//===-- AVRISelDAGToDAG.cpp - A dag to dag inst selector for AVR ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines an instruction selector for the AVR target. // //===----------------------------------------------------------------------===// #include "AVR.h" #include "AVRTargetMachine.h" #include "MCTargetDesc/AVRMCTargetDesc.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "avr-isel" #define PASS_NAME "AVR DAG->DAG Instruction Selection" using namespace llvm; namespace { /// Lowers LLVM IR (in DAG form) to AVR MC instructions (in DAG form). class AVRDAGToDAGISel : public SelectionDAGISel { public: static char ID; AVRDAGToDAGISel() = delete; AVRDAGToDAGISel(AVRTargetMachine &TM, CodeGenOpt::Level OptLevel) : SelectionDAGISel(ID, TM, OptLevel), Subtarget(nullptr) {} bool runOnMachineFunction(MachineFunction &MF) override; bool SelectAddr(SDNode *Op, SDValue N, SDValue &Base, SDValue &Disp); bool selectIndexedLoad(SDNode *N); unsigned selectIndexedProgMemLoad(const LoadSDNode *LD, MVT VT, int Bank); bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintCode, std::vector &OutOps) override; // Include the pieces autogenerated from the target description. #include "AVRGenDAGISel.inc" private: void Select(SDNode *N) override; bool trySelect(SDNode *N); template bool select(SDNode *N); bool selectMultiplication(SDNode *N); const AVRSubtarget *Subtarget; }; } // namespace char AVRDAGToDAGISel::ID = 0; INITIALIZE_PASS(AVRDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false) bool AVRDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { Subtarget = &MF.getSubtarget(); return SelectionDAGISel::runOnMachineFunction(MF); } bool AVRDAGToDAGISel::SelectAddr(SDNode *Op, SDValue N, SDValue &Base, SDValue &Disp) { SDLoc dl(Op); auto DL = CurDAG->getDataLayout(); MVT PtrVT = getTargetLowering()->getPointerTy(DL); // if the address is a frame index get the TargetFrameIndex. if (const FrameIndexSDNode *FIN = dyn_cast(N)) { Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), PtrVT); Disp = CurDAG->getTargetConstant(0, dl, MVT::i8); return true; } // Match simple Reg + uimm6 operands. if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && !CurDAG->isBaseWithConstantOffset(N)) { return false; } if (const ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); // Convert negative offsets into positives ones. if (N.getOpcode() == ISD::SUB) { RHSC = -RHSC; } // <#Frame index + const> // Allow folding offsets bigger than 63 so the frame pointer can be used // directly instead of copying it around by adjusting and restoring it for // each access. if (N.getOperand(0).getOpcode() == ISD::FrameIndex) { int FI = cast(N.getOperand(0))->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, PtrVT); Disp = CurDAG->getTargetConstant(RHSC, dl, MVT::i16); return true; } // The value type of the memory instruction determines what is the maximum // offset allowed. MVT VT = cast(Op)->getMemoryVT().getSimpleVT(); // We only accept offsets that fit in 6 bits (unsigned). if (isUInt<6>(RHSC) && (VT == MVT::i8 || VT == MVT::i16)) { Base = N.getOperand(0); Disp = CurDAG->getTargetConstant(RHSC, dl, MVT::i8); return true; } } return