//===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the ARM addressing mode implementation stuff. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H #define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/bit.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include namespace llvm { /// ARM_AM - ARM Addressing Mode Stuff namespace ARM_AM { enum ShiftOpc { no_shift = 0, asr, lsl, lsr, ror, rrx, uxtw }; enum AddrOpc { sub = 0, add }; inline const char *getAddrOpcStr(AddrOpc Op) { return Op == sub ? "-" : ""; } inline const char *getShiftOpcStr(ShiftOpc Op) { switch (Op) { default: llvm_unreachable("Unknown shift opc!"); case ARM_AM::asr: return "asr"; case ARM_AM::lsl: return "lsl"; case ARM_AM::lsr: return "lsr"; case ARM_AM::ror: return "ror"; case ARM_AM::rrx: return "rrx"; case ARM_AM::uxtw: return "uxtw"; } } inline unsigned getShiftOpcEncoding(ShiftOpc Op) { switch (Op) { default: llvm_unreachable("Unknown shift opc!"); case ARM_AM::asr: return 2; case ARM_AM::lsl: return 0; case ARM_AM::lsr: return 1; case ARM_AM::ror: return 3; } } enum AMSubMode { bad_am_submode = 0, ia, ib, da, db }; inline const char *getAMSubModeStr(AMSubMode Mode) { switch (Mode) { default: llvm_unreachable("Unknown addressing sub-mode!"); case ARM_AM::ia: return "ia"; case ARM_AM::ib: return "ib"; case ARM_AM::da: return "da"; case ARM_AM::db: return "db"; } } //===--------------------------------------------------------------------===// // Addressing Mode #1: shift_operand with registers //===--------------------------------------------------------------------===// // // This 'addressing mode' is used for arithmetic instructions. It can // represent things like: // reg // reg [asr|lsl|lsr|ror|rrx] reg // reg [asr|lsl|lsr|ror|rrx] imm // // This is stored three operands [rega, regb, opc]. The first is the base // reg, the second is the shift amount (or reg0 if not present or imm). The // third operand encodes the shift opcode and the imm if a reg isn't present. // inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) { return ShOp | (Imm << 3); } inline unsigned getSORegOffset(unsigned Op) { return Op >> 3; } inline ShiftOpc getSORegShOp(unsigned Op) { return (ShiftOpc)(Op & 7); } /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return /// the 8-bit imm value. inline unsigned getSOImmValImm(unsigned Imm) { return Imm & 0xFF; } /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return /// the rotate amount. inline unsigned getSOImmValRot(unsigned Imm) { return (Imm >> 8) * 2; } /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand, /// computing the rotate amount to use. If this immediate value cannot be /// handled with a single shifter-op, determine a good rotate amount that will /// take a maximal chunk of bits out of the immediate. inline unsigned getSOImmValRotate(unsigned Imm) { // 8-bit (or less) immediates are trivially shifter_operands with a rotate // of zero. if ((Imm & ~255U) == 0) return 0; // Use CTZ to compute the rotate amount. unsigned TZ = llvm::countr_zero(Imm); // Rotate amount must be even. Something like 0x200 must be rotated 8 bits, // not 9. unsigned RotAmt = TZ & ~1; // If we can handle this spread, return it. if ((llvm::rotr(Imm, RotAmt) & ~255U) == 0) return (32-RotAmt)&31; // HW rotates right, not left. // For values like 0xF000000F, we should ignore the low 6 bits, then // retry the hunt. if (Imm & 63U) { unsigned TZ2 = llvm::countr_zero(Imm & ~63U); unsigned RotAmt2 = TZ2 & ~1; if ((llvm::rotr(Imm, RotAmt2) & ~255U) == 0) return (32-RotAmt2)&31; // HW rotates right, not left. } // Otherwise, we have no way to cover this span of bits with a single // shifter_op immediate. Return a chunk of bits that will be useful to // handle. return (32-RotAmt)&31; // HW rotates right, not left. } /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit /// into an shifter_operand immediate