//===- ARMDisassembler.cpp - Disassembler for ARM/Thumb ISA ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ARMBaseInstrInfo.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "MCTargetDesc/ARMBaseInfo.h" #include "MCTargetDesc/ARMMCTargetDesc.h" #include "TargetInfo/ARMTargetInfo.h" #include "Utils/ARMBaseInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDecoderOps.h" #include "llvm/MC/MCDisassembler/MCDisassembler.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/SubtargetFeature.h" #include #include #include #include using namespace llvm; #define DEBUG_TYPE "arm-disassembler" using DecodeStatus = MCDisassembler::DecodeStatus; namespace { // Handles the condition code status of instructions in IT blocks class ITStatus { public: // Returns the condition code for instruction in IT block unsigned getITCC() { unsigned CC = ARMCC::AL; if (instrInITBlock()) CC = ITStates.back(); return CC; } // Advances the IT block state to the next T or E void advanceITState() { ITStates.pop_back(); } // Returns true if the current instruction is in an IT block bool instrInITBlock() { return !ITStates.empty(); } // Returns true if current instruction is the last instruction in an IT block bool instrLastInITBlock() { return ITStates.size() == 1; } // Called when decoding an IT instruction. Sets the IT state for // the following instructions that for the IT block. Firstcond // corresponds to the field in the IT instruction encoding; Mask // is in the MCOperand format in which 1 means 'else' and 0 'then'. void setITState(char Firstcond, char Mask) { // (3 - the number of trailing zeros) is the number of then / else. unsigned NumTZ = llvm::countr_zero(Mask); unsigned char CCBits = static_cast(Firstcond & 0xf); assert(NumTZ <= 3 && "Invalid IT mask!"); // push condition codes onto the stack the correct order for the pops for (unsigned Pos = NumTZ+1; Pos <= 3; ++Pos) { unsigned Else = (Mask >> Pos) & 1; ITStates.push_back(CCBits ^ Else); } ITStates.push_back(CCBits); } private: std::vector ITStates; }; class VPTStatus { public: unsigned getVPTPred() { unsigned Pred = ARMVCC::None; if (instrInVPTBlock()) Pred = VPTStates.back(); return Pred; } void advanceVPTState() { VPTStates.pop_back(); } bool instrInVPTBlock() { return !VPTStates.empty(); } bool instrLastInVPTBlock() { return VPTStates.size() == 1; } void setVPTState(char Mask) { // (3 - the number of trailing zeros) is the number of then / else. unsigned NumTZ = llvm::countr_zero(Mask); assert(NumTZ <= 3 && "Invalid VPT mask!"); // push predicates onto the stack the correct order for the pops for (unsigned Pos = NumTZ+1; Pos <= 3; ++Pos) { bool T = ((Mask >> Pos) & 1) == 0; if (T) VPTStates.push_back(ARMVCC::Then); else VPTStates.push_back(ARMVCC::Else); } VPTStates.push_back(ARMVCC::Then); } private: SmallVector VPTStates; }; /// ARM disassembler for all ARM platforms. class ARMDisassembler : public MCDisassembler { public: std::unique_ptr MCII; ARMDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, const MCInstrInfo *MCII) : MCDisassembler(STI, Ctx), MCII(MCII) { InstructionEndianness = STI.hasFeature(ARM::ModeBigEndianInstructions) ? llvm::endianness::big : llvm::endianness::little; } ~ARMDisassembler() override = default; DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size, ArrayRef Bytes, uint64_t Address, raw_ostream &CStream) const override; uint64_t suggestBytesToSkip(ArrayRef Bytes, uint64_t Address) const override; private: DecodeStatus getARMInstruction(MCInst &Instr, uint64_t &Size, ArrayRef Bytes, uint64_t Address, raw_ostream &CStream) const; DecodeStatus getThumbInstruction(MCInst &Instr, uint64_t &Size, ArrayRef Bytes, uint64_t Address, raw_ostream &CStream) const; mutable ITStatus ITBlock; mutable VPTStatus VPTBlock; void AddThumb1SBit(MCInst &MI, bool InITBlock) const; bool isVectorPredicable(const MCInst &MI) const; DecodeStatus AddThumbPredicate(MCInst&) const; void UpdateThumbVFPPredicate(DecodeStatus &, MCInst&) const; llvm::endianness InstructionEndianness; }; } // end anonymous namespace // Forward declare these because the autogenerated code will reference them. // Definitions are further down. static DecodeStatus DecodeGPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeCLRMGPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodetGPROddRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodetGPREvenRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeGPRwithAPSR_NZCVnospRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeGPRnopcRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeGPRnospRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeGPRwithAPSRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeGPRwithZRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeGPRwithZRnospRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodetGPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodetcGPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecoderGPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeGPRPairRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeGPRPairnospRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeGPRspRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeHPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeSPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeDPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeDPR_8RegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeSPR_8RegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeDPR_VFP2RegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeQPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeMQPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeMQQPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeMQQQQPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeDPairRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeDPairSpacedRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodePredicateOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeCCOutOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeRegListOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeSPRRegListOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeDPRRegListOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeBitfieldMaskOperand(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeCopMemInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeAddrMode2IdxInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeSORegMemOperand(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeAddrMode3Instruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeTSBInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeSORegImmOperand(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeSORegRegOperand(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeMemMultipleWritebackInstruction(MCInst &Inst, unsigned Insn, uint64_t Adddress, const MCDisassembler *Decoder); static DecodeStatus DecodeT2MOVTWInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeArmMOVTWInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeSMLAInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeHINTInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeCPSInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeTSTInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeSETPANInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2CPSInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2HintSpaceInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeAddrModeImm12Operand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeAddrMode5Operand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeAddrMode5FP16Operand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeAddrMode7Operand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2BInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeBranchImmInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeAddrMode6Operand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVLDST1Instruction(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVLDST2Instruction(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVLDST3Instruction(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVLDST4Instruction(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVLDInstruction(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVSTInstruction(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVLD1DupInstruction(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVLD2DupInstruction(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVLD3DupInstruction(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVLD4DupInstruction(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVMOVModImmInstruction(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeMVEModImmInstruction(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeMVEVADCInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVSHLMaxInstruction(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeShiftRight8Imm(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeShiftRight16Imm(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeShiftRight32Imm(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeShiftRight64Imm(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeTBLInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodePostIdxReg(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeMveAddrModeRQ(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); template static DecodeStatus DecodeMveAddrModeQ(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeCoprocessor(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeMemBarrierOption(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeInstSyncBarrierOption(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeMSRMask(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeBankedReg(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeDoubleRegLoad(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeDoubleRegStore(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeLDRPreImm(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeLDRPreReg(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeSTRPreImm(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeSTRPreReg(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVLD1LN(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVLD2LN(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVLD3LN(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVLD4LN(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVST1LN(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVST2LN(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVST3LN(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVST4LN(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVMOVSRR(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVMOVRRS(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeSwap(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVCVTD(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVCVTQ(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVCVTImmOperand(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeNEONComplexLane64Instruction(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeThumbAddSpecialReg(MCInst &Inst, uint16_t Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeThumbBROperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2BROperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeThumbCmpBROperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeThumbAddrModeRR(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeThumbAddrModeIS(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeThumbAddrModePC(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeThumbAddrModeSP(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2AddrModeSOReg(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2LoadShift(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2LoadImm8(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2LoadImm12(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2LoadT(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2LoadLabel(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2Imm8S4(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2Imm7S4(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2AddrModeImm8s4(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2AddrModeImm7s4(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2AddrModeImm0_1020s4(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2Imm8(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); template static DecodeStatus DecodeT2Imm7(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2AddrModeImm8(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); template static DecodeStatus DecodeTAddrModeImm7(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); template static DecodeStatus DecodeT2AddrModeImm7(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeThumbAddSPImm(MCInst &Inst, uint16_t Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeThumbAddSPReg(MCInst &Inst, uint16_t Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeThumbCPS(MCInst &Inst, uint16_t Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeQADDInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeThumbBLXOffset(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2AddrModeImm12(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeThumbTableBranch(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeThumb2BCCInstruction(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2SOImm(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeThumbBCCTargetOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeThumbBLTargetOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeIT(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2LDRDPreInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2STRDPreInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2Adr(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2LdStPre(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2ShifterImmOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeLDR(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecoderForMRRC2AndMCRR2(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeForVMRSandVMSR(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); template static DecodeStatus DecodeBFLabelOperand(MCInst &Inst, unsigned val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeBFAfterTargetOperand(MCInst &Inst, unsigned val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodePredNoALOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeLOLoop(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeLongShiftOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVSCCLRM(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVPTMaskOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVpredROperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeVpredNOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeRestrictedIPredicateOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeRestrictedSPredicateOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeRestrictedUPredicateOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeRestrictedFPPredicateOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); template static DecodeStatus DecodeVSTRVLDR_SYSREG(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); template static DecodeStatus DecodeMVE_MEM_1_pre(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); template static DecodeStatus DecodeMVE_MEM_2_pre(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); template static DecodeStatus DecodeMVE_MEM_3_pre(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); template static DecodeStatus DecodePowerTwoOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); template static DecodeStatus DecodeMVEPairVectorIndexOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeMVEVMOVQtoDReg(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeMVEVMOVDRegtoQ(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeMVEVCVTt1fp(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); typedef DecodeStatus OperandDecoder(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder); template static DecodeStatus DecodeMVEVCMP(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeMveVCTP(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeMVEVPNOT(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeMVEOverlappingLongShift(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus DecodeT2AddSubSPImm(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); #include "ARMGenDisassemblerTables.inc" static MCDisassembler *createARMDisassembler(const Target &T, const MCSubtargetInfo &STI, MCContext &Ctx) { return new ARMDisassembler(STI, Ctx, T.createMCInstrInfo()); } // Post-decoding checks static DecodeStatus checkDecodedInstruction(MCInst &MI, uint64_t &Size, uint64_t Address, raw_ostream &CS, uint32_t Insn, DecodeStatus Result) { switch (MI.getOpcode()) { case ARM::HVC: { // HVC is undefined if condition = 0xf otherwise upredictable // if condition != 0xe uint32_t Cond = (Insn >> 28) & 0xF; if (Cond == 0xF) return MCDisassembler::Fail; if (Cond != 0xE) return MCDisassembler::SoftFail; return Result; } case ARM::t2ADDri: case ARM::t2ADDri12: case ARM::t2ADDrr: case ARM::t2ADDrs: case ARM::t2SUBri: case ARM::t2SUBri12: case ARM::t2SUBrr: case ARM::t2SUBrs: if (MI.getOperand(0).getReg() == ARM::SP && MI.getOperand(1).getReg() != ARM::SP) return MCDisassembler::SoftFail; return Result; default: return Result; } } uint64_t ARMDisassembler::suggestBytesToSkip(ArrayRef Bytes, uint64_t Address) const { // In Arm state, instructions are always 4 bytes wide, so there's no // point in skipping any smaller number of bytes if an instruction // can't be decoded. if (!STI.hasFeature(ARM::ModeThumb)) return 4; // In a Thumb instruction stream, a halfword is a standalone 2-byte // instruction if and only if its value is less than 0xE800. // Otherwise, it's the first halfword of a 4-byte instruction. // // So, if we can see the upcoming halfword, we can judge on that // basis, and maybe skip a whole 4-byte instruction that we don't // know how to decode, without accidentally trying to interpret its // second half as something else. // // If we don't have the instruction data available, we just have to // recommend skipping the minimum sensible distance, which is 2 // bytes. if (Bytes.size() < 2) return 2; uint16_t Insn16 = llvm::support::endian::read( Bytes.data(), InstructionEndianness); return Insn16 < 0xE800 ? 