//===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the interfaces that AVR uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "AVRISelLowering.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/IR/Function.h" #include "llvm/Support/ErrorHandling.h" #include "AVR.h" #include "AVRMachineFunctionInfo.h" #include "AVRSubtarget.h" #include "AVRTargetMachine.h" #include "MCTargetDesc/AVRMCTargetDesc.h" namespace llvm { AVRTargetLowering::AVRTargetLowering(const AVRTargetMachine &TM, const AVRSubtarget &STI) : TargetLowering(TM), Subtarget(STI) { // Set up the register classes. addRegisterClass(MVT::i8, &AVR::GPR8RegClass); addRegisterClass(MVT::i16, &AVR::DREGSRegClass); // Compute derived properties from the register classes. computeRegisterProperties(Subtarget.getRegisterInfo()); setBooleanContents(ZeroOrOneBooleanContent); setBooleanVectorContents(ZeroOrOneBooleanContent); setSchedulingPreference(Sched::RegPressure); setStackPointerRegisterToSaveRestore(AVR::SP); setSupportsUnalignedAtomics(true); setOperationAction(ISD::GlobalAddress, MVT::i16, Custom); setOperationAction(ISD::BlockAddress, MVT::i16, Custom); setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand); setOperationAction(ISD::INLINEASM, MVT::Other, Custom); for (MVT VT : MVT::integer_valuetypes()) { for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { setLoadExtAction(N, VT, MVT::i1, Promote); setLoadExtAction(N, VT, MVT::i8, Expand); } } setTruncStoreAction(MVT::i16, MVT::i8, Expand); for (MVT VT : MVT::integer_valuetypes()) { setOperationAction(ISD::ADDC, VT, Legal); setOperationAction(ISD::SUBC, VT, Legal); setOperationAction(ISD::ADDE, VT, Legal); setOperationAction(ISD::SUBE, VT, Legal); } // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types // revert into a sub since we don't have an add with immediate instruction. setOperationAction(ISD::ADD, MVT::i32, Custom); setOperationAction(ISD::ADD, MVT::i64, Custom); // our shift instructions are only able to shift 1 bit at a time, so handle // this in a custom way. setOperationAction(ISD::SRA, MVT::i8, Custom); setOperationAction(ISD::SHL, MVT::i8, Custom); setOperationAction(ISD::SRL, MVT::i8, Custom); setOperationAction(ISD::SRA, MVT::i16, Custom); setOperationAction(ISD::SHL, MVT::i16, Custom); setOperationAction(ISD::SRL, MVT::i16, Custom); setOperationAction(ISD::SRA, MVT::i32, Custom); setOperationAction(ISD::SHL, MVT::i32, Custom); setOperationAction(ISD::SRL, MVT::i32, Custom); setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand); setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand); setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand); setOperationAction(ISD::ROTL, MVT::i8, Custom); setOperationAction(ISD::ROTL, MVT::i16, Expand); setOperationAction(ISD::ROTR, MVT::i8, Custom); setOperationAction(ISD::ROTR, MVT::i16, Expand); setOperationAction(ISD::BR_CC, MVT::i8, Custom); setOperationAction(ISD::BR_CC, MVT::i16, Custom); setOperationAction(ISD::BR_CC, MVT::i32, Custom); setOperationAction(ISD::BR_CC, MVT::i64, Custom); setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::SELECT_CC, MVT::i8, Custom); setOperationAction(ISD::SELECT_CC, MVT::i16, Custom); setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); setOperationAction(ISD::SETCC, MVT::i8, Custom); setOperationAction(ISD::SETCC, MVT::i16, Custom); setOperationAction(ISD::SETCC, MVT::i32, Custom); setOperationAction(ISD::SETCC, MVT::i64, Custom); setOperationAction(ISD::SELECT, MVT::i8, Expand); setOperationAction(ISD::SELECT, MVT::i16, Expand); setOperationAction(ISD::BSWAP, MVT::i16, Expand); // Add support for postincrement and predecrement load/stores. setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal); setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal); setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal); setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal); setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal); setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal); setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal); setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal); setOperationAction(ISD::BR_JT, MVT::Other, Expand); setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VAEND, MVT::Other, Expand); setOperationAction(ISD::VAARG, MVT::Other, Expand); setOperationAction(ISD::VACOPY, MVT::Other, Expand); // Atomic operations which must be lowered to rtlib calls for (MVT VT : MVT::integer_valuetypes()) { setOperationAction(ISD::ATOMIC_SWAP, VT, Expand); setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand); setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand); setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand); setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand); setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand); setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand); } // Division/remainder setOperationAction(ISD::UDIV, MVT::i8, Expand); setOperationAction(ISD::UDIV, MVT::i16, Expand); setOperationAction(ISD::UREM, MVT::i8, Expand); setOperationAction(ISD::UREM, MVT::i16, Expand); setOperationAction(ISD::SDIV, MVT::i8, Expand); setOperationAction(ISD::SDIV, MVT::i16, Expand); setOperationAction(ISD::SREM, MVT::i8, Expand); setOperationAction(ISD::SREM, MVT::i16, Expand); // Make division and modulus custom setOperationAction(ISD::UDIVREM, MVT::i8, Custom); setOperationAction(ISD::UDIVREM, MVT::i16, Custom); setOperationAction(ISD::UDIVREM, MVT::i32, Custom); setOperationAction(ISD::SDIVREM, MVT::i8, Custom); setOperationAction(ISD::SDIVREM, MVT::i16, Custom); setOperationAction(ISD::SDIVREM, MVT::i32, Custom); // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co. setOperationAction(ISD::MUL, MVT::i8, Expand); setOperationAction(ISD::MUL, MVT::i16, Expand); // Expand 16 bit multiplications. setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand); // Expand multiplications to libcalls when there is // no hardware MUL. if (!Subtarget.supportsMultiplication()) { setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand); } for (MVT VT : MVT::integer_valuetypes()) { setOperationAction(ISD::MULHS, VT, Expand); setOperationAction(ISD::MULHU, VT, Expand); } for (MVT VT : MVT::integer_valuetypes()) { setOperationAction(ISD::CTPOP, VT, Expand); setOperationAction(ISD::CTLZ, VT, Expand); setOperationAction(ISD::CTTZ, VT, Expand); } for (MVT VT : MVT::integer_valuetypes()) { setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); // TODO: The generated code is pretty poor. Investigate using the // same "shift and subtract with carry" trick that we do for // extending 8-bit to 16-bit. This may require infrastructure // improvements in how we treat 16-bit "registers" to be feasible. } // Division rtlib functions (not supported), use divmod functions instead setLibcallName(RTLIB::SDIV_I8, nullptr); setLibcallName(RTLIB::SDIV_I16, nullptr); setLibcallName(RTLIB::SDIV_I32, nullptr); setLibcallName(RTLIB::UDIV_I8, nullptr); setLibcallName(RTLIB::UDIV_I16, nullptr); setLibcallName(RTLIB::UDIV_I32, nullptr); // Modulus rtlib functions (not supported), use divmod functions instead setLibcallName(RTLIB::SREM_I8, nullptr); setLibcallName(RTLIB::SREM_I16, nullptr); setLibcallName(RTLIB::SREM_I32, nullptr); setLibcallName(RTLIB::UREM_I8, nullptr); setLibcallName(RTLIB::UREM_I16, nullptr); setLibcallName(RTLIB::UREM_I32, nullptr); // Division and modulus rtlib functions setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4"); setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4"); setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4"); setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4"); setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4"); setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4"); // Several of the runtime library functions use a special calling conv setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN); setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN); setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN); setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN); // Trigonometric rtlib functions setLibcallName(RTLIB::SIN_F32, "sin"); setLibcallName(RTLIB::COS_F32, "cos"); setMinFunctionAlignment(Align(2)); setMinimumJumpTableEntries(UINT_MAX); } const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const { #define NODE(name) \ case AVRISD::name: \ return #name switch (Opcode) { default: return nullptr; NODE(RET_GLUE); NODE(RETI_GLUE); NODE(CALL); NODE(WRAPPER); NODE(LSL); NODE(LSLW); NODE(LSR); NODE(LSRW); NODE(ROL); NODE(ROR); NODE(ASR); NODE(ASRW); NODE(LSLLOOP); NODE(LSRLOOP); NODE(ROLLOOP); NODE(RORLOOP); NODE(ASRLOOP); NODE(BRCOND); NODE(CMP); NODE(CMPC); NODE(TST); NODE(SELECT_CC); #undef NODE } } EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, EVT VT) const { assert(!VT.isVector() && "No AVR SetCC type for vectors!"); return MVT::i8; } SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const { unsigned Opc8; const SDNode *N = Op.getNode(); EVT VT = Op.getValueType(); SDLoc dl(N); assert(llvm::has_single_bit(VT.getSizeInBits()) && "Expected power-of-2 shift amount"); if (VT.getSizeInBits() == 32) { if (!isa(N->getOperand(1))) { // 32-bit shifts are converted to a loop in IR. // This should be unreachable. report_fatal_error("Expected a constant shift amount!"); } SDVTList ResTys = DAG.getVTList(MVT::i16, MVT::i16); SDValue SrcLo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i16, Op.getOperand(0), DAG.getConstant(0, dl, MVT::i16)); SDValue SrcHi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i16, Op.getOperand(0), DAG.getConstant(1, dl, MVT::i16)); uint64_t ShiftAmount = N->getConstantOperandVal(1); if (ShiftAmount == 16) { // Special case these two operations because they appear to be used by the // generic codegen parts to lower 32-bit numbers. // TODO: perhaps we can lower shift amounts bigger than 16 to a 16-bit // shift of a part of the 32-bit value? switch (Op.getOpcode()) { case ISD::SHL: { SDValue Zero = DAG.getConstant(0, dl, MVT::i16); return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i32, Zero, SrcLo); } case ISD::SRL: { SDValue Zero = DAG.getConstant(0, dl, MVT::i16); return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i32, SrcHi, Zero); } } } SDValue Cnt = DAG.getTargetConstant(ShiftAmount, dl, MVT::i8); unsigned Opc; switch (Op.getOpcode()) { default: llvm_unreachable("Invalid 32-bit shift opcode!"); case ISD::SHL: Opc = AVRISD::LSLW; break; case ISD::SRL: Opc = AVRISD::LSRW; break; case ISD::SRA: Opc = AVRISD::ASRW; break; } SDValue Result = DAG.getNode(Opc, dl, ResTys, SrcLo, SrcHi, Cnt); return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i32, Result.getValue(0), Result.getValue(1)); } // Expand non-constant shifts to loops. if (!isa(N->getOperand(1))) { switch (Op.getOpcode()) { default: llvm_unreachable("Invalid shift opcode!"); case ISD::SHL: return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0), N->getOperand(1)); case ISD::SRL: return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0), N->getOperand(1)); case ISD::ROTL: { SDValue Amt = N->getOperand(1); EVT AmtVT = Amt.getValueType(); Amt = DAG.getNode(ISD::AND, dl, AmtVT, Amt, DAG.getConstant(VT.getSizeInBits() - 1, dl, AmtVT)); return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0), Amt); } case ISD::ROTR: { SDValue Amt = N->getOperand(1); EVT AmtVT = Amt.getValueType(); Amt = DAG.getNode(ISD::AND, dl, AmtVT, Amt, DAG.getConstant(VT.getSizeInBits() - 1, dl, AmtVT)); return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0), Amt); } case ISD::SRA: return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0), N->getOperand(1)); } } uint64_t ShiftAmount = N->getConstantOperandVal(1); SDValue Victim = N->getOperand(0); switch (Op.getOpcode()) { case ISD::SRA: Opc8 = AVRISD::ASR; break; case ISD::ROTL: Opc8 = AVRISD::ROL; ShiftAmount = ShiftAmount % VT.getSizeInBits(); break; case ISD::ROTR: Opc8 = AVRISD::ROR; ShiftAmount = ShiftAmount % VT.getSizeInBits(); break; case ISD::SRL: Opc8 = AVRISD::LSR; break; case ISD::SHL: Opc8 = AVRISD::LSL; break; default: llvm_unreachable("Invalid shift opcode"); } // Optimize int8/int16 shifts. if (VT.getSizeInBits() == 8) { if (Op.getOpcode() == ISD::SHL && 4 <= ShiftAmount && ShiftAmount < 7) { // Optimize LSL when 4 <= ShiftAmount <= 6. Victim = DAG.getNode(AVRISD::SWAP, dl, VT, Victim); Victim = DAG.getNode(ISD::AND, dl, VT, Victim, DAG.getConstant(0xf0, dl, VT)); ShiftAmount -= 4; } else if (Op.getOpcode() == ISD::SRL && 4 <= ShiftAmount && ShiftAmount < 7) { // Optimize LSR when 4 <= ShiftAmount <= 6. Victim = DAG.getNode(AVRISD::SWAP, dl, VT, Victim); Victim = DAG.getNode(ISD::AND, dl, VT, Victim, DAG.getConstant(0x0f, dl, VT)); ShiftAmount -= 4; } else if (Op.getOpcode() == ISD::SHL && ShiftAmount == 7) { // Optimize LSL when ShiftAmount == 7. Victim = DAG.getNode(AVRISD::LSLBN, dl, VT, Victim, DAG.getConstant(7, dl, VT)); ShiftAmount = 0; } else if (Op.getOpcode() == ISD::SRL && ShiftAmount == 7) { // Optimize LSR when ShiftAmount == 7. Victim = DAG.getNode(AVRISD::LSRBN, dl, VT, Victim, DAG.getConstant(7, dl, VT)); ShiftAmount = 0; } else if (Op.getOpcode() == ISD::SRA && ShiftAmount == 6) { // Optimize ASR when ShiftAmount == 6. Victim = DAG.getNode(AVRISD::ASRBN, dl, VT, Victim, DAG.getConstant(6, dl, VT)); ShiftAmount = 0; } else if (Op.getOpcode() == ISD::SRA && ShiftAmount == 7) { // Optimize ASR when ShiftAmount == 7. Victim = DAG.getNode(AVRISD::ASRBN, dl, VT, Victim, DAG.getConstant(7, dl, VT)); ShiftAmount = 0; } else if (Op.getOpcode() == ISD::ROTL && ShiftAmount == 3) { // Optimize left rotation 3 bits to swap then right rotation 1 bit. Victim = DAG.getNode(AVRISD::SWAP, dl, VT, Victim); Victim = DAG.getNode(AVRISD::ROR, dl, VT, Victim, DAG.getConstant(1, dl, VT)); ShiftAmount = 0; } else if (Op.getOpcode() == ISD::ROTR && ShiftAmount == 3) { // Optimize right rotation 3 bits to swap then left rotation 1 bit. Victim = DAG.getNode(AVRISD::SWAP, dl, VT, Victim); Victim = DAG.getNode(AVRISD::ROL, dl, VT, Victim, DAG.getConstant(1, dl, VT)); ShiftAmount = 0; } else if (Op.getOpcode() == ISD::ROTL && ShiftAmount == 7) { // Optimize left rotation 7 bits to right rotation 1 bit. Victim = DAG.getNode(AVRISD::ROR, dl, VT, Victim, DAG.getConstant(1, dl, VT)); ShiftAmount = 0; } else if (Op.getOpcode() == ISD::ROTR && ShiftAmount == 7) { // Optimize right rotation 7 bits to left rotation 1 bit. Victim = DAG.getNode(AVRISD::ROL, dl, VT, Victim, DAG.getConstant(1, dl, VT)); ShiftAmount = 0; } else if ((Op.getOpcode() == ISD::ROTR || Op.getOpcode() == ISD::ROTL) && ShiftAmount >= 4) { // Optimize left/right rotation with the SWAP instruction. Victim = DAG.getNode(AVRISD::SWAP, dl, VT, Victim); ShiftAmount -= 4; } } else if (VT.getSizeInBits() == 16) { if (Op.getOpcode() == ISD::SRA) // Special optimization for int16 arithmetic right shift. switch (ShiftAmount) { case 15: Victim = DAG.getNode(AVRISD::ASRWN, dl, VT, Victim, DAG.getConstant(15, dl, VT)); ShiftAmount = 0; break; case 14: Victim = DAG.getNode(AVRISD::ASRWN, dl, VT, Victim, DAG.getConstant(14, dl, VT)); ShiftAmount = 0; break; case 7: Victim = DAG.getNode(AVRISD::ASRWN, dl, VT, Victim, DAG.getConstant(7, dl, VT)); ShiftAmount = 0; break; default: break; } if (4 <= ShiftAmount && ShiftAmount < 8) switch (Op.getOpcode()) { case ISD::SHL: Victim = DAG.getNode(AVRISD::LSLWN, dl, VT, Victim, DAG.getConstant(4, dl, VT)); ShiftAmount -= 4; break; case ISD::SRL: Victim = DAG.getNode(AVRISD::LSRWN, dl, VT, Victim, DAG.getConstant(4, dl, VT)); ShiftAmount -= 4; break; default: break; } else if (8 <= ShiftAmount && ShiftAmount < 12) switch (Op.getOpcode()) { case ISD::SHL: Victim = DAG.getNode(AVRISD::LSLWN, dl, VT, Victim, DAG.getConstant(8, dl, VT)); ShiftAmount -= 8; // Only operate on the higher byte for remaining shift bits. Opc8 = AVRISD::LSLHI; break; case ISD::SRL: Victim = DAG.getNode(AVRISD::LSRWN, dl, VT, Victim, DAG.getConstant(8, dl, VT)); ShiftAmount -= 8; // Only operate on the lower byte for remaining shift bits. Opc8 = AVRISD::LSRLO; break; case ISD::SRA: Victim = DAG.getNode(AVRISD::ASRWN, dl, VT, Victim, DAG.getConstant(8, dl, VT)); ShiftAmount -= 8; // Only operate on the lower byte for remaining shift bits. Opc8 = AVRISD::ASRLO; break; default: break; } else if (12 <= ShiftAmount) switch (Op.getOpcode()) { case ISD::SHL: Victim = DAG.getNode(AVRISD::LSLWN, dl, VT, Victim, DAG.getConstant(12, dl, VT)); ShiftAmount -= 12; // Only operate on the higher byte for remaining shift bits. Opc8 = AVRISD::LSLHI; break; case ISD::SRL: Victim = DAG.getNode(AVRISD::LSRWN, dl, VT, Victim, DAG.getConstant(12, dl, VT)); ShiftAmount -= 12; // Only operate on the lower byte for remaining shift bits. Opc8 = AVRISD::LSRLO; break; case ISD::SRA: Victim = DAG.getNode(AVRISD::ASRWN, dl, VT, Victim, DAG.getConstant(8, dl, VT)); ShiftAmount -= 8; // Only operate on the lower byte for remaining shift bits. Opc8 = AVRISD::ASRLO; break; default: break; } } while (ShiftAmount--) { Victim = DAG.getNode(Opc8, dl, VT, Victim); } return Victim; } SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const { unsigned Opcode = Op->getOpcode(); assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && "Invalid opcode for Div/Rem lowering"); bool IsSigned = (Opcode == ISD::SDIVREM); EVT VT = Op->getValueType(0); Type *Ty = VT.getTypeForEVT(*DAG.getContext()); RTLIB::Libcall LC; switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unexpected request for libcall!"); case MVT::i8: LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; case MVT::i16: LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; case MVT::i32: LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; } SDValue InChain = DAG.getEntryNode(); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; for (SDValue const &Value : Op->op_values()) { Entry.Node = Value; Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext()); Entry.IsSExt = IsSigned; Entry.IsZExt = !IsSigned; Args.push_back(Entry); } SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy(DAG.getDataLayout())); Type *RetTy = (Type *)StructType::get(Ty, Ty); SDLoc dl(Op); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl) .setChain(InChain) .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) .setInRegister() .setSExtResult(IsSigned) .setZExtResult(!IsSigned); std::pair CallInfo = LowerCallTo(CLI); return CallInfo.first; } SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { auto DL = DAG.getDataLayout(); const GlobalValue *GV = cast(Op)->getGlobal(); int64_t Offset = cast(Op)->getOffset(); // Create the TargetGlobalAddress node, folding in the constant offset. SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset); return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result); } SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { auto DL = DAG.getDataLayout(); const BlockAddress *BA = cast(Op)->getBlockAddress(); SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL)); return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result); } /// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC. static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) { switch (CC) { default: llvm_unreachable("Unknown condition code!"); case ISD::SETEQ: return AVRCC::COND_EQ; case ISD::SETNE: return AVRCC::COND_NE; case ISD::SETGE: return AVRCC::COND_GE; case ISD::SETLT: return AVRCC::COND_LT; case ISD::SETUGE: return AVRCC::COND_SH; case ISD::SETULT: return AVRCC::COND_LO; } } /// Returns appropriate CP/CPI/CPC nodes code for the given 8/16-bit operands. SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG, SDLoc DL) const { assert((LHS.getSimpleValueType() == RHS.getSimpleValueType()) && "LHS and RHS have different types"); assert(((LHS.getSimpleValueType() == MVT::i16) || (LHS.getSimpleValueType() == MVT::i8)) && "invalid comparison type"); SDValue Cmp; if (LHS.getSimpleValueType() == MVT::i16 && isa(RHS)) { uint64_t Imm = RHS->getAsZExtVal(); // Generate a CPI/CPC pair if RHS is a 16-bit constant. Use the zero // register for the