &*++UserMBB->getIterator(); // Add an unconditional branch from UserMBB to fallthrough block. Record // it for branch lengthening; this new branch will not get out of range, // but if the preceding conditional branch is out of range, the targets // will be exchanged, and the altered branch may be out of range, so the // machinery has to know about it. // TODO: Add support for 16bit instr. int UncondBr = CSKY::BR32; auto *NewMI = BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) .addMBB(NewMBB) .getInstr(); unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); ImmBranches.push_back( ImmBranch(&UserMBB->back(), MaxDisp, false, UncondBr)); BBInfo[UserMBB->getNumber()].Size += TII->getInstSizeInBytes(*NewMI); adjustBBOffsetsAfter(UserMBB); return; } } // What a big block. Find a place within the block to split it. // Try to split the block so it's fully aligned. Compute the latest split // point where we can add a 4-byte branch instruction, and then align to // Align which is the largest possible alignment in the function. const Align Align = MF->getAlignment(); unsigned BaseInsertOffset = UserOffset + U.getMaxDisp(); LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", BaseInsertOffset)); // The 4 in the following is for the unconditional branch we'll be inserting // Alignment of the island is handled // inside isOffsetInRange. BaseInsertOffset -= 4; LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) << " la=" << Log2(Align) << '\n'); // This could point off the end of the block if we've already got constant // pool entries following this block; only the last one is in the water list. // Back past any possible branches (allow for a conditional and a maximally // long unconditional). if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { BaseInsertOffset = UserBBI.postOffset() - 8; LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); } unsigned EndInsertOffset = BaseInsertOffset + 4 + CPEMI->getOperand(2).getImm(); MachineBasicBlock::iterator MI = UserMI; ++MI; unsigned CPUIndex = CPUserIndex + 1; unsigned NumCPUsers = CPUsers.size(); for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); Offset < BaseInsertOffset; Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { assert(MI != UserMBB->end() && "Fell off end of block"); if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { CPUser &U = CPUsers[CPUIndex]; if (!isOffsetInRange(Offset, EndInsertOffset, U)) { // Shift intertion point by one unit of alignment so it is within reach. BaseInsertOffset -= Align.value(); EndInsertOffset -= Align.value(); } // This is overly conservative, as we don't account for CPEMIs being // reused within the block, but it doesn't matter much. Also assume CPEs // are added in order with alignment padding. We may eventually be able // to pack the aligned CPEs better. EndInsertOffset += U.CPEMI->getOperand(2).getImm(); CPUIndex++; } } NewMBB = splitBlockBeforeInstr(*--MI); } /// handleConstantPoolUser - Analyze the specified user, checking to see if it /// is out-of-range. If so, pick up the constant pool value and move it some /// place in-range. Return true if we changed any addresses (thus must run /// another pass of branch lengthening), false otherwise. bool CSKYConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { CPUser &U = CPUsers[CPUserIndex]; MachineInstr *UserMI = U.MI; MachineInstr *CPEMI = U.CPEMI; unsigned CPI = CPEMI->getOperand(1).getIndex(); unsigned Size = CPEMI->getOperand(2).getImm(); // Compute this only once, it's expensive. unsigned UserOffset = getUserOffset(U); // See if the current entry is within range, or there is a clone of it // in range. int result = findInRangeCPEntry(U, UserOffset); if (result == 1) return false; if (result == 2) return true; // Look for water where we can place this CPE. MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); MachineBasicBlock *NewMBB; water_iterator IP; if (findAvailableWater(U, UserOffset, IP)) { LLVM_DEBUG(dbgs() << "Found water in range\n"); MachineBasicBlock *WaterBB = *IP; // If the original WaterList entry was "new water" on this iteration, // propagate that to the new island. This is just keeping NewWaterList // updated to match the WaterList, which will be updated below. if (NewWaterList.erase(WaterBB)) NewWaterList.insert(NewIsland); // The new CPE goes before the following block (NewMBB). NewMBB = &*++WaterBB->getIterator(); } else { LLVM_DEBUG(dbgs() << "No water