2 : 4; } DecodeStatus ARMDisassembler::getInstruction(MCInst &MI, uint64_t &Size, ArrayRef Bytes, uint64_t Address, raw_ostream &CS) const { if (STI.hasFeature(ARM::ModeThumb)) return getThumbInstruction(MI, Size, Bytes, Address, CS); return getARMInstruction(MI, Size, Bytes, Address, CS); } DecodeStatus ARMDisassembler::getARMInstruction(MCInst &MI, uint64_t &Size, ArrayRef Bytes, uint64_t Address, raw_ostream &CS) const { CommentStream = &CS; assert(!STI.hasFeature(ARM::ModeThumb) && "Asked to disassemble an ARM instruction but Subtarget is in Thumb " "mode!"); // We want to read exactly 4 bytes of data. if (Bytes.size() < 4) { Size = 0; return MCDisassembler::Fail; } // Encoded as a 32-bit word in the stream. uint32_t Insn = llvm::support::endian::read(Bytes.data(), InstructionEndianness); // Calling the auto-generated decoder function. DecodeStatus Result = decodeInstruction(DecoderTableARM32, MI, Insn, Address, this, STI); if (Result != MCDisassembler::Fail) { Size = 4; return checkDecodedInstruction(MI, Size, Address, CS, Insn, Result); } struct DecodeTable { const uint8_t *P; bool DecodePred; }; const DecodeTable Tables[] = { {DecoderTableVFP32, false}, {DecoderTableVFPV832, false}, {DecoderTableNEONData32, true}, {DecoderTableNEONLoadStore32, true}, {DecoderTableNEONDup32, true}, {DecoderTablev8NEON32, false}, {DecoderTablev8Crypto32, false}, }; for (auto Table : Tables) { Result = decodeInstruction(Table.P, MI, Insn, Address, this, STI); if (Result != MCDisassembler::Fail) { Size = 4; // Add a fake predicate operand, because we share these instruction // definitions with Thumb2 where these instructions are predicable. if (Table.DecodePred && !DecodePredicateOperand(MI, 0xE, Address, this)) return MCDisassembler::Fail; return Result; } } Result = decodeInstruction(DecoderTableCoProc32, MI, Insn, Address, this, STI); if (Result != MCDisassembler::Fail) { Size = 4; return checkDecodedInstruction(MI, Size, Address, CS, Insn, Result); } Size = 4; return MCDisassembler::Fail; } /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the /// immediate Value in the MCInst. The immediate Value has had any PC /// adjustment made by the caller. If the instruction is a branch instruction /// then isBranch is true, else false. If the getOpInfo() function was set as /// part of the setupForSymbolicDisassembly() call then that function is called /// to get any symbolic information at the Address for this instruction. If /// that returns non-zero then the symbolic information it returns is used to /// create an MCExpr and that is added as an operand to the MCInst. If /// getOpInfo() returns zero and isBranch is true then a symbol look up for /// Value is done and if a symbol is found an MCExpr is created with that, else /// an MCExpr with Value is created. This function returns true if it adds an /// operand to the MCInst and false otherwise. static bool tryAddingSymbolicOperand(uint64_t Address, int32_t Value, bool isBranch, uint64_t InstSize, MCInst &MI, const MCDisassembler *Decoder) { // FIXME: Does it make sense for value to be negative? return Decoder->tryAddingSymbolicOperand(MI, (uint32_t)Value, Address, isBranch, /*Offset=*/0, /*OpSize=*/0, InstSize); } /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being /// referenced by a load instruction with the base register that is the Pc. /// These can often be values in a literal pool near the Address of the /// instruction. The Address of the instruction and its immediate Value are /// used as a possible literal pool entry. The SymbolLookUp call back will /// return the name of a symbol referenced by the literal pool's entry if /// the referenced address is that of a symbol. Or it will return a pointer to /// a literal 'C' string if the referenced address of the literal pool's entry /// is an address into a section with 'C' string literals. static void tryAddingPcLoadReferenceComment(uint64_t Address, int Value, const MCDisassembler *Decoder) { const MCDisassembler *Dis = static_cast(Decoder); Dis->tryAddingPcLoadReferenceComment(Value, Address); } // Thumb1 instructions don't have explicit S bits. Rather, they // implicitly set CPSR. Since it's not represented in the encoding, the // auto-generated decoder won't inject the CPSR operand. We need to fix // that as a post-pass. void ARMDisassembler::AddThumb1SBit(MCInst &MI, bool InITBlock) const { const MCInstrDesc &MCID = MCII->get(MI.getOpcode()); MCInst::iterator I = MI.begin(); for (unsigned i = 0; i < MCID.NumOperands; ++i, ++I) { if (I == MI.end()) break; if (MCID.operands()[i].isOptionalDef() && MCID.operands()[i].RegClass == ARM::CCRRegClassID) { if (i > 0 && MCID.operands()[i - 1].isPredicate()) continue; MI.insert(I, MCOperand::createReg(InITBlock ? 0 : ARM::CPSR)); return; } } MI.insert(I, MCOperand::createReg(InITBlock ? 0 : ARM::CPSR)); } bool ARMDisassembler::isVectorPredicable(const MCInst &MI) const { const MCInstrDesc &MCID = MCII->get(MI.getOpcode()); for (unsigned i = 0; i < MCID.NumOperands; ++i) { if (ARM::isVpred(MCID.operands()[i].OperandType)) return true; } return false; } // Most Thumb instructions don't have explicit predicates in the // encoding, but rather get their predicates from IT context. We need // to fix up the predicate operands using this context information as a // post-pass. MCDisassembler::DecodeStatus ARMDisassembler::AddThumbPredicate(MCInst &MI) const { MCDisassembler::DecodeStatus S = Success; const FeatureBitset &FeatureBits = getSubtargetInfo().getFeatureBits(); // A few instructions actually have predicates encoded in them. Don't // try to overwrite it if we're seeing one of those. switch (MI.getOpcode()) { case ARM::tBcc: case ARM::t2Bcc: case ARM::tCBZ: case ARM::tCBNZ: case ARM::tCPS: case ARM::t2CPS3p: case ARM::t2CPS2p: case ARM::t2CPS1p: case ARM::t2CSEL: case ARM::t2CSINC: case ARM::t2CSINV: case ARM::t2CSNEG: case ARM::tMOVSr: case ARM::tSETEND: // Some instructions (mostly conditional branches) are not // allowed in IT blocks. if (ITBlock.instrInITBlock()) S = SoftFail; else return Success; break; case ARM::t2HINT: if (MI.getOperand(0).getImm() == 0x10 && (FeatureBits[ARM::FeatureRAS]) != 0) S = SoftFail; break; case ARM::tB: case ARM::t2B: case ARM::t2TBB: case ARM::t2TBH: // Some instructions (mostly unconditional branches) can // only appears at the end of, or outside of, an IT. if (ITBlock.instrInITBlock() && !ITBlock.instrLastInITBlock()) S = SoftFail; break; default: break; } // Warn on non-VPT predicable instruction in a VPT block and a VPT // predicable instruction in an IT block if ((!isVectorPredicable(MI) && VPTBlock.instrInVPTBlock()) || (isVectorPredicable(MI) && ITBlock.instrInITBlock())) S = SoftFail; // If we're in an IT/VPT block, base the predicate on that. Otherwise, // assume a predicate of AL. unsigned CC = ARMCC::AL; unsigned VCC = ARMVCC::None; if (ITBlock.instrInITBlock()) { CC = ITBlock.getITCC(); ITBlock.advanceITState(); } else if (VPTBlock.instrInVPTBlock()) { VCC = VPTBlock.getVPTPred(); VPTBlock.advanceVPTState(); } const MCInstrDesc &MCID = MCII->get(MI.getOpcode()); MCInst::iterator CCI = MI.begin(); for (unsigned i = 0; i < MCID.NumOperands; ++i, ++CCI) { if (MCID.operands()[i].isPredicate() || CCI == MI.end()) break; } if (MCID.isPredicable()) { CCI = MI.insert(CCI, MCOperand::createImm(CC)); ++CCI; if (CC == ARMCC::AL) MI.insert(CCI, MCOperand::createReg(0)); else MI.insert(CCI, MCOperand::createReg(ARM::CPSR)); } else if (CC != ARMCC::AL) { Check(S, SoftFail); } MCInst::iterator VCCI = MI.begin(); unsigned VCCPos; for (VCCPos = 0; VCCPos < MCID.NumOperands; ++VCCPos, ++VCCI) { if (ARM::isVpred(MCID.operands()[VCCPos].OperandType) || VCCI == MI.end()) break; } if (isVectorPredicable(MI)) { VCCI = MI.insert(VCCI, MCOperand::createImm(VCC)); ++VCCI; if (VCC == ARMVCC::None) VCCI = MI.insert(VCCI, MCOperand::createReg(0)); else VCCI = MI.insert(VCCI, MCOperand::createReg(ARM::P0)); ++VCCI; VCCI = MI.insert(VCCI, MCOperand::createReg(0)); ++VCCI; if (MCID.operands()[VCCPos].OperandType == ARM::OPERAND_VPRED_R) { int TiedOp = MCID.getOperandConstraint(VCCPos + 3, MCOI::TIED_TO); assert(TiedOp >= 0 && "Inactive register in vpred_r is not tied to an output!"); // Copy the operand to ensure it's not invalidated when MI grows. MI.insert(VCCI, MCOperand(MI.getOperand(TiedOp))); } } else if (VCC != ARMVCC::None) { Check(S, SoftFail); } return S; } // Thumb VFP instructions are a special case. Because we share their // encodings between ARM and Thumb modes, and they are predicable in ARM // mode, the auto-generated decoder will give them an (incorrect) // predicate operand. We need to rewrite these operands based on the IT // context as a post-pass. void ARMDisassembler::UpdateThumbVFPPredicate( DecodeStatus &S, MCInst &MI) const { unsigned CC; CC = ITBlock.getITCC(); if (CC == 0xF) CC = ARMCC::AL; if (ITBlock.instrInITBlock()) ITBlock.advanceITState(); else if (VPTBlock.instrInVPTBlock()) { CC = VPTBlock.getVPTPred(); VPTBlock.advanceVPTState(); } const MCInstrDesc &MCID = MCII->get(MI.getOpcode()); ArrayRef OpInfo = MCID.operands(); MCInst::iterator I = MI.begin(); unsigned short NumOps = MCID.NumOperands; for (unsigned i = 0; i < NumOps; ++i, ++I) { if (OpInfo[i].isPredicate() ) { if (CC != ARMCC::AL && !MCID.isPredicable()) Check(S, SoftFail); I->setImm(CC); ++I; if (CC == ARMCC::AL) I->setReg(0); else I->setReg(ARM::CPSR); return; } } } DecodeStatus ARMDisassembler::getThumbInstruction(MCInst &MI, uint64_t &Size, ArrayRef Bytes, uint64_t Address, raw_ostream &CS) const { CommentStream = &CS; assert(STI.hasFeature(ARM::ModeThumb) && "Asked to disassemble in Thumb mode but Subtarget is in ARM mode!"); // We want to read exactly 2 bytes of data. if (Bytes.size() < 2) { Size = 0; return MCDisassembler::Fail; } uint16_t Insn16 = llvm::support::endian::read( Bytes.data(), InstructionEndianness); DecodeStatus Result = decodeInstruction(DecoderTableThumb16, MI, Insn16, Address, this, STI); if (Result != MCDisassembler::Fail) { Size = 2; Check(Result, AddThumbPredicate(MI)); return Result; } Result = decodeInstruction(DecoderTableThumbSBit16, MI, Insn16, Address, this, STI); if (Result) { Size = 2; bool InITBlock = ITBlock.instrInITBlock(); Check(Result, AddThumbPredicate(MI)); AddThumb1SBit(MI, InITBlock); return Result; } Result = decodeInstruction(DecoderTableThumb216, MI, Insn16, Address, this, STI); if (Result != MCDisassembler::Fail) { Size = 2; // Nested IT blocks are UNPREDICTABLE. Must be checked before we add // the Thumb predicate. if (MI.getOpcode() == ARM::t2IT && ITBlock.instrInITBlock()) Result = MCDisassembler::SoftFail; Check(Result, AddThumbPredicate(MI)); // If we find an IT instruction, we need to parse its condition // code and mask operands so that we can apply them correctly // to the subsequent instructions. if (MI.getOpcode() == ARM::t2IT) { unsigned Firstcond = MI.getOperand(0).getImm(); unsigned Mask = MI.getOperand(1).getImm(); ITBlock.setITState(Firstcond, Mask); // An IT instruction that would give a 'NV' predicate is unpredictable. if (Firstcond == ARMCC::AL && !isPowerOf2_32(Mask)) CS << "unpredictable IT predicate sequence"; } return Result; } // We want to read exactly 4 bytes of data. if (Bytes.size() < 4) { Size = 0; return MCDisassembler::Fail; } uint32_t Insn32 = (uint32_t(Insn16) << 16) | llvm::support::endian::read( Bytes.data() + 2, InstructionEndianness); Result = decodeInstruction(DecoderTableMVE32, MI, Insn32, Address, this, STI); if (Result != MCDisassembler::Fail) { Size = 4; // Nested VPT blocks are UNPREDICTABLE. Must be checked before we add // the VPT predicate. if (isVPTOpcode(MI.getOpcode()) && VPTBlock.instrInVPTBlock()) Result = MCDisassembler::SoftFail; Check(Result, AddThumbPredicate(MI)); if (isVPTOpcode(MI.getOpcode())) { unsigned Mask = MI.getOperand(0).getImm(); VPTBlock.setVPTState(Mask); } return Result; } Result = decodeInstruction(DecoderTableThumb32, MI, Insn32, Address, this, STI); if (Result != MCDisassembler::Fail) { Size = 4; bool InITBlock = ITBlock.instrInITBlock(); Check(Result, AddThumbPredicate(MI)); AddThumb1SBit(MI, InITBlock); return Result; } Result = decodeInstruction(DecoderTableThumb232, MI, Insn32, Address, this, STI); if (Result != MCDisassembler::Fail) { Size = 4; Check(Result, AddThumbPredicate(MI)); return checkDecodedInstruction(MI, Size, Address, CS, Insn32, Result); } if (fieldFromInstruction(Insn32, 28, 4) == 0xE) { Result = decodeInstruction(DecoderTableVFP32, MI, Insn32, Address, this, STI); if (Result != MCDisassembler::Fail) { Size = 4; UpdateThumbVFPPredicate(Result, MI); return Result; } } Result = decodeInstruction(DecoderTableVFPV832, MI, Insn32, Address, this, STI); if (Result != MCDisassembler::Fail) { Size = 4; return Result; } if (fieldFromInstruction(Insn32, 28, 4) == 0xE) { Result = decodeInstruction(DecoderTableNEONDup32, MI, Insn32, Address, this, STI); if (Result != MCDisassembler::Fail) { Size = 4; Check(Result, AddThumbPredicate(MI)); return Result; } } if (fieldFromInstruction(Insn32, 24, 8) == 0xF9) { uint32_t NEONLdStInsn = Insn32; NEONLdStInsn &= 0xF0FFFFFF; NEONLdStInsn |= 0x04000000; Result = decodeInstruction(DecoderTableNEONLoadStore32, MI, NEONLdStInsn, Address, this, STI); if (Result != MCDisassembler::Fail) { Size = 4; Check(Result, AddThumbPredicate(MI)); return Result; } } if (fieldFromInstruction(Insn32, 24, 4) == 0xF) { uint32_t NEONDataInsn = Insn32; NEONDataInsn &= 0xF0FFFFFF; // Clear bits 27-24 NEONDataInsn |= (NEONDataInsn & 0x10000000) >> 4; // Move bit 28 to bit 24 NEONDataInsn |= 0x12000000; // Set bits 28 and 25 Result = decodeInstruction(DecoderTableNEONData32, MI, NEONDataInsn, Address, this, STI); if (Result != MCDisassembler::Fail) { Size = 4; Check(Result, AddThumbPredicate(MI)); return Result; } uint32_t NEONCryptoInsn = Insn32; NEONCryptoInsn &= 0xF0FFFFFF; // Clear bits 27-24 NEONCryptoInsn |= (NEONCryptoInsn & 0x10000000) >> 4; // Move bit 28 to bit 24 NEONCryptoInsn |= 0x12000000; // Set bits 28 and 25 Result = decodeInstruction(DecoderTablev8Crypto32, MI, NEONCryptoInsn, Address, this, STI); if (Result != MCDisassembler::Fail) { Size = 4; return Result; } uint32_t NEONv8Insn = Insn32; NEONv8Insn &= 0xF3FFFFFF; // Clear bits 27-26 Result = decodeInstruction(DecoderTablev8NEON32, MI, NEONv8Insn, Address, this, STI); if (Result != MCDisassembler::Fail) { Size = 4; return Result; } } uint32_t Coproc = fieldFromInstruction(Insn32, 8, 4); const uint8_t *DecoderTable = ARM::isCDECoproc(Coproc, STI) ? DecoderTableThumb2CDE32 : DecoderTableThumb2CoProc32; Result = decodeInstruction(DecoderTable, MI, Insn32, Address, this, STI); if (Result != MCDisassembler::Fail) { Size = 4; Check(Result, AddThumbPredicate(MI)); return Result; } Size = 0; return MCDisassembler::Fail; } extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMDisassembler() { TargetRegistry::RegisterMCDisassembler(getTheARMLETarget(), createARMDisassembler); TargetRegistry::RegisterMCDisassembler(getTheARMBETarget(), createARMDisassembler); TargetRegistry::RegisterMCDisassembler(getTheThumbLETarget(), createARMDisassembler); TargetRegistry::RegisterMCDisassembler(getTheThumbBETarget(), createARMDisassembler); } static const uint16_t GPRDecoderTable[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R4, ARM::R5, ARM::R6, ARM::R7, ARM::R8, ARM::R9, ARM::R10, ARM::R11, ARM::R12, ARM::SP, ARM::LR, ARM::PC }; static const uint16_t CLRMGPRDecoderTable[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R4, ARM::R5, ARM::R6, ARM::R7, ARM::R8, ARM::R9, ARM::R10, ARM::R11, ARM::R12, 0, ARM::LR, ARM::APSR }; static DecodeStatus DecodeGPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if (RegNo > 15) return MCDisassembler::Fail; unsigned Register = GPRDecoderTable[RegNo]; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static DecodeStatus DecodeCLRMGPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if (RegNo > 15) return MCDisassembler::Fail; unsigned Register = CLRMGPRDecoderTable[RegNo]; if (Register == 0) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static DecodeStatus DecodeGPRnopcRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; if (RegNo == 15) S = MCDisassembler::SoftFail; Check(S, DecodeGPRRegisterClass(Inst, RegNo, Address, Decoder)); return S; } static DecodeStatus DecodeGPRnospRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; if (RegNo == 13) S = MCDisassembler::SoftFail; Check(S, DecodeGPRRegisterClass(Inst, RegNo, Address, Decoder)); return S; } static DecodeStatus DecodeGPRwithAPSRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; if (RegNo == 15) { Inst.addOperand(MCOperand::createReg(ARM::APSR_NZCV)); return MCDisassembler::Success; } Check(S, DecodeGPRRegisterClass(Inst, RegNo, Address, Decoder)); return S; } static DecodeStatus DecodeGPRwithZRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; if (RegNo == 15) { Inst.addOperand(MCOperand::createReg(ARM::ZR)); return MCDisassembler::Success; } if (RegNo == 13) Check(S, MCDisassembler::SoftFail); Check(S, DecodeGPRRegisterClass(Inst, RegNo, Address, Decoder)); return S; } static DecodeStatus DecodeGPRwithZRnospRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; if (RegNo == 13) return MCDisassembler::Fail; Check(S, DecodeGPRwithZRRegisterClass(Inst, RegNo, Address, Decoder)); return S; } static DecodeStatus DecodetGPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if (RegNo > 7) return MCDisassembler::Fail; return DecodeGPRRegisterClass(Inst, RegNo, Address, Decoder); } static const uint16_t GPRPairDecoderTable[] = { ARM::R0_R1, ARM::R2_R3, ARM::R4_R5, ARM::R6_R7, ARM::R8_R9, ARM::R10_R11, ARM::R12_SP }; static DecodeStatus DecodeGPRPairRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; // According to the Arm ARM RegNo = 14 is undefined, but we return fail // rather than SoftFail as there is no GPRPair table entry for index 7. if (RegNo > 13) return MCDisassembler::Fail; if (RegNo & 1) S = MCDisassembler::SoftFail; unsigned RegisterPair = GPRPairDecoderTable[RegNo/2]; Inst.addOperand(MCOperand::createReg(RegisterPair)); return S; } static DecodeStatus DecodeGPRPairnospRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if (RegNo > 13) return MCDisassembler::Fail; unsigned RegisterPair = GPRPairDecoderTable[RegNo/2]; Inst.addOperand(MCOperand::createReg(RegisterPair)); if ((RegNo & 1) || RegNo > 10) return MCDisassembler::SoftFail; return MCDisassembler::Success; } static DecodeStatus DecodeGPRspRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if (RegNo != 13) return MCDisassembler::Fail; unsigned Register = GPRDecoderTable[RegNo]; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static DecodeStatus DecodetcGPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { unsigned Register = 0; switch (RegNo) { case 0: Register = ARM::R0; break; case 1: Register = ARM::R1; break; case 2: Register = ARM::R2; break; case 3: Register = ARM::R3; break; case 9: Register = ARM::R9; break; case 12: Register = ARM::R12; break; default: return MCDisassembler::Fail; } Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static DecodeStatus DecoderGPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; const FeatureBitset &featureBits = ((const MCDisassembler*)Decoder)->getSubtargetInfo().getFeatureBits(); if ((RegNo == 13 && !featureBits[ARM::HasV8Ops]) || RegNo == 15) S = MCDisassembler::SoftFail; Check(S, DecodeGPRRegisterClass(Inst, RegNo, Address, Decoder)); return S; } static const uint16_t SPRDecoderTable[] = { ARM::S0, ARM::S1, ARM::S2, ARM::S3, ARM::S4, ARM::S5, ARM::S6, ARM::S7, ARM::S8, ARM::S9, ARM::S10, ARM::S11, ARM::S12, ARM::S13, ARM::S14, ARM::S15, ARM::S16, ARM::S17, ARM::S18, ARM::S19, ARM::S20, ARM::S21, ARM::S22, ARM::S23, ARM::S24, ARM::S25, ARM::S26, ARM::S27, ARM::S28, ARM::S29, ARM::S30, ARM::S31 }; static DecodeStatus DecodeSPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if (RegNo > 31) return MCDisassembler::Fail; unsigned Register = SPRDecoderTable[RegNo]; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static DecodeStatus DecodeHPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { return DecodeSPRRegisterClass(Inst, RegNo, Address, Decoder); } static const uint16_t DPRDecoderTable[] = { ARM::D0, ARM::D1, ARM::D2, ARM::D3, ARM::D4, ARM::D5, ARM::D6, ARM::D7, ARM::D8, ARM::D9, ARM::D10, ARM::D11, ARM::D12, ARM::D13, ARM::D14, ARM::D15, ARM::D16, ARM::D17, ARM::D18, ARM::D19, ARM::D20, ARM::D21, ARM::D22, ARM::D23, ARM::D24, ARM::D25, ARM::D26, ARM::D27, ARM::D28, ARM::D29, ARM::D30, ARM::D31 }; static DecodeStatus DecodeDPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { const FeatureBitset &featureBits = ((const MCDisassembler*)Decoder)->getSubtargetInfo().getFeatureBits(); bool hasD32 = featureBits[ARM::FeatureD32]; if (RegNo > 31 || (!hasD32 && RegNo > 15)) return MCDisassembler::Fail; unsigned Register = DPRDecoderTable[RegNo]; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static DecodeStatus DecodeDPR_8RegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if (RegNo > 7) return MCDisassembler::Fail; return DecodeDPRRegisterClass(Inst, RegNo, Address, Decoder); } static DecodeStatus DecodeSPR_8RegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if (RegNo > 15) return MCDisassembler::Fail; return DecodeSPRRegisterClass(Inst, RegNo, Address, Decoder); } static DecodeStatus DecodeDPR_VFP2RegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if (RegNo > 15) return MCDisassembler::Fail; return DecodeDPRRegisterClass(Inst, RegNo, Address, Decoder); } static const uint16_t QPRDecoderTable[] = { ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3, ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, ARM::Q8, ARM::Q9, ARM::Q10, ARM::Q11, ARM::Q12, ARM::Q13, ARM::Q14, ARM::Q15 }; static DecodeStatus DecodeQPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if (RegNo > 31 || (RegNo & 1) != 0) return MCDisassembler::Fail; RegNo >>= 1; unsigned Register = QPRDecoderTable[RegNo]; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static const uint16_t DPairDecoderTable[] = { ARM::Q0, ARM::D1_D2, ARM::Q1, ARM::D3_D4, ARM::Q2, ARM::D5_D6, ARM::Q3, ARM::D7_D8, ARM::Q4, ARM::D9_D10, ARM::Q5, ARM::D11_D12, ARM::Q6, ARM::D13_D14, ARM::Q7, ARM::D15_D16, ARM::Q8, ARM::D17_D18, ARM::Q9, ARM::D19_D20, ARM::Q10, ARM::D21_D22, ARM::Q11, ARM::D23_D24, ARM::Q12, ARM::D25_D26, ARM::Q13, ARM::D27_D28, ARM::Q14, ARM::D29_D30, ARM::Q15 }; static DecodeStatus DecodeDPairRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if (RegNo > 30) return MCDisassembler::Fail; unsigned Register = DPairDecoderTable[RegNo]; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static const uint16_t DPairSpacedDecoderTable[] = { ARM::D0_D2, ARM::D1_D3, ARM::D2_D4, ARM::D3_D5, ARM::D4_D6, ARM::D5_D7, ARM::D6_D8, ARM::D7_D9, ARM::D8_D10, ARM::D9_D11, ARM::D10_D12, ARM::D11_D13, ARM::D12_D14, ARM::D13_D15, ARM::D14_D16, ARM::D15_D17, ARM::D16_D18, ARM::D17_D19, ARM::D18_D20, ARM::D19_D21, ARM::D20_D22, ARM::D21_D23, ARM::D22_D24, ARM::D23_D25, ARM::D24_D26, ARM::D25_D27, ARM::D26_D28, ARM::D27_D29, ARM::D28_D30, ARM::D29_D31 }; static DecodeStatus DecodeDPairSpacedRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if (RegNo > 29) return MCDisassembler::Fail; unsigned Register = DPairSpacedDecoderTable[RegNo]; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static DecodeStatus DecodePredicateOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; if (Val == 0xF) return MCDisassembler::Fail; // AL predicate is not allowed on Thumb1 branches. if (Inst.getOpcode() == ARM::tBcc && Val == 0xE) return MCDisassembler::Fail; const MCInstrInfo *MCII = static_cast(Decoder)->MCII.get(); if (Val != ARMCC::AL && !MCII->get(Inst.getOpcode()).isPredicable()) Check(S, MCDisassembler::SoftFail); Inst.addOperand(MCOperand::createImm(Val)); if (Val == ARMCC::AL) { Inst.addOperand(MCOperand::createReg(0)); } else Inst.addOperand(MCOperand::createReg(ARM::CPSR)); return S; } static DecodeStatus DecodeCCOutOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { if (Val) Inst.addOperand(MCOperand::createReg(ARM::CPSR)); else Inst.addOperand(MCOperand::createReg(0)); return MCDisassembler::Success; } static DecodeStatus DecodeSORegImmOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rm = fieldFromInstruction(Val, 0, 4); unsigned type = fieldFromInstruction(Val, 5, 2); unsigned imm = fieldFromInstruction(Val, 7, 5); // Register-immediate if (!Check(S, DecoderGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; ARM_AM::ShiftOpc Shift = ARM_AM::lsl; switch (type) { case 0: Shift = ARM_AM::lsl; break; case 1: Shift = ARM_AM::lsr; break; case 2: Shift = ARM_AM::asr; break; case 3: Shift = ARM_AM::ror; break; } if (Shift == ARM_AM::ror && imm == 0) Shift = ARM_AM::rrx; unsigned Op = Shift | (imm << 3); Inst.addOperand(MCOperand::createImm(Op)); return S; } static DecodeStatus DecodeSORegRegOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rm = fieldFromInstruction(Val, 0, 4); unsigned type = fieldFromInstruction(Val, 5, 2); unsigned Rs = fieldFromInstruction(Val, 8, 4); // Register-register if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rs, Address, Decoder))) return MCDisassembler::Fail; ARM_AM::ShiftOpc Shift = ARM_AM::lsl; switch (type) { case 0: Shift = ARM_AM::lsl; break; case 1: Shift = ARM_AM::lsr; break; case 2: Shift = ARM_AM::asr; break; case 3: Shift = ARM_AM::ror; break; } Inst.addOperand(MCOperand::createImm(Shift)); return S; } static DecodeStatus DecodeRegListOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; bool NeedDisjointWriteback = false; unsigned WritebackReg = 0; bool CLRM = false; switch (Inst.getOpcode()) { default: break; case ARM::LDMIA_UPD: case ARM::LDMDB_UPD: case ARM::LDMIB_UPD: case ARM::LDMDA_UPD: case ARM::t2LDMIA_UPD: case ARM::t2LDMDB_UPD: case ARM::t2STMIA_UPD: case ARM::t2STMDB_UPD: NeedDisjointWriteback = true; WritebackReg = Inst.getOperand(0).getReg(); break; case ARM::t2CLRM: CLRM = true; break; } // Empty register lists are not allowed. if (Val == 0) return MCDisassembler::Fail; for (unsigned i = 0; i < 16; ++i) { if (Val & (1 << i)) { if (CLRM) { if (!Check(S, DecodeCLRMGPRRegisterClass(Inst, i, Address, Decoder))) { return MCDisassembler::Fail; } } else { if (!Check(S, DecodeGPRRegisterClass(Inst, i, Address, Decoder))) return MCDisassembler::Fail; // Writeback not allowed if Rn is in the target list. if (NeedDisjointWriteback && WritebackReg == Inst.end()[-1].getReg()) Check(S, MCDisassembler::SoftFail); } } } return S; } static DecodeStatus DecodeSPRRegListOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Vd = fieldFromInstruction(Val, 8, 5); unsigned regs = fieldFromInstruction(Val, 0, 8); // In case of unpredictable encoding, tweak the operands. if (regs == 0 || (Vd + regs) > 32) { regs = Vd + regs > 32 ? 32 - Vd : regs; regs = std::max( 1u, regs); S = MCDisassembler::SoftFail; } if (!Check(S, DecodeSPRRegisterClass(Inst, Vd, Address, Decoder))) return MCDisassembler::Fail; for (unsigned i = 0; i < (regs - 1); ++i) { if (!Check(S, DecodeSPRRegisterClass(Inst, ++Vd, Address, Decoder))) return MCDisassembler::Fail; } return S; } static DecodeStatus DecodeDPRRegListOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Vd = fieldFromInstruction(Val, 8, 5); unsigned regs = fieldFromInstruction(Val, 1, 7); // In case of unpredictable encoding, tweak the operands. if (regs == 0 || regs > 16 || (Vd + regs) > 32) { regs = Vd + regs > 32 ? 32 - Vd : regs; regs = std::max( 1u, regs); regs = std::min(16u, regs); S = MCDisassembler::SoftFail; } if (!Check(S, DecodeDPRRegisterClass(Inst, Vd, Address, Decoder))) return MCDisassembler::Fail; for (unsigned i = 0; i < (regs - 1); ++i) { if (!Check(S, DecodeDPRRegisterClass(Inst, ++Vd, Address, Decoder))) return MCDisassembler::Fail; } return S; } static DecodeStatus DecodeBitfieldMaskOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { // This operand encodes a mask of contiguous zeros between a specified MSB // and LSB. To decode it, we create the mask of all bits MSB-and-lower, // the mask of all bits LSB-and-lower, and then xor them to create // the mask of that's all ones on [msb, lsb]. Finally we not it to // create the final mask. unsigned msb = fieldFromInstruction(Val, 5, 5); unsigned lsb = fieldFromInstruction(Val, 0, 5); DecodeStatus S = MCDisassembler::Success; if (lsb > msb) { Check(S, MCDisassembler::SoftFail); // The check above will cause the warning for the "potentially undefined // instruction encoding" but we can't build a bad MCOperand value here // with a lsb > msb or else printing the MCInst will cause a crash. lsb = msb; } uint32_t msb_mask = 0xFFFFFFFF; if (msb != 31) msb_mask = (1U << (msb+1)) - 1; uint32_t lsb_mask = (1U << lsb) - 1; Inst.addOperand(MCOperand::createImm(~(msb_mask ^ lsb_mask))); return S; } static DecodeStatus DecodeCopMemInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned pred = fieldFromInstruction(Insn, 28, 4); unsigned CRd = fieldFromInstruction(Insn, 12, 4); unsigned coproc = fieldFromInstruction(Insn, 8, 4); unsigned imm = fieldFromInstruction(Insn, 0, 8); unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned U = fieldFromInstruction(Insn, 23, 1); const FeatureBitset &featureBits = ((const MCDisassembler*)Decoder)->getSubtargetInfo().getFeatureBits(); switch (Inst.getOpcode()) { case ARM::LDC_OFFSET: case ARM::LDC_PRE: case ARM::LDC_POST: case ARM::LDC_OPTION: case ARM::LDCL_OFFSET: case ARM::LDCL_PRE: case ARM::LDCL_POST: case ARM::LDCL_OPTION: case ARM::STC_OFFSET: case ARM::STC_PRE: case ARM::STC_POST: case ARM::STC_OPTION: case ARM::STCL_OFFSET: case ARM::STCL_PRE: case ARM::STCL_POST: case ARM::STCL_OPTION: case ARM::t2LDC_OFFSET: case ARM::t2LDC_PRE: case ARM::t2LDC_POST: case ARM::t2LDC_OPTION: case ARM::t2LDCL_OFFSET: case ARM::t2LDCL_PRE: case ARM::t2LDCL_POST: case ARM::t2LDCL_OPTION: case ARM::t2STC_OFFSET: case ARM::t2STC_PRE: case ARM::t2STC_POST: case ARM::t2STC_OPTION: case ARM::t2STCL_OFFSET: case ARM::t2STCL_PRE: case ARM::t2STCL_POST: case ARM::t2STCL_OPTION: case ARM::t2LDC2_OFFSET: case ARM::t2LDC2L_OFFSET: case ARM::t2LDC2_PRE: case ARM::t2LDC2L_PRE: case ARM::t2STC2_OFFSET: case ARM::t2STC2L_OFFSET: case ARM::t2STC2_PRE: case ARM::t2STC2L_PRE: case ARM::LDC2_OFFSET: case ARM::LDC2L_OFFSET: case ARM::LDC2_PRE: case ARM::LDC2L_PRE: case ARM::STC2_OFFSET: case ARM::STC2L_OFFSET: case ARM::STC2_PRE: case ARM::STC2L_PRE: case ARM::t2LDC2_OPTION: case ARM::t2STC2_OPTION: case ARM::t2LDC2_POST: case ARM::t2LDC2L_POST: case ARM::t2STC2_POST: case ARM::t2STC2L_POST: case ARM::LDC2_POST: case ARM::LDC2L_POST: case ARM::STC2_POST: case ARM::STC2L_POST: if (coproc == 0xA || coproc == 0xB || (featureBits[ARM::HasV8_1MMainlineOps] && (coproc == 0x8 || coproc == 0x9 || coproc == 0xA || coproc == 0xB || coproc == 0xE || coproc == 0xF))) return MCDisassembler::Fail; break; default: break; } if (featureBits[ARM::HasV8Ops] && (coproc != 14)) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(coproc)); Inst.addOperand(MCOperand::createImm(CRd)); if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; switch (Inst.getOpcode()) { case ARM::t2LDC2_OFFSET: case ARM::t2LDC2L_OFFSET: case ARM::t2LDC2_PRE: case ARM::t2LDC2L_PRE: case ARM::t2STC2_OFFSET: case ARM::t2STC2L_OFFSET: case ARM::t2STC2_PRE: case ARM::t2STC2L_PRE: case ARM::LDC2_OFFSET: case ARM::LDC2L_OFFSET: case ARM::LDC2_PRE: case ARM::LDC2L_PRE: case ARM::STC2_OFFSET: case ARM::STC2L_OFFSET: case ARM::STC2_PRE: case ARM::STC2L_PRE: case ARM::t2LDC_OFFSET: case ARM::t2LDCL_OFFSET: case ARM::t2LDC_PRE: case ARM::t2LDCL_PRE: case ARM::t2STC_OFFSET: case ARM::t2STCL_OFFSET: case ARM::t2STC_PRE: case ARM::t2STCL_PRE: case ARM::LDC_OFFSET: case ARM::LDCL_OFFSET: case ARM::LDC_PRE: case ARM::LDCL_PRE: case ARM::STC_OFFSET: case ARM::STCL_OFFSET: case ARM::STC_PRE: case ARM::STCL_PRE: imm = ARM_AM::getAM5Opc(U ? ARM_AM::add : ARM_AM::sub, imm); Inst.addOperand(MCOperand::createImm(imm)); break; case ARM::t2LDC2_POST: case ARM::t2LDC2L_POST: case ARM::t2STC2_POST: case ARM::t2STC2L_POST: case ARM::LDC2_POST: case ARM::LDC2L_POST: case ARM::STC2_POST: case ARM::STC2L_POST: case ARM::t2LDC_POST: case ARM::t2LDCL_POST: case ARM::t2STC_POST: case ARM::t2STCL_POST: case ARM::LDC_POST: case ARM::LDCL_POST: case ARM::STC_POST: case ARM::STCL_POST: imm |= U << 8; [[fallthrough]]; default: // The 'option' variant doesn't encode 'U' in the immediate since // the immediate is unsigned [0,255]. Inst.addOperand(MCOperand::createImm(imm)); break; } switch (Inst.getOpcode()) { case ARM::LDC_OFFSET: case ARM::LDC_PRE: case ARM::LDC_POST: case ARM::LDC_OPTION: case ARM::LDCL_OFFSET: case ARM::LDCL_PRE: case ARM::LDCL_POST: case ARM::LDCL_OPTION: case ARM::STC_OFFSET: case ARM::STC_PRE: case ARM::STC_POST: case ARM::STC_OPTION: case ARM::STCL_OFFSET: case ARM::STCL_PRE: case ARM::STCL_POST: case ARM::STCL_OPTION: if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; break; default: break; } return S; } static DecodeStatus DecodeAddrMode2IdxInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rt = fieldFromInstruction(Insn, 12, 4); unsigned Rm = fieldFromInstruction(Insn, 0, 4); unsigned imm = fieldFromInstruction(Insn, 0, 12); unsigned pred = fieldFromInstruction(Insn, 28, 4); unsigned reg = fieldFromInstruction(Insn, 25, 1); unsigned P = fieldFromInstruction(Insn, 24, 1); unsigned W = fieldFromInstruction(Insn, 21, 1); // On stores, the writeback operand precedes Rt. switch (Inst.getOpcode()) { case ARM::STR_POST_IMM: case ARM::STR_POST_REG: case ARM::STRB_POST_IMM: case ARM::STRB_POST_REG: case ARM::STRT_POST_REG: case ARM::STRT_POST_IMM: case ARM::STRBT_POST_REG: case ARM::STRBT_POST_IMM: if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; break; default: break; } if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; // On loads, the writeback