//===-------------- BPFMIChecking.cpp - MI Checking Legality -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass performs checking to signal errors for certain illegal usages at // MachineInstruction layer. Specially, the result of XADD{32,64} insn should // not be used. The pass is done at the PreEmit pass right before the // machine code is emitted at which point the register liveness information // is still available. // //===----------------------------------------------------------------------===// #include "BPF.h" #include "BPFInstrInfo.h" #include "BPFTargetMachine.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/Support/Debug.h" using namespace llvm; #define DEBUG_TYPE "bpf-mi-checking" namespace { struct BPFMIPreEmitChecking : public MachineFunctionPass { static char ID; MachineFunction *MF; const TargetRegisterInfo *TRI; BPFMIPreEmitChecking() : MachineFunctionPass(ID) { initializeBPFMIPreEmitCheckingPass(*PassRegistry::getPassRegistry()); } private: // Initialize class variables. void initialize(MachineFunction &MFParm); bool processAtomicInsts(); public: // Main entry point for this pass. bool runOnMachineFunction(MachineFunction &MF) override { if (!skipFunction(MF.getFunction())) { initialize(MF); return processAtomicInsts(); } return false; } }; // Initialize class variables. void BPFMIPreEmitChecking::initialize(MachineFunction &MFParm) { MF = &MFParm; TRI = MF->getSubtarget().getRegisterInfo(); LLVM_DEBUG(dbgs() << "*** BPF PreEmit checking pass ***\n\n"); } // Make sure all Defs of XADD are dead, meaning any result of XADD insn is not // used. // // NOTE: BPF backend hasn't enabled sub-register liveness track, so when the // source and destination operands of XADD are GPR32, there is no sub-register // dead info. If we rely on the generic MachineInstr::allDefsAreDead, then we // will raise false alarm on GPR32 Def. // // To support GPR32 Def, ideally we could just enable sub-registr liveness track // on BPF backend, then allDefsAreDead could work on GPR32 Def. This requires // implementing TargetSubtargetInfo::enableSubRegLiveness on BPF. // // However, sub-register liveness tracking module inside LLVM is actually // designed for the situation where one register could be split into more than // one sub-registers for which case each sub-register could have their own // liveness and kill one of them doesn't kill others. So, tracking liveness for // each make sense. // // For BPF, each 64-bit register could only have one 32-bit sub-register. This // is exactly the case which LLVM think brings no benefits for doing // sub-register tracking, because the live range of sub-register must always // equal to its parent register, therefore liveness tracking is disabled even // the back-end has implemented enableSubRegLiveness. The detailed information // is at r232695: // // Author: Matthias Braun // Date: Thu Mar 19 00:21:58 2015 +0000 // Do not track subregister liveness when it brings no benefits // // Hence, for BPF, we enhance MachineInstr::allDefsAreDead. Given the solo // sub-register always has the same liveness as its parent register, LLVM is // already attaching a implicit 64-bit register Def whenever the there is // a sub-register Def. The liveness of the implicit 64-bit Def is available. // For example, for "lock *(u32 *)(r0 + 4) += w9", the MachineOperand info could // be: // // $w9 = XADDW32 killed $r0, 4, $w9(tied-def 0), // implicit killed $r9, implicit-def dead $r9 // // Even though w9 is not marked as Dead, the parent register r9 is marked as // Dead correctly, and it is safe