//===- ARMTargetStreamer.cpp - ARMTargetStreamer class --*- C++ -*---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the ARMTargetStreamer class. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/ARMMCTargetDesc.h" #include "llvm/MC/ConstantPools.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/ARMBuildAttributes.h" #include "llvm/Support/TargetParser.h" using namespace llvm; // // ARMTargetStreamer Implemenation // ARMTargetStreamer::ARMTargetStreamer(MCStreamer &S) : MCTargetStreamer(S), ConstantPools(new AssemblerConstantPools()) {} ARMTargetStreamer::~ARMTargetStreamer() = default; // The constant pool handling is shared by all ARMTargetStreamer // implementations. const MCExpr *ARMTargetStreamer::addConstantPoolEntry(const MCExpr *Expr, SMLoc Loc) { return ConstantPools->addEntry(Streamer, Expr, 4, Loc); } void ARMTargetStreamer::emitCurrentConstantPool() { ConstantPools->emitForCurrentSection(Streamer); ConstantPools->clearCacheForCurrentSection(Streamer); } // finish() - write out any non-empty assembler constant pools. void ARMTargetStreamer::emitConstantPools() { ConstantPools->emitAll(Streamer); } // reset() - Reset any state void ARMTargetStreamer::reset() {} void ARMTargetStreamer::emitInst(uint32_t Inst, char Suffix) { unsigned Size; char Buffer[4]; const bool LittleEndian = getStreamer().getContext().getAsmInfo()->isLittleEndian(); switch (Suffix) { case '\0': Size = 4; for (unsigned II = 0, IE = Size; II != IE; II++) { const unsigned I = LittleEndian ? (Size - II - 1) : II; Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT); } break; case 'n': case 'w': Size = (Suffix == 'n' ? 2 : 4); // Thumb wide instructions are emitted as a pair of 16-bit words of the // appropriate endianness. for (unsigned II = 0, IE = Size; II != IE; II = II + 2) { const unsigned I0 = LittleEndian ? II + 0 : II + 1; const unsigned I1 = LittleEndian ? II + 1 : II + 0; Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT); Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT); } break; default: llvm_unreachable("Invalid Suffix"); } getStreamer().emitBytes(StringRef(Buffer, Size)); } // The remaining callbacks should be handled separately by each // streamer. void ARMTargetStreamer::emitFnStart() {} void ARMTargetStreamer::emitFnEnd() {} void ARMTargetStreamer::emitCantUnwind() {} void ARMTargetStreamer::emitPersonality(const MCSymbol *Personality) {} void ARMTargetStreamer::emitPersonalityIndex(unsigned Index) {} void ARMTargetStreamer::emitHandlerData() {} void ARMTargetStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset) {} void ARMTargetStreamer::emitMovSP(unsigned Reg, int64_t Offset) {} void ARMTargetStreamer::emitPad(int64_t Offset) {} void ARMTargetStreamer::emitRegSave(const SmallVectorImpl &RegList, bool isVector) {} void ARMTargetStreamer::emitUnwindRaw(int64_t StackOffset, const SmallVectorImpl &Opcodes) { } void ARMTargetStreamer::switchVendor(StringRef Vendor) {} void ARMTargetStreamer::emitAttribute(unsigned Attribute, unsigned Value) {} void ARMTargetStreamer::emitTextAttribute(unsigned Attribute, StringRef String) {} void ARMTargetStreamer::emitIntTextAttribute(unsigned Attribute, unsigned IntValue, StringRef StringValue) {} void ARMTargetStreamer::emitArch(ARM::ArchKind Arch) {} void ARMTargetStreamer::emitArchExtension(uint64_t ArchExt) {} void ARMTargetStreamer::emitObjectArch(ARM::ArchKind Arch) {} void ARMTargetStreamer::emitFPU(unsigned FPU) {} void ARMTargetStreamer::finishAttributeSection() {} void ARMTargetStreamer::annotateTLSDescriptorSequence( const MCSymbolRefExpr *SRE) {} void ARMTargetStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {} void ARMTargetStreamer::emitARMWinCFIAllocStack(unsigned Size, bool Wide) {} void ARMTargetStreamer::emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) {} void ARMTargetStreamer::emitARMWinCFISaveSP(unsigned Reg) {} void ARMTargetStreamer::emitARMWinCFISaveFRegs(unsigned