false; } bool AVRDAGToDAGISel::selectIndexedLoad(SDNode *N) { const LoadSDNode *LD = cast(N); ISD::MemIndexedMode AM = LD->getAddressingMode(); MVT VT = LD->getMemoryVT().getSimpleVT(); auto PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout()); // We only care if this load uses a POSTINC or PREDEC mode. if ((LD->getExtensionType() != ISD::NON_EXTLOAD) || (AM != ISD::POST_INC && AM != ISD::PRE_DEC)) { return false; } unsigned Opcode = 0; bool isPre = (AM == ISD::PRE_DEC); int Offs = cast(LD->getOffset())->getSExtValue(); switch (VT.SimpleTy) { case MVT::i8: { if ((!isPre && Offs != 1) || (isPre && Offs != -1)) { return false; } Opcode = (isPre) ? AVR::LDRdPtrPd : AVR::LDRdPtrPi; break; } case MVT::i16: { if ((!isPre && Offs != 2) || (isPre && Offs != -2)) { return false; } Opcode = (isPre) ? AVR::LDWRdPtrPd : AVR::LDWRdPtrPi; break; } default: return false; } SDNode *ResNode = CurDAG->getMachineNode(Opcode, SDLoc(N), VT, PtrVT, MVT::Other, LD->getBasePtr(), LD->getChain()); ReplaceUses(N, ResNode); CurDAG->RemoveDeadNode(N); return true; } unsigned AVRDAGToDAGISel::selectIndexedProgMemLoad(const LoadSDNode *LD, MVT VT, int Bank) { // Progmem indexed loads only work in POSTINC mode. if (LD->getExtensionType() != ISD::NON_EXTLOAD || LD->getAddressingMode() != ISD::POST_INC) return 0; // Feature ELPM is needed for loading from extended program memory. assert((Bank == 0 || Subtarget->hasELPM()) && "cannot load from extended program memory on this mcu"); unsigned Opcode = 0; int Offs = cast(LD->getOffset())->getSExtValue(); if (VT.SimpleTy == MVT::i8 && Offs == 1 && Bank == 0) Opcode = AVR::LPMRdZPi; // TODO: Implements the expansion of the following pseudo instructions. // LPMWRdZPi: type == MVT::i16, offset == 2, Bank == 0. // ELPMBRdZPi: type == MVT::i8, offset == 1, Bank > 0. // ELPMWRdZPi: type == MVT::i16, offset == 2, Bank > 0. return Opcode; } bool AVRDAGToDAGISel::SelectInlineAsmMemoryOperand( const SDValue &Op, unsigned ConstraintCode, std::vector &OutOps) { assert((ConstraintCode == InlineAsm::Constraint_m || ConstraintCode == InlineAsm::Constraint_Q) && "Unexpected asm memory constraint"); MachineRegisterInfo &RI = MF->getRegInfo(); const AVRSubtarget &STI = MF->getSubtarget(); const TargetLowering &TL = *STI.getTargetLowering(); SDLoc dl(Op); auto DL = CurDAG->getDataLayout(); const RegisterSDNode *RegNode = dyn_cast(Op); // If address operand is of PTRDISPREGS class, all is OK, then. if (RegNode && RI.getRegClass(RegNode->getReg()) == &AVR::PTRDISPREGSRegClass) { OutOps.push_back(Op); return false; } if (Op->getOpcode() == ISD::FrameIndex) { SDValue Base, Disp; if (SelectAddr(Op.getNode(), Op, Base, Disp)) { OutOps.push_back(Base); OutOps.push_back(Disp); return false; } return true; } // If Op is add 'register, immediate' and // register is either virtual register or register of PTRDISPREGSRegClass if (Op->getOpcode() == ISD::ADD || Op->getOpcode() == ISD::SUB) { SDValue CopyFromRegOp = Op->getOperand(0); SDValue ImmOp = Op->getOperand(1); ConstantSDNode *ImmNode = dyn_cast(ImmOp); unsigned Reg; bool CanHandleRegImmOpt = ImmNode && ImmNode->getAPIntValue().ult(64); if (CopyFromRegOp->getOpcode() == ISD::CopyFromReg) { RegisterSDNode *RegNode = cast(CopyFromRegOp->getOperand(1)); Reg = RegNode->getReg(); CanHandleRegImmOpt &= (Register::isVirtualRegister(Reg) || AVR::PTRDISPREGSRegClass.contains(Reg)); } else { CanHandleRegImmOpt = false; } // If we detect proper case - correct virtual register class // if needed and go to another inlineasm operand. if (CanHandleRegImmOpt) { SDValue Base, Disp; if (RI.getRegClass(Reg) != &AVR::PTRDISPREGSRegClass) { SDLoc dl(CopyFromRegOp); Register VReg = RI.createVirtualRegister(&AVR::PTRDISPREGSRegClass); SDValue CopyToReg = CurDAG->getCopyToReg(CopyFromRegOp, dl, VReg, CopyFromRegOp); SDValue NewCopyFromRegOp = CurDAG->getCopyFromReg(CopyToReg, dl, VReg, TL.getPointerTy(DL)); Base = NewCopyFromRegOp; } else { Base = CopyFromRegOp; } if (ImmNode->getValueType(0) != MVT::i8) { Disp = CurDAG->getTargetConstant( ImmNode->getAPIntValue().getZExtValue(), dl, MVT::i8); } else { Disp = ImmOp; } OutOps.push_back(Base); OutOps.push_back(Disp); return false; } } // More generic case. // Create chain that puts Op into pointer register // and return that register. Register VReg = RI.createVirtualRegister(&AVR::PTRDISPREGSRegClass); SDValue CopyToReg = CurDAG->getCopyToReg(Op, dl, VReg, Op); SDValue CopyFromReg = CurDAG->getCopyFromReg(CopyToReg, dl, VReg, TL.getPointerTy(DL)); OutOps.push_back(CopyFromReg); return false; } template <> bool AVRDAGToDAGISel::select(SDNode *N) { auto DL = CurDAG->getDataLayout(); // Convert the frameindex into a temp instruction that will hold the // effective address of the final stack slot. int FI = cast(N)->getIndex(); SDValue TFI = CurDAG->getTargetFrameIndex(FI, getTargetLowering()->getPointerTy(DL)); CurDAG->SelectNodeTo(N, AVR::FRMIDX, getTargetLowering()->getPointerTy(DL), TFI, CurDAG->getTargetConstant(0, SDLoc(N), MVT::i16)); return true; } template <> bool AVRDAGToDAGISel::select(SDNode *N) { // Use the STD{W}SPQRr pseudo instruction when passing arguments through // the stack on function calls for further expansion during the PEI phase. const StoreSDNode *ST = cast(N); SDValue BasePtr = ST->getBasePtr(); // Early exit when the base pointer is a frame index node or a constant. if (isa(BasePtr) || isa(BasePtr) || BasePtr.isUndef()) { return false; } const RegisterSDNode *RN = dyn_cast(BasePtr.getOperand(0)); // Only stores where SP is the base pointer are valid. if (!RN || (RN->getReg() != AVR::SP)) { return false; } int CST = (int)cast(BasePtr.getOperand(1))->getZExtValue(); SDValue Chain = ST->getChain(); EVT VT = ST->getValue().getValueType(); SDLoc DL(N); SDValue Offset = CurDAG->getTargetConstant(CST, DL, MVT::i16); SDValue Ops[] = {BasePtr.getOperand(0), Offset, ST->getValue(), Chain}; unsigned Opc = (VT == MVT::i16) ? AVR::STDWSPQRr : AVR::STDSPQRr; SDNode *ResNode = CurDAG->getMachineNode(Opc, DL, MVT::Other, Ops); // Transfer memory operands. CurDAG->setNodeMemRefs(cast(ResNode), {ST->getMemOperand()}); ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0)); CurDAG->RemoveDeadNode(N); return true; } template <> bool AVRDAGToDAGISel::select(SDNode *N) { const LoadSDNode *LD = cast(N); if (!AVR::isProgramMemoryAccess(LD)) { // Check if the opcode can