operand, return the 12-bit encoding for /// it. If not, return -1. inline int getSOImmVal(unsigned Arg) { // 8-bit (or less) immediates are trivially shifter_operands with a rotate // of zero. if ((Arg & ~255U) == 0) return Arg; unsigned RotAmt = getSOImmValRotate(Arg); // If this cannot be handled with a single shifter_op, bail out. if (llvm::rotr(~255U, RotAmt) & Arg) return -1; // Encode this correctly. return llvm::rotl(Arg, RotAmt) | ((RotAmt >> 1) << 8); } /// isSOImmTwoPartVal - Return true if the specified value can be obtained by /// or'ing together two SOImmVal's. inline bool isSOImmTwoPartVal(unsigned V) { // If this can be handled with a single shifter_op, bail out. V = llvm::rotr(~255U, getSOImmValRotate(V)) & V; if (V == 0) return false; // If this can be handled with two shifter_op's, accept. V = llvm::rotr(~255U, getSOImmValRotate(V)) & V; return V == 0; } /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal, /// return the first chunk of it. inline unsigned getSOImmTwoPartFirst(unsigned V) { return llvm::rotr(255U, getSOImmValRotate(V)) & V; } /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal, /// return the second chunk of it. inline unsigned getSOImmTwoPartSecond(unsigned V) { // Mask out the first hunk. V = llvm::rotr(~255U, getSOImmValRotate(V)) & V; // Take what's left. assert(V == (llvm::rotr(255U, getSOImmValRotate(V)) & V)); return V; } /// isSOImmTwoPartValNeg - Return true if the specified value can be obtained /// by two SOImmVal, that -V = First + Second. /// "R+V" can be optimized to (sub (sub R, First), Second). /// "R=V" can be optimized to (sub (mvn R, ~(-First)), Second). inline bool isSOImmTwoPartValNeg(unsigned V) { unsigned First; if (!isSOImmTwoPartVal(-V)) return false; // Return false if ~(-First) is not a SoImmval. First = getSOImmTwoPartFirst(-V); First = ~(-First); return !(llvm::rotr(~255U, getSOImmValRotate(First)) & First); } /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed /// by a left shift. Returns the shift amount to use. inline unsigned getThumbImmValShift(unsigned Imm) { // 8-bit (or less) immediates are trivially immediate operand with a shift // of zero. if ((Imm & ~255U) == 0) return 0; // Use CTZ to compute the shift amount. return llvm::countr_zero(Imm); } /// isThumbImmShiftedVal - Return true if the specified value can be obtained /// by left shifting a 8-bit immediate. inline bool isThumbImmShiftedVal(unsigned V) { // If this can be handled with V = (~255U << getThumbImmValShift(V)) & V; return V == 0; } /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed /// by a left shift. Returns the shift amount to use. inline unsigned getThumbImm16ValShift(unsigned Imm) { // 16-bit (or less) immediates are trivially immediate operand with a shift // of zero. if ((Imm & ~65535U) == 0) return 0; // Use CTZ to compute the shift amount. return llvm::countr_zero(Imm); } /// isThumbImm16ShiftedVal - Return true if the specified value can be /// obtained by left shifting a 16-bit immediate. inline bool isThumbImm16ShiftedVal(unsigned V) { // If this can be handled with V = (~65535U << getThumbImm16ValShift(V)) & V; return V == 0; } /// getThumbImmNonShiftedVal - If V is a value that satisfies /// isThumbImmShiftedVal, return the non-shiftd value. inline unsigned getThumbImmNonShiftedVal(unsigned V) { return V >> getThumbImmValShift(V); } /// getT2SOImmValSplat - Return the 12-bit encoded representation /// if the specified value can be obtained by splatting the low 8 bits /// into every other byte or every byte of a 32-bit value. i.e., /// 00000000 00000000 00000000 abcdefgh control = 0 /// 00000000 abcdefgh 00000000 abcdefgh control = 1 /// abcdefgh 00000000 abcdefgh 00000000 control = 2 /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3 /// Return -1 if none of the above apply. /// See ARM Reference Manual A6.3.2. inline int getT2SOImmValSplatVal(unsigned V) { unsigned u, Vs, Imm; // control = 0 if ((V & 0xffffff00) == 0) return V; // If the value is zeroes in the first byte, just shift those off Vs = ((V & 0xff) == 0) ? V >> 8 : V; // Any passing value only has 8 bits of payload, splatted across the word Imm = Vs & 0xff; // Likewise, any passing values have the payload splatted into the 3rd byte u = Imm | (Imm << 16); // control = 1 or 2 if (Vs == u) return (((Vs == V) ? 