First, unsigned Last) {} void ARMTargetStreamer::emitARMWinCFISaveLR(unsigned Offset) {} void ARMTargetStreamer::emitARMWinCFINop(bool Wide) {} void ARMTargetStreamer::emitARMWinCFIPrologEnd(bool Fragment) {} void ARMTargetStreamer::emitARMWinCFIEpilogStart(unsigned Condition) {} void ARMTargetStreamer::emitARMWinCFIEpilogEnd() {} void ARMTargetStreamer::emitARMWinCFICustom(unsigned Opcode) {} static ARMBuildAttrs::CPUArch getArchForCPU(const MCSubtargetInfo &STI) { if (STI.getCPU() == "xscale") return ARMBuildAttrs::v5TEJ; if (STI.hasFeature(ARM::HasV9_0aOps)) return ARMBuildAttrs::v9_A; else if (STI.hasFeature(ARM::HasV8Ops)) { if (STI.hasFeature(ARM::FeatureRClass)) return ARMBuildAttrs::v8_R; return ARMBuildAttrs::v8_A; } else if (STI.hasFeature(ARM::HasV8_1MMainlineOps)) return ARMBuildAttrs::v8_1_M_Main; else if (STI.hasFeature(ARM::HasV8MMainlineOps)) return ARMBuildAttrs::v8_M_Main; else if (STI.hasFeature(ARM::HasV7Ops)) { if (STI.hasFeature(ARM::FeatureMClass) && STI.hasFeature(ARM::FeatureDSP)) return ARMBuildAttrs::v7E_M; return ARMBuildAttrs::v7; } else if (STI.hasFeature(ARM::HasV6T2Ops)) return ARMBuildAttrs::v6T2; else if (STI.hasFeature(ARM::HasV8MBaselineOps)) return ARMBuildAttrs::v8_M_Base; else if (STI.hasFeature(ARM::HasV6MOps)) return ARMBuildAttrs::v6S_M; else if (STI.hasFeature(ARM::HasV6Ops)) return ARMBuildAttrs::v6; else if (STI.hasFeature(ARM::HasV5TEOps)) return ARMBuildAttrs::v5TE; else if (STI.hasFeature(ARM::HasV5TOps)) return ARMBuildAttrs::v5T; else if (STI.hasFeature(ARM::HasV4TOps)) return ARMBuildAttrs::v4T; else return ARMBuildAttrs::v4; } static bool isV8M(const MCSubtargetInfo &STI) { // Note that v8M Baseline is a subset of v6T2! return (STI.hasFeature(ARM::HasV8MBaselineOps) && !STI.hasFeature(ARM::HasV6T2Ops)) || STI.hasFeature(ARM::HasV8MMainlineOps); } /// Emit the build attributes that only depend on the hardware that we expect // /to be available, and not on the ABI, or any source-language choices. void ARMTargetStreamer::emitTargetAttributes(const MCSubtargetInfo &STI) { switchVendor("aeabi"); const StringRef CPUString = STI.getCPU(); if (!CPUString.empty() && !CPUString.startswith("generic")) { // FIXME: remove krait check when GNU tools support krait cpu if (STI.hasFeature(ARM::ProcKrait)) { emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9"); // We consider krait as a "cortex-a9" + hwdiv CPU // Enable hwdiv through ".arch_extension idiv" if (STI.hasFeature(ARM::FeatureHWDivThumb) || STI.hasFeature(ARM::FeatureHWDivARM)) emitArchExtension(ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM); } else { emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString); } } emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(STI)); if (STI.hasFeature(ARM::FeatureAClass)) { emitAttribute(ARMBuildAttrs::CPU_arch_profile, ARMBuildAttrs::ApplicationProfile); } else if (STI.hasFeature(ARM::FeatureRClass)) { emitAttribute(ARMBuildAttrs::CPU_arch_profile, ARMBuildAttrs::RealTimeProfile); } else if (STI.hasFeature(ARM::FeatureMClass)) { emitAttribute(ARMBuildAttrs::CPU_arch_profile, ARMBuildAttrs::MicroControllerProfile); } emitAttribute(ARMBuildAttrs::ARM_ISA_use, STI.hasFeature(ARM::FeatureNoARM) ? ARMBuildAttrs::Not_Allowed : ARMBuildAttrs::Allowed); if (isV8M(STI)) { emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::AllowThumbDerived); } else if (STI.hasFeature(ARM::FeatureThumb2)) { emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::AllowThumb32); } else if (STI.hasFeature(ARM::HasV4TOps)) { emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed); } if (STI.hasFeature(ARM::FeatureNEON)) { /* NEON is not exactly a VFP architecture, but GAS emit one of * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */ if (STI.hasFeature(ARM::FeatureFPARMv8)) { if (STI.hasFeature(ARM::FeatureCrypto)) emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8); else