constant RHS if its lower or higher byte is zero. SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS, DAG.getIntPtrConstant(0, DL)); SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS, DAG.getIntPtrConstant(1, DL)); SDValue RHSlo = (Imm & 0xff) == 0 ? DAG.getRegister(Subtarget.getZeroRegister(), MVT::i8) : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, RHS, DAG.getIntPtrConstant(0, DL)); SDValue RHShi = (Imm & 0xff00) == 0 ? DAG.getRegister(Subtarget.getZeroRegister(), MVT::i8) : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, RHS, DAG.getIntPtrConstant(1, DL)); Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo); Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp); } else if (RHS.getSimpleValueType() == MVT::i16 && isa(LHS)) { // Generate a CPI/CPC pair if LHS is a 16-bit constant. Use the zero // register for the constant LHS if its lower or higher byte is zero. uint64_t Imm = LHS->getAsZExtVal(); SDValue LHSlo = (Imm & 0xff) == 0 ? DAG.getRegister(Subtarget.getZeroRegister(), MVT::i8) : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS, DAG.getIntPtrConstant(0, DL)); SDValue LHShi = (Imm & 0xff00) == 0 ? DAG.getRegister(Subtarget.getZeroRegister(), MVT::i8) : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS, DAG.getIntPtrConstant(1, DL)); SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, RHS, DAG.getIntPtrConstant(0, DL)); SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, RHS, DAG.getIntPtrConstant(1, DL)); Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo); Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp); } else { // Generate ordinary 16-bit comparison. Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS); } return Cmp; } /// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for /// the given operands. SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue &AVRcc, SelectionDAG &DAG, SDLoc DL) const { SDValue Cmp; EVT VT = LHS.getValueType(); bool UseTest = false; switch (CC) { default: break; case ISD::SETLE: { // Swap operands and reverse the branching condition. std::swap(LHS, RHS); CC = ISD::SETGE; break; } case ISD::SETGT: { if (const ConstantSDNode *C = dyn_cast(RHS)) { switch (C->getSExtValue()) { case -1: { // When doing lhs > -1 use a tst instruction on the top part of lhs // and use brpl instead of using a chain of cp/cpc. UseTest = true; AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8); break; } case 0: { // Turn lhs > 0 into 0 < lhs since 0 can be materialized with // __zero_reg__ in lhs. RHS = LHS; LHS = DAG.getConstant(0, DL, VT); CC = ISD::SETLT; break; } default: { // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows // us to fold the constant into the cmp instruction. RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT); CC = ISD::SETGE; break; } } break; } // Swap operands and reverse the branching condition. std::swap(LHS, RHS); CC = ISD::SETLT; break; } case ISD::SETLT: { if (const ConstantSDNode *C = dyn_cast(RHS)) { switch (C->getSExtValue()) { case 1: { // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with // __zero_reg__ in lhs. RHS = LHS; LHS = DAG.getConstant(0, DL, VT); CC = ISD::SETGE; break; } case 0: { // When doing lhs < 0 use a tst instruction on the top part of lhs // and use brmi instead of using a chain of cp/cpc. UseTest = true; AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8); break; } } } break; } case ISD::SETULE: { // Swap operands and reverse the branching condition. std::swap(LHS, RHS); CC = ISD::SETUGE; break; } case ISD::SETUGT: { // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to // fold the constant into the cmp instruction. if (const ConstantSDNode *C = dyn_cast(RHS)) { RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT); CC = ISD::SETUGE; break; } // Swap operands and reverse the branching condition. std::swap(LHS, RHS); CC = ISD::SETULT; break; } } // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of // using the default and/or/xor expansion code which is much longer. if (VT == MVT::i32) { SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS, DAG.getIntPtrConstant(0, DL)); SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS, DAG.getIntPtrConstant(1, DL)); SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS, DAG.getIntPtrConstant(0, DL)); SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS, DAG.getIntPtrConstant(1, DL)); if (UseTest) { // When using tst we only care about the highest part. SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi, DAG.getIntPtrConstant(1, DL)); Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top); } else { Cmp = getAVRCmp(LHSlo, RHSlo, DAG, DL); Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp); } } else if (VT == MVT::i64) { SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS, DAG.getIntPtrConstant(0, DL)); SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS, DAG.getIntPtrConstant(1, DL)); SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0, DAG.getIntPtrConstant(0, DL)); SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0, DAG.getIntPtrConstant(1, DL)); SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1, DAG.getIntPtrConstant(0, DL)); SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1, DAG.getIntPtrConstant(1, DL)); SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS, DAG.getIntPtrConstant(0, DL)); SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS, DAG.getIntPtrConstant(1, DL)); SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0, DAG.getIntPtrConstant(0, DL)); SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0, DAG.getIntPtrConstant(1, DL)); SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1, DAG.getIntPtrConstant(0, DL)); SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1, DAG.getIntPtrConstant(1, DL)); if (UseTest) { // When using tst we only care about the highest part. SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3, DAG.getIntPtrConstant(1, DL)); Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top); } else { Cmp = getAVRCmp(LHS0, RHS0, DAG, DL); Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp); Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp); Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp); } } else if (VT == MVT::i8 || VT == MVT::i16) { if (UseTest) { // When using tst we only care about the highest part. Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, (VT == MVT::i8) ? LHS : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS, DAG.getIntPtrConstant(1, DL))); } else { Cmp = getAVRCmp(LHS, RHS, DAG, DL); } } else { llvm_unreachable("Invalid comparison size"); } // When using a test instruction AVRcc is already set. if (!UseTest) { AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8); } return Cmp; } SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue Dest = Op.getOperand(4); SDLoc dl(Op); SDValue TargetCC; SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl); return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC, Cmp); } SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue TrueV = Op.getOperand(2); SDValue FalseV = Op.getOperand(3); ISD::CondCode CC = cast(Op.getOperand(4))->get(); SDLoc dl(Op); SDValue TargetCC; SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp}; return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops); } SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); ISD::CondCode CC = cast(Op.getOperand(2))->get(); SDLoc DL(Op); SDValue TargetCC; SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL); SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType()); SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType()); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp}; return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops); } SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { const MachineFunction &MF = DAG.getMachineFunction(); const AVRMachineFunctionInfo *AFI = MF.getInfo(); const Value *SV = cast(Op.getOperand(2))->getValue(); auto DL = DAG.getDataLayout(); SDLoc dl(Op); // Vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL)); return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1), MachinePointerInfo(SV)); } // Modify the existing ISD::INLINEASM node to add the implicit zero register. SDValue AVRTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { SDValue ZeroReg = DAG.getRegister(Subtarget.getZeroRegister(), MVT::i8); if (Op.getOperand(Op.getNumOperands() - 1) == ZeroReg || Op.getOperand(Op.getNumOperands() - 2) == ZeroReg) { // Zero register has already been added. Don't add it again. // If this isn't handled, we get called over and over again. return Op; } // Get a list of operands to the new INLINEASM node. This is mostly a copy, // with some edits. // Add the following operands at the end (but before the glue node, if it's // there): // - The flags of the implicit zero register operand. // - The implicit zero register operand itself. SDLoc dl(Op); SmallVector Ops; SDNode *N = Op.getNode(); SDValue Glue; for (unsigned I = 0; I < N->getNumOperands(); I++) { SDValue Operand = N->getOperand(I); if (Operand.getValueType() == MVT::Glue) { // The glue operand always needs to be at the end, so we need to treat it // specially. Glue = Operand; } else { Ops.push_back(Operand); } } InlineAsm::Flag Flags(InlineAsm::Kind::RegUse, 1); Ops.push_back(DAG.getTargetConstant(Flags, dl, MVT::i32)); Ops.push_back(ZeroReg); if (Glue) { Ops.push_back(Glue); } // Replace the current INLINEASM node with a new one that has the zero // register as implicit parameter. SDValue New = DAG.getNode(N->getOpcode(), dl, N->getVTList(), Ops); DAG.ReplaceAllUsesOfValueWith(Op, New); DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), New.getValue(1)); return New; } SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: llvm_unreachable("Don't know how to custom lower this!"); case ISD::SHL: case ISD::SRA: case ISD::SRL: case ISD::ROTL: case ISD::ROTR: return LowerShifts(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::BR_CC: return LowerBR_CC(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::SDIVREM: case ISD::UDIVREM: return LowerDivRem(Op, DAG); case ISD::INLINEASM: return LowerINLINEASM(Op, DAG); } return SDValue(); } /// Replace a node with an illegal result type /// with a new node built out of custom code. void AVRTargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { SDLoc DL(N); switch (N->getOpcode()) { case ISD::ADD: { // Convert add (x, imm) into sub (x, -imm). if (const ConstantSDNode *C = dyn_cast(N->getOperand(1))) { SDValue Sub = DAG.getNode( ISD::SUB, DL, N->getValueType(0), N->getOperand(0), DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0))); Results.push_back(Sub); } break; } default: { SDValue Res = LowerOperation(SDValue(N, 0), DAG); for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I) Results.push_back(Res.getValue(I)); break; } } } /// Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { int64_t Offs = AM.BaseOffs; // Allow absolute addresses. if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) { return true; } // Flash memory instructions only allow zero offsets. if (isa(Ty) && AS == AVR::ProgramMemory) { return false; } // Allow reg+<6bit> offset. if (Offs < 0) Offs = -Offs; if (AM.BaseGV == nullptr && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) { return true; } return false; } /// Returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { EVT VT; const SDNode *Op; SDLoc DL(N); if (const LoadSDNode *LD = dyn_cast(N)) { VT = LD->getMemoryVT(); Op = LD->getBasePtr().getNode(); if (LD->getExtensionType() != ISD::NON_EXTLOAD) return false; if (AVR::isProgramMemoryAccess(LD)) { return false; } } else if (const StoreSDNode *ST = dyn_cast(N)) { VT = ST->getMemoryVT(); Op = ST->getBasePtr().getNode(); if (AVR::isProgramMemoryAccess(ST)) { return false; } } else { return false; } if (VT != MVT::i8 && VT != MVT::i16) { return false; } if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) { return false; } if (const ConstantSDNode *RHS = dyn_cast(Op->getOperand(1))) { int RHSC = RHS->getSExtValue(); if (Op->getOpcode() == ISD::SUB) RHSC = -RHSC; if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) { return false; } Base = Op->getOperand(0); Offset = DAG.getConstant(RHSC, DL, MVT::i8); AM = ISD::PRE_DEC; return true; } return false; } /// Returns true by value, base pointer and /// offset pointer and addressing mode by reference if this node can be /// combined with a load / store to form a post-indexed load / store. bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { EVT VT; SDLoc DL(N); if (const LoadSDNode *LD = dyn_cast(N)) { VT = LD->getMemoryVT(); if (LD->getExtensionType() != ISD::NON_EXTLOAD) return false; } else if (const StoreSDNode *ST = dyn_cast(N)) { VT = ST->getMemoryVT(); // We can not store to program memory. if (AVR::isProgramMemoryAccess(ST)) return false; // Since the high byte need to be stored first, we can not emit // i16 post increment store like: // st X+, r24 // st X+, r25 if (VT == MVT::i16 && !Subtarget.hasLowByteFirst()) return false; } else { return false; } if (VT != MVT::i8 && VT != MVT::i16) { return false; } if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) { return false; } if (const ConstantSDNode *RHS = dyn_cast(Op->getOperand(1))) { int RHSC = RHS->getSExtValue(); if (Op->getOpcode() == ISD::SUB) RHSC = -RHSC; if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) { return false; } // FIXME: We temporarily disable post increment load from program memory, // due to bug https://github.com/llvm/llvm-project/issues/59914. if (const LoadSDNode *LD = dyn_cast(N)) if (AVR::isProgramMemoryAccess(LD)) return false; Base = Op->getOperand(0); Offset = DAG.getConstant(RHSC, DL, MVT::i8); AM = ISD::POST_INC; return true; } return false; } bool AVRTargetLowering::isOffsetFoldingLegal( const GlobalAddressSDNode *GA) const { return true; } //===----------------------------------------------------------------------===// // Formal Arguments Calling Convention Implementation //===----------------------------------------------------------------------===// #include "AVRGenCallingConv.inc" /// Registers for calling conventions, ordered in reverse as required by ABI. /// Both arrays must be of the same length. static const MCPhysReg RegList8AVR[] = { AVR::R25, AVR::R24, AVR::R23, AVR::R22, AVR::R21, AVR::R20, AVR::R19, AVR::R18, AVR::R17, AVR::R16, AVR::R15, AVR::R14, AVR::R13, AVR::R12, AVR::R11, AVR::R10, AVR::R9, AVR::R8}; static const MCPhysReg RegList8Tiny[] = {AVR::R25, AVR::R24, AVR::R23, AVR::R22, AVR::R21, AVR::R20}; static const MCPhysReg RegList16AVR[] = { AVR::R26R25, AVR::R25R24, AVR::R24R23, AVR::R23R22, AVR::R22R21, AVR::R21R20, AVR::R20R19, AVR::R19R18, AVR::R18R17, AVR::R17R16, AVR::R16R15, AVR::R15R14, AVR::R14R13, AVR::R13R12, AVR::R12R11, AVR::R11R10, AVR::R10R9, AVR::R9R8}; static const MCPhysReg RegList16Tiny[] = {AVR::R26R25, AVR::R25R24, AVR::R24R23, AVR::R23R22, AVR::R22R21, AVR::R21R20}; static_assert(std::size(RegList8AVR) == std::size(RegList16AVR), "8-bit and 16-bit register arrays must be of equal length"); static_assert(std::size(RegList8Tiny) == std::size(RegList16Tiny), "8-bit and 16-bit register arrays must be of equal length"); /// Analyze incoming and outgoing function arguments. We need custom C++ code /// to handle special constraints in the ABI. /// In addition, all pieces of a certain argument have to be passed either /// using registers or the stack but never mixing both. template static void analyzeArguments(TargetLowering::CallLoweringInfo *CLI, const Function *F, const DataLayout *TD, const SmallVectorImpl &Args, SmallVectorImpl &ArgLocs, CCState &CCInfo, bool Tiny) { // Choose the proper register list for argument passing according to the ABI. ArrayRef RegList8; ArrayRef RegList16; if (Tiny) { RegList8 = ArrayRef(RegList8Tiny, std::size(RegList8Tiny)); RegList16 = ArrayRef(RegList16Tiny, std::size(RegList16Tiny)); } else { RegList8 = ArrayRef(RegList8AVR, std::size(RegList8AVR)); RegList16 = ArrayRef(RegList16AVR, std::size(RegList16AVR)); } unsigned NumArgs = Args.size(); // This is the index of the last used register, in RegList*. // -1 means R26 (R26 is never actually used in CC). int RegLastIdx = -1; // Once a value is passed to the stack it will always be used bool UseStack = false; for (unsigned i = 0; i != NumArgs;) { MVT VT = Args[i].VT; // We have to count the number of bytes for each function argument, that is // those Args with the same OrigArgIndex. This is important in case the // function takes an aggregate type. // Current argument will be between [i..j). unsigned ArgIndex = Args[i].OrigArgIndex; unsigned TotalBytes = VT.getStoreSize(); unsigned j = i + 1; for (; j != NumArgs; ++j) { if (Args[j].OrigArgIndex != ArgIndex) break; TotalBytes += Args[j].VT.getStoreSize(); } // Round up to even number of bytes. TotalBytes = alignTo(TotalBytes, 2); // Skip zero sized arguments if (TotalBytes == 0) continue; // The index of the first register to be used unsigned RegIdx = RegLastIdx + TotalBytes; RegLastIdx = RegIdx; // If there are not enough registers, use the stack if (RegIdx >= RegList8.size()) { UseStack = true; } for (; i != j; ++i) { MVT VT = Args[i].VT; if (UseStack) { auto evt = EVT(VT).getTypeForEVT(CCInfo.getContext()); unsigned Offset = CCInfo.AllocateStack(TD->getTypeAllocSize(evt), TD->getABITypeAlign(evt)); CCInfo.addLoc( CCValAssign::getMem(i, VT, Offset, VT, CCValAssign::Full)); } else { unsigned Reg; if (VT == MVT::i8) { Reg = CCInfo.AllocateReg(RegList8[RegIdx]); } else if (VT == MVT::i16) { Reg = CCInfo.AllocateReg(RegList16[RegIdx]); } else { llvm_unreachable( "calling convention can only manage i8 and i16 types"); } assert(Reg && "register not available in calling convention"); CCInfo.addLoc(CCValAssign::getReg(i, VT, Reg, VT, CCValAssign::Full)); // Registers inside a particular argument are sorted in increasing order // (remember the array is reversed). RegIdx -= VT.getStoreSize(); } } } } /// Count the total number of bytes needed to pass or return these arguments. template static unsigned getTotalArgumentsSizeInBytes(const SmallVectorImpl &Args) { unsigned TotalBytes = 0; for (const ArgT &Arg : Args) { TotalBytes += Arg.VT.getStoreSize(); } return TotalBytes; } /// Analyze incoming and outgoing value of returning from a function. /// The algorithm is similar to analyzeArguments, but there can only be /// one value, possibly an aggregate, and it is limited to 8 bytes. template static void analyzeReturnValues(const SmallVectorImpl &Args, CCState &CCInfo, bool Tiny) { unsigned NumArgs = Args.size(); unsigned TotalBytes = getTotalArgumentsSizeInBytes(Args); // CanLowerReturn() guarantees this assertion. if (Tiny) assert(TotalBytes <= 4 && "return values greater than 4 bytes cannot be lowered on AVRTiny"); else assert(TotalBytes <= 8 && "return values greater than 8 bytes cannot be lowered on AVR"); // Choose the proper register list for argument passing according to the ABI. ArrayRef RegList8; ArrayRef RegList16; if (Tiny) { RegList8 = ArrayRef(RegList8Tiny, std::size(RegList8Tiny)); RegList16 = ArrayRef(RegList16Tiny, std::size(RegList16Tiny)); } else { RegList8 = ArrayRef(RegList8AVR, std::size(RegList8AVR)); RegList16 = ArrayRef(RegList16AVR, std::size(RegList16AVR)); } // GCC-ABI says that the size is rounded up to the next even number, // but actually once it is more than 4 it will always round up to 8. if (TotalBytes > 4) { TotalBytes = 8; } else { TotalBytes = alignTo(TotalBytes, 2); } // The index of the first register to use. int RegIdx = TotalBytes - 1; for (unsigned i = 0; i != NumArgs; ++i) { MVT VT = Args[i].VT; unsigned Reg; if (VT == MVT::i8) { Reg = CCInfo.AllocateReg(RegList8[RegIdx]); } else if (VT == MVT::i16) { Reg = CCInfo.AllocateReg(RegList16[RegIdx]); } else { llvm_unreachable("calling convention can only manage i8 and i16 types"); } assert(Reg && "register not available in calling convention"); CCInfo.addLoc(CCValAssign::getReg(i, VT, Reg, VT, CCValAssign::Full)); // Registers sort in increasing order RegIdx -= VT.getStoreSize(); } } SDValue AVRTargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); auto DL = DAG.getDataLayout(); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); // Variadic functions do not need all the analysis below. if (isVarArg) { CCInfo.AnalyzeFormalArguments(Ins, ArgCC_AVR_Vararg); } else { analyzeArguments(nullptr, &MF.getFunction(), &DL, Ins, ArgLocs, CCInfo, Subtarget.hasTinyEncoding()); } SDValue ArgValue; for (CCValAssign &VA : ArgLocs) { // Arguments stored on registers. if (VA.isRegLoc()) { EVT RegVT = VA.getLocVT(); const TargetRegisterClass *RC; if (RegVT == MVT::i8) { RC = &AVR::GPR8RegClass; } else if (RegVT == MVT::i16) { RC = &AVR::DREGSRegClass; } else { llvm_unreachable("Unknown argument type!"); } Register Reg = MF.addLiveIn(VA.getLocReg(), RC); ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); // :NOTE: Clang should not promote any i8 into i16 but for safety the // following code will handle zexts or sexts generated by other // front ends. Otherwise: // If this is an 8 bit value, it is really passed promoted // to 16 bits. Insert an assert[sz]ext to capture this, then // truncate to the right size. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); break; case CCValAssign::SExt: ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); break; case CCValAssign::ZExt: ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); break; } InVals.push_back(ArgValue); } else { // Only arguments passed on the stack should make it here. assert(VA.isMemLoc()); EVT LocVT = VA.getLocVT(); // Create the frame index object for this incoming parameter. int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, VA.getLocMemOffset(), true); // Create the SelectionDAG nodes corresponding to a load // from this parameter. SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL)); InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN, MachinePointerInfo::getFixedStack(MF, FI))); } } // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (isVarArg) { unsigned StackSize = CCInfo.getStackSize(); AVRMachineFunctionInfo *AFI = MF.getInfo(); AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true)); } return Chain; } //===----------------------------------------------------------------------===// // Call Calling Convention Implementation //===----------------------------------------------------------------------===// SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &DL = CLI.DL; SmallVectorImpl &Outs = CLI.Outs; SmallVectorImpl &OutVals = CLI.OutVals; SmallVectorImpl &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &isTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool isVarArg = CLI.IsVarArg; MachineFunction &MF = DAG.getMachineFunction(); // AVR does not yet support tail call optimization. isTailCall = false; // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. const Function *F = nullptr; if (const GlobalAddressSDNode *G = dyn_cast(Callee)) { const GlobalValue *GV = G->getGlobal(); if (isa(GV)) F = cast(GV); Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout())); } else if (const ExternalSymbolSDNode *ES = dyn_cast(Callee)) { Callee = DAG.getTargetExternalSymbol(ES->getSymbol(), getPointerTy(DAG.getDataLayout())); } // Variadic functions do not need all the analysis below. if (isVarArg) { CCInfo.AnalyzeCallOperands(Outs, ArgCC_AVR_Vararg); } else { analyzeArguments(&CLI, F, &DAG.getDataLayout(), Outs, ArgLocs, CCInfo, Subtarget.hasTinyEncoding()); } // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getStackSize(); Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); SmallVector, 8> RegsToPass; // First, walk the register assignments, inserting copies. unsigned AI, AE; bool HasStackArgs = false; for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) { CCValAssign &VA = ArgLocs[AI]; EVT RegVT = VA.getLocVT(); SDValue Arg = OutVals[AI]; // Promote the value if needed. With Clang this should not happen. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg); break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg); break; } // Stop when we encounter a stack argument, we need to process them // in reverse order in the loop below. if (VA.isMemLoc()) { HasStackArgs = true; break; } // Arguments that can be passed on registers must be kept in the RegsToPass // vector. RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } // Second, stack arguments have to walked. // Previously this code created chained stores but those chained stores appear // to be unchained in the legalization phase. Therefore, do not attempt to // chain them here. In fact, chaining them here somehow causes the first and // second store to be reversed which is the exact opposite of the intended // effect. if (HasStackArgs) { SmallVector MemOpChains; for (; AI != AE; AI++) { CCValAssign &VA = ArgLocs[AI]; SDValue Arg = OutVals[AI]; assert(VA.isMemLoc()); // SP points to one stack slot further so add one to adjust it. SDValue PtrOff = DAG.getNode( ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())), DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL)); MemOpChains.push_back( DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo::getStack(MF, VA.getLocMemOffset()))); } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); } // Build a sequence of copy-to-reg nodes chained together with token chain and // flag operands which copy the outgoing args into registers. The InGlue in // necessary since all emited instructions must be stuck together. SDValue InGlue; for (auto Reg : RegsToPass) { Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InGlue); InGlue = Chain.getValue(1); } // Returns a chain & a flag for retval copy to use. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are known live // into the call. for (auto Reg : RegsToPass) { Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); } // The zero register (usually R1) must be passed as an implicit register so // that this register is correctly zeroed in interrupts. Ops.push_back(DAG.getRegister(Subtarget.getZeroRegister(), MVT::i8)); // Add a register mask operand representing the call-preserved registers. const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); const uint32_t *Mask = TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); if (InGlue.getNode()) { Ops.push_back(InGlue); } Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops); InGlue = Chain.getValue(1); // Create the CALLSEQ_END node. Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL); if (!Ins.empty()) { InGlue = Chain.getValue(1); } // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InGlue, CallConv, isVarArg, Ins, DL, DAG, InVals); } /// Lower the result values of a call into the /// appropriate copies out of appropriate physical registers. /// SDValue AVRTargetLowering::LowerCallResult( SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { // Assign locations to each value returned by this call. SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); // Handle runtime calling convs. if (CallConv == CallingConv::AVR_BUILTIN) { CCInfo.AnalyzeCallResult(Ins, RetCC_AVR_BUILTIN); } else { analyzeReturnValues(Ins, CCInfo, Subtarget.hasTinyEncoding()); } // Copy all of the result registers out of their specified physreg. for (CCValAssign const &RVLoc : RVLocs) { Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(), InGlue) .getValue(1); InGlue = Chain.getValue(2); InVals.push_back(Chain.getValue(0)); } return Chain; } //===----------------------------------------------------------------------===// // Return Value Calling Convention Implementation //===----------------------------------------------------------------------===// bool AVRTargetLowering::CanLowerReturn( CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { if (CallConv == CallingConv::AVR_BUILTIN) { SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); return CCInfo.CheckReturn(Outs, RetCC_AVR_BUILTIN); } unsigned TotalBytes = getTotalArgumentsSizeInBytes(Outs); return TotalBytes <= (unsigned)(Subtarget.hasTinyEncoding() ? 4 : 8); } SDValue AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &dl, SelectionDAG &DAG) const { // CCValAssign - represent the assignment of the return value to locations. SmallVector RVLocs; // CCState - Info about the registers and stack slot. CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); MachineFunction &MF = DAG.getMachineFunction(); // Analyze return values. if (CallConv == CallingConv::AVR_BUILTIN) { CCInfo.AnalyzeReturn(Outs, RetCC_AVR_BUILTIN); } else { analyzeReturnValues(Outs, CCInfo, Subtarget.hasTinyEncoding()); } SDValue Glue; SmallVector RetOps(1, Chain); // Copy the result values into the output registers. for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Glue); // Guarantee that all emitted copies are stuck together with flags. Glue = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } // Don't emit the ret/reti instruction when the naked attribute is present in // the function being compiled. if (MF.getFunction().getAttributes().hasFnAttr(Attribute::Naked)) { return Chain; } const AVRMachineFunctionInfo *AFI = MF.getInfo(); if (!AFI->isInterruptOrSignalHandler()) { // The return instruction has an implicit zero register operand: it must // contain zero on return. // This is not needed in interrupts however, where the zero register is // handled specially (only pushed/popped when needed). RetOps.push_back(DAG.getRegister(Subtarget.getZeroRegister(), MVT::i8)); } unsigned RetOpc = AFI->isInterruptOrSignalHandler() ? AVRISD::RETI_GLUE : AVRISD::RET_GLUE; RetOps[0] = Chain; // Update chain. if (Glue.getNode()) { RetOps.push_back(Glue); } return DAG.getNode(RetOpc, dl, MVT::Other, RetOps); } //===----------------------------------------------------------------------===// // Custom Inserters //===----------------------------------------------------------------------===// MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI, MachineBasicBlock *BB, bool Tiny) const { unsigned Opc; const TargetRegisterClass *RC; bool HasRepeatedOperand = false; MachineFunction *F = BB->getParent(); MachineRegisterInfo &RI = F->getRegInfo(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); DebugLoc dl = MI.getDebugLoc(); switch (MI.getOpcode()) { default: llvm_unreachable("Invalid shift opcode!"); case AVR::Lsl8: Opc = AVR::ADDRdRr; // LSL is an alias of ADD Rd, Rd RC = &AVR::GPR8RegClass; HasRepeatedOperand = true; break; case AVR::Lsl16: Opc = AVR::LSLWRd; RC = &AVR::DREGSRegClass; break; case AVR::Asr8: Opc = AVR::ASRRd; RC = &AVR::GPR8RegClass; break; case AVR::Asr16: Opc = AVR::ASRWRd; RC = &AVR::DREGSRegClass; break; case AVR::Lsr8: Opc = AVR::LSRRd; RC = &AVR::GPR8RegClass; break; case AVR::Lsr16: Opc = AVR::LSRWRd; RC = &AVR::DREGSRegClass; break; case AVR::Rol8: Opc = Tiny ? AVR::ROLBRdR17 : AVR::ROLBRdR1; RC = &AVR::GPR8RegClass; break; case AVR::Rol16: Opc = AVR::ROLWRd; RC = &AVR::DREGSRegClass; break; case AVR::Ror8: Opc = AVR::RORBRd; RC = &AVR::GPR8RegClass; break; case AVR::Ror16: Opc = AVR::RORWRd; RC = &AVR::DREGSRegClass; break; } const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator I; for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I) ; if (I != F->end()) ++I; // Create loop block. MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *CheckBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(I, LoopBB); F->insert(I, CheckBB); F->insert(I, RemBB); // Update machine-CFG edges by transferring all successors of the current // block to the block containing instructions after shift. RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); RemBB->transferSuccessorsAndUpdatePHIs(BB); // Add edges BB => LoopBB => CheckBB => RemBB, CheckBB => LoopBB. BB->addSuccessor(CheckBB); LoopBB->addSuccessor(CheckBB); CheckBB->addSuccessor(LoopBB); CheckBB->addSuccessor(RemBB); Register ShiftAmtReg = RI.createVirtualRegister(&AVR::GPR8RegClass); Register ShiftAmtReg2 = RI.createVirtualRegister(&AVR::GPR8RegClass); Register ShiftReg = RI.createVirtualRegister(RC); Register ShiftReg2 = RI.createVirtualRegister(RC); Register ShiftAmtSrcReg = MI.getOperand(2).getReg(); Register SrcReg = MI.getOperand(1).getReg(); Register DstReg = MI.getOperand(0).getReg(); // BB: // rjmp CheckBB BuildMI(BB, dl, TII.get(AVR::RJMPk)).addMBB(CheckBB); // LoopBB: // ShiftReg2 = shift ShiftReg auto ShiftMI = BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg); if (HasRepeatedOperand) ShiftMI.addReg(ShiftReg); // CheckBB: // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB] // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB] // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB] // ShiftAmt2 = ShiftAmt - 1; // if (ShiftAmt2 >= 0) goto LoopBB; BuildMI(CheckBB, dl, TII.get(AVR::PHI), ShiftReg) .addReg(SrcReg) .addMBB(BB) .addReg(ShiftReg2) .addMBB(LoopBB); BuildMI(CheckBB, dl, TII.get(AVR::PHI), ShiftAmtReg) .addReg(ShiftAmtSrcReg) .addMBB(BB) .addReg(ShiftAmtReg2) .addMBB(LoopBB); BuildMI(CheckBB, dl, TII.get(AVR::PHI), DstReg) .addReg(SrcReg) .addMBB(BB) .addReg(ShiftReg2) .addMBB(LoopBB); BuildMI(CheckBB, dl, TII.get(AVR::DECRd), ShiftAmtReg2).addReg(ShiftAmtReg); BuildMI(CheckBB, dl, TII.get(AVR::BRPLk)).addMBB(LoopBB); MI.eraseFromParent(); // The pseudo instruction is gone now. return RemBB; } // Do a multibyte AVR shift. Insert shift instructions and put the output // registers in the Regs array. // Because AVR does not have a normal shift instruction (only a single bit shift // instruction), we have to emulate this behavior with other instructions. // It first tries large steps (moving registers around) and then smaller steps // like single bit shifts. // Large shifts actually reduce the number of shifted registers, so the below // algorithms have to work independently of the number of registers that are // shifted. // For more information and background, see this blogpost: // https://aykevl.nl/2021/02/avr-bitshift static void insertMultibyteShift(MachineInstr &MI, MachineBasicBlock *BB, MutableArrayRef> Regs, ISD::NodeType Opc, int64_t ShiftAmt) { const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); const AVRSubtarget &STI = BB->getParent()->getSubtarget(); MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); const DebugLoc &dl = MI.getDebugLoc(); const bool ShiftLeft = Opc == ISD::SHL; const bool ArithmeticShift = Opc == ISD::SRA; // Zero a register, for use in later operations. Register ZeroReg = MRI.createVirtualRegister(&AVR::GPR8RegClass); BuildMI(*BB, MI, dl, TII.get(AVR::COPY), ZeroReg) .addReg(STI.getZeroRegister()); // Do a shift modulo 6 or 7. This is a bit more complicated than most shifts // and is hard to compose with the rest, so these are special cased. // The basic idea is to shift one or two bits in the opposite direction and // then move registers around to get the correct end result. if (ShiftLeft && (ShiftAmt % 8) >= 6) { // Left shift modulo 6 or 7. // Create a slice of the registers we're going to modify, to ease working // with them. size_t ShiftRegsOffset = ShiftAmt / 8; size_t ShiftRegsSize = Regs.size() - ShiftRegsOffset; MutableArrayRef> ShiftRegs = Regs.slice(ShiftRegsOffset, ShiftRegsSize); // Shift one to the right, keeping the least significant bit as the carry // bit. insertMultibyteShift(MI, BB, ShiftRegs, ISD::SRL, 1); // Rotate the least significant bit from the carry bit into a new register // (that starts out zero). Register LowByte = MRI.createVirtualRegister(&AVR::GPR8RegClass); BuildMI(*BB, MI, dl, TII.get(AVR::RORRd), LowByte).addReg(ZeroReg); // Shift one more to the right if this is a modulo-6 shift. if (ShiftAmt % 8 == 6) { insertMultibyteShift(MI, BB, ShiftRegs, ISD::SRL, 1); Register NewLowByte = MRI.createVirtualRegister(&AVR::GPR8RegClass); BuildMI(*BB, MI, dl, TII.get(AVR::RORRd), NewLowByte).addReg(LowByte); LowByte = NewLowByte; } // Move all registers to the left, zeroing the bottom registers as needed. for (size_t I = 0; I < Regs.size(); I++) { int ShiftRegsIdx = I + 1; if (ShiftRegsIdx < (int)ShiftRegs.size()) { Regs[I] = ShiftRegs[ShiftRegsIdx]; } else if (ShiftRegsIdx == (int)ShiftRegs.size()) { Regs[I] = std::pair(LowByte, 0); } else { Regs[I] = std::pair(ZeroReg, 0); } } return; } // Right shift modulo 6 or 7. if (!ShiftLeft && (ShiftAmt % 8) >= 6) { // Create a view on the registers we're going to modify, to ease working // with them. size_t ShiftRegsSize = Regs.size() - (ShiftAmt / 8); MutableArrayRef> ShiftRegs = Regs.slice(0, ShiftRegsSize); // Shift one to the left. insertMultibyteShift(MI, BB, ShiftRegs, ISD::SHL, 1); // Sign or zero extend the most significant register into a new register. // The HighByte is the byte that still has one (or two) bits from the // original value. The ExtByte is purely a zero/sign extend byte (all bits // are either 0 or 1). Register HighByte = MRI.createVirtualRegister(&AVR::GPR8RegClass); Register ExtByte = 0; if (ArithmeticShift) { // Sign-extend bit that was shifted out last. BuildMI(*BB, MI, dl, TII.get(AVR::SBCRdRr), HighByte) .addReg(HighByte, RegState::Undef) .addReg(HighByte, RegState::Undef); ExtByte = HighByte; // The highest bit of the original value is the same as the zero-extend // byte, so HighByte and ExtByte are the same. } else { // Use the zero register for zero extending. ExtByte = ZeroReg; // Rotate most significant bit into a new register (that starts out zero). BuildMI(*BB, MI, dl, TII.get(AVR::ADCRdRr), HighByte) .addReg(ExtByte) .addReg(ExtByte); } // Shift one more to the left for modulo 6 shifts. if (ShiftAmt % 8 == 6) { insertMultibyteShift(MI, BB, ShiftRegs, ISD::SHL, 1); // Shift the topmost bit into the HighByte. Register NewExt = MRI.createVirtualRegister(&AVR::GPR8RegClass); BuildMI(*BB, MI, dl, TII.get(AVR::ADCRdRr), NewExt) .addReg(HighByte) .addReg(HighByte); HighByte = NewExt; } // Move all to the right, while sign or zero extending. for (int I = Regs.size() - 1; I >= 0; I--) { int ShiftRegsIdx = I - (Regs.size() - ShiftRegs.size()) - 1; if (ShiftRegsIdx >= 0) { Regs[I] = ShiftRegs[ShiftRegsIdx]; } else if (ShiftRegsIdx == -1) { Regs[I] = std::pair(HighByte, 0); } else { Regs[I] = std::pair(ExtByte, 0); } } return; } // For shift amounts of at least one register, simply rename the registers and // zero the bottom registers. while (ShiftLeft && ShiftAmt >= 8) { // Move all registers one to the left. for (size_t I = 0; I < Regs.size() - 1; I++) { Regs[I] = Regs[I + 1]; } // Zero the least significant register. Regs[Regs.size() - 1] = std::pair(ZeroReg, 0); // Continue shifts with the leftover registers. Regs = Regs.drop_back(1); ShiftAmt -= 8; } // And again, the same for right shifts. Register ShrExtendReg = 0; if (!ShiftLeft && ShiftAmt >= 8) { if (ArithmeticShift) { // Sign extend the most significant register into ShrExtendReg. ShrExtendReg = MRI.createVirtualRegister(&AVR::GPR8RegClass); Register Tmp = MRI.createVirtualRegister(&AVR::GPR8RegClass); BuildMI(*BB, MI, dl, TII.get(AVR::ADDRdRr), Tmp) .addReg(Regs[0].first, 0, Regs[0].second) .addReg(Regs[0].first, 0, Regs[0].second); BuildMI(*BB, MI, dl, TII.get(AVR::SBCRdRr), ShrExtendReg) .addReg(Tmp) .addReg(Tmp); } else { ShrExtendReg = ZeroReg; } for (; ShiftAmt >= 8; ShiftAmt -= 8) { // Move all registers one to the right. for (size_t I = Regs.size() - 1; I != 0; I--) { Regs[I] = Regs[I - 1]; } // Zero or sign extend the most significant register. Regs[0] = std::pair(ShrExtendReg, 0); // Continue shifts with the leftover registers. Regs = Regs.drop_front(1); } } // The bigger shifts are already handled above. assert((ShiftAmt < 8) && "Unexpect shift amount"); // Shift by four bits, using a complicated swap/eor/andi/eor sequence. // It only works for logical shifts because the bits shifted in are all // zeroes. // To shift a single byte right, it produces code like this: // swap r0 // andi r0, 0x0f // For a two-byte (16-bit) shift, it adds the following instructions to shift // the upper byte into the lower byte: // swap r1 // eor r0, r1 // andi r1, 0x0f // eor r0, r1 // For bigger shifts, it repeats the above sequence. For example, for a 3-byte // (24-bit) shift it adds: // swap r2 // eor r1, r2 // andi r2, 0x0f // eor r1, r2 if (!ArithmeticShift && ShiftAmt >= 4) { Register Prev = 0; for (size_t I = 0; I < Regs.size(); I++) { size_t Idx = ShiftLeft ? I : Regs.size() - I - 1; Register SwapReg = MRI.createVirtualRegister(&AVR::LD8RegClass); BuildMI(*BB, MI, dl, TII.get(AVR::SWAPRd), SwapReg) .addReg(Regs[Idx].first, 0, Regs[Idx].second); if (I != 0) { Register R = MRI.createVirtualRegister(&AVR::GPR8RegClass); BuildMI(*BB, MI, dl, TII.get(AVR::EORRdRr), R) .addReg(Prev) .addReg(SwapReg); Prev = R; } Register AndReg = MRI.createVirtualRegister(&AVR::LD8RegClass); BuildMI(*BB, MI, dl, TII.get(AVR::ANDIRdK), AndReg) .addReg(SwapReg) .addImm(ShiftLeft ? 