operand comes after Rt. switch (Inst.getOpcode()) { case ARM::LDR_POST_IMM: case ARM::LDR_POST_REG: case ARM::LDRB_POST_IMM: case ARM::LDRB_POST_REG: case ARM::LDRBT_POST_REG: case ARM::LDRBT_POST_IMM: case ARM::LDRT_POST_REG: case ARM::LDRT_POST_IMM: if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; break; default: break; } if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; ARM_AM::AddrOpc Op = ARM_AM::add; if (!fieldFromInstruction(Insn, 23, 1)) Op = ARM_AM::sub; bool writeback = (P == 0) || (W == 1); unsigned idx_mode = 0; if (P && writeback) idx_mode = ARMII::IndexModePre; else if (!P && writeback) idx_mode = ARMII::IndexModePost; if (writeback && (Rn == 15 || Rn == Rt)) S = MCDisassembler::SoftFail; // UNPREDICTABLE if (reg) { if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; ARM_AM::ShiftOpc Opc = ARM_AM::lsl; switch( fieldFromInstruction(Insn, 5, 2)) { case 0: Opc = ARM_AM::lsl; break; case 1: Opc = ARM_AM::lsr; break; case 2: Opc = ARM_AM::asr; break; case 3: Opc = ARM_AM::ror; break; default: return MCDisassembler::Fail; } unsigned amt = fieldFromInstruction(Insn, 7, 5); if (Opc == ARM_AM::ror && amt == 0) Opc = ARM_AM::rrx; unsigned imm = ARM_AM::getAM2Opc(Op, amt, Opc, idx_mode); Inst.addOperand(MCOperand::createImm(imm)); } else { Inst.addOperand(MCOperand::createReg(0)); unsigned tmp = ARM_AM::getAM2Opc(Op, imm, ARM_AM::lsl, idx_mode); Inst.addOperand(MCOperand::createImm(tmp)); } if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeSORegMemOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Val, 13, 4); unsigned Rm = fieldFromInstruction(Val, 0, 4); unsigned type = fieldFromInstruction(Val, 5, 2); unsigned imm = fieldFromInstruction(Val, 7, 5); unsigned U = fieldFromInstruction(Val, 12, 1); ARM_AM::ShiftOpc ShOp = ARM_AM::lsl; switch (type) { case 0: ShOp = ARM_AM::lsl; break; case 1: ShOp = ARM_AM::lsr; break; case 2: ShOp = ARM_AM::asr; break; case 3: ShOp = ARM_AM::ror; break; } if (ShOp == ARM_AM::ror && imm == 0) ShOp = ARM_AM::rrx; if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; unsigned shift; if (U) shift = ARM_AM::getAM2Opc(ARM_AM::add, imm, ShOp); else shift = ARM_AM::getAM2Opc(ARM_AM::sub, imm, ShOp); Inst.addOperand(MCOperand::createImm(shift)); return S; } static DecodeStatus DecodeTSBInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { if (Inst.getOpcode() != ARM::TSB && Inst.getOpcode() != ARM::t2TSB) return MCDisassembler::Fail; // The "csync" operand is not encoded into the "tsb" instruction (as this is // the only available operand), but LLVM expects the instruction to have one // operand, so we need to add the csync when decoding. Inst.addOperand(MCOperand::createImm(ARM_TSB::CSYNC)); return MCDisassembler::Success; } static DecodeStatus DecodeAddrMode3Instruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rt = fieldFromInstruction(Insn, 12, 4); unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rm = fieldFromInstruction(Insn, 0, 4); unsigned type = fieldFromInstruction(Insn, 22, 1); unsigned imm = fieldFromInstruction(Insn, 8, 4); unsigned U = ((~fieldFromInstruction(Insn, 23, 1)) & 1) << 8; unsigned pred = fieldFromInstruction(Insn, 28, 4); unsigned W = fieldFromInstruction(Insn, 21, 1); unsigned P = fieldFromInstruction(Insn, 24, 1); unsigned Rt2 = Rt + 1; bool writeback = (W == 1) | (P == 0); // For {LD,ST}RD, Rt must be even, else undefined. switch (Inst.getOpcode()) { case ARM::STRD: case ARM::STRD_PRE: case ARM::STRD_POST: case ARM::LDRD: case ARM::LDRD_PRE: case ARM::LDRD_POST: if (Rt & 0x1) S = MCDisassembler::SoftFail; break; default: break; } switch (Inst.getOpcode()) { case ARM::STRD: case ARM::STRD_PRE: case ARM::STRD_POST: if (P == 0 && W == 1) S = MCDisassembler::SoftFail; if (writeback && (Rn == 15 || Rn == Rt || Rn == Rt2)) S = MCDisassembler::SoftFail; if (type && Rm == 15) S = MCDisassembler::SoftFail; if (Rt2 == 15) S = MCDisassembler::SoftFail; if (!type && fieldFromInstruction(Insn, 8, 4)) S = MCDisassembler::SoftFail; break; case ARM::STRH: case ARM::STRH_PRE: case ARM::STRH_POST: if (Rt == 15) S = MCDisassembler::SoftFail; if (writeback && (Rn == 15 || Rn == Rt)) S = MCDisassembler::SoftFail; if (!type && Rm == 15) S = MCDisassembler::SoftFail; break; case ARM::LDRD: case ARM::LDRD_PRE: case ARM::LDRD_POST: if (type && Rn == 15) { if (Rt2 == 15) S = MCDisassembler::SoftFail; break; } if (P == 0 && W == 1) S = MCDisassembler::SoftFail; if (!type && (Rt2 == 15 || Rm == 15 || Rm == Rt || Rm == Rt2)) S = MCDisassembler::SoftFail; if (!type && writeback && Rn == 15) S = MCDisassembler::SoftFail; if (writeback && (Rn == Rt || Rn == Rt2)) S = MCDisassembler::SoftFail; break; case ARM::LDRH: case ARM::LDRH_PRE: case ARM::LDRH_POST: if (type && Rn == 15) { if (Rt == 15) S = MCDisassembler::SoftFail; break; } if (Rt == 15) S = MCDisassembler::SoftFail; if (!type && Rm == 15) S = MCDisassembler::SoftFail; if (!type && writeback && (Rn == 15 || Rn == Rt)) S = MCDisassembler::SoftFail; break; case ARM::LDRSH: case ARM::LDRSH_PRE: case ARM::LDRSH_POST: case ARM::LDRSB: case ARM::LDRSB_PRE: case ARM::LDRSB_POST: if (type && Rn == 15) { if (Rt == 15) S = MCDisassembler::SoftFail; break; } if (type && (Rt == 15 || (writeback && Rn == Rt))) S = MCDisassembler::SoftFail; if (!type && (Rt == 15 || Rm == 15)) S = MCDisassembler::SoftFail; if (!type && writeback && (Rn == 15 || Rn == Rt)) S = MCDisassembler::SoftFail; break; default: break; } if (writeback) { // Writeback if (P) U |= ARMII::IndexModePre << 9; else U |= ARMII::IndexModePost << 9; // On stores, the writeback operand precedes Rt. switch (Inst.getOpcode()) { case ARM::STRD: case ARM::STRD_PRE: case ARM::STRD_POST: case ARM::STRH: case ARM::STRH_PRE: case ARM::STRH_POST: if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; break; default: break; } } if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; switch (Inst.getOpcode()) { case ARM::STRD: case ARM::STRD_PRE: case ARM::STRD_POST: case ARM::LDRD: case ARM::LDRD_PRE: case ARM::LDRD_POST: if (!Check(S, DecodeGPRRegisterClass(Inst, Rt+1, Address, Decoder))) return MCDisassembler::Fail; break; default: break; } if (writeback) { // On loads, the writeback operand comes after Rt. switch (Inst.getOpcode()) { case ARM::LDRD: case ARM::LDRD_PRE: case ARM::LDRD_POST: case ARM::LDRH: case ARM::LDRH_PRE: case ARM::LDRH_POST: case ARM::LDRSH: case ARM::LDRSH_PRE: case ARM::LDRSH_POST: case ARM::LDRSB: case ARM::LDRSB_PRE: case ARM::LDRSB_POST: case ARM::LDRHTr: case ARM::LDRSBTr: if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; break; default: break; } } if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (type) { Inst.addOperand(MCOperand::createReg(0)); Inst.addOperand(MCOperand::createImm(U | (imm << 4) | Rm)); } else { if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(U)); } if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeRFEInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned mode = fieldFromInstruction(Insn, 23, 2); switch (mode) { case 0: mode = ARM_AM::da; break; case 1: mode = ARM_AM::ia; break; case 2: mode = ARM_AM::db; break; case 3: mode = ARM_AM::ib; break; } Inst.addOperand(MCOperand::createImm(mode)); if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeQADDInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rd = fieldFromInstruction(Insn, 12, 4); unsigned Rm = fieldFromInstruction(Insn, 0, 4); unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned pred = fieldFromInstruction(Insn, 28, 4); if (pred == 0xF) return DecodeCPSInstruction(Inst, Insn, Address, Decoder); if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeMemMultipleWritebackInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned pred = fieldFromInstruction(Insn, 28, 4); unsigned reglist = fieldFromInstruction(Insn, 0, 16); if (pred == 0xF) { // Ambiguous with RFE and SRS switch (Inst.getOpcode()) { case ARM::LDMDA: Inst.setOpcode(ARM::RFEDA); break; case ARM::LDMDA_UPD: Inst.setOpcode(ARM::RFEDA_UPD); break; case ARM::LDMDB: Inst.setOpcode(ARM::RFEDB); break; case ARM::LDMDB_UPD: Inst.setOpcode(ARM::RFEDB_UPD); break; case ARM::LDMIA: Inst.setOpcode(ARM::RFEIA); break; case ARM::LDMIA_UPD: Inst.setOpcode(ARM::RFEIA_UPD); break; case ARM::LDMIB: Inst.setOpcode(ARM::RFEIB); break; case ARM::LDMIB_UPD: Inst.setOpcode(ARM::RFEIB_UPD); break; case ARM::STMDA: Inst.setOpcode(ARM::SRSDA); break; case ARM::STMDA_UPD: Inst.setOpcode(ARM::SRSDA_UPD); break; case ARM::STMDB: Inst.setOpcode(ARM::SRSDB); break; case ARM::STMDB_UPD: Inst.setOpcode(ARM::SRSDB_UPD); break; case ARM::STMIA: Inst.setOpcode(ARM::SRSIA); break; case ARM::STMIA_UPD: Inst.setOpcode(ARM::SRSIA_UPD); break; case ARM::STMIB: Inst.setOpcode(ARM::SRSIB); break; case ARM::STMIB_UPD: Inst.setOpcode(ARM::SRSIB_UPD); break; default: return MCDisassembler::Fail; } // For stores (which become SRS's, the only operand is the mode. if (fieldFromInstruction(Insn, 20, 1) == 0) { // Check SRS encoding constraints if (!(fieldFromInstruction(Insn, 22, 1) == 1 && fieldFromInstruction(Insn, 20, 1) == 0)) return MCDisassembler::Fail; Inst.addOperand( MCOperand::createImm(fieldFromInstruction(Insn, 0, 4))); return S; } return DecodeRFEInstruction(Inst, Insn, Address, Decoder); } if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; // Tied if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeRegListOperand(Inst, reglist, Address, Decoder))) return MCDisassembler::Fail; return S; } // Check for UNPREDICTABLE predicated ESB instruction static DecodeStatus DecodeHINTInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned pred = fieldFromInstruction(Insn, 28, 4); unsigned imm8 = fieldFromInstruction(Insn, 0, 8); const MCDisassembler *Dis = static_cast(Decoder); const FeatureBitset &FeatureBits = Dis->getSubtargetInfo().getFeatureBits(); DecodeStatus S = MCDisassembler::Success; Inst.addOperand(MCOperand::createImm(imm8)); if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; // ESB is unpredictable if pred != AL. Without the RAS extension, it is a NOP, // so all predicates should be allowed. if (imm8 == 0x10 && pred != 0xe && ((FeatureBits[ARM::FeatureRAS]) != 0)) S = MCDisassembler::SoftFail; return S; } static DecodeStatus DecodeCPSInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned imod = fieldFromInstruction(Insn, 18, 2); unsigned M = fieldFromInstruction(Insn, 17, 1); unsigned iflags = fieldFromInstruction(Insn, 6, 3); unsigned mode = fieldFromInstruction(Insn, 0, 5); DecodeStatus S = MCDisassembler::Success; // This decoder is called from multiple location that do not check // the full encoding is valid before they do. if (fieldFromInstruction(Insn, 5, 1) != 0 || fieldFromInstruction(Insn, 16, 1) != 0 || fieldFromInstruction(Insn, 20, 8) != 0x10) return MCDisassembler::Fail; // imod == '01' --> UNPREDICTABLE // NOTE: Even though this is technically UNPREDICTABLE, we choose to // return failure here. The '01' imod value is unprintable, so there's // nothing useful we could do even if we returned UNPREDICTABLE. if (imod == 1) return MCDisassembler::Fail; if (imod && M) { Inst.setOpcode(ARM::CPS3p); Inst.addOperand(MCOperand::createImm(imod)); Inst.addOperand(MCOperand::createImm(iflags)); Inst.addOperand(MCOperand::createImm(mode)); } else if (imod && !M) { Inst.setOpcode(ARM::CPS2p); Inst.addOperand(MCOperand::createImm(imod)); Inst.addOperand(MCOperand::createImm(iflags)); if (mode) S = MCDisassembler::SoftFail; } else if (!imod && M) { Inst.setOpcode(ARM::CPS1p); Inst.addOperand(MCOperand::createImm(mode)); if (iflags) S = MCDisassembler::SoftFail; } else { // imod == '00' && M == '0' --> UNPREDICTABLE Inst.setOpcode(ARM::CPS1p); Inst.addOperand(MCOperand::createImm(mode)); S = MCDisassembler::SoftFail; } return S; } static DecodeStatus DecodeT2CPSInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned imod = fieldFromInstruction(Insn, 9, 2); unsigned M = fieldFromInstruction(Insn, 8, 1); unsigned iflags = fieldFromInstruction(Insn, 5, 3); unsigned mode = fieldFromInstruction(Insn, 0, 5); DecodeStatus S = MCDisassembler::Success; // imod == '01' --> UNPREDICTABLE // NOTE: Even though this is technically UNPREDICTABLE, we choose to // return failure here. The '01' imod value is unprintable, so there's // nothing useful we could do even if we returned UNPREDICTABLE. if (imod == 1) return MCDisassembler::Fail; if (imod && M) { Inst.setOpcode(ARM::t2CPS3p); Inst.addOperand(MCOperand::createImm(imod)); Inst.addOperand(MCOperand::createImm(iflags)); Inst.addOperand(MCOperand::createImm(mode)); } else if (imod && !M) { Inst.setOpcode(ARM::t2CPS2p); Inst.addOperand(MCOperand::createImm(imod)); Inst.addOperand(MCOperand::createImm(iflags)); if (mode) S = MCDisassembler::SoftFail; } else if (!imod && M) { Inst.setOpcode(ARM::t2CPS1p); Inst.addOperand(MCOperand::createImm(mode)); if (iflags) S = MCDisassembler::SoftFail; } else { // imod == '00' && M == '0' --> this is a HINT instruction int imm = fieldFromInstruction(Insn, 0, 8); // HINT are defined only for immediate in [0..4] if(imm > 4) return MCDisassembler::Fail; Inst.setOpcode(ARM::t2HINT); Inst.addOperand(MCOperand::createImm(imm)); } return S; } static DecodeStatus DecodeT2HintSpaceInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned imm = fieldFromInstruction(Insn, 0, 8); unsigned Opcode = ARM::t2HINT; if (imm == 0x0D) { Opcode = ARM::t2PACBTI; } else if (imm == 0x1D) { Opcode = ARM::t2PAC; } else if (imm == 0x2D) { Opcode = ARM::t2AUT; } else if (imm == 0x0F) { Opcode = ARM::t2BTI; } Inst.setOpcode(Opcode); if (Opcode == ARM::t2HINT) { Inst.addOperand(MCOperand::createImm(imm)); } return MCDisassembler::Success; } static DecodeStatus DecodeT2MOVTWInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rd = fieldFromInstruction(Insn, 8, 4); unsigned imm = 0; imm |= (fieldFromInstruction(Insn, 0, 8) << 0); imm |= (fieldFromInstruction(Insn, 12, 3) << 8); imm |= (fieldFromInstruction(Insn, 16, 4) << 12); imm |= (fieldFromInstruction(Insn, 26, 1) << 11); if (Inst.getOpcode() == ARM::t2MOVTi16) if (!Check(S, DecoderGPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecoderGPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (!tryAddingSymbolicOperand(Address, imm, false, 4, Inst, Decoder)) Inst.addOperand(MCOperand::createImm(imm)); return S; } static DecodeStatus DecodeArmMOVTWInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rd = fieldFromInstruction(Insn, 12, 4); unsigned pred = fieldFromInstruction(Insn, 28, 4); unsigned imm = 0; imm |= (fieldFromInstruction(Insn, 0, 12) << 0); imm |= (fieldFromInstruction(Insn, 16, 4) << 12); if (Inst.getOpcode() == ARM::MOVTi16) if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (!tryAddingSymbolicOperand(Address, imm, false, 4, Inst, Decoder)) Inst.addOperand(MCOperand::createImm(imm)); if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeSMLAInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rd = fieldFromInstruction(Insn, 16, 4); unsigned Rn = fieldFromInstruction(Insn, 0, 4); unsigned Rm = fieldFromInstruction(Insn, 8, 4); unsigned Ra = fieldFromInstruction(Insn, 12, 4); unsigned pred = fieldFromInstruction(Insn, 28, 4); if (pred == 0xF) return DecodeCPSInstruction(Inst, Insn, Address, Decoder); if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Ra, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeTSTInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Pred = fieldFromInstruction(Insn, 28, 4); unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rm = fieldFromInstruction(Insn, 0, 4); if (Pred == 0xF) return DecodeSETPANInstruction(Inst, Insn, Address, Decoder); if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodePredicateOperand(Inst, Pred, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeSETPANInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Imm = fieldFromInstruction(Insn, 9, 1); const MCDisassembler *Dis = static_cast(Decoder); const FeatureBitset &FeatureBits = Dis->getSubtargetInfo().getFeatureBits(); if (!FeatureBits[ARM::HasV8_1aOps] || !FeatureBits[ARM::HasV8Ops]) return MCDisassembler::Fail; // Decoder can be called from DecodeTST, which does not check the full // encoding is valid. if (fieldFromInstruction(Insn, 20,12) != 0xf11 || fieldFromInstruction(Insn, 4,4) != 0) return MCDisassembler::Fail; if (fieldFromInstruction(Insn, 10,10) != 0 || fieldFromInstruction(Insn, 0,4) != 0) S = MCDisassembler::SoftFail; Inst.setOpcode(ARM::SETPAN); Inst.addOperand(MCOperand::createImm(Imm)); return S; } static DecodeStatus DecodeAddrModeImm12Operand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned add = fieldFromInstruction(Val, 12, 1); unsigned imm = fieldFromInstruction(Val, 0, 12); unsigned Rn = fieldFromInstruction(Val, 13, 4); if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!add) imm *= -1; if (imm == 0 && !add) imm = INT32_MIN; Inst.addOperand(MCOperand::createImm(imm)); if (Rn == 15) tryAddingPcLoadReferenceComment(Address, Address + imm + 8, Decoder); return S; } static DecodeStatus DecodeAddrMode5Operand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Val, 9, 4); // U == 1 to add imm, 0 to subtract it. unsigned U = fieldFromInstruction(Val, 8, 1); unsigned imm = fieldFromInstruction(Val, 0, 8); if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (U) Inst.addOperand(MCOperand::createImm(ARM_AM::getAM5Opc(ARM_AM::add, imm))); else Inst.addOperand(MCOperand::createImm(ARM_AM::getAM5Opc(ARM_AM::sub, imm))); return S; } static DecodeStatus DecodeAddrMode5FP16Operand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Val, 9, 4); // U == 1 to add imm, 0 to subtract it. unsigned U = fieldFromInstruction(Val, 8, 1); unsigned imm = fieldFromInstruction(Val, 0, 8); if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (U) Inst.addOperand(MCOperand::createImm(ARM_AM::getAM5FP16Opc(ARM_AM::add, imm))); else Inst.addOperand(MCOperand::createImm(ARM_AM::getAM5FP16Opc(ARM_AM::sub, imm))); return S; } static DecodeStatus DecodeAddrMode7Operand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { return DecodeGPRRegisterClass(Inst, Val, Address, Decoder); } static DecodeStatus DecodeT2BInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus Status = MCDisassembler::Success; // Note the J1 and J2 values are from the encoded instruction. So here // change them to I1 and I2 values via as documented: // I1 = NOT(J1 EOR S); // I2 = NOT(J2 EOR S); // and build the imm32 with one trailing zero as documented: // imm32 = SignExtend(S:I1:I2:imm10:imm11:'0', 32); unsigned S = fieldFromInstruction(Insn, 26, 1); unsigned J1 = fieldFromInstruction(Insn, 13, 1); unsigned J2 = fieldFromInstruction(Insn, 11, 1); unsigned I1 = !