emitFPU(ARM::FK_NEON_FP_ARMV8); } else if (STI.hasFeature(ARM::FeatureVFP4)) emitFPU(ARM::FK_NEON_VFPV4); else emitFPU(STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_NEON_FP16 : ARM::FK_NEON); // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture if (STI.hasFeature(ARM::HasV8Ops)) emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch, STI.hasFeature(ARM::HasV8_1aOps) ? ARMBuildAttrs::AllowNeonARMv8_1a : ARMBuildAttrs::AllowNeonARMv8); } else { if (STI.hasFeature(ARM::FeatureFPARMv8_D16_SP)) // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one // FPU, but there are two different names for it depending on the CPU. emitFPU(STI.hasFeature(ARM::FeatureD32) ? ARM::FK_FP_ARMV8 : (STI.hasFeature(ARM::FeatureFP64) ? ARM::FK_FPV5_D16 : ARM::FK_FPV5_SP_D16)); else if (STI.hasFeature(ARM::FeatureVFP4_D16_SP)) emitFPU(STI.hasFeature(ARM::FeatureD32) ? ARM::FK_VFPV4 : (STI.hasFeature(ARM::FeatureFP64) ? ARM::FK_VFPV4_D16 : ARM::FK_FPV4_SP_D16)); else if (STI.hasFeature(ARM::FeatureVFP3_D16_SP)) emitFPU( STI.hasFeature(ARM::FeatureD32) // +d32 ? (STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_VFPV3_FP16 : ARM::FK_VFPV3) // -d32 : (STI.hasFeature(ARM::FeatureFP64) ? (STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_VFPV3_D16_FP16 : ARM::FK_VFPV3_D16) : (STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_VFPV3XD_FP16 : ARM::FK_VFPV3XD))); else if (STI.hasFeature(ARM::FeatureVFP2_SP)) emitFPU(ARM::FK_VFPV2); } // ABI_HardFP_use attribute to indicate single precision FP. if (STI.hasFeature(ARM::FeatureVFP2_SP) && !STI.hasFeature(ARM::FeatureFP64)) emitAttribute(ARMBuildAttrs::ABI_HardFP_use, ARMBuildAttrs::HardFPSinglePrecision); if (STI.hasFeature(ARM::FeatureFP16)) emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP); if (STI.hasFeature(ARM::FeatureMP)) emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP); if (STI.hasFeature(ARM::HasMVEFloatOps)) emitAttribute(ARMBuildAttrs::MVE_arch, ARMBuildAttrs::AllowMVEIntegerAndFloat); else if (STI.hasFeature(ARM::HasMVEIntegerOps)) emitAttribute(ARMBuildAttrs::MVE_arch, ARMBuildAttrs::AllowMVEInteger); // Hardware divide in ARM mode is part of base arch, starting from ARMv8. // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M). // It is not possible to produce DisallowDIV: if hwdiv is present in the base // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits. // AllowDIVExt is only emitted if hwdiv isn't available in the base arch; // otherwise, the default value (AllowDIVIfExists) applies. if (STI.hasFeature(ARM::FeatureHWDivARM) && !STI.hasFeature(ARM::HasV8Ops)) emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt); if (STI.hasFeature(ARM::FeatureDSP) && isV8M(STI)) emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed); if (STI.hasFeature(ARM::FeatureStrictAlign)) emitAttribute(ARMBuildAttrs::CPU_unaligned_access, ARMBuildAttrs::Not_Allowed); else emitAttribute(ARMBuildAttrs::CPU_unaligned_access, ARMBuildAttrs::Allowed); if (STI.hasFeature(ARM::FeatureTrustZone) && STI.hasFeature(ARM::FeatureVirtualization)) emitAttribute(ARMBuildAttrs::Virtualization_use, ARMBuildAttrs::AllowTZVirtualization); else if (STI.hasFeature(ARM::FeatureTrustZone)) emitAttribute(ARMBuildAttrs::Virtualization_use, ARMBuildAttrs::AllowTZ); else if (STI.hasFeature(ARM::FeatureVirtualization)) emitAttribute(ARMBuildAttrs::Virtualization_use, ARMBuildAttrs::AllowVirtualization); if (STI.hasFeature(ARM::FeaturePACBTI)) { emitAttribute(ARMBuildAttrs::PAC_extension, ARMBuildAttrs::AllowPAC); emitAttribute(ARMBuildAttrs::BTI_extension, ARMBuildAttrs::AllowBTI); } } MCTargetStreamer * llvm::createARMObjectTargetStreamer(MCStreamer &S, const MCSubtargetInfo &STI) { const Triple &TT = STI.getTargetTriple(); if (TT.isOSBinFormatELF()) return createARMObjectTargetELFStreamer(S); if (TT.isOSBinFormatCOFF()) return createARMObjectTargetWinCOFFStreamer(S); return new ARMTargetStreamer(S); }