0xf0 : 0x0f); if (I != 0) { Register R = MRI.createVirtualRegister(&AVR::GPR8RegClass); BuildMI(*BB, MI, dl, TII.get(AVR::EORRdRr), R) .addReg(Prev) .addReg(AndReg); size_t PrevIdx = ShiftLeft ? Idx - 1 : Idx + 1; Regs[PrevIdx] = std::pair(R, 0); } Prev = AndReg; Regs[Idx] = std::pair(AndReg, 0); } ShiftAmt -= 4; } // Shift by one. This is the fallback that always works, and the shift // operation that is used for 1, 2, and 3 bit shifts. while (ShiftLeft && ShiftAmt) { // Shift one to the left. for (ssize_t I = Regs.size() - 1; I >= 0; I--) { Register Out = MRI.createVirtualRegister(&AVR::GPR8RegClass); Register In = Regs[I].first; Register InSubreg = Regs[I].second; if (I == (ssize_t)Regs.size() - 1) { // first iteration BuildMI(*BB, MI, dl, TII.get(AVR::ADDRdRr), Out) .addReg(In, 0, InSubreg) .addReg(In, 0, InSubreg); } else { BuildMI(*BB, MI, dl, TII.get(AVR::ADCRdRr), Out) .addReg(In, 0, InSubreg) .addReg(In, 0, InSubreg); } Regs[I] = std::pair(Out, 0); } ShiftAmt--; } while (!ShiftLeft && ShiftAmt) { // Shift one to the right. for (size_t I = 0; I < Regs.size(); I++) { Register Out = MRI.createVirtualRegister(&AVR::GPR8RegClass); Register In = Regs[I].first; Register InSubreg = Regs[I].second; if (I == 0) { unsigned Opc = ArithmeticShift ? AVR::ASRRd : AVR::LSRRd; BuildMI(*BB, MI, dl, TII.get(Opc), Out).addReg(In, 0, InSubreg); } else { BuildMI(*BB, MI, dl, TII.get(AVR::RORRd), Out).addReg(In, 0, InSubreg); } Regs[I] = std::pair(Out, 0); } ShiftAmt--; } if (ShiftAmt != 0) { llvm_unreachable("don't know how to shift!"); // sanity check } } // Do a wide (32-bit) shift. MachineBasicBlock * AVRTargetLowering::insertWideShift(MachineInstr &MI, MachineBasicBlock *BB) const { const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); const DebugLoc &dl = MI.getDebugLoc(); // How much to shift to the right (meaning: a negative number indicates a left // shift). int64_t ShiftAmt = MI.getOperand(4).getImm(); ISD::NodeType Opc; switch (MI.getOpcode()) { case AVR::Lsl32: Opc = ISD::SHL; break; case AVR::Lsr32: Opc = ISD::SRL; break; case AVR::Asr32: Opc = ISD::SRA; break; } // Read the input registers, with the most significant register at index 0. std::array, 4> Registers = { std::pair(MI.getOperand(3).getReg(), AVR::sub_hi), std::pair(MI.getOperand(3).getReg(), AVR::sub_lo), std::pair(MI.getOperand(2).getReg(), AVR::sub_hi), std::pair(MI.getOperand(2).getReg(), AVR::sub_lo), }; // Do the shift. The registers are modified in-place. insertMultibyteShift(MI, BB, Registers, Opc, ShiftAmt); // Combine the 8-bit registers into 16-bit register pairs. // This done either from LSB to MSB or from MSB to LSB, depending on the // shift. It's an optimization so that the register allocator will use the // fewest movs possible (which order we use isn't a correctness issue, just an // optimization issue). // - lsl prefers starting from the most significant byte (2nd case). // - lshr prefers starting from the least significant byte (1st case). // - for ashr it depends on the number of shifted bytes. // Some shift operations still don't get the most optimal mov sequences even // with this distinction. TODO: figure out why and try to fix it (but we're // already equal to or faster than avr-gcc in all cases except ashr 8). if (Opc != ISD::SHL && (Opc != ISD::SRA || (ShiftAmt < 16 || ShiftAmt >= 22))) { // Use the resulting registers starting with the least significant byte. BuildMI(*BB, MI, dl, TII.get(AVR::REG_SEQUENCE), MI.getOperand(0).getReg()) .addReg(Registers[3].first, 0, Registers[3].second) .addImm(AVR::sub_lo) .addReg(Registers[2].first, 0, Registers[2].second) .addImm(AVR::sub_hi); BuildMI(*BB, MI, dl, TII.get(AVR::REG_SEQUENCE), MI.getOperand(1).getReg()) .addReg(Registers[1].first, 0, Registers[1].second) .addImm(AVR::sub_lo) .addReg(Registers[0].first, 0, Registers[0].second) .addImm(AVR::sub_hi); } else { // Use the resulting registers starting with the most significant byte. BuildMI(*BB, MI, dl, TII.get(AVR::REG_SEQUENCE), MI.getOperand(1).getReg()) .addReg(Registers[0].first, 0, Registers[0].second) .addImm(AVR::sub_hi) .addReg(Registers[1].first, 0, Registers[1].second) .addImm(AVR::sub_lo); BuildMI(*BB, MI, dl, TII.get(AVR::REG_SEQUENCE), MI.getOperand(0).getReg()) .addReg(Registers[2].first, 0, Registers[2].second) .addImm(AVR::sub_hi) .addReg(Registers[3].first, 0, Registers[3].second) .addImm(AVR::sub_lo); } // Remove the pseudo instruction. MI.eraseFromParent(); return BB; } static bool isCopyMulResult(MachineBasicBlock::iterator const &I) { if (I->getOpcode() == AVR::COPY) { Register SrcReg = I->getOperand(1).getReg(); return (SrcReg == AVR::R0 || SrcReg == AVR::R1); } return false; } // The mul instructions wreak havock on our zero_reg R1. We need to clear it // after the result has been evacuated. This is probably not the best way to do // it, but it works for now. MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI, MachineBasicBlock *BB) const { const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); MachineBasicBlock::iterator I(MI); ++I; // in any case insert *after* the mul instruction if (isCopyMulResult(I)) ++I; if (isCopyMulResult(I)) ++I; BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1) .addReg(AVR::R1) .addReg(AVR::R1); return BB; } // Insert a read from the zero register. MachineBasicBlock * AVRTargetLowering::insertCopyZero(MachineInstr &MI, MachineBasicBlock *BB) const { const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); MachineBasicBlock::iterator I(MI); BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::COPY)) .add(MI.getOperand(0)) .addReg(Subtarget.getZeroRegister()); MI.eraseFromParent(); return BB; } // Lower atomicrmw operation to disable interrupts, do operation, and restore // interrupts. This works because all AVR microcontrollers are single core. MachineBasicBlock *AVRTargetLowering::insertAtomicArithmeticOp( MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode, int Width) const { MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); MachineBasicBlock::iterator I(MI); DebugLoc dl = MI.getDebugLoc(); // Example instruction sequence, for an atomic 8-bit add: // ldi r25, 5 // in r0, SREG // cli // ld r24, X // add r25, r24 // st X, r25 // out SREG, r0 const TargetRegisterClass *RC = (Width == 8) ? &AVR::GPR8RegClass : &AVR::DREGSRegClass; unsigned LoadOpcode = (Width == 8) ? AVR::LDRdPtr : AVR::LDWRdPtr; unsigned StoreOpcode = (Width == 8) ? AVR::STPtrRr : AVR::STWPtrRr; // Disable interrupts. BuildMI(*BB, I, dl, TII.get(AVR::INRdA), Subtarget.getTmpRegister()) .addImm(Subtarget.getIORegSREG()); BuildMI(*BB, I, dl, TII.get(AVR::BCLRs)).addImm(7); // Load the original value. BuildMI(*BB, I, dl, TII.get(LoadOpcode), MI.getOperand(0).getReg()) .add(MI.getOperand(1)); // Do the arithmetic operation. Register Result = MRI.createVirtualRegister(RC); BuildMI(*BB, I, dl, TII.get(Opcode), Result) .addReg(MI.getOperand(0).getReg()) .add(MI.getOperand(2)); // Store the result. BuildMI(*BB, I, dl, TII.get(StoreOpcode)) .add(MI.getOperand(1)) .addReg(Result); // Restore interrupts. BuildMI(*BB, I, dl, TII.get(AVR::OUTARr)) .addImm(Subtarget.getIORegSREG()) .addReg(Subtarget.getTmpRegister()); // Remove the pseudo instruction. MI.eraseFromParent(); return BB; } MachineBasicBlock * AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const { int Opc = MI.getOpcode(); const AVRSubtarget &STI = MBB->getParent()->getSubtarget(); // Pseudo shift instructions with a non constant shift amount are expanded // into a loop. switch (Opc) { case AVR::Lsl8: case AVR::Lsl16: case AVR::Lsr8: case AVR::Lsr16: case AVR::Rol8: case AVR::Rol16: case AVR::Ror8: case AVR::Ror16: case AVR::Asr8: case AVR::Asr16: return insertShift(MI, MBB, STI.hasTinyEncoding()); case AVR::Lsl32: case AVR::Lsr32: case AVR::Asr32: return insertWideShift(MI, MBB); case AVR::MULRdRr: case AVR::MULSRdRr: return insertMul(MI, MBB); case AVR::CopyZero: return insertCopyZero(MI, MBB); case AVR::AtomicLoadAdd8: return insertAtomicArithmeticOp(MI, MBB, AVR::ADDRdRr, 8); case AVR::AtomicLoadAdd16: return insertAtomicArithmeticOp(MI, MBB, AVR::ADDWRdRr, 16); case AVR::AtomicLoadSub8: return insertAtomicArithmeticOp(MI, MBB, AVR::SUBRdRr, 8); case AVR::AtomicLoadSub16: return insertAtomicArithmeticOp(MI, MBB, AVR::SUBWRdRr, 16); case AVR::AtomicLoadAnd8: return insertAtomicArithmeticOp(MI, MBB, AVR::ANDRdRr, 8); case AVR::AtomicLoadAnd16: return insertAtomicArithmeticOp(MI, MBB, AVR::ANDWRdRr, 16); case AVR::AtomicLoadOr8: return insertAtomicArithmeticOp(MI, MBB, AVR::ORRdRr, 8); case AVR::AtomicLoadOr16: return insertAtomicArithmeticOp(MI, MBB, AVR::ORWRdRr, 16); case AVR::AtomicLoadXor8: return insertAtomicArithmeticOp(MI, MBB, AVR::EORRdRr, 8); case AVR::AtomicLoadXor16: return insertAtomicArithmeticOp(MI, MBB, AVR::EORWRdRr, 16); } assert((Opc == AVR::Select16 || Opc == AVR::Select8) && "Unexpected instr type to insert"); const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent() ->getParent() ->getSubtarget() .getInstrInfo(); DebugLoc dl = MI.getDebugLoc(); // To "insert" a SELECT instruction, we insert the diamond // control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch // on, the true/false values to select between, and a branch opcode // to use. MachineFunction *MF = MBB->getParent(); const BasicBlock *LLVM_BB = MBB->getBasicBlock(); MachineBasicBlock *FallThrough = MBB->getFallThrough(); // If the current basic block falls through to another