be converted into an indexed load. return selectIndexedLoad(N); } if (!Subtarget->hasLPM()) report_fatal_error("cannot load from program memory on this mcu"); int ProgMemBank = AVR::getProgramMemoryBank(LD); if (ProgMemBank < 0 || ProgMemBank > 5) report_fatal_error("unexpected program memory bank"); // This is a flash memory load, move the pointer into R31R30 and emit // the lpm instruction. MVT VT = LD->getMemoryVT().getSimpleVT(); SDValue Chain = LD->getChain(); SDValue Ptr = LD->getBasePtr(); SDNode *ResNode; SDLoc DL(N); Chain = CurDAG->getCopyToReg(Chain, DL, AVR::R31R30, Ptr, SDValue()); Ptr = CurDAG->getCopyFromReg(Chain, DL, AVR::R31R30, MVT::i16, Chain.getValue(1)); // Check if the opcode can be converted into an indexed load. if (unsigned LPMOpc = selectIndexedProgMemLoad(LD, VT, ProgMemBank)) { // It is legal to fold the load into an indexed load. if (ProgMemBank == 0) { ResNode = CurDAG->getMachineNode(LPMOpc, DL, VT, MVT::i16, MVT::Other, Ptr); } else { // Do not combine the LDI instruction into the ELPM pseudo instruction, // since it may be reused by other ELPM pseudo instructions. SDValue NC = CurDAG->getTargetConstant(ProgMemBank, DL, MVT::i8); auto *NP = CurDAG->getMachineNode(AVR::LDIRdK, DL, MVT::i8, NC); ResNode = CurDAG->getMachineNode(LPMOpc, DL, VT, MVT::i16, MVT::Other, Ptr, SDValue(NP, 0)); } } else { // Selecting an indexed load is not legal, fallback to a normal load. switch (VT.SimpleTy) { case MVT::i8: if (ProgMemBank == 0) { ResNode = CurDAG->getMachineNode(AVR::LPMRdZ, DL, MVT::i8, MVT::Other, Ptr); } else { // Do not combine the LDI instruction into the ELPM pseudo instruction, // since it may be reused by other ELPM pseudo instructions. SDValue NC = CurDAG->getTargetConstant(ProgMemBank, DL, MVT::i8); auto *NP = CurDAG->getMachineNode(AVR::LDIRdK, DL, MVT::i8, NC); ResNode = CurDAG->getMachineNode(AVR::ELPMBRdZ, DL, MVT::i8, MVT::Other, Ptr, SDValue(NP, 0)); } break; case MVT::i16: if (ProgMemBank == 0) { ResNode = CurDAG->getMachineNode(AVR::LPMWRdZ, DL, MVT::i16, MVT::Other, Ptr); } else { // Do not combine the LDI instruction into the ELPM pseudo instruction, // since LDI requires the destination register in range R16~R31. SDValue NC = CurDAG->getTargetConstant(ProgMemBank, DL, MVT::i8); auto *NP = CurDAG->getMachineNode(AVR::LDIRdK, DL, MVT::i8, NC); ResNode = CurDAG->getMachineNode(AVR::ELPMWRdZ, DL, MVT::i16, MVT::Other, Ptr, SDValue(NP, 0)); } break; default: llvm_unreachable("Unsupported VT!"); } } // Transfer memory operands. CurDAG->setNodeMemRefs(cast(ResNode), {LD->getMemOperand()}); ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0)); ReplaceUses(SDValue(N, 1), SDValue(ResNode, 1)); CurDAG->RemoveDeadNode(N); return true; } template <> bool AVRDAGToDAGISel::select(SDNode *N) { SDValue InFlag; SDValue Chain = N->getOperand(0); SDValue Callee = N->getOperand(1); unsigned LastOpNum = N->getNumOperands() - 1; // Direct calls are autogenerated. unsigned Op = Callee.getOpcode(); if (Op == ISD::TargetGlobalAddress || Op == ISD::TargetExternalSymbol) { return false; } // Skip the incoming flag if present if (N->getOperand(LastOpNum).getValueType() == MVT::Glue) { --LastOpNum; } SDLoc