//===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead /// branches to help accelerate DSP applications. These two extensions, /// combined with a new form of predication called tail-predication, can be used /// to provide implicit vector predication within a low-overhead loop. /// This is implicit because the predicate of active/inactive lanes is /// calculated by hardware, and thus does not need to be explicitly passed /// to vector instructions. The instructions responsible for this are the /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the /// the total number of data elements processed by the loop. The loop-end /// LETP instruction is responsible for decrementing and setting the remaining /// elements to be processed and generating the mask of active lanes. /// /// The HardwareLoops pass inserts intrinsics identifying loops that the /// backend will attempt to convert into a low-overhead loop. The vectorizer is /// responsible for generating a vectorized loop in which the lanes are /// predicated upon an get.active.lane.mask intrinsic. This pass looks at these /// get.active.lane.mask intrinsic and attempts to convert them to VCTP /// instructions. This will be picked up by the ARM Low-overhead loop pass later /// in the backend, which performs the final transformation to a DLSTP or WLSTP /// tail-predicated loop. // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMSubtarget.h" #include "ARMTargetTransformInfo.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicsARM.h" #include "llvm/IR/PatternMatch.h" #include "llvm/InitializePasses.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" using namespace llvm; #define DEBUG_TYPE "mve-tail-predication" #define DESC "Transform predicated vector loops to use MVE tail predication" cl::opt EnableTailPredication( "tail-predication", cl::desc("MVE tail-predication pass options"), cl::init(TailPredication::Enabled), cl::values(clEnumValN(TailPredication::Disabled, "disabled", "Don't tail-predicate loops"), clEnumValN(TailPredication::EnabledNoReductions, "enabled-no-reductions", "Enable tail-predication, but not for reduction loops"), clEnumValN(TailPredication::Enabled, "enabled", "Enable tail-predication, including reduction loops"), clEnumValN(TailPredication::ForceEnabledNoReductions, "force-enabled-no-reductions", "Enable tail-predication, but not for reduction loops, " "and force this which might be unsafe"), clEnumValN(TailPredication::ForceEnabled, "force-enabled", "Enable tail-predication, including reduction loops, " "and force this which might be unsafe"))); namespace { class MVETailPredication : public LoopPass { SmallVector MaskedInsts; Loop *L = nullptr; ScalarEvolution *SE = nullptr; TargetTransformInfo *TTI = nullptr; const ARMSubtarget *ST = nullptr; public: static char ID; MVETailPredication() : LoopPass(ID) { } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.setPreservesCFG(); } bool runOnLoop(Loop *L, LPPassManager&) override; private: /// Perform the relevant checks on the loop and convert active lane masks if /// possible. bool TryConvertActiveLaneMask(Value *TripCount); /// Perform several checks on the arguments of @llvm.get.active.lane.mask /// intrinsic. E.g., check that the loop induction variable and the element /// count are of the form we expect, and also perform overflow checks for /// the new expressions that are created. const SCEV *IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount); /// Insert the intrinsic to represent the effect of tail predication. void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *Start); }; } // end namespace bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) { if (skipLoop(L) || !EnableTailPredication) return false; MaskedInsts.clear(); Function &F = *L->getHeader()->getParent(); auto &TPC = getAnalysis(); auto &TM = TPC.getTM(); ST = &TM.getSubtarget(F); TTI = &getAnalysis().getTTI(F); SE = &getAnalysis().getSE(); this->L = L; // The MVE and LOB extensions are combined to enable tail-predication, but // there's nothing preventing us from generating VCTP instructions for v8.1m. if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) { LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n"); return false; } BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader) return false; auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* { for (auto &I : *BB) { auto *Call = dyn_cast(&I); if (!Call) continue; Intrinsic::ID ID = Call->getIntrinsicID(); if (ID == Intrinsic::start_loop_iterations || ID == Intrinsic::test_start_loop_iterations) return cast(&I); } return nullptr; }; // Look for the hardware loop intrinsic that sets the iteration count. IntrinsicInst *Setup = FindLoopIterations(Preheader); // The test.set iteration could live in the pre-preheader. if (!Setup) { if (!Preheader->getSinglePredecessor()) return false; Setup = FindLoopIterations(Preheader->getSinglePredecessor()); if (!Setup) return false; } LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n"); bool Changed = TryConvertActiveLaneMask(Setup->getArgOperand(0)); return Changed; } // The active