found\n"); createNewWater(CPUserIndex, UserOffset, NewMBB); // splitBlockBeforeInstr adds to WaterList, which is important when it is // called while handling branches so that the water will be seen on the // next iteration for constant pools, but in this context, we don't want // it. Check for this so it will be removed from the WaterList. // Also remove any entry from NewWaterList. MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); IP = llvm::find(WaterList, WaterBB); if (IP != WaterList.end()) NewWaterList.erase(WaterBB); // We are adding new water. Update NewWaterList. NewWaterList.insert(NewIsland); } // Remove the original WaterList entry; we want subsequent insertions in // this vicinity to go after the one we're about to insert. This // considerably reduces the number of times we have to move the same CPE // more than once and is also important to ensure the algorithm terminates. if (IP != WaterList.end()) WaterList.erase(IP); // Okay, we know we can put an island before NewMBB now, do it! MF->insert(NewMBB->getIterator(), NewIsland); // Update internal data structures to account for the newly inserted MBB. updateForInsertedWaterBlock(NewIsland); // Decrement the old entry, and remove it if refcount becomes 0. decrementCPEReferenceCount(CPI, CPEMI); // No existing clone of this CPE is within range. // We will be generating a new clone. Get a UID for it. unsigned ID = createPICLabelUId(); // Now that we have an island to add the CPE to, clone the original CPE and // add it to the island. U.HighWaterMark = NewIsland; U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(CSKY::CONSTPOOL_ENTRY)) .addImm(ID) .addConstantPoolIndex(CPI) .addImm(Size); CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); ++NumCPEs; // Mark the basic block as aligned as required by the const-pool entry. NewIsland->setAlignment(getCPEAlign(*U.CPEMI)); // Increase the size of the island block to account for the new entry. BBInfo[NewIsland->getNumber()].Size += Size; adjustBBOffsetsAfter(&*--NewIsland->getIterator()); // Finally, change the CPI in the instruction operand to be ID. for (unsigned I = 0, E = UserMI->getNumOperands(); I != E; ++I) if (UserMI->getOperand(I).isCPI()) { UserMI->getOperand(I).setIndex(ID); break; } LLVM_DEBUG( dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); return true; } /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update /// sizes and offsets of impacted basic blocks. void CSKYConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { MachineBasicBlock *CPEBB = CPEMI->getParent(); unsigned Size = CPEMI->getOperand(2).getImm(); CPEMI->eraseFromParent(); BBInfo[CPEBB->getNumber()].Size -= Size; // All succeeding offsets have the current size value added in, fix this. if (CPEBB->empty()) { BBInfo[CPEBB->getNumber()].Size = 0; // This block no longer needs to be aligned. CPEBB->setAlignment(Align(4)); } else { // Entries are sorted by descending alignment, so realign from the front. CPEBB->setAlignment(getCPEAlign(*CPEBB->begin())); } adjustBBOffsetsAfter(CPEBB); // An island has only one predecessor BB and one successor BB. Check if // this BB's predecessor jumps directly to this BB's successor. This // shouldn't happen currently. assert(!bbIsJumpedOver(CPEBB) && "How did this happen?"); // FIXME: remove the empty blocks after all the work is done? } /// removeUnusedCPEntries - Remove constant pool entries whose refcounts /// are zero. bool CSKYConstantIslands::removeUnusedCPEntries() { unsigned MadeChange = false; for (unsigned I = 0, E = CPEntries.size(); I != E; ++I) { std::vector &CPEs = CPEntries[I]; for (unsigned J = 0, Ee = CPEs.size(); J != Ee; ++J) { if (CPEs[J].RefCount == 0 && CPEs[J].CPEMI) { removeDeadCPEMI(CPEs[J].CPEMI); CPEs[J].CPEMI = nullptr; MadeChange = true; } } } return MadeChange; } /// isBBInRange - Returns true if the distance between specific MI and /// specific BB can fit in MI's displacement field. bool CSKYConstantIslands::isBBInRange(MachineInstr *MI, MachineBasicBlock *DestBB, unsigned MaxDisp) { unsigned BrOffset = getOffsetOf(MI); unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB) << " from " << printMBBReference(*MI->getParent()) << " max delta=" << MaxDisp << " from " << getOffsetOf(MI) << " to " << DestOffset << " offset " << int(DestOffset - BrOffset) << "\t" << *MI); if (BrOffset <= DestOffset) { // Branch before the Dest. if (DestOffset - BrOffset <= MaxDisp) return true; } else { if (BrOffset - DestOffset <= MaxDisp) return true; } return false; } /// fixupImmediateBr - Fix up an immediate branch whose destination is too far /// away to fit in its displacement field. bool CSKYConstantIslands::fixupImmediateBr(ImmBranch &Br) { MachineInstr *MI = Br.MI; MachineBasicBlock *DestBB = TII->getBranchDestBlock(*MI); // Check to see if the DestBB is already in-range. if (isBBInRange(MI, DestBB, Br.MaxDisp)) return false; if (!Br.IsCond) return fixupUnconditionalBr(Br); return fixupConditionalBr(Br); } /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is /// too far away to fit in its displacement field. If the LR register has been /// spilled in the epilogue, then we can use BSR to implement a far jump. /// Otherwise, add an intermediate branch instruction to a branch. bool CSKYConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { MachineInstr *MI = Br.MI; MachineBasicBlock *MBB = MI->getParent(); if (!MFI->isLRSpilled()) report_fatal_error("underestimated function size"); // Use BSR to implement far jump. Br.MaxDisp = ((1 << (26 - 1)) - 1) * 2; MI->setDesc(TII->get(CSKY::BSR32_BR)); BBInfo[MBB->getNumber()].Size += 4; adjustBBOffsetsAfter(MBB); ++NumUBrFixed; LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); return true; } /// fixupConditionalBr - Fix up a conditional branch whose destination is too /// far away to fit in its displacement field. It is converted to an inverse /// conditional branch + an unconditional branch to the destination. bool CSKYConstantIslands::fixupConditionalBr(ImmBranch &Br) { MachineInstr *MI = Br.MI; MachineBasicBlock *DestBB = TII->getBranchDestBlock(*MI); SmallVector Cond; Cond.push_back(MachineOperand::CreateImm(MI->getOpcode())); Cond.push_back(MI->getOperand(0)); TII->reverseBranchCondition(Cond); // Add an unconditional branch to the destination and invert the branch // condition to jump over it: // bteqz L1 // => // bnez L2 // b L1 // L2: // If the branch is at the end of its MBB and that has a fall-through block, // direct the updated conditional branch to the fall-through block. Otherwise, // split the MBB before the next instruction. MachineBasicBlock *MBB = MI->getParent(); MachineInstr *BMI = &MBB->back(); bool NeedSplit = (BMI != MI) || !bbHasFallthrough(MBB); ++NumCBrFixed; if (BMI != MI) { if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && BMI->isUnconditionalBranch()) { // Last MI in the BB is an unconditional branch. Can we simply invert the // condition and swap destinations: // beqz L1 // b L2 // => // bnez L2 // b L1 MachineBasicBlock *NewDest = TII->getBranchDestBlock(*BMI); if (isBBInRange(MI, NewDest, Br.MaxDisp)) { LLVM_DEBUG( dbgs() << " Invert Bcc condition and swap its destination with " << *BMI); BMI->getOperand(BMI->getNumExplicitOperands() - 1).setMBB(DestBB); MI->getOperand(MI->getNumExplicitOperands() - 1).setMBB(NewDest); MI->setDesc(TII->get(Cond[0].getImm())); return true; } } } if (NeedSplit) { splitBlockBeforeInstr(*MI); // No need for the branch to the next block. We're adding an unconditional // branch to the destination. int Delta = TII->getInstSizeInBytes(MBB->back()); BBInfo[MBB->getNumber()].Size -= Delta; MBB->back().eraseFromParent(); // BBInfo[SplitBB].Offset is wrong temporarily, fixed below // The conditional successor will be swapped between the BBs after this, so // update CFG. MBB->addSuccessor(DestBB); std::next(MBB->getIterator())->removeSuccessor(DestBB); } MachineBasicBlock *NextBB = &*++MBB->getIterator(); LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) << " also invert condition and change dest. to " << printMBBReference(*NextBB) << "\n"); // Insert a new conditional branch and a new unconditional branch. // Also update the ImmBranch as well as adding a new entry for the new branch. BuildMI(MBB, DebugLoc(), TII->get(Cond[0].getImm())) .addReg(MI->getOperand(0).getReg()) .addMBB(NextBB); Br.MI = &MBB->back(); BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); // Remove the old conditional branch. It may or may not still be in MBB. BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI); MI->eraseFromParent(); adjustBBOffsetsAfter(MBB); return true; } /// Returns a pass that converts branches to long branches. FunctionPass *llvm::createCSKYConstantIslandPass() { return new CSKYConstantIslands(); } INITIALIZE_PASS(CSKYConstantIslands, DEBUG_TYPE, "CSKY constant island placement and branch shortening pass", false, false)