basic block, // we must insert an unconditional branch to the fallthrough destination // if we are to insert basic blocks at the prior fallthrough point. if (FallThrough != nullptr) { BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(FallThrough); } MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineFunction::iterator I; for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I) ; if (I != MF->end()) ++I; MF->insert(I, trueMBB); MF->insert(I, falseMBB); // Set the call frame size on entry to the new basic blocks. unsigned CallFrameSize = TII.getCallFrameSizeAt(MI); trueMBB->setCallFrameSize(CallFrameSize); falseMBB->setCallFrameSize(CallFrameSize); // Transfer remaining instructions and all successors of the current // block to the block which will contain the Phi node for the // select. trueMBB->splice(trueMBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), MBB->end()); trueMBB->transferSuccessorsAndUpdatePHIs(MBB); AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm(); BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB); BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB); MBB->addSuccessor(falseMBB); MBB->addSuccessor(trueMBB); // Unconditionally flow back to the true block BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB); falseMBB->addSuccessor(trueMBB); // Set up the Phi node to determine where we came from BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), MI.getOperand(0).getReg()) .addReg(MI.getOperand(1).getReg()) .addMBB(MBB) .addReg(MI.getOperand(2).getReg()) .addMBB(falseMBB); MI.eraseFromParent(); // The pseudo instruction is gone now. return trueMBB; } //===----------------------------------------------------------------------===// // Inline Asm Support //===----------------------------------------------------------------------===// AVRTargetLowering::ConstraintType AVRTargetLowering::getConstraintType(StringRef Constraint) const { if (Constraint.size() == 1) { // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html switch (Constraint[0]) { default: break; case 'a': // Simple upper registers case 'b': // Base pointer registers pairs case 'd': // Upper register case 'l': // Lower registers case 'e': // Pointer register pairs case 'q': // Stack pointer register case 'r': // Any register case 'w': // Special upper register pairs return C_RegisterClass; case 't': // Temporary register case 'x': case 'X': // Pointer register pair X case 'y': case 'Y': // Pointer register pair Y case 'z': case 'Z': // Pointer register pair Z return C_Register; case 'Q': // A memory address based on Y or Z pointer with displacement. return C_Memory; case 'G': // Floating point constant case 'I': // 6-bit positive integer constant case 'J': // 6-bit negative integer constant case 'K': // Integer constant (Range: 2) case 'L': // Integer constant (Range: 0) case 'M': // 8-bit integer constant case 'N': // Integer constant (Range: -1) case 'O': // Integer constant (Range: 8, 16, 24) case 'P': // Integer constant (Range: 1) case 'R': // Integer constant (Range: -6 to 5)x return C_Immediate; } } return TargetLowering::getConstraintType(Constraint); } InlineAsm::ConstraintCode AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { // Not sure if this is actually the right thing to do, but we got to do // *something* [agnat] switch (ConstraintCode[0]) { case 'Q': return InlineAsm::ConstraintCode::Q; } return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); } AVRTargetLowering::ConstraintWeight AVRTargetLowering::getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. // (this behaviour has been copied from the ARM backend) if (!CallOperandVal) { return CW_Default; } // Look at the constraint type. switch (*constraint) { default: weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); break; case 'd': case 'r': case 'l': weight = CW_Register; break; case 'a': case 'b': case 'e': case 'q': case 't': case 'w': case 'x': case 'X': case 'y': case 'Y': case 'z': case 'Z': weight = CW_SpecificReg; break; case 'G': if (const ConstantFP *C = dyn_cast(CallOperandVal)) { if (C->isZero()) { weight = CW_Constant; } } break; case 'I': if (const ConstantInt *C = dyn_cast(CallOperandVal)) { if (isUInt<6>(C->getZExtValue())) { weight = CW_Constant; } } break; case 'J': if (const ConstantInt *C = dyn_cast(CallOperandVal)) { if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) { weight = CW_Constant; } } break; case 'K': if (const ConstantInt *C = dyn_cast(CallOperandVal)) { if (C->getZExtValue() == 2) { weight = CW_Constant; } } break; case 'L': if (const ConstantInt *C = dyn_cast(CallOperandVal)) { if (C->getZExtValue() == 0) { weight = CW_Constant; } } break; case 'M': if (const ConstantInt *C = dyn_cast(CallOperandVal)) { if (isUInt<8>(C->getZExtValue())) { weight = CW_Constant; } } break; case 'N': if (const ConstantInt *C = dyn_cast(CallOperandVal)) { if (C->getSExtValue() == -1) { weight = CW_Constant; } } break; case 'O': if (const ConstantInt *C = dyn_cast(CallOperandVal)) { if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) || (C->getZExtValue() == 24)) { weight = CW_Constant; } } break; case 'P': if (const ConstantInt *C = dyn_cast(CallOperandVal)) { if (C->getZExtValue() == 1) { weight = CW_Constant; } } break; case 'R': if (const ConstantInt *C = dyn_cast(CallOperandVal)) { if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) { weight = CW_Constant; } } break; case 'Q': weight = CW_Memory; break; } return weight; } std::pair AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'a': // Simple upper registers r16..r23. if (VT == MVT::i8) return std::make_pair(0U, &AVR::LD8loRegClass); else if (VT == MVT::i16) return std::make_pair(0U, &AVR::DREGSLD8loRegClass); break; case 'b': // Base pointer registers: y, z. if (VT == MVT::i8 || VT == MVT::i16) return std::make_pair(0U, &AVR::PTRDISPREGSRegClass); break; case 'd': // Upper registers r16..r31. if (VT == MVT::i8) return std::make_pair(0U, &AVR::LD8RegClass); else if (VT == MVT::i16) return std::make_pair(0U, &AVR::DLDREGSRegClass); break; case 'l': // Lower registers r0..r15. if (VT == MVT::i8) return std::make_pair(0U, &AVR::GPR8loRegClass); else if (VT == MVT::i16) return std::make_pair(0U, &AVR::DREGSloRegClass); break; case 'e': // Pointer register pairs: x, y, z. if (VT == MVT::i8 || VT == MVT::i16) return std::make_pair(0U, &AVR::PTRREGSRegClass); break; case 'q': // Stack pointer register: SPH:SPL. return std::make_pair(0U, &AVR::GPRSPRegClass); case 'r': // Any register: r0..r31. if (VT == MVT::i8) return std::make_pair(0U, &AVR::GPR8RegClass); else if (VT == MVT::i16) return std::make_pair(0U, &AVR::DREGSRegClass); break; case 't': // Temporary register: r0. if (VT == MVT::i8) return std::make_pair(unsigned(Subtarget.getTmpRegister()), &AVR::GPR8RegClass); break; case 'w': // Special upper register pairs: r24, r26, r28, r30. if (VT == MVT::i8 || VT == MVT::i16) return std::make_pair(0U, &AVR::IWREGSRegClass); break; case 'x': // Pointer register pair X: r27:r26. case 'X': if (VT == MVT::i8 || VT == MVT::i16) return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass); break; case 'y': // Pointer register pair Y: r29:r28. case 'Y': if (VT == MVT::i8 || VT == MVT::i16) return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass); break; case 'z': // Pointer register pair Z: r31:r30. case 'Z': if (VT == MVT::i8 || VT == MVT::i16) return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass); break; default: break; } } return TargetLowering::getRegForInlineAsmConstraint( Subtarget.getRegisterInfo(), Constraint, VT); } void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector &Ops, SelectionDAG &DAG) const { SDValue Result; SDLoc DL(Op); EVT Ty = Op.getValueType(); // Currently only support length 1 constraints. if (Constraint.size() != 1) { return; } char ConstraintLetter = Constraint[0]; switch (ConstraintLetter) { default: break; // Deal with integers first: case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': case 'R': { const ConstantSDNode *C = dyn_cast(Op); if (!C) { return; } int64_t CVal64 = C->getSExtValue(); uint64_t CUVal64 = C->getZExtValue(); switch (ConstraintLetter) { case 'I': // 0..63 if (!isUInt<6>(CUVal64)) return; Result = DAG.getTargetConstant(CUVal64, DL, Ty); break; case 'J': // -63..0 if (CVal64 < -63 || CVal64 > 0) return; Result = DAG.getTargetConstant(CVal64, DL, Ty); break; case 'K': // 2 if (CUVal64 != 2) return; Result = DAG.getTargetConstant(CUVal64, DL, Ty); break; case 'L': // 0 if (CUVal64 != 0) return; Result = DAG.getTargetConstant(CUVal64, DL, Ty); break; case 'M': // 0..255 if (!isUInt<8>(CUVal64)) return; // i8 type may be printed as a negative number, // e.g. 254 would be printed as -2, // so we force it to i16 at least. if (Ty.getSimpleVT() == MVT::i8) { Ty = MVT::i16; } Result = DAG.getTargetConstant(CUVal64, DL, Ty); break; case 'N': // -1 if (CVal64 != -1) return; Result = DAG.getTargetConstant(CVal64, DL, Ty); break; case 'O': // 8, 16, 24 if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24) return; Result = DAG.getTargetConstant(CUVal64, DL, Ty); break; case 'P': // 1 if (CUVal64 != 1) return; Result = DAG.getTargetConstant(CUVal64, DL, Ty); break; case 'R': // -6..5 if (CVal64 < -6 || CVal64 > 5) return; Result = DAG.getTargetConstant(CVal64, DL, Ty); break; } break; } case 'G': const ConstantFPSDNode *FC = dyn_cast(Op); if (!FC || !FC->isZero()) return; // Soften float to i8 0 Result = DAG.getTargetConstant(0, DL, MVT::i8); break; } if (Result.getNode()) { Ops.push_back(Result); return; } return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } Register AVRTargetLowering::getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const { Register Reg; if (VT == LLT::scalar(8)) { Reg = StringSwitch(RegName) .Case("r0", AVR::R0) .Case("r1", AVR::R1) .Default(0); } else { Reg = StringSwitch(RegName) .Case("r0", AVR::R1R0) .Case("sp", AVR::SP) .Default(0); } if (Reg) return Reg; report_fatal_error( Twine("Invalid register name \"" + StringRef(RegName) + "\".")); } } // end of namespace llvm