lane intrinsic has this form: // // @llvm.get.active.lane.mask(IV, TC) // // Here we perform checks that this intrinsic behaves as expected, // which means: // // 1) Check that the TripCount (TC) belongs to this loop (originally). // 2) The element count (TC) needs to be sufficiently large that the decrement // of element counter doesn't overflow, which means that we need to prove: // ceil(ElementCount / VectorWidth) >= TripCount // by rounding up ElementCount up: // ((ElementCount + (VectorWidth - 1)) / VectorWidth // and evaluate if expression isKnownNonNegative: // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount // 3) The IV must be an induction phi with an increment equal to the // vector width. const SCEV *MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount) { bool ForceTailPredication = EnableTailPredication == TailPredication::ForceEnabledNoReductions || EnableTailPredication == TailPredication::ForceEnabled; Value *ElemCount = ActiveLaneMask->getOperand(1); bool Changed = false; if (!L->makeLoopInvariant(ElemCount, Changed)) return nullptr; auto *EC= SE->getSCEV(ElemCount); auto *TC = SE->getSCEV(TripCount); int VectorWidth = cast(ActiveLaneMask->getType())->getNumElements(); if (VectorWidth != 2 && VectorWidth != 4 && VectorWidth != 8 && VectorWidth != 16) return nullptr; ConstantInt *ConstElemCount = nullptr; // 1) Smoke tests that the original scalar loop TripCount (TC) belongs to // this loop. The scalar tripcount corresponds the number of elements // processed by the loop, so we will refer to that from this point on. if (!SE->isLoopInvariant(EC, L)) { LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n"); return nullptr; } // 2) Find out if IV is an induction phi. Note that we can't use Loop // helpers here to get the induction variable, because the hardware loop is // no longer in loopsimplify form, and also the hwloop intrinsic uses a // different counter. Using SCEV, we check that the induction is of the // form i = i + 4, where the increment must be equal to the VectorWidth. auto *IV = ActiveLaneMask->getOperand(0); auto *IVExpr = SE->getSCEV(IV); auto *AddExpr = dyn_cast(IVExpr); if (!AddExpr) { LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump()); return nullptr; } // Check that this AddRec is associated with this loop. if (AddExpr->getLoop() != L) { LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n"); return nullptr; } auto *Step = dyn_cast(AddExpr->getOperand(1)); if (!Step) { LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: "; AddExpr->getOperand(1)->dump()); return nullptr; } auto StepValue = Step->getValue()->getSExtValue(); if (VectorWidth != StepValue) { LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue << " doesn't match vector width " << VectorWidth << "\n"); return nullptr; } if ((ConstElemCount = dyn_cast(ElemCount))) { ConstantInt *TC = dyn_cast(TripCount); if (!TC) { LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in " "set.loop.iterations\n"); return nullptr; } // Calculate 2 tripcount values and check that they are consistent with // each other. The TripCount for a predicated vector loop body is // ceil(ElementCount/Width), or floor((ElementCount+Width-1)/Width) as we // work it out here. uint64_t TC1 = TC->getZExtValue(); uint64_t TC2 = (ConstElemCount->getZExtValue() + VectorWidth - 1) / VectorWidth; // If the tripcount values are inconsistent, we can't insert the VCTP and // trigger tail-predication; keep the intrinsic as a get.active.lane.mask // and legalize this. if (TC1 != TC2) { LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: " << TC1 << " from set.loop.iterations, and " << TC2 << " from get.active.lane.mask\n"); return nullptr; } } else if (!ForceTailPredication) { // 3) We need to prove that the sub expression that we create in the // tail-predicated loop body, which calculates the remaining elements to be // processed, is non-negative, i.e. it doesn't overflow: // // ((ElementCount + VectorWidth - 1) / VectorWidth) - TripCount >= 0 // // This is true if: // // TripCount == (ElementCount + VectorWidth - 1) / VectorWidth // // which what we will be using here. // auto *VW = SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth)); // ElementCount + (VW-1): auto *Start = AddExpr->getStart(); auto *ECPlusVWMinus1 = SE->getAddExpr(EC, SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1))); // Ceil = ElementCount + (VW-1) / VW auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1, VW); // Prevent unused variable warnings with TC (void)TC; LLVM_DEBUG({ dbgs() << "ARM TP: Analysing overflow behaviour for:\n"; dbgs() << "ARM TP: - TripCount = " << *TC << "\n"; dbgs() << "ARM TP: - ElemCount = " << *EC << "\n"; dbgs() << "ARM TP: - Start = " << *Start << "\n"; dbgs() << "ARM TP: - BETC = " << *SE->getBackedgeTakenCount(L) << "\n"; dbgs() << "ARM TP: - VecWidth = " << VectorWidth << "\n"; dbgs() << "ARM TP: - (ElemCount+VW-1) / VW = " << *Ceil << "\n"; }); // As an example, almost all the tripcount expressions (produced by the // vectoriser) look like this: // // TC = ((-4 + (4 * ((3 + %N) /u 4)) - start) /u 4) // // and "ElementCount + (VW-1) / VW": // // Ceil = ((3 + %N) /u 4) // // Check for equality of TC and Ceil by calculating SCEV expression // TC - Ceil and test it for zero. // const SCEV *Div = SE->getUDivExpr( SE->getAddExpr(SE->getMulExpr(Ceil, VW), SE->getNegativeSCEV(VW), SE->getNegativeSCEV(Start)), VW); const SCEV *Sub = SE->getMinusSCEV(SE->getBackedgeTakenCount(L), Div); LLVM_DEBUG(dbgs() << "ARM TP: - Sub = "; Sub->dump()); // Use context sensitive facts about the path to the loop to refine. This // comes up as the backedge taken count can incorporate context sensitive // reasoning, and our RHS just above doesn't. Sub = SE->applyLoopGuards(Sub, L); LLVM_DEBUG(dbgs() << "ARM TP: - (Guarded) = "; Sub->dump()); if (!Sub->isZero()) { LLVM_DEBUG(dbgs() << "ARM TP: possible overflow in sub expression.\n"); return nullptr; } } // Check that the start value is a multiple of the VectorWidth. // TODO: This could do with a method to check if the scev is a multiple of // VectorWidth. For the moment we just check for constants, muls and unknowns // (which use MaskedValueIsZero and seems to be the most common). if (auto *BaseC = dyn_cast(AddExpr->getStart())) { if (BaseC->getAPInt().urem(VectorWidth) == 0) return SE->getMinusSCEV(EC, BaseC); } else if (auto *BaseV = dyn_cast(AddExpr->getStart())) { Type *Ty = BaseV->getType(); APInt Mask = APInt::getLowBitsSet(Ty->getPrimitiveSizeInBits(), Log2_64(VectorWidth)); if (MaskedValueIsZero(BaseV->getValue(), Mask, L->getHeader()->getModule()->getDataLayout())) return SE->getMinusSCEV(EC, BaseV); } else if (auto *BaseMul = dyn_cast(AddExpr->getStart())) { if (auto *BaseC = dyn_cast(BaseMul->getOperand(0))) if (BaseC->getAPInt().urem(VectorWidth) == 0) return SE->getMinusSCEV(EC, BaseC); if (auto *BaseC = dyn_cast(BaseMul->getOperand(1))) if (BaseC->getAPInt().urem(VectorWidth) == 0) return SE->getMinusSCEV(EC, BaseC); } LLVM_DEBUG( dbgs() << "ARM TP: induction base is not know to be a multiple of VF: " << *AddExpr->getOperand(0) << "\n"); return nullptr; } void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *Start) { IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); Module *M = L->getHeader()->getModule(); Type *Ty = IntegerType::get(M->getContext(), 32); unsigned VectorWidth = cast(ActiveLaneMask->getType())->getNumElements(); // Insert a phi to count the number of elements processed by the loop. Builder.SetInsertPoint(L->getHeader(), L->getHeader()->getFirstNonPHIIt()); PHINode *Processed = Builder.CreatePHI(Ty, 2); Processed->addIncoming(Start, L->getLoopPreheader()); // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and // thus represent the effect of tail predication. Builder.SetInsertPoint(ActiveLaneMask); ConstantInt *Factor = ConstantInt::get(cast(Ty), VectorWidth); Intrinsic::ID VCTPID; switch (VectorWidth) { default: llvm_unreachable("unexpected number of lanes"); case 2: VCTPID = Intrinsic::arm_mve_vctp64; break; case 4: VCTPID = Intrinsic::arm_mve_vctp32; break; case 8: VCTPID = Intrinsic::arm_mve_vctp16; break; case 16: VCTPID = Intrinsic::arm_mve_vctp8; break; } Function *VCTP = Intrinsic::getDeclaration(M, VCTPID); Value *VCTPCall = Builder.CreateCall(VCTP, Processed); ActiveLaneMask->replaceAllUsesWith(VCTPCall); // Add the incoming value to the new phi. // TODO: This add likely already exists in the loop. Value *Remaining = Builder.CreateSub(Processed, Factor); Processed->addIncoming(Remaining, L->getLoopLatch()); LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: " << *Processed << "\n" << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n"); } bool MVETailPredication::TryConvertActiveLaneMask(Value *TripCount) { SmallVector ActiveLaneMasks; for (auto *BB : L->getBlocks()) for (auto &I : *BB) if (auto *Int = dyn_cast(&I)) if (Int->getIntrinsicID() == Intrinsic::get_active_lane_mask) ActiveLaneMasks.push_back(Int); if (ActiveLaneMasks.empty()) return false; LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n"); for (auto *ActiveLaneMask : ActiveLaneMasks) { LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: " << *ActiveLaneMask << "\n"); const SCEV *StartSCEV = IsSafeActiveMask(ActiveLaneMask, TripCount); if (!StartSCEV) { LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n"); return false; } LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP. Start is " << *StartSCEV << "\n"); SCEVExpander Expander(*SE, L->getHeader()->getModule()->getDataLayout(), "start"); Instruction *Ins = L->getLoopPreheader()->getTerminator(); Value *Start = Expander.expandCodeFor(StartSCEV, StartSCEV->getType(), Ins); LLVM_DEBUG(dbgs() << "ARM TP: Created start value " << *Start << "\n"); InsertVCTPIntrinsic(ActiveLaneMask, Start); } // Remove dead instructions and now dead phis. for (auto *II : ActiveLaneMasks) RecursivelyDeleteTriviallyDeadInstructions(II); for (auto *I : L->blocks()) DeleteDeadPHIs(I); return true; } Pass *llvm::createMVETailPredicationPass() { return new MVETailPredication(); } char MVETailPredication::ID = 0; INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false) INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)