(J1 ^ S); unsigned I2 = !(J2 ^ S); unsigned imm10 = fieldFromInstruction(Insn, 16, 10); unsigned imm11 = fieldFromInstruction(Insn, 0, 11); unsigned tmp = (S << 23) | (I1 << 22) | (I2 << 21) | (imm10 << 11) | imm11; int imm32 = SignExtend32<25>(tmp << 1); if (!tryAddingSymbolicOperand(Address, Address + imm32 + 4, true, 4, Inst, Decoder)) Inst.addOperand(MCOperand::createImm(imm32)); return Status; } static DecodeStatus DecodeBranchImmInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned pred = fieldFromInstruction(Insn, 28, 4); unsigned imm = fieldFromInstruction(Insn, 0, 24) << 2; if (pred == 0xF) { Inst.setOpcode(ARM::BLXi); imm |= fieldFromInstruction(Insn, 24, 1) << 1; if (!tryAddingSymbolicOperand(Address, Address + SignExtend32<26>(imm) + 8, true, 4, Inst, Decoder)) Inst.addOperand(MCOperand::createImm(SignExtend32<26>(imm))); return S; } if (!tryAddingSymbolicOperand(Address, Address + SignExtend32<26>(imm) + 8, true, 4, Inst, Decoder)) Inst.addOperand(MCOperand::createImm(SignExtend32<26>(imm))); // We already have BL_pred for BL w/ predicate, no need to add addition // predicate opreands for BL if (Inst.getOpcode() != ARM::BL) if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeAddrMode6Operand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rm = fieldFromInstruction(Val, 0, 4); unsigned align = fieldFromInstruction(Val, 4, 2); if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; if (!align) Inst.addOperand(MCOperand::createImm(0)); else Inst.addOperand(MCOperand::createImm(4 << align)); return S; } static DecodeStatus DecodeVLDInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rd = fieldFromInstruction(Insn, 12, 4); Rd |= fieldFromInstruction(Insn, 22, 1) << 4; unsigned wb = fieldFromInstruction(Insn, 16, 4); unsigned Rn = fieldFromInstruction(Insn, 16, 4); Rn |= fieldFromInstruction(Insn, 4, 2) << 4; unsigned Rm = fieldFromInstruction(Insn, 0, 4); // First output register switch (Inst.getOpcode()) { case ARM::VLD1q16: case ARM::VLD1q32: case ARM::VLD1q64: case ARM::VLD1q8: case ARM::VLD1q16wb_fixed: case ARM::VLD1q16wb_register: case ARM::VLD1q32wb_fixed: case ARM::VLD1q32wb_register: case ARM::VLD1q64wb_fixed: case ARM::VLD1q64wb_register: case ARM::VLD1q8wb_fixed: case ARM::VLD1q8wb_register: case ARM::VLD2d16: case ARM::VLD2d32: case ARM::VLD2d8: case ARM::VLD2d16wb_fixed: case ARM::VLD2d16wb_register: case ARM::VLD2d32wb_fixed: case ARM::VLD2d32wb_register: case ARM::VLD2d8wb_fixed: case ARM::VLD2d8wb_register: if (!Check(S, DecodeDPairRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; break; case ARM::VLD2b16: case ARM::VLD2b32: case ARM::VLD2b8: case ARM::VLD2b16wb_fixed: case ARM::VLD2b16wb_register: case ARM::VLD2b32wb_fixed: case ARM::VLD2b32wb_register: case ARM::VLD2b8wb_fixed: case ARM::VLD2b8wb_register: if (!Check(S, DecodeDPairSpacedRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; break; default: if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; } // Second output register switch (Inst.getOpcode()) { case ARM::VLD3d8: case ARM::VLD3d16: case ARM::VLD3d32: case ARM::VLD3d8_UPD: case ARM::VLD3d16_UPD: case ARM::VLD3d32_UPD: case ARM::VLD4d8: case ARM::VLD4d16: case ARM::VLD4d32: case ARM::VLD4d8_UPD: case ARM::VLD4d16_UPD: case ARM::VLD4d32_UPD: if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+1)%32, Address, Decoder))) return MCDisassembler::Fail; break; case ARM::VLD3q8: case ARM::VLD3q16: case ARM::VLD3q32: case ARM::VLD3q8_UPD: case ARM::VLD3q16_UPD: case ARM::VLD3q32_UPD: case ARM::VLD4q8: case ARM::VLD4q16: case ARM::VLD4q32: case ARM::VLD4q8_UPD: case ARM::VLD4q16_UPD: case ARM::VLD4q32_UPD: if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+2)%32, Address, Decoder))) return MCDisassembler::Fail; break; default: break; } // Third output register switch(Inst.getOpcode()) { case ARM::VLD3d8: case ARM::VLD3d16: case ARM::VLD3d32: case ARM::VLD3d8_UPD: case ARM::VLD3d16_UPD: case ARM::VLD3d32_UPD: case ARM::VLD4d8: case ARM::VLD4d16: case ARM::VLD4d32: case ARM::VLD4d8_UPD: case ARM::VLD4d16_UPD: case ARM::VLD4d32_UPD: if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+2)%32, Address, Decoder))) return MCDisassembler::Fail; break; case ARM::VLD3q8: case ARM::VLD3q16: case ARM::VLD3q32: case ARM::VLD3q8_UPD: case ARM::VLD3q16_UPD: case ARM::VLD3q32_UPD: case ARM::VLD4q8: case ARM::VLD4q16: case ARM::VLD4q32: case ARM::VLD4q8_UPD: case ARM::VLD4q16_UPD: case ARM::VLD4q32_UPD: if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+4)%32, Address, Decoder))) return MCDisassembler::Fail; break; default: break; } // Fourth output register switch (Inst.getOpcode()) { case ARM::VLD4d8: case ARM::VLD4d16: case ARM::VLD4d32: case ARM::VLD4d8_UPD: case ARM::VLD4d16_UPD: case ARM::VLD4d32_UPD: if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+3)%32, Address, Decoder))) return MCDisassembler::Fail; break; case ARM::VLD4q8: case ARM::VLD4q16: case ARM::VLD4q32: case ARM::VLD4q8_UPD: case ARM::VLD4q16_UPD: case ARM::VLD4q32_UPD: if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+6)%32, Address, Decoder))) return MCDisassembler::Fail; break; default: break; } // Writeback operand switch (Inst.getOpcode()) { case ARM::VLD1d8wb_fixed: case ARM::VLD1d16wb_fixed: case ARM::VLD1d32wb_fixed: case ARM::VLD1d64wb_fixed: case ARM::VLD1d8wb_register: case ARM::VLD1d16wb_register: case ARM::VLD1d32wb_register: case ARM::VLD1d64wb_register: case ARM::VLD1q8wb_fixed: case ARM::VLD1q16wb_fixed: case ARM::VLD1q32wb_fixed: case ARM::VLD1q64wb_fixed: case ARM::VLD1q8wb_register: case ARM::VLD1q16wb_register: case ARM::VLD1q32wb_register: case ARM::VLD1q64wb_register: case ARM::VLD1d8Twb_fixed: case ARM::VLD1d8Twb_register: case ARM::VLD1d16Twb_fixed: case ARM::VLD1d16Twb_register: case ARM::VLD1d32Twb_fixed: case ARM::VLD1d32Twb_register: case ARM::VLD1d64Twb_fixed: case ARM::VLD1d64Twb_register: case ARM::VLD1d8Qwb_fixed: case ARM::VLD1d8Qwb_register: case ARM::VLD1d16Qwb_fixed: case ARM::VLD1d16Qwb_register: case ARM::VLD1d32Qwb_fixed: case ARM::VLD1d32Qwb_register: case ARM::VLD1d64Qwb_fixed: case ARM::VLD1d64Qwb_register: case ARM::VLD2d8wb_fixed: case ARM::VLD2d16wb_fixed: case ARM::VLD2d32wb_fixed: case ARM::VLD2q8wb_fixed: case ARM::VLD2q16wb_fixed: case ARM::VLD2q32wb_fixed: case ARM::VLD2d8wb_register: case ARM::VLD2d16wb_register: case ARM::VLD2d32wb_register: case ARM::VLD2q8wb_register: case ARM::VLD2q16wb_register: case ARM::VLD2q32wb_register: case ARM::VLD2b8wb_fixed: case ARM::VLD2b16wb_fixed: case ARM::VLD2b32wb_fixed: case ARM::VLD2b8wb_register: case ARM::VLD2b16wb_register: case ARM::VLD2b32wb_register: Inst.addOperand(MCOperand::createImm(0)); break; case ARM::VLD3d8_UPD: case ARM::VLD3d16_UPD: case ARM::VLD3d32_UPD: case ARM::VLD3q8_UPD: case ARM::VLD3q16_UPD: case ARM::VLD3q32_UPD: case ARM::VLD4d8_UPD: case ARM::VLD4d16_UPD: case ARM::VLD4d32_UPD: case ARM::VLD4q8_UPD: case ARM::VLD4q16_UPD: case ARM::VLD4q32_UPD: if (!Check(S, DecodeGPRRegisterClass(Inst, wb, Address, Decoder))) return MCDisassembler::Fail; break; default: break; } // AddrMode6 Base (register+alignment) if (!Check(S, DecodeAddrMode6Operand(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; // AddrMode6 Offset (register) switch (Inst.getOpcode()) { default: // The below have been updated to have explicit am6offset split // between fixed and register offset. For those instructions not // yet updated, we need to add an additional reg0 operand for the // fixed variant. // // The fixed offset encodes as Rm == 0xd, so we check for that. if (Rm == 0xd) { Inst.addOperand(MCOperand::createReg(0)); break; } // Fall through to handle the register offset variant. [[fallthrough]]; case ARM::VLD1d8wb_fixed: case ARM::VLD1d16wb_fixed: case ARM::VLD1d32wb_fixed: case ARM::VLD1d64wb_fixed: case ARM::VLD1d8Twb_fixed: case ARM::VLD1d16Twb_fixed: case ARM::VLD1d32Twb_fixed: case ARM::VLD1d64Twb_fixed: case ARM::VLD1d8Qwb_fixed: case ARM::VLD1d16Qwb_fixed: case ARM::VLD1d32Qwb_fixed: case ARM::VLD1d64Qwb_fixed: case ARM::VLD1d8wb_register: case ARM::VLD1d16wb_register: case ARM::VLD1d32wb_register: case ARM::VLD1d64wb_register: case ARM::VLD1q8wb_fixed: case ARM::VLD1q16wb_fixed: case ARM::VLD1q32wb_fixed: case ARM::VLD1q64wb_fixed: case ARM::VLD1q8wb_register: case ARM::VLD1q16wb_register: case ARM::VLD1q32wb_register: case ARM::VLD1q64wb_register: // The fixed offset post-increment encodes Rm == 0xd. The no-writeback // variant encodes Rm == 0xf. Anything else is a register offset post- // increment and we need to add the register operand to the instruction. if (Rm != 0xD && Rm != 0xF && !Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; break; case ARM::VLD2d8wb_fixed: case ARM::VLD2d16wb_fixed: case ARM::VLD2d32wb_fixed: case ARM::VLD2b8wb_fixed: case ARM::VLD2b16wb_fixed: case ARM::VLD2b32wb_fixed: case ARM::VLD2q8wb_fixed: case ARM::VLD2q16wb_fixed: case ARM::VLD2q32wb_fixed: break; } return S; } static DecodeStatus DecodeVLDST1Instruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned type = fieldFromInstruction(Insn, 8, 4); unsigned align = fieldFromInstruction(Insn, 4, 2); if (type == 6 && (align & 2)) return MCDisassembler::Fail; if (type == 7 && (align & 2)) return MCDisassembler::Fail; if (type == 10 && align == 3) return MCDisassembler::Fail; unsigned load = fieldFromInstruction(Insn, 21, 1); return load ? DecodeVLDInstruction(Inst, Insn, Address, Decoder) : DecodeVSTInstruction(Inst, Insn, Address, Decoder); } static DecodeStatus DecodeVLDST2Instruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned size = fieldFromInstruction(Insn, 6, 2); if (size == 3) return MCDisassembler::Fail; unsigned type = fieldFromInstruction(Insn, 8, 4); unsigned align = fieldFromInstruction(Insn, 4, 2); if (type == 8 && align == 3) return MCDisassembler::Fail; if (type == 9 && align == 3) return MCDisassembler::Fail; unsigned load = fieldFromInstruction(Insn, 21, 1); return load ? DecodeVLDInstruction(Inst, Insn, Address, Decoder) : DecodeVSTInstruction(Inst, Insn, Address, Decoder); } static DecodeStatus DecodeVLDST3Instruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned size = fieldFromInstruction(Insn, 6, 2); if (size == 3) return MCDisassembler::Fail; unsigned align = fieldFromInstruction(Insn, 4, 2); if (align & 2) return MCDisassembler::Fail; unsigned load = fieldFromInstruction(Insn, 21, 1); return load ? DecodeVLDInstruction(Inst, Insn, Address, Decoder) : DecodeVSTInstruction(Inst, Insn, Address, Decoder); } static DecodeStatus DecodeVLDST4Instruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned size = fieldFromInstruction(Insn, 6, 2); if (size == 3) return MCDisassembler::Fail; unsigned load = fieldFromInstruction(Insn, 21, 1); return load ? DecodeVLDInstruction(Inst, Insn, Address, Decoder) : DecodeVSTInstruction(Inst, Insn, Address, Decoder); } static DecodeStatus DecodeVSTInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rd = fieldFromInstruction(Insn, 12, 4); Rd |= fieldFromInstruction(Insn, 22, 1) << 4; unsigned wb = fieldFromInstruction(Insn, 16, 4); unsigned Rn = fieldFromInstruction(Insn, 16, 4); Rn |= fieldFromInstruction(Insn, 4, 2) << 4; unsigned Rm = fieldFromInstruction(Insn, 0, 4); // Writeback Operand switch (Inst.getOpcode()) { case ARM::VST1d8wb_fixed: case ARM::VST1d16wb_fixed: case ARM::VST1d32wb_fixed: case ARM::VST1d64wb_fixed: case ARM::VST1d8wb_register: case ARM::VST1d16wb_register: case ARM::VST1d32wb_register: case ARM::VST1d64wb_register: case ARM::VST1q8wb_fixed: case ARM::VST1q16wb_fixed: case ARM::VST1q32wb_fixed: case ARM::VST1q64wb_fixed: case ARM::VST1q8wb_register: case ARM::VST1q16wb_register: case ARM::VST1q32wb_register: case ARM::VST1q64wb_register: case ARM::VST1d8Twb_fixed: case ARM::VST1d16Twb_fixed: case ARM::VST1d32Twb_fixed: case ARM::VST1d64Twb_fixed: case ARM::VST1d8Twb_register: case ARM::VST1d16Twb_register: case ARM::VST1d32Twb_register: case ARM::VST1d64Twb_register: case ARM::VST1d8Qwb_fixed: case ARM::VST1d16Qwb_fixed: case ARM::VST1d32Qwb_fixed: case ARM::VST1d64Qwb_fixed: case ARM::VST1d8Qwb_register: case ARM::VST1d16Qwb_register: case ARM::VST1d32Qwb_register: case ARM::VST1d64Qwb_register: case ARM::VST2d8wb_fixed: case ARM::VST2d16wb_fixed: case ARM::VST2d32wb_fixed: case ARM::VST2d8wb_register: case ARM::VST2d16wb_register: case ARM::VST2d32wb_register: case ARM::VST2q8wb_fixed: case ARM::VST2q16wb_fixed: case ARM::VST2q32wb_fixed: case ARM::VST2q8wb_register: case ARM::VST2q16wb_register: case ARM::VST2q32wb_register: case ARM::VST2b8wb_fixed: case ARM::VST2b16wb_fixed: case ARM::VST2b32wb_fixed: case ARM::VST2b8wb_register: case ARM::VST2b16wb_register: case ARM::VST2b32wb_register: if (Rm == 0xF) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(0)); break; case ARM::VST3d8_UPD: case ARM::VST3d16_UPD: case ARM::VST3d32_UPD: case ARM::VST3q8_UPD: case ARM::VST3q16_UPD: case ARM::VST3q32_UPD: case ARM::VST4d8_UPD: case ARM::VST4d16_UPD: case ARM::VST4d32_UPD: case ARM::VST4q8_UPD: case ARM::VST4q16_UPD: case ARM::VST4q32_UPD: if (!Check(S, DecodeGPRRegisterClass(Inst, wb, Address, Decoder))) return MCDisassembler::Fail; break; default: break; } // AddrMode6 Base (register+alignment) if (!Check(S, DecodeAddrMode6Operand(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; // AddrMode6 Offset (register) switch (Inst.getOpcode()) { default: if (Rm == 0xD) Inst.addOperand(MCOperand::createReg(0)); else if (Rm != 0xF) { if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; } break; case ARM::VST1d8wb_fixed: case ARM::VST1d16wb_fixed: case ARM::VST1d32wb_fixed: case ARM::VST1d64wb_fixed: case ARM::VST1q8wb_fixed: case ARM::VST1q16wb_fixed: case ARM::VST1q32wb_fixed: case ARM::VST1q64wb_fixed: case ARM::VST1d8Twb_fixed: case ARM::VST1d16Twb_fixed: case ARM::VST1d32Twb_fixed: case ARM::VST1d64Twb_fixed: case ARM::VST1d8Qwb_fixed: case ARM::VST1d16Qwb_fixed: case ARM::VST1d32Qwb_fixed: case ARM::VST1d64Qwb_fixed: case ARM::VST2d8wb_fixed: case ARM::VST2d16wb_fixed: case ARM::VST2d32wb_fixed: case ARM::VST2q8wb_fixed: case ARM::VST2q16wb_fixed: case ARM::VST2q32wb_fixed: case ARM::VST2b8wb_fixed: case ARM::VST2b16wb_fixed: case ARM::VST2b32wb_fixed: break; } // First input register switch (Inst.getOpcode()) { case ARM::VST1q16: case ARM::VST1q32: case ARM::VST1q64: case ARM::VST1q8: case ARM::VST1q16wb_fixed: case ARM::VST1q16wb_register: case ARM::VST1q32wb_fixed: case ARM::VST1q32wb_register: case ARM::VST1q64wb_fixed: case ARM::VST1q64wb_register: case ARM::VST1q8wb_fixed: case ARM::VST1q8wb_register: case ARM::VST2d16: case ARM::VST2d32: case ARM::VST2d8: case ARM::VST2d16wb_fixed: case ARM::VST2d16wb_register: case ARM::VST2d32wb_fixed: case ARM::VST2d32wb_register: case ARM::VST2d8wb_fixed: case ARM::VST2d8wb_register: if (!Check(S, DecodeDPairRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; break; case ARM::VST2b16: case ARM::VST2b32: case ARM::VST2b8: case ARM::VST2b16wb_fixed: case ARM::VST2b16wb_register: case ARM::VST2b32wb_fixed: case ARM::VST2b32wb_register: case ARM::VST2b8wb_fixed: case ARM::VST2b8wb_register: if (!Check(S, DecodeDPairSpacedRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; break; default: if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; } // Second input register switch (Inst.getOpcode()) { case ARM::VST3d8: case ARM::VST3d16: case ARM::VST3d32: case ARM::VST3d8_UPD: case ARM::VST3d16_UPD: case ARM::VST3d32_UPD: case ARM::VST4d8: case ARM::VST4d16: case ARM::VST4d32: case ARM::VST4d8_UPD: case ARM::VST4d16_UPD: case ARM::VST4d32_UPD: if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+1)%32, Address, Decoder))) return MCDisassembler::Fail; break; case ARM::VST3q8: case ARM::VST3q16: case ARM::VST3q32: case ARM::VST3q8_UPD: case ARM::VST3q16_UPD: case ARM::VST3q32_UPD: case ARM::VST4q8: case ARM::VST4q16: case ARM::VST4q32: case ARM::VST4q8_UPD: case ARM::VST4q16_UPD: case ARM::VST4q32_UPD: if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+2)%32, Address, Decoder))) return MCDisassembler::Fail; break; default: break; } // Third input register switch (Inst.getOpcode()) { case ARM::VST3d8: case ARM::VST3d16: case ARM::VST3d32: case ARM::VST3d8_UPD: case ARM::VST3d16_UPD: case ARM::VST3d32_UPD: case ARM::VST4d8: case ARM::VST4d16: case ARM::VST4d32: case ARM::VST4d8_UPD: case ARM::VST4d16_UPD: case ARM::VST4d32_UPD: if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+2)%32, Address, Decoder))) return MCDisassembler::Fail; break; case ARM::VST3q8: case ARM::VST3q16: case ARM::VST3q32: case ARM::VST3q8_UPD: case ARM::VST3q16_UPD: case ARM::VST3q32_UPD: case ARM::VST4q8: case ARM::VST4q16: case ARM::VST4q32: case ARM::VST4q8_UPD: case ARM::VST4q16_UPD: case ARM::VST4q32_UPD: if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+4)%32, Address, Decoder))) return MCDisassembler::Fail; break; default: break; } // Fourth input register switch (Inst.getOpcode()) { case ARM::VST4d8: case ARM::VST4d16: case ARM::VST4d32: case ARM::VST4d8_UPD: case ARM::VST4d16_UPD: case ARM::VST4d32_UPD: if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+3)%32, Address, Decoder))) return MCDisassembler::Fail; break; case ARM::VST4q8: case ARM::VST4q16: case ARM::VST4q32: case ARM::VST4q8_UPD: case ARM::VST4q16_UPD: case ARM::VST4q32_UPD: if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+6)%32, Address, Decoder))) return MCDisassembler::Fail; break; default: break; } return S; } static DecodeStatus DecodeVLD1DupInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rd = fieldFromInstruction(Insn, 12, 4); Rd |= fieldFromInstruction(Insn, 22, 1) << 4; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rm = fieldFromInstruction(Insn, 0, 4); unsigned align = fieldFromInstruction(Insn, 4, 1); unsigned size = fieldFromInstruction(Insn, 6, 2); if (size == 0 && align == 1) return MCDisassembler::Fail; align *= (1 << size); switch (Inst.getOpcode()) { case ARM::VLD1DUPq16: case ARM::VLD1DUPq32: case ARM::VLD1DUPq8: case ARM::VLD1DUPq16wb_fixed: case ARM::VLD1DUPq16wb_register: case ARM::VLD1DUPq32wb_fixed: case ARM::VLD1DUPq32wb_register: case ARM::VLD1DUPq8wb_fixed: case ARM::VLD1DUPq8wb_register: if (!Check(S, DecodeDPairRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; break; default: if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; break; } if (Rm != 0xF) { if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; } if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(align)); // The fixed offset post-increment encodes Rm == 0xd. The no-writeback // variant encodes Rm == 0xf. Anything else is a register offset post- // increment and we need to add the register operand to the instruction. if (Rm != 0xD && Rm != 0xF && !Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeVLD2DupInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rd = fieldFromInstruction(Insn, 12, 4); Rd |= fieldFromInstruction(Insn, 22, 1) << 4; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rm = fieldFromInstruction(Insn, 0, 4); unsigned align = fieldFromInstruction(Insn, 4, 1); unsigned size = 1 << fieldFromInstruction(Insn, 6, 2); align *= 2*size; switch (Inst.getOpcode()) { case ARM::VLD2DUPd16: case ARM::VLD2DUPd32: case ARM::VLD2DUPd8: case ARM::VLD2DUPd16wb_fixed: case ARM::VLD2DUPd16wb_register: case ARM::VLD2DUPd32wb_fixed: case ARM::VLD2DUPd32wb_register: case ARM::VLD2DUPd8wb_fixed: case ARM::VLD2DUPd8wb_register: if (!Check(S, DecodeDPairRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; break; case ARM::VLD2DUPd16x2: case ARM::VLD2DUPd32x2: case ARM::VLD2DUPd8x2: case ARM::VLD2DUPd16x2wb_fixed: case ARM::VLD2DUPd16x2wb_register: case ARM::VLD2DUPd32x2wb_fixed: case ARM::VLD2DUPd32x2wb_register: case ARM::VLD2DUPd8x2wb_fixed: case ARM::VLD2DUPd8x2wb_register: if (!Check(S, DecodeDPairSpacedRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; break; default: if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; break; } if (Rm != 0xF) Inst.addOperand(MCOperand::createImm(0)); if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(align)); if (Rm != 0xD && Rm != 0xF) { if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; } return S; } static DecodeStatus DecodeVLD3DupInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rd = fieldFromInstruction(Insn, 12, 4); Rd |= fieldFromInstruction(Insn, 22, 1) << 4; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rm = fieldFromInstruction(Insn, 0, 4); unsigned inc = fieldFromInstruction(Insn, 5, 1) + 1; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+inc)%32, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+2*inc)%32, Address, Decoder))) return MCDisassembler::Fail; if (Rm != 0xF) { if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; } if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(0)); if (Rm == 0xD) Inst.addOperand(MCOperand::createReg(0)); else if (Rm != 0xF) { if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; } return S; } static DecodeStatus DecodeVLD4DupInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rd = fieldFromInstruction(Insn, 12, 4); Rd |= fieldFromInstruction(Insn, 22, 1) << 4; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rm = fieldFromInstruction(Insn, 0, 4); unsigned size = fieldFromInstruction(Insn, 6, 2); unsigned inc = fieldFromInstruction(Insn, 5, 1) + 1; unsigned align = fieldFromInstruction(Insn, 4, 1); if (size == 0x3) { if (align == 0) return MCDisassembler::Fail; align = 16; } else { if (size == 2) { align *= 8; } else { size = 1 << size; align *= 4*size; } } if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+inc)%32, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+2*inc)%32, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+3*inc)%32, Address, Decoder))) return MCDisassembler::Fail; if (Rm != 0xF) { if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; } if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(align)); if (Rm == 0xD) Inst.addOperand(MCOperand::createReg(0)); else if (Rm != 0xF) { if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; } return S; } static DecodeStatus DecodeVMOVModImmInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rd = fieldFromInstruction(Insn, 12, 4); Rd |= fieldFromInstruction(Insn, 22, 1) << 4; unsigned imm = fieldFromInstruction(Insn, 0, 4); imm |= fieldFromInstruction(Insn, 16, 3) << 4; imm |= fieldFromInstruction(Insn, 24, 1) << 7; imm |= fieldFromInstruction(Insn, 8, 4) << 8; imm |= fieldFromInstruction(Insn, 5, 1) << 12; unsigned Q = fieldFromInstruction(Insn, 6, 1); if (Q) { if (!Check(S, DecodeQPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; } else { if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; } Inst.addOperand(MCOperand::createImm(imm)); switch (Inst.getOpcode()) { case ARM::VORRiv4i16: case ARM::VORRiv2i32: case ARM::VBICiv4i16: case ARM::VBICiv2i32: if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; break; case ARM::VORRiv8i16: case ARM::VORRiv4i32: case ARM::VBICiv8i16: case ARM::VBICiv4i32: if (!Check(S, DecodeQPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; break; default: break; } return S; } static DecodeStatus DecodeMVEModImmInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Qd = ((fieldFromInstruction(Insn, 22, 1) << 3) | fieldFromInstruction(Insn, 13, 3)); unsigned cmode = fieldFromInstruction(Insn, 8, 4); unsigned imm = fieldFromInstruction(Insn, 0, 4); imm |= fieldFromInstruction(Insn, 16, 3) << 4; imm |= fieldFromInstruction(Insn, 28, 1) << 7; imm |= cmode << 8; imm |= fieldFromInstruction(Insn, 5, 1) << 12; if (cmode == 0xF && Inst.getOpcode() == ARM::MVE_VMVNimmi32) return MCDisassembler::Fail; if (!Check(S, DecodeMQPRRegisterClass(Inst, Qd, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(imm)); Inst.addOperand(MCOperand::createImm(ARMVCC::None)); Inst.addOperand(MCOperand::createReg(0)); Inst.addOperand(MCOperand::createImm(0)); return S; } static DecodeStatus DecodeMVEVADCInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Qd = fieldFromInstruction(Insn, 13, 3); Qd |= fieldFromInstruction(Insn, 22, 1) << 3; if (!Check(S, DecodeMQPRRegisterClass(Inst, Qd, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createReg(ARM::FPSCR_NZCV)); unsigned Qn = fieldFromInstruction(Insn, 17, 3); Qn |= fieldFromInstruction(Insn, 7, 1) << 3; if (!Check(S, DecodeMQPRRegisterClass(Inst, Qn, Address, Decoder))) return MCDisassembler::Fail; unsigned Qm = fieldFromInstruction(Insn, 1, 3); Qm |= fieldFromInstruction(Insn, 5, 1) << 3; if (!Check(S, DecodeMQPRRegisterClass(Inst, Qm, Address, Decoder))) return MCDisassembler::Fail; if (!fieldFromInstruction(Insn, 12, 1)) // I bit clear => need input FPSCR Inst.addOperand(MCOperand::createReg(ARM::FPSCR_NZCV)); Inst.addOperand(MCOperand::createImm(Qd)); return S; } static DecodeStatus DecodeVSHLMaxInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rd = fieldFromInstruction(Insn, 12, 4); Rd |= fieldFromInstruction(Insn, 22, 1) << 4; unsigned Rm = fieldFromInstruction(Insn, 0, 4); Rm |= fieldFromInstruction(Insn, 5, 1) << 4; unsigned size = fieldFromInstruction(Insn, 18, 2); if (!Check(S, DecodeQPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(8 << size)); return S; } static DecodeStatus DecodeShiftRight8Imm(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { Inst.addOperand(MCOperand::createImm(8 - Val)); return MCDisassembler::Success; } static DecodeStatus DecodeShiftRight16Imm(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { Inst.addOperand(MCOperand::createImm(16 - Val)); return MCDisassembler::Success; } static DecodeStatus DecodeShiftRight32Imm(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { Inst.addOperand(MCOperand::createImm(32 - Val)); return MCDisassembler::Success; } static DecodeStatus DecodeShiftRight64Imm(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { Inst.addOperand(MCOperand::createImm(64 - Val)); return MCDisassembler::Success; } static DecodeStatus DecodeTBLInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rd = fieldFromInstruction(Insn, 12, 4); Rd |= fieldFromInstruction(Insn, 22, 1) << 4; unsigned Rn = fieldFromInstruction(Insn, 16, 4); Rn |= fieldFromInstruction(Insn, 7, 1) << 4; unsigned Rm = fieldFromInstruction(Insn, 0, 4); Rm |= fieldFromInstruction(Insn, 5, 1) << 4; unsigned op = fieldFromInstruction(Insn, 6, 1); if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (op) { if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; // Writeback } switch (Inst.getOpcode()) { case ARM::VTBL2: case ARM::VTBX2: if (!Check(S, DecodeDPairRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; break; default: if (!Check(S, DecodeDPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; } if (!Check(S, DecodeDPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeThumbAddSpecialReg(MCInst &Inst, uint16_t Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned dst = fieldFromInstruction(Insn, 8, 3); unsigned imm = fieldFromInstruction(Insn, 0, 8); if (!Check(S, DecodetGPRRegisterClass(Inst, dst, Address, Decoder))) return MCDisassembler::Fail; switch(Inst.getOpcode()) { default: return MCDisassembler::Fail; case ARM::tADR: break; // tADR does not explicitly represent the PC as an operand. case ARM::tADDrSPi: Inst.addOperand(MCOperand::createReg(ARM::SP)); break; } Inst.addOperand(MCOperand::createImm(imm)); return S; } static DecodeStatus DecodeThumbBROperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { if (!tryAddingSymbolicOperand(Address, Address + SignExtend32<12>(Val<<1) + 4, true, 2, Inst, Decoder)) Inst.addOperand(MCOperand::createImm(SignExtend32<12>(Val << 1))); return MCDisassembler::Success; } static DecodeStatus DecodeT2BROperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { if (!tryAddingSymbolicOperand(Address, Address + SignExtend32<21>(Val) + 4, true, 4, Inst, Decoder)) Inst.addOperand(MCOperand::createImm(SignExtend32<21>(Val))); return MCDisassembler::Success; } static DecodeStatus DecodeThumbCmpBROperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { if (!tryAddingSymbolicOperand(Address, Address + (Val<<1) + 4, true, 2, Inst, Decoder)) Inst.addOperand(MCOperand::createImm(Val << 1)); return MCDisassembler::Success; } static DecodeStatus DecodeThumbAddrModeRR(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Val, 0, 3); unsigned Rm = fieldFromInstruction(Val, 3, 3); if (!Check(S, DecodetGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodetGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeThumbAddrModeIS(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Val, 0, 3); unsigned imm = fieldFromInstruction(Val, 3, 5); if (!Check(S, DecodetGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(imm)); return S; } static DecodeStatus DecodeThumbAddrModePC(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { unsigned imm = Val << 2; Inst.addOperand(MCOperand::createImm(imm)); tryAddingPcLoadReferenceComment(Address, (Address & ~2u) + imm + 4, Decoder); return MCDisassembler::Success; } static DecodeStatus DecodeThumbAddrModeSP(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { Inst.addOperand(MCOperand::createReg(ARM::SP)); Inst.addOperand(MCOperand::createImm(Val)); return MCDisassembler::Success; } static DecodeStatus DecodeT2AddrModeSOReg(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Val, 6, 4); unsigned Rm = fieldFromInstruction(Val, 2, 4); unsigned imm = fieldFromInstruction(Val, 0, 2); // Thumb stores cannot use PC as dest register. switch (Inst.getOpcode()) { case ARM::t2STRHs: case ARM::t2STRBs: case ARM::t2STRs: if (Rn == 15) return MCDisassembler::Fail; break; default: break; } if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecoderGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(imm)); return S; } static DecodeStatus DecodeT2LoadShift(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rt = fieldFromInstruction(Insn, 12, 4); unsigned Rn = fieldFromInstruction(Insn, 16, 4); const FeatureBitset &featureBits = ((const MCDisassembler*)Decoder)->getSubtargetInfo().getFeatureBits(); bool hasMP = featureBits[ARM::FeatureMP]; bool hasV7Ops = featureBits[ARM::HasV7Ops]; if (Rn == 15) { switch (Inst.getOpcode()) { case ARM::t2LDRBs: Inst.setOpcode(ARM::t2LDRBpci); break; case ARM::t2LDRHs: Inst.setOpcode(ARM::t2LDRHpci); break; case ARM::t2LDRSHs: Inst.setOpcode(ARM::t2LDRSHpci); break; case ARM::t2LDRSBs: Inst.setOpcode(ARM::t2LDRSBpci); break; case ARM::t2LDRs: Inst.setOpcode(ARM::t2LDRpci); break; case ARM::t2PLDs: Inst.setOpcode(ARM::t2PLDpci); break; case ARM::t2PLIs: Inst.setOpcode(ARM::t2PLIpci); break; default: return MCDisassembler::Fail; } return DecodeT2LoadLabel(Inst, Insn, Address, Decoder); } if (Rt == 15) { switch (Inst.getOpcode()) { case ARM::t2LDRSHs: return MCDisassembler::Fail; case ARM::t2LDRHs: Inst.setOpcode(ARM::t2PLDWs); break; case ARM::t2LDRSBs: Inst.setOpcode(ARM::t2PLIs); break; default: break; } } switch (Inst.getOpcode()) { case ARM::t2PLDs: break; case ARM::t2PLIs: if (!hasV7Ops) return MCDisassembler::Fail; break; case ARM::t2PLDWs: if (!hasV7Ops || !hasMP) return MCDisassembler::Fail; break; default: if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; } unsigned addrmode = fieldFromInstruction(Insn, 4, 2); addrmode |= fieldFromInstruction(Insn, 0, 4) << 2; addrmode |= fieldFromInstruction(Insn, 16, 4) << 6; if (!Check(S, DecodeT2AddrModeSOReg(Inst, addrmode, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeT2LoadImm8(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rt = fieldFromInstruction(Insn, 12, 4); unsigned U = fieldFromInstruction(Insn, 9, 1); unsigned imm = fieldFromInstruction(Insn, 0, 8); imm |= (U << 8); imm |= (Rn << 9); unsigned add = fieldFromInstruction(Insn, 9, 1); const FeatureBitset &featureBits = ((const MCDisassembler*)Decoder)->getSubtargetInfo().getFeatureBits(); bool hasMP = featureBits[ARM::FeatureMP]; bool hasV7Ops = featureBits[ARM::HasV7Ops]; if (Rn == 15) { switch (Inst.getOpcode()) { case ARM::t2LDRi8: Inst.setOpcode(ARM::t2LDRpci); break; case ARM::t2LDRBi8: Inst.setOpcode(ARM::t2LDRBpci); break; case ARM::t2LDRSBi8: Inst.setOpcode(ARM::t2LDRSBpci); break; case ARM::t2LDRHi8: Inst.setOpcode(ARM::t2LDRHpci); break; case ARM::t2LDRSHi8: Inst.setOpcode(ARM::t2LDRSHpci); break; case ARM::t2PLDi8: Inst.setOpcode(ARM::t2PLDpci); break; case ARM::t2PLIi8: Inst.setOpcode(ARM::t2PLIpci); break; default: return MCDisassembler::Fail; } return DecodeT2LoadLabel(Inst, Insn, Address, Decoder); } if (Rt == 15) { switch (Inst.getOpcode()) { case ARM::t2LDRSHi8: return MCDisassembler::Fail; case ARM::t2LDRHi8: if (!add) Inst.setOpcode(ARM::t2PLDWi8); break; case ARM::t2LDRSBi8: Inst.setOpcode(ARM::t2PLIi8); break; default: break; } } switch (Inst.getOpcode()) { case ARM::t2PLDi8: break; case ARM::t2PLIi8: if (!hasV7Ops) return MCDisassembler::Fail; break; case ARM::t2PLDWi8: if (!hasV7Ops || !hasMP) return MCDisassembler::Fail; break; default: if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; } if (!Check(S, DecodeT2AddrModeImm8(Inst, imm, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeT2LoadImm12(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rt = fieldFromInstruction(Insn, 12, 4); unsigned imm = fieldFromInstruction(Insn, 0, 12); imm |= (Rn << 13); const FeatureBitset &featureBits = ((const MCDisassembler*)Decoder)->getSubtargetInfo().getFeatureBits(); bool hasMP = featureBits[ARM::FeatureMP]; bool hasV7Ops = featureBits[ARM::HasV7Ops]; if (Rn == 15) { switch (Inst.getOpcode()) { case ARM::t2LDRi12: Inst.setOpcode(ARM::t2LDRpci); break; case ARM::t2LDRHi12: Inst.setOpcode(ARM::t2LDRHpci); break; case ARM::t2LDRSHi12: Inst.setOpcode(ARM::t2LDRSHpci); break; case ARM::t2LDRBi12: Inst.setOpcode(ARM::t2LDRBpci); break; case ARM::t2LDRSBi12: Inst.setOpcode(ARM::t2LDRSBpci); break; case ARM::t2PLDi12: Inst.setOpcode(ARM::t2PLDpci); break; case ARM::t2PLIi12: Inst.setOpcode(ARM::t2PLIpci); break; default: return MCDisassembler::Fail; } return DecodeT2LoadLabel(Inst, Insn, Address, Decoder); } if (Rt == 15) { switch (Inst.getOpcode()) { case ARM::t2LDRSHi12: return MCDisassembler::Fail; case ARM::t2LDRHi12: Inst.setOpcode(ARM::t2PLDWi12); break; case ARM::t2LDRSBi12: Inst.setOpcode(ARM::t2PLIi12); break; default: break; } } switch (Inst.getOpcode()) { case ARM::t2PLDi12: break; case ARM::t2PLIi12: if (!hasV7Ops) return MCDisassembler::Fail; break; case ARM::t2PLDWi12: if (!hasV7Ops || !hasMP) return MCDisassembler::Fail; break; default: if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; } if (!Check(S, DecodeT2AddrModeImm12(Inst, imm, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeT2LoadT(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rt = fieldFromInstruction(Insn, 12, 4); unsigned imm = fieldFromInstruction(Insn, 0, 8); imm |= (Rn << 9); if (Rn == 15) { switch (Inst.getOpcode()) { case ARM::t2LDRT: Inst.setOpcode(ARM::t2LDRpci); break; case ARM::t2LDRBT: Inst.setOpcode(ARM::t2LDRBpci); break; case ARM::t2LDRHT: Inst.setOpcode(ARM::t2LDRHpci); break; case ARM::t2LDRSBT: Inst.setOpcode(ARM::t2LDRSBpci); break; case ARM::t2LDRSHT: Inst.setOpcode(ARM::t2LDRSHpci); break; default: return MCDisassembler::Fail; } return DecodeT2LoadLabel(Inst, Insn, Address, Decoder); } if (!Check(S, DecoderGPRRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeT2AddrModeImm8(Inst, imm, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeT2LoadLabel(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rt = fieldFromInstruction(Insn, 12, 4); unsigned U = fieldFromInstruction(Insn, 23, 1); int imm = fieldFromInstruction(Insn, 0, 12); const FeatureBitset &featureBits = ((const MCDisassembler*)Decoder)->getSubtargetInfo().getFeatureBits(); bool hasV7Ops = featureBits[ARM::HasV7Ops]; if (Rt == 15) { switch (Inst.getOpcode()) { case ARM::t2LDRBpci: case ARM::t2LDRHpci: Inst.setOpcode(ARM::t2PLDpci); break; case ARM::t2LDRSBpci: Inst.setOpcode(ARM::t2PLIpci); break; case ARM::t2LDRSHpci: return MCDisassembler::Fail; default: break; } } switch(Inst.getOpcode()) { case ARM::t2PLDpci: break; case ARM::t2PLIpci: if (!hasV7Ops) return MCDisassembler::Fail; break; default: if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; } if (!U) { // Special case for #-0. if (imm == 0) imm = INT32_MIN; else imm = -imm; } Inst.addOperand(MCOperand::createImm(imm)); return S; } static DecodeStatus DecodeT2Imm8S4(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { if (Val == 0) Inst.addOperand(MCOperand::createImm(INT32_MIN)); else { int imm = Val & 0xFF; if (!(Val & 0x100)) imm *= -1; Inst.addOperand(MCOperand::createImm(imm * 4)); } return MCDisassembler::Success; } static DecodeStatus DecodeT2Imm7S4(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { if (Val == 0) Inst.addOperand(MCOperand::createImm(INT32_MIN)); else { int imm = Val & 0x7F; if (!(Val & 0x80)) imm *= -1; Inst.addOperand(MCOperand::createImm(imm * 4)); } return MCDisassembler::Success; } static DecodeStatus DecodeT2AddrModeImm8s4(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Val, 9, 4); unsigned imm = fieldFromInstruction(Val, 0, 9); if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeT2Imm8S4(Inst, imm, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeT2AddrModeImm7s4(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Val, 8, 4); unsigned imm = fieldFromInstruction(Val, 0, 8); if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeT2Imm7S4(Inst, imm, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeT2AddrModeImm0_1020s4(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Val, 8, 4); unsigned imm = fieldFromInstruction(Val, 0, 8); if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(imm)); return S; } static DecodeStatus DecodeT2Imm8(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { int imm = Val & 0xFF; if (Val == 0) imm = INT32_MIN; else if (!(Val & 0x100)) imm *= -1; Inst.addOperand(MCOperand::createImm(imm)); return MCDisassembler::Success; } template static DecodeStatus DecodeT2Imm7(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { int imm = Val & 0x7F; if (Val == 0) imm = INT32_MIN; else if (!(Val & 0x80)) imm *= -1; if (imm != INT32_MIN) imm *= (1U << shift); Inst.addOperand(MCOperand::createImm(imm)); return MCDisassembler::Success; } static DecodeStatus DecodeT2AddrModeImm8(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Val, 9, 4); unsigned imm = fieldFromInstruction(Val, 0, 9); // Thumb stores cannot use PC as dest register. switch (Inst.getOpcode()) { case ARM::t2STRT: case ARM::t2STRBT: case ARM::t2STRHT: case ARM::t2STRi8: case ARM::t2STRHi8: case ARM::t2STRBi8: if (Rn == 15) return MCDisassembler::Fail; break; default: break; } // Some instructions always use an additive offset. switch (Inst.getOpcode()) { case ARM::t2LDRT: case ARM::t2LDRBT: case ARM::t2LDRHT: case ARM::t2LDRSBT: case ARM::t2LDRSHT: case ARM::t2STRT: case ARM::t2STRBT: case ARM::t2STRHT: imm |= 0x100; break; default: break; } if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeT2Imm8(Inst, imm, Address, Decoder))) return MCDisassembler::Fail; return S; } template static DecodeStatus DecodeTAddrModeImm7(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Val, 8, 3); unsigned imm = fieldFromInstruction(Val, 0, 8); if (!Check(S, DecodetGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeT2Imm7(Inst, imm, Address, Decoder))) return MCDisassembler::Fail; return S; } template static DecodeStatus DecodeT2AddrModeImm7(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Val, 8, 4); unsigned imm = fieldFromInstruction(Val, 0, 8); if (WriteBack) { if (!Check(S, DecoderGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; } else if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeT2Imm7(Inst, imm, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeT2LdStPre(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rt = fieldFromInstruction(Insn, 12, 4); unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned addr = fieldFromInstruction(Insn, 0, 8); addr |= fieldFromInstruction(Insn, 9, 1) << 8; addr |= Rn << 9; unsigned load = fieldFromInstruction(Insn, 20, 1); if (Rn == 15) { switch (Inst.getOpcode()) { case ARM::t2LDR_PRE: case ARM::t2LDR_POST: Inst.setOpcode(ARM::t2LDRpci); break; case ARM::t2LDRB_PRE: case ARM::t2LDRB_POST: Inst.setOpcode(ARM::t2LDRBpci); break; case ARM::t2LDRH_PRE: case ARM::t2LDRH_POST: Inst.setOpcode(ARM::t2LDRHpci); break; case ARM::t2LDRSB_PRE: case ARM::t2LDRSB_POST: if (Rt == 15) Inst.setOpcode(ARM::t2PLIpci); else Inst.setOpcode(ARM::t2LDRSBpci); break; case ARM::t2LDRSH_PRE: case ARM::t2LDRSH_POST: Inst.setOpcode(ARM::t2LDRSHpci); break; default: return MCDisassembler::Fail; } return DecodeT2LoadLabel(Inst, Insn, Address, Decoder); } if (!load) { if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; } if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; if (load) { if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; } if (!Check(S, DecodeT2AddrModeImm8(Inst, addr, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeT2AddrModeImm12(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Val, 13, 4); unsigned imm = fieldFromInstruction(Val, 0, 12); // Thumb stores cannot use PC as dest register. switch (Inst.getOpcode()) { case ARM::t2STRi12: case ARM::t2STRBi12: case ARM::t2STRHi12: if (Rn == 15) return MCDisassembler::Fail; break; default: break; } if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(imm)); return S; } static DecodeStatus DecodeThumbAddSPImm(MCInst &Inst, uint16_t Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned imm = fieldFromInstruction(Insn, 0, 7); Inst.addOperand(MCOperand::createReg(ARM::SP)); Inst.addOperand(MCOperand::createReg(ARM::SP)); Inst.addOperand(MCOperand::createImm(imm)); return MCDisassembler::Success; } static DecodeStatus DecodeThumbAddSPReg(MCInst &Inst, uint16_t Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; if (Inst.getOpcode() == ARM::tADDrSP) { unsigned Rdm = fieldFromInstruction(Insn, 0, 3); Rdm |= fieldFromInstruction(Insn, 7, 1) << 3; if (!Check(S, DecodeGPRRegisterClass(Inst, Rdm, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createReg(ARM::SP)); if (!Check(S, DecodeGPRRegisterClass(Inst, Rdm, Address, Decoder))) return MCDisassembler::Fail; } else if (Inst.getOpcode() == ARM::tADDspr) { unsigned Rm = fieldFromInstruction(Insn, 3, 4); Inst.addOperand(MCOperand::createReg(ARM::SP)); Inst.addOperand(MCOperand::createReg(ARM::SP)); if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; } return S; } static DecodeStatus DecodeThumbCPS(MCInst &Inst, uint16_t Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned imod = fieldFromInstruction(Insn, 4, 1) | 0x2; unsigned flags = fieldFromInstruction(Insn, 0, 3); Inst.addOperand(MCOperand::createImm(imod)); Inst.addOperand(MCOperand::createImm(flags)); return MCDisassembler::Success; } static DecodeStatus DecodePostIdxReg(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rm = fieldFromInstruction(Insn, 0, 4); unsigned add = fieldFromInstruction(Insn, 4, 1); if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(add)); return S; } static DecodeStatus DecodeMveAddrModeRQ(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 3, 4); unsigned Qm = fieldFromInstruction(Insn, 0, 3); if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeMQPRRegisterClass(Inst, Qm, Address, Decoder))) return MCDisassembler::Fail; return S; } template static DecodeStatus DecodeMveAddrModeQ(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Qm = fieldFromInstruction(Insn, 8, 3); int imm = fieldFromInstruction(Insn, 0, 7); if (!Check(S, DecodeMQPRRegisterClass(Inst, Qm, Address, Decoder))) return MCDisassembler::Fail; if(!fieldFromInstruction(Insn, 7, 1)) { if (imm == 0) imm = INT32_MIN; // indicate -0 else imm *= -1; } if (imm != INT32_MIN) imm *= (1U << shift); Inst.addOperand(MCOperand::createImm(imm)); return S; } static DecodeStatus DecodeThumbBLXOffset(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { // Val is passed in as S:J1:J2:imm10H:imm10L:'0' // Note only one trailing zero not two. Also the J1 and J2 values are from // the encoded instruction. So here change to I1 and I2 values via: // I1 = NOT(J1 EOR S); // I2 = NOT(J2 EOR S); // and build the imm32 with two trailing zeros as documented: // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:'00', 32); unsigned S = (Val >> 23) & 1; unsigned J1 = (Val >> 22) & 1; unsigned J2 = (Val >> 21) & 1; unsigned I1 = !(J1 ^ S); unsigned I2 = !(J2 ^ S); unsigned tmp = (Val & ~0x600000) | (I1 << 22) | (I2 << 21); int imm32 = SignExtend32<25>(tmp << 1); if (!tryAddingSymbolicOperand(Address, (Address & ~2u) + imm32 + 4, true, 4, Inst, Decoder)) Inst.addOperand(MCOperand::createImm(imm32)); return MCDisassembler::Success; } static DecodeStatus DecodeCoprocessor(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { if (Val == 0xA || Val == 0xB) return MCDisassembler::Fail; const FeatureBitset &featureBits = ((const MCDisassembler*)Decoder)->getSubtargetInfo().getFeatureBits(); if (!isValidCoprocessorNumber(Val, featureBits)) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(Val)); return MCDisassembler::Success; } static DecodeStatus DecodeThumbTableBranch(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { const FeatureBitset &FeatureBits = ((const MCDisassembler*)Decoder)->getSubtargetInfo().getFeatureBits(); DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rm = fieldFromInstruction(Insn, 0, 4); if (Rn == 13 && !FeatureBits[ARM::HasV8Ops]) S = MCDisassembler::SoftFail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecoderGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeThumb2BCCInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned pred = fieldFromInstruction(Insn, 22, 4); if (pred == 0xE || pred == 0xF) { unsigned opc = fieldFromInstruction(Insn, 4, 28); switch (opc) { default: return MCDisassembler::Fail; case 0xf3bf8f4: Inst.setOpcode(ARM::t2DSB); break; case 0xf3bf8f5: Inst.setOpcode(ARM::t2DMB); break; case 0xf3bf8f6: Inst.setOpcode(ARM::t2ISB); break; } unsigned imm = fieldFromInstruction(Insn, 0, 4); return DecodeMemBarrierOption(Inst, imm, Address, Decoder); } unsigned brtarget = fieldFromInstruction(Insn, 0, 11) << 1; brtarget |= fieldFromInstruction(Insn, 11, 1) << 19; brtarget |= fieldFromInstruction(Insn, 13, 1) << 18; brtarget |= fieldFromInstruction(Insn, 16, 6) << 12; brtarget |= fieldFromInstruction(Insn, 26, 1) << 20; if (!Check(S, DecodeT2BROperand(Inst, brtarget, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; return S; } // Decode a shifted immediate operand. These basically consist // of an 8-bit value, and a 4-bit directive that specifies either // a splat operation or a rotation. static DecodeStatus DecodeT2SOImm(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { unsigned ctrl = fieldFromInstruction(Val, 10, 2); if (ctrl == 0) { unsigned byte = fieldFromInstruction(Val, 8, 2); unsigned imm = fieldFromInstruction(Val, 0, 8); switch (byte) { case 0: Inst.addOperand(MCOperand::createImm(imm)); break; case 1: Inst.addOperand(MCOperand::createImm((imm << 16) | imm)); break; case 2: Inst.addOperand(MCOperand::createImm((imm << 24) | (imm << 8))); break; case 3: Inst.addOperand(MCOperand::createImm((imm << 24) | (imm << 16) | (imm << 8) | imm)); break; } } else { unsigned unrot = fieldFromInstruction(Val, 0, 7) | 0x80; unsigned rot = fieldFromInstruction(Val, 7, 5); unsigned imm = llvm::rotr(unrot, rot); Inst.addOperand(MCOperand::createImm(imm)); } return MCDisassembler::Success; } static DecodeStatus DecodeThumbBCCTargetOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { if (!tryAddingSymbolicOperand(Address, Address + SignExtend32<9>(Val<<1) + 4, true, 2, Inst, Decoder)) Inst.addOperand(MCOperand::createImm(SignExtend32<9>(Val << 1))); return MCDisassembler::Success; } static DecodeStatus DecodeThumbBLTargetOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { // Val is passed in as S:J1:J2:imm10:imm11 // Note no trailing zero after imm11. Also the J1 and J2 values are from // the encoded instruction. So here change to I1 and I2 values via: // I1 = NOT(J1 EOR S); // I2 = NOT(J2 EOR S); // and build the imm32 with one trailing zero as documented: // imm32 = SignExtend(S:I1:I2:imm10:imm11:'0', 32); unsigned S = (Val >> 23) & 1; unsigned J1 = (Val >> 22) & 1; unsigned J2 = (Val >> 21) & 1; unsigned I1 = !(J1 ^ S); unsigned I2 = !(J2 ^ S); unsigned tmp = (Val & ~0x600000) | (I1 << 22) | (I2 << 21); int imm32 = SignExtend32<25>(tmp << 1); if (!tryAddingSymbolicOperand(Address, Address + imm32 + 4, true, 4, Inst, Decoder)) Inst.addOperand(MCOperand::createImm(imm32)); return MCDisassembler::Success; } static DecodeStatus DecodeMemBarrierOption(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { if (Val & ~0xf) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(Val)); return MCDisassembler::Success; } static DecodeStatus DecodeInstSyncBarrierOption(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { if (Val & ~0xf) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(Val)); return MCDisassembler::Success; } static DecodeStatus DecodeMSRMask(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; const FeatureBitset &FeatureBits = ((const MCDisassembler*)Decoder)->getSubtargetInfo().getFeatureBits(); if (FeatureBits[ARM::FeatureMClass]) { unsigned ValLow = Val & 0xff; // Validate the SYSm value first. switch (ValLow) { case 0: // apsr case 1: // iapsr case 2: // eapsr case 3: // xpsr case 5: // ipsr case 6: // epsr case 7: // iepsr case 8: // msp case 9: // psp case 16: // primask case 20: // control break; case 17: // basepri case 18: // basepri_max case 19: // faultmask if (!(FeatureBits[ARM::HasV7Ops])) // Values basepri, basepri_max and faultmask are only valid for v7m. return MCDisassembler::Fail; break; case 0x8a: // msplim_ns case 0x8b: // psplim_ns case 0x91: // basepri_ns case 0x93: // faultmask_ns if (!(FeatureBits[ARM::HasV8MMainlineOps])) return MCDisassembler::Fail; [[fallthrough]]; case 10: // msplim case 11: // psplim case 0x88: // msp_ns case 0x89: // psp_ns case 0x90: // primask_ns case 0x94: // control_ns case 0x98: // sp_ns if (!(FeatureBits[ARM::Feature8MSecExt])) return MCDisassembler::Fail; break; case 0x20: // pac_key_p_0 case 0x21: // pac_key_p_1 case 0x22: // pac_key_p_2 case 0x23: // pac_key_p_3 case 0x24: // pac_key_u_0 case 0x25: // pac_key_u_1 case 0x26: // pac_key_u_2 case 0x27: // pac_key_u_3 case 0xa0: // pac_key_p_0_ns case 0xa1: // pac_key_p_1_ns case 0xa2: // pac_key_p_2_ns case 0xa3: // pac_key_p_3_ns case 0xa4: // pac_key_u_0_ns case 0xa5: // pac_key_u_1_ns case 0xa6: // pac_key_u_2_ns case 0xa7: // pac_key_u_3_ns if (!(FeatureBits[ARM::FeaturePACBTI])) return MCDisassembler::Fail; break; default: // Architecturally defined as unpredictable S = MCDisassembler::SoftFail; break; } if (Inst.getOpcode() == ARM::t2MSR_M) { unsigned Mask = fieldFromInstruction(Val, 10, 2); if (!(FeatureBits[ARM::HasV7Ops])) { // The ARMv6-M MSR bits {11-10} can be only 0b10, other values are // unpredictable. if (Mask != 2) S = MCDisassembler::SoftFail; } else { // The ARMv7-M architecture stores an additional 2-bit mask value in // MSR bits {11-10}. The mask is used only with apsr, iapsr, eapsr and // xpsr, it has to be 0b10 in other cases. Bit mask{1} indicates if // the NZCVQ bits should be moved by the instruction. Bit mask{0} // indicates the move for the GE{3:0} bits, the mask{0} bit can be set // only if the processor includes the DSP extension. if (Mask == 0 || (Mask != 2 && ValLow > 3) || (!