1 : 2) << 8) | Imm; // control = 3 if (Vs == (u | (u << 8))) return (3 << 8) | Imm; return -1; } /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the /// specified value is a rotated 8-bit value. Return -1 if no rotation /// encoding is possible. /// See ARM Reference Manual A6.3.2. inline int getT2SOImmValRotateVal(unsigned V) { unsigned RotAmt = llvm::countl_zero(V); if (RotAmt >= 24) return -1; // If 'Arg' can be handled with a single shifter_op return the value. if ((llvm::rotr(0xff000000U, RotAmt) & V) == V) return (llvm::rotr(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7); return -1; } /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit /// encoding for it. If not, return -1. /// See ARM Reference Manual A6.3.2. inline int getT2SOImmVal(unsigned Arg) { // If 'Arg' is an 8-bit splat, then get the encoded value. int Splat = getT2SOImmValSplatVal(Arg); if (Splat != -1) return Splat; // If 'Arg' can be handled with a single shifter_op return the value. int Rot = getT2SOImmValRotateVal(Arg); if (Rot != -1) return Rot; return -1; } inline unsigned getT2SOImmValRotate(unsigned V) { if ((V & ~255U) == 0) return 0; // Use CTZ to compute the rotate amount. unsigned RotAmt = llvm::countr_zero(V); return (32 - RotAmt) & 31; } inline bool isT2SOImmTwoPartVal(unsigned Imm) { unsigned V = Imm; // Passing values can be any combination of splat values and shifter // values. If this can be handled with a single shifter or splat, bail // out. Those should be handled directly, not with a two-part val. if (getT2SOImmValSplatVal(V) != -1) return false; V = llvm::rotr(~255U, getT2SOImmValRotate(V)) & V; if (V == 0) return false; // If this can be handled as an immediate, accept. if (getT2SOImmVal(V) != -1) return true; // Likewise, try masking out a splat value first. V = Imm; if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1) V &= ~0xff00ff00U; else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1) V &= ~0x00ff00ffU; // If what's left can be handled as an immediate, accept. if (getT2SOImmVal(V) != -1) return true; // Otherwise, do not accept. return false; } inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) { assert (isT2SOImmTwoPartVal(Imm) && "Immedate cannot be encoded as two part immediate!"); // Try a shifter operand as one part unsigned V = llvm::rotr(~255, getT2SOImmValRotate(Imm)) & Imm; // If the rest is encodable as an immediate, then return it. if (getT2SOImmVal(V) != -1) return V; // Try masking out a splat value first. if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1) return Imm & 0xff00ff00U; // The other splat is all that's left as an option. assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1); return Imm & 0x00ff00ffU; } inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) { // Mask out the first hunk Imm ^= getT2SOImmTwoPartFirst(Imm); // Return what's left assert (getT2SOImmVal(Imm) != -1 && "Unable to encode second part of T2 two part SO immediate"); return Imm; } //===--------------------------------------------------------------------===// // Addressing Mode #2 //===--------------------------------------------------------------------===// // // This is used for most simple load/store instructions. // // addrmode2 := reg +/- reg shop imm // addrmode2 := reg +/- imm12 // // The first operand is always a Reg. The second operand is a reg if in // reg/reg form, otherwise it's reg#0. The third field encodes the operation // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The // fourth operand 16-17 encodes the index mode. // // If this addressing mode is a frame index (before prolog/epilog insertion // and code rewriting), this operand will have the form: FI#, reg0, // with no shift amount for the frame offset. // inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO, unsigned IdxMode = 0) { assert(Imm12 < (1 << 12) && "Imm too large!"); bool isSub = Opc == sub; return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ; } inline unsigned getAM2Offset(unsigned AM2Opc) { return AM2Opc & ((1 << 12)-1); } inline AddrOpc getAM2Op(unsigned AM2Opc) { return ((AM2Opc >> 12) & 1) ? sub : add; } inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) { return (ShiftOpc)((AM2Opc >> 13) & 7); } inline unsigned getAM2IdxMode(unsigned AM2Opc) { return (AM2Opc >> 16); } //===--------------------------------------------------------------------===// // Addressing Mode #3 //===--------------------------------------------------------------------===// // // This is used for sign-extending loads, and load/store-pair instructions. // // addrmode3 := reg +/- reg // addrmode3 := reg +/- imm8 // // The first operand is always a Reg. The second operand is a reg if in // reg/reg form, otherwise it's reg#0. The third field encodes the operation // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the // index mode. /// getAM3Opc - This function encodes the addrmode3 opc field. inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset, unsigned IdxMode = 0) { bool isSub = Opc == sub; return ((int)isSub << 8) | Offset | (IdxMode << 9); } inline unsigned char getAM3Offset(unsigned AM3Opc) { return AM3Opc & 0xFF; } inline AddrOpc getAM3Op(unsigned AM3Opc) { return ((AM3Opc >> 8) & 1) ? sub : add; } inline unsigned getAM3IdxMode(unsigned AM3Opc) { return (AM3Opc >> 9); } //===--------------------------------------------------------------------===// // Addressing Mode #4 //===--------------------------------------------------------------------===// // // This is used for load / store multiple instructions. // // addrmode4 := reg, // // The four modes are: // IA - Increment after // IB - Increment before // DA - Decrement after // DB - Decrement before // For VFP instructions, only the IA and DB modes are valid. inline AMSubMode getAM4SubMode(unsigned Mode) { return (AMSubMode)(Mode & 0x7); } inline unsigned getAM4ModeImm(AMSubMode SubMode) { return (int)SubMode; } //===--------------------------------------------------------------------===// // Addressing Mode #5 //===--------------------------------------------------------------------===// // // This is used for coprocessor instructions, such as FP load/stores. // // addrmode5 := reg +/- imm8*4 // // The first operand is always a Reg. The second operand encodes the // operation (add or subtract) in bit 8 and the immediate in bits 0-7. /// getAM5Opc - This function encodes the addrmode5 opc field. inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) { bool isSub = Opc == sub; return ((int)isSub << 8) | Offset; } inline unsigned char getAM5Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; } inline AddrOpc getAM5Op(unsigned AM5Opc) { return ((AM5Opc >> 8) & 1) ? sub : add; } //===--------------------------------------------------------------------===// // Addressing Mode #5 FP16 //===--------------------------------------------------------------------===// // // This is used for coprocessor instructions, such as 16-bit FP load/stores. // // addrmode5fp16 := reg +/- imm8*2 // // The first operand is always a Reg. The second operand encodes the // operation (add or subtract) in bit 8 and the immediate in bits 0-7. /// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field. inline unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset) { bool isSub = Opc == sub; return ((int)isSub << 8) | Offset; } inline unsigned