DL(N); Chain = CurDAG->getCopyToReg(Chain, DL, AVR::R31R30, Callee, InFlag); SmallVector Ops; Ops.push_back(CurDAG->getRegister(AVR::R31R30, MVT::i16)); // Map all operands into the new node. for (unsigned i = 2, e = LastOpNum + 1; i != e; ++i) { Ops.push_back(N->getOperand(i)); } Ops.push_back(Chain); Ops.push_back(Chain.getValue(1)); SDNode *ResNode = CurDAG->getMachineNode( Subtarget->hasEIJMPCALL() ? AVR::EICALL : AVR::ICALL, DL, MVT::Other, MVT::Glue, Ops); ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0)); ReplaceUses(SDValue(N, 1), SDValue(ResNode, 1)); CurDAG->RemoveDeadNode(N); return true; } template <> bool AVRDAGToDAGISel::select(SDNode *N) { SDValue Chain = N->getOperand(0); SDValue JmpAddr = N->getOperand(1); SDLoc DL(N); // Move the destination address of the indirect branch into R31R30. Chain = CurDAG->getCopyToReg(Chain, DL, AVR::R31R30, JmpAddr); SDNode *ResNode = CurDAG->getMachineNode(AVR::IJMP, DL, MVT::Other, Chain); ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0)); CurDAG->RemoveDeadNode(N); return true; } bool AVRDAGToDAGISel::selectMultiplication(llvm::SDNode *N) { SDLoc DL(N); MVT Type = N->getSimpleValueType(0); assert(Type == MVT::i8 && "unexpected value type"); bool isSigned = N->getOpcode() == ISD::SMUL_LOHI; unsigned MachineOp = isSigned ? AVR::MULSRdRr : AVR::MULRdRr; SDValue Lhs = N->getOperand(0); SDValue Rhs = N->getOperand(1); SDNode *Mul = CurDAG->getMachineNode(MachineOp, DL, MVT::Glue, Lhs, Rhs); SDValue InChain = CurDAG->getEntryNode(); SDValue InGlue = SDValue(Mul, 0); // Copy the low half of the result, if it is needed. if (N->hasAnyUseOfValue(0)) { SDValue CopyFromLo = CurDAG->getCopyFromReg(InChain, DL, AVR::R0, Type, InGlue); ReplaceUses(SDValue(N, 0), CopyFromLo); InChain = CopyFromLo.getValue(1); InGlue = CopyFromLo.getValue(2); } // Copy the high half of the result, if it is needed. if (N->hasAnyUseOfValue(1)) { SDValue CopyFromHi = CurDAG->getCopyFromReg(InChain, DL, AVR::R1, Type, InGlue); ReplaceUses(SDValue(N, 1), CopyFromHi); InChain = CopyFromHi.getValue(1); InGlue = CopyFromHi.getValue(2); } CurDAG->RemoveDeadNode(N); // We need to clear R1. This is currently done (dirtily) // using a custom inserter. return true; } void AVRDAGToDAGISel::Select(SDNode *N) { // If we have a custom node, we already have selected! if (N->isMachineOpcode()) { LLVM_DEBUG(errs() << "== "; N->dump(CurDAG); errs() << "\n"); N->setNodeId(-1); return; } // See if subclasses can handle this node. if (trySelect(N)) return; // Select the default instruction SelectCode(N); } bool AVRDAGToDAGISel::trySelect(SDNode *N) { unsigned Opcode = N->getOpcode(); SDLoc DL(N); switch (Opcode) { // Nodes we fully handle. case ISD::FrameIndex: return select(N); case ISD::BRIND: return select(N); case ISD::UMUL_LOHI: case ISD::SMUL_LOHI: return selectMultiplication(N); // Nodes we handle partially. Other cases are autogenerated case ISD::STORE: return select(N); case ISD::LOAD: return select(N); case AVRISD::CALL: return select(N); default: return false; } } FunctionPass *llvm::createAVRISelDag(AVRTargetMachine &TM, CodeGenOpt::Level OptLevel) { return new AVRDAGToDAGISel(TM, OptLevel); }