to use such information or our purpose. static bool hasLiveDefs(const MachineInstr &MI, const TargetRegisterInfo *TRI) { const MCRegisterClass *GPR64RegClass = &BPFMCRegisterClasses[BPF::GPRRegClassID]; std::vector GPR32LiveDefs; std::vector GPR64DeadDefs; for (const MachineOperand &MO : MI.operands()) { bool RegIsGPR64; if (!MO.isReg() || MO.isUse()) continue; RegIsGPR64 = GPR64RegClass->contains(MO.getReg()); if (!MO.isDead()) { // It is a GPR64 live Def, we are sure it is live. */ if (RegIsGPR64) return true; // It is a GPR32 live Def, we are unsure whether it is really dead due to // no sub-register liveness tracking. Push it to vector for deferred // check. GPR32LiveDefs.push_back(MO.getReg()); continue; } // Record any GPR64 dead Def as some unmarked GPR32 could be alias of its // low 32-bit. if (RegIsGPR64) GPR64DeadDefs.push_back(MO.getReg()); } // No GPR32 live Def, safe to return false. if (GPR32LiveDefs.empty()) return false; // No GPR64 dead Def, so all those GPR32 live Def can't have alias, therefore // must be truely live, safe to return true. if (GPR64DeadDefs.empty()) return true; // Otherwise, return true if any aliased SuperReg of GPR32 is not dead. for (auto I : GPR32LiveDefs) for (MCPhysReg SR : TRI->superregs(I)) if (!llvm::is_contained(GPR64DeadDefs, SR)) return true; return false; } bool BPFMIPreEmitChecking::processAtomicInsts() { for (MachineBasicBlock &MBB : *MF) { for (MachineInstr &MI : MBB) { if (MI.getOpcode() != BPF::XADDW && MI.getOpcode() != BPF::XADDD && MI.getOpcode() != BPF::XADDW32) continue; LLVM_DEBUG(MI.dump()); if (hasLiveDefs(MI, TRI)) { DebugLoc Empty; const DebugLoc &DL = MI.getDebugLoc(); const Function &F = MF->getFunction(); F.getContext().diagnose(DiagnosticInfoUnsupported{ F, "Invalid usage of the XADD return value", DL}); } } } // Check return values of atomic_fetch_and_{add,and,or,xor}. // If the return is not used, the atomic_fetch_and_ instruction // is replaced with atomic_ instruction. MachineInstr *ToErase = nullptr; bool Changed = false; const BPFInstrInfo *TII = MF->getSubtarget().getInstrInfo(); for (MachineBasicBlock &MBB : *MF) { for (MachineInstr &MI : MBB) { if (ToErase) { ToErase->eraseFromParent(); ToErase = nullptr; } if (MI.getOpcode() != BPF::XFADDW32 && MI.getOpcode() != BPF::XFADDD && MI.getOpcode() != BPF::XFANDW32 && MI.getOpcode() != BPF::XFANDD && MI.getOpcode() != BPF::XFXORW32 && MI.getOpcode() != BPF::XFXORD && MI.getOpcode() != BPF::XFORW32 && MI.getOpcode() != BPF::XFORD) continue; if (hasLiveDefs(MI, TRI)) continue; LLVM_DEBUG(dbgs() << "Transforming "; MI.dump()); unsigned newOpcode; switch (MI.getOpcode()) { case BPF::XFADDW32: newOpcode = BPF::XADDW32; break; case BPF::XFADDD: newOpcode = BPF::XADDD; break; case BPF::XFANDW32: newOpcode = BPF::XANDW32; break; case BPF::XFANDD: newOpcode = BPF::XANDD; break; case BPF::XFXORW32: newOpcode = BPF::XXORW32; break; case BPF::XFXORD: newOpcode = BPF::XXORD; break; case BPF::XFORW32: newOpcode = BPF::XORW32; break; case BPF::XFORD: newOpcode = BPF::XORD; break; default: llvm_unreachable("Incorrect Atomic Instruction Opcode"); } BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(newOpcode)) .add(MI.getOperand(0)) .add(MI.getOperand(1)) .add(MI.getOperand(2)) .add(MI.getOperand(3)); ToErase = &MI; Changed = true; } } return Changed; } } // end default namespace INITIALIZE_PASS(BPFMIPreEmitChecking, "bpf-mi-pemit-checking", "BPF PreEmit Checking", false, false) char BPFMIPreEmitChecking::ID = 0; FunctionPass* llvm::createBPFMIPreEmitCheckingPass() { return new BPFMIPreEmitChecking(); }