(FeatureBits[ARM::FeatureDSP]) && (Mask & 1))) S = MCDisassembler::SoftFail; } } } else { // A/R class if (Val == 0) return MCDisassembler::Fail; } Inst.addOperand(MCOperand::createImm(Val)); return S; } static DecodeStatus DecodeBankedReg(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { unsigned R = fieldFromInstruction(Val, 5, 1); unsigned SysM = fieldFromInstruction(Val, 0, 5); // The table of encodings for these banked registers comes from B9.2.3 of the // ARM ARM. There are patterns, but nothing regular enough to make this logic // neater. So by fiat, these values are UNPREDICTABLE: if (!ARMBankedReg::lookupBankedRegByEncoding((R << 5) | SysM)) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(Val)); return MCDisassembler::Success; } static DecodeStatus DecodeDoubleRegLoad(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rt = fieldFromInstruction(Insn, 12, 4); unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned pred = fieldFromInstruction(Insn, 28, 4); if (Rn == 0xF) S = MCDisassembler::SoftFail; if (!Check(S, DecodeGPRPairRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeDoubleRegStore(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rd = fieldFromInstruction(Insn, 12, 4); unsigned Rt = fieldFromInstruction(Insn, 0, 4); unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned pred = fieldFromInstruction(Insn, 28, 4); if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (Rn == 0xF || Rd == Rn || Rd == Rt || Rd == Rt+1) S = MCDisassembler::SoftFail; if (!Check(S, DecodeGPRPairRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeLDRPreImm(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rt = fieldFromInstruction(Insn, 12, 4); unsigned imm = fieldFromInstruction(Insn, 0, 12); imm |= fieldFromInstruction(Insn, 16, 4) << 13; imm |= fieldFromInstruction(Insn, 23, 1) << 12; unsigned pred = fieldFromInstruction(Insn, 28, 4); if (Rn == 0xF || Rn == Rt) S = MCDisassembler::SoftFail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeAddrModeImm12Operand(Inst, imm, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeLDRPreReg(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rt = fieldFromInstruction(Insn, 12, 4); unsigned imm = fieldFromInstruction(Insn, 0, 12); imm |= fieldFromInstruction(Insn, 16, 4) << 13; imm |= fieldFromInstruction(Insn, 23, 1) << 12; unsigned pred = fieldFromInstruction(Insn, 28, 4); unsigned Rm = fieldFromInstruction(Insn, 0, 4); if (Rn == 0xF || Rn == Rt) S = MCDisassembler::SoftFail; if (Rm == 0xF) S = MCDisassembler::SoftFail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeSORegMemOperand(Inst, imm, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeSTRPreImm(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rt = fieldFromInstruction(Insn, 12, 4); unsigned imm = fieldFromInstruction(Insn, 0, 12); imm |= fieldFromInstruction(Insn, 16, 4) << 13; imm |= fieldFromInstruction(Insn, 23, 1) << 12; unsigned pred = fieldFromInstruction(Insn, 28, 4); if (Rn == 0xF || Rn == Rt) S = MCDisassembler::SoftFail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeAddrModeImm12Operand(Inst, imm, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeSTRPreReg(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rt = fieldFromInstruction(Insn, 12, 4); unsigned imm = fieldFromInstruction(Insn, 0, 12); imm |= fieldFromInstruction(Insn, 16, 4) << 13; imm |= fieldFromInstruction(Insn, 23, 1) << 12; unsigned pred = fieldFromInstruction(Insn, 28, 4); if (Rn == 0xF || Rn == Rt) S = MCDisassembler::SoftFail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeSORegMemOperand(Inst, imm, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeVLD1LN(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rm = fieldFromInstruction(Insn, 0, 4); unsigned Rd = fieldFromInstruction(Insn, 12, 4); Rd |= fieldFromInstruction(Insn, 22, 1) << 4; unsigned size = fieldFromInstruction(Insn, 10, 2); unsigned align = 0; unsigned index = 0; switch (size) { default: return MCDisassembler::Fail; case 0: if (fieldFromInstruction(Insn, 4, 1)) return MCDisassembler::Fail; // UNDEFINED index = fieldFromInstruction(Insn, 5, 3); break; case 1: if (fieldFromInstruction(Insn, 5, 1)) return MCDisassembler::Fail; // UNDEFINED index = fieldFromInstruction(Insn, 6, 2); if (fieldFromInstruction(Insn, 4, 1)) align = 2; break; case 2: if (fieldFromInstruction(Insn, 6, 1)) return MCDisassembler::Fail; // UNDEFINED index = fieldFromInstruction(Insn, 7, 1); switch (fieldFromInstruction(Insn, 4, 2)) { case 0 : align = 0; break; case 3: align = 4; break; default: return MCDisassembler::Fail; } break; } if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (Rm != 0xF) { // Writeback if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; } if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(align)); if (Rm != 0xF) { if (Rm != 0xD) { if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; } else Inst.addOperand(MCOperand::createReg(0)); } if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(index)); return S; } static DecodeStatus DecodeVST1LN(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rm = fieldFromInstruction(Insn, 0, 4); unsigned Rd = fieldFromInstruction(Insn, 12, 4); Rd |= fieldFromInstruction(Insn, 22, 1) << 4; unsigned size = fieldFromInstruction(Insn, 10, 2); unsigned align = 0; unsigned index = 0; switch (size) { default: return MCDisassembler::Fail; case 0: if (fieldFromInstruction(Insn, 4, 1)) return MCDisassembler::Fail; // UNDEFINED index = fieldFromInstruction(Insn, 5, 3); break; case 1: if (fieldFromInstruction(Insn, 5, 1)) return MCDisassembler::Fail; // UNDEFINED index = fieldFromInstruction(Insn, 6, 2); if (fieldFromInstruction(Insn, 4, 1)) align = 2; break; case 2: if (fieldFromInstruction(Insn, 6, 1)) return MCDisassembler::Fail; // UNDEFINED index = fieldFromInstruction(Insn, 7, 1); switch (fieldFromInstruction(Insn, 4, 2)) { case 0: align = 0; break; case 3: align = 4; break; default: return MCDisassembler::Fail; } break; } if (Rm != 0xF) { // Writeback if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; } if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(align)); if (Rm != 0xF) { if (Rm != 0xD) { if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; } else Inst.addOperand(MCOperand::createReg(0)); } if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(index)); return S; } static DecodeStatus DecodeVLD2LN(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rm = fieldFromInstruction(Insn, 0, 4); unsigned Rd = fieldFromInstruction(Insn, 12, 4); Rd |= fieldFromInstruction(Insn, 22, 1) << 4; unsigned size = fieldFromInstruction(Insn, 10, 2); unsigned align = 0; unsigned index = 0; unsigned inc = 1; switch (size) { default: return MCDisassembler::Fail; case 0: index = fieldFromInstruction(Insn, 5, 3); if (fieldFromInstruction(Insn, 4, 1)) align = 2; break; case 1: index = fieldFromInstruction(Insn, 6, 2); if (fieldFromInstruction(Insn, 4, 1)) align = 4; if (fieldFromInstruction(Insn, 5, 1)) inc = 2; break; case 2: if (fieldFromInstruction(Insn, 5, 1)) return MCDisassembler::Fail; // UNDEFINED index = fieldFromInstruction(Insn, 7, 1); if (fieldFromInstruction(Insn, 4, 1) != 0) align = 8; if (fieldFromInstruction(Insn, 6, 1)) inc = 2; break; } if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+inc, Address, Decoder))) return MCDisassembler::Fail; if (Rm != 0xF) { // Writeback if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; } if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(align)); if (Rm != 0xF) { if (Rm != 0xD) { if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; } else Inst.addOperand(MCOperand::createReg(0)); } if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+inc, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(index)); return S; } static DecodeStatus DecodeVST2LN(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rm = fieldFromInstruction(Insn, 0, 4); unsigned Rd = fieldFromInstruction(Insn, 12, 4); Rd |= fieldFromInstruction(Insn, 22, 1) << 4; unsigned size = fieldFromInstruction(Insn, 10, 2); unsigned align = 0; unsigned index = 0; unsigned inc = 1; switch (size) { default: return MCDisassembler::Fail; case 0: index = fieldFromInstruction(Insn, 5, 3); if (fieldFromInstruction(Insn, 4, 1)) align = 2; break; case 1: index = fieldFromInstruction(Insn, 6, 2); if (fieldFromInstruction(Insn, 4, 1)) align = 4; if (fieldFromInstruction(Insn, 5, 1)) inc = 2; break; case 2: if (fieldFromInstruction(Insn, 5, 1)) return MCDisassembler::Fail; // UNDEFINED index = fieldFromInstruction(Insn, 7, 1); if (fieldFromInstruction(Insn, 4, 1) != 0) align = 8; if (fieldFromInstruction(Insn, 6, 1)) inc = 2; break; } if (Rm != 0xF) { // Writeback if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; } if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(align)); if (Rm != 0xF) { if (Rm != 0xD) { if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; } else Inst.addOperand(MCOperand::createReg(0)); } if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+inc, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(index)); return S; } static DecodeStatus DecodeVLD3LN(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rm = fieldFromInstruction(Insn, 0, 4); unsigned Rd = fieldFromInstruction(Insn, 12, 4); Rd |= fieldFromInstruction(Insn, 22, 1) << 4; unsigned size = fieldFromInstruction(Insn, 10, 2); unsigned align = 0; unsigned index = 0; unsigned inc = 1; switch (size) { default: return MCDisassembler::Fail; case 0: if (fieldFromInstruction(Insn, 4, 1)) return MCDisassembler::Fail; // UNDEFINED index = fieldFromInstruction(Insn, 5, 3); break; case 1: if (fieldFromInstruction(Insn, 4, 1)) return MCDisassembler::Fail; // UNDEFINED index = fieldFromInstruction(Insn, 6, 2); if (fieldFromInstruction(Insn, 5, 1)) inc = 2; break; case 2: if (fieldFromInstruction(Insn, 4, 2)) return MCDisassembler::Fail; // UNDEFINED index = fieldFromInstruction(Insn, 7, 1); if (fieldFromInstruction(Insn, 6, 1)) inc = 2; break; } if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+inc, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+2*inc, Address, Decoder))) return MCDisassembler::Fail; if (Rm != 0xF) { // Writeback if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; } if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(align)); if (Rm != 0xF) { if (Rm != 0xD) { if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; } else Inst.addOperand(MCOperand::createReg(0)); } if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+inc, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+2*inc, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(index)); return S; } static DecodeStatus DecodeVST3LN(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rm = fieldFromInstruction(Insn, 0, 4); unsigned Rd = fieldFromInstruction(Insn, 12, 4); Rd |= fieldFromInstruction(Insn, 22, 1) << 4; unsigned size = fieldFromInstruction(Insn, 10, 2); unsigned align = 0; unsigned index = 0; unsigned inc = 1; switch (size) { default: return MCDisassembler::Fail; case 0: if (fieldFromInstruction(Insn, 4, 1)) return MCDisassembler::Fail; // UNDEFINED index = fieldFromInstruction(Insn, 5, 3); break; case 1: if (fieldFromInstruction(Insn, 4, 1)) return MCDisassembler::Fail; // UNDEFINED index = fieldFromInstruction(Insn, 6, 2); if (fieldFromInstruction(Insn, 5, 1)) inc = 2; break; case 2: if (fieldFromInstruction(Insn, 4, 2)) return MCDisassembler::Fail; // UNDEFINED index = fieldFromInstruction(Insn, 7, 1); if (fieldFromInstruction(Insn, 6, 1)) inc = 2; break; } if (Rm != 0xF) { // Writeback if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; } if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(align)); if (Rm != 0xF) { if (Rm != 0xD) { if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; } else Inst.addOperand(MCOperand::createReg(0)); } if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+inc, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+2*inc, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(index)); return S; } static DecodeStatus DecodeVLD4LN(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rm = fieldFromInstruction(Insn, 0, 4); unsigned Rd = fieldFromInstruction(Insn, 12, 4); Rd |= fieldFromInstruction(Insn, 22, 1) << 4; unsigned size = fieldFromInstruction(Insn, 10, 2); unsigned align = 0; unsigned index = 0; unsigned inc = 1; switch (size) { default: return MCDisassembler::Fail; case 0: if (fieldFromInstruction(Insn, 4, 1)) align = 4; index = fieldFromInstruction(Insn, 5, 3); break; case 1: if (fieldFromInstruction(Insn, 4, 1)) align = 8; index = fieldFromInstruction(Insn, 6, 2); if (fieldFromInstruction(Insn, 5, 1)) inc = 2; break; case 2: switch (fieldFromInstruction(Insn, 4, 2)) { case 0: align = 0; break; case 3: return MCDisassembler::Fail; default: align = 4 << fieldFromInstruction(Insn, 4, 2); break; } index = fieldFromInstruction(Insn, 7, 1); if (fieldFromInstruction(Insn, 6, 1)) inc = 2; break; } if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+inc, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+2*inc, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+3*inc, Address, Decoder))) return MCDisassembler::Fail; if (Rm != 0xF) { // Writeback if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; } if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(align)); if (Rm != 0xF) { if (Rm != 0xD) { if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; } else Inst.addOperand(MCOperand::createReg(0)); } if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+inc, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+2*inc, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+3*inc, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(index)); return S; } static DecodeStatus DecodeVST4LN(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned Rm = fieldFromInstruction(Insn, 0, 4); unsigned Rd = fieldFromInstruction(Insn, 12, 4); Rd |= fieldFromInstruction(Insn, 22, 1) << 4; unsigned size = fieldFromInstruction(Insn, 10, 2); unsigned align = 0; unsigned index = 0; unsigned inc = 1; switch (size) { default: return MCDisassembler::Fail; case 0: if (fieldFromInstruction(Insn, 4, 1)) align = 4; index = fieldFromInstruction(Insn, 5, 3); break; case 1: if (fieldFromInstruction(Insn, 4, 1)) align = 8; index = fieldFromInstruction(Insn, 6, 2); if (fieldFromInstruction(Insn, 5, 1)) inc = 2; break; case 2: switch (fieldFromInstruction(Insn, 4, 2)) { case 0: align = 0; break; case 3: return MCDisassembler::Fail; default: align = 4 << fieldFromInstruction(Insn, 4, 2); break; } index = fieldFromInstruction(Insn, 7, 1); if (fieldFromInstruction(Insn, 6, 1)) inc = 2; break; } if (Rm != 0xF) { // Writeback if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; } if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(align)); if (Rm != 0xF) { if (Rm != 0xD) { if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; } else Inst.addOperand(MCOperand::createReg(0)); } if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+inc, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+2*inc, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+3*inc, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(index)); return S; } static DecodeStatus DecodeVMOVSRR(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rt = fieldFromInstruction(Insn, 12, 4); unsigned Rt2 = fieldFromInstruction(Insn, 16, 4); unsigned Rm = fieldFromInstruction(Insn, 5, 1); unsigned pred = fieldFromInstruction(Insn, 28, 4); Rm |= fieldFromInstruction(Insn, 0, 4) << 1; if (Rt == 0xF || Rt2 == 0xF || Rm == 0x1F) S = MCDisassembler::SoftFail; if (!Check(S, DecodeSPRRegisterClass(Inst, Rm , Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeSPRRegisterClass(Inst, Rm+1, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rt , Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rt2 , Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeVMOVRRS(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rt = fieldFromInstruction(Insn, 12, 4); unsigned Rt2 = fieldFromInstruction(Insn, 16, 4); unsigned Rm = fieldFromInstruction(Insn, 5, 1); unsigned pred = fieldFromInstruction(Insn, 28, 4); Rm |= fieldFromInstruction(Insn, 0, 4) << 1; if (Rt == 0xF || Rt2 == 0xF || Rm == 0x1F) S = MCDisassembler::SoftFail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rt , Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rt2 , Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeSPRRegisterClass(Inst, Rm , Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeSPRRegisterClass(Inst, Rm+1, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeIT(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned pred = fieldFromInstruction(Insn, 4, 4); unsigned mask = fieldFromInstruction(Insn, 0, 4); if (pred == 0xF) { pred = 0xE; S = MCDisassembler::SoftFail; } if (mask == 0x0) return MCDisassembler::Fail; // IT masks are encoded as a sequence of replacement low-order bits // for the condition code. So if the low bit of the starting // condition code is 1, then we have to flip all the bits above the // terminating bit (which is the lowest 1 bit). if (pred & 1) { unsigned LowBit = mask & -mask; unsigned BitsAboveLowBit = 0xF & (-LowBit << 