char getAM5FP16Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; } inline AddrOpc getAM5FP16Op(unsigned AM5Opc) { return ((AM5Opc >> 8) & 1) ? sub : add; } //===--------------------------------------------------------------------===// // Addressing Mode #6 //===--------------------------------------------------------------------===// // // This is used for NEON load / store instructions. // // addrmode6 := reg with optional alignment // // This is stored in two operands [regaddr, align]. The first is the // address register. The second operand is the value of the alignment // specifier in bytes or zero if no explicit alignment. // Valid alignments depend on the specific instruction. //===--------------------------------------------------------------------===// // NEON/MVE Modified Immediates //===--------------------------------------------------------------------===// // // Several NEON and MVE instructions (e.g., VMOV) take a "modified immediate" // vector operand, where a small immediate encoded in the instruction // specifies a full NEON vector value. These modified immediates are // represented here as encoded integers. The low 8 bits hold the immediate // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold // the "Cmode" field of the instruction. The interfaces below treat the // Op and Cmode values as a single 5-bit value. inline unsigned createVMOVModImm(unsigned OpCmode, unsigned Val) { return (OpCmode << 8) | Val; } inline unsigned getVMOVModImmOpCmode(unsigned ModImm) { return (ModImm >> 8) & 0x1f; } inline unsigned getVMOVModImmVal(unsigned ModImm) { return ModImm & 0xff; } /// decodeVMOVModImm - Decode a NEON/MVE modified immediate value into the /// element value and the element size in bits. (If the element size is /// smaller than the vector, it is splatted into all the elements.) inline uint64_t decodeVMOVModImm(unsigned ModImm, unsigned &EltBits) { unsigned OpCmode = getVMOVModImmOpCmode(ModImm); unsigned Imm8 = getVMOVModImmVal(ModImm); uint64_t Val = 0; if (OpCmode == 0xe) { // 8-bit vector elements Val = Imm8; EltBits = 8; } else if ((OpCmode & 0xc) == 0x8) { // 16-bit vector elements unsigned ByteNum = (OpCmode & 0x6) >> 1; Val = Imm8 << (8 * ByteNum); EltBits = 16; } else if ((OpCmode & 0x8) == 0) { // 32-bit vector elements, zero with one byte set unsigned ByteNum = (OpCmode & 0x6) >> 1; Val = Imm8 << (8 * ByteNum); EltBits = 32; } else if ((OpCmode & 0xe) == 0xc) { // 32-bit vector elements, one byte with low bits set unsigned ByteNum = 1 + (OpCmode & 0x1); Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum))); EltBits = 32; } else if (OpCmode == 0x1e) { // 64-bit vector elements for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) { if ((ModImm >> ByteNum) & 1) Val |= (uint64_t)0xff << (8 * ByteNum); } EltBits = 64; } else { llvm_unreachable("Unsupported VMOV immediate"); } return Val; } // Generic validation for single-byte immediate (0X00, 00X0, etc). inline bool isNEONBytesplat(unsigned Value, unsigned Size) { assert(Size >= 1 && Size <= 4 && "Invalid size"); unsigned count = 0; for (unsigned i = 0; i < Size; ++i) { if (Value & 0xff) count++; Value >>= 8; } return count == 1; } /// Checks if Value is a correct immediate for instructions like VBIC/VORR. inline bool isNEONi16splat(unsigned Value) { if (Value > 0xffff) return false; // i16 value with set bits only in one byte X0 or 0X. return Value == 0 || isNEONBytesplat(Value, 2); } // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR inline unsigned encodeNEONi16splat(unsigned Value) { assert(isNEONi16splat(Value) && "Invalid NEON splat value"); if (Value >= 0x100) Value = (Value >> 8) | 0xa00; else Value |= 0x800; return Value; } /// Checks if Value is a correct immediate for instructions like VBIC/VORR. inline bool isNEONi32splat(unsigned Value) { // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X. return Value == 0 || isNEONBytesplat(Value, 4); } /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR. inline unsigned encodeNEONi32splat(unsigned Value) { assert(isNEONi32splat(Value) && "Invalid NEON splat value"); if (Value >= 0x100 && Value <= 0xff00) Value = (Value >> 8) | 0x200; else if (Value > 0xffff && Value <= 0xff0000) Value = (Value >> 16) | 0x400; else if (Value > 0xffffff) Value = (Value >> 24) | 0x600; return Value; } //===--------------------------------------------------------------------===// // Floating-point Immediates // inline float getFPImmFloat(unsigned Imm) { // We expect an 8-bit binary encoding of a floating-point number here. uint8_t Sign = (Imm >> 7) & 0x1; uint8_t Exp = (Imm >> 4) & 0x7; uint8_t Mantissa = Imm & 0xf; // 8-bit FP IEEE Float Encoding // abcd efgh aBbbbbbc defgh000 00000000 00000000 // // where B = NOT(b); uint32_t I = 0; I |= Sign << 31; I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30; I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25; I |= (Exp & 0x3) << 23; I |= Mantissa << 19; return bit_cast(I); } /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit /// floating-point value. If the value cannot be represented as an 8-bit /// floating-point value, then return -1. inline int getFP16Imm(const APInt &Imm) { uint32_t Sign = Imm.lshr(15).getZExtValue() & 1; int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15 int64_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits // We can handle 4 bits of mantissa. // mantissa = (16+UInt(e:f:g:h))/16. if (Mantissa & 0x3f) return -1; Mantissa >>= 6; // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 if (Exp < -3 || Exp > 4) return -1; Exp = ((Exp+3) & 0x7) ^ 4; return ((int)Sign << 7) | (Exp << 4) | Mantissa; } inline int getFP16Imm(const APFloat &FPImm) { return getFP16Imm(FPImm.bitcastToAPInt()); } /// If this is a FP16Imm encoded as a fp32 value, return the 8-bit encoding /// for it. Otherwise return -1 like getFP16Imm. inline int getFP32FP16Imm(const APInt &Imm) { if (Imm.getActiveBits() > 16) return -1; return ARM_AM::getFP16Imm(Imm.trunc(16)); } inline int getFP32FP16Imm(const APFloat &FPImm) { return getFP32FP16Imm(FPImm.bitcastToAPInt()); } /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit /// floating-point value. If the value cannot be represented as an 8-bit /// floating-point value, then return -1. inline int getFP32Imm(const APInt &Imm) { uint32_t Sign = Imm.lshr(31).getZExtValue() & 1; int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127 int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits // We can handle 4 bits of mantissa. // mantissa = (16+UInt(e:f:g:h))/16. if (Mantissa & 0x7ffff) return -1; Mantissa >>= 19; if ((Mantissa & 0xf) != Mantissa) return -1; // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 if (Exp < -3 || Exp > 4) return -1; Exp = ((Exp+3) & 0x7) ^ 4; return ((int)Sign << 7) | (Exp << 4) | Mantissa; } inline int getFP32Imm(const APFloat &FPImm) { return getFP32Imm(FPImm.bitcastToAPInt()); } /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit /// floating-point value. If the value cannot be represented as an 8-bit /// floating-point value, then return -1. inline int getFP64Imm(const APInt &Imm) { uint64_t Sign = Imm.lshr(63).getZExtValue() & 1; int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023 uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL; // We can handle 4 bits of mantissa. // mantissa = (16+UInt(e:f:g:h))/16. if (Mantissa & 0xffffffffffffULL) return -1; Mantissa >>= 48; if ((Mantissa & 0xf) != Mantissa) return -1; // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 if (Exp < -3 || Exp > 4) return -1; Exp = ((Exp+3) & 0x7) ^ 4; return ((int)Sign << 7) | (Exp << 4) | Mantissa; } inline int getFP64Imm(const APFloat &FPImm) { return getFP64Imm(FPImm.bitcastToAPInt()); } } // end namespace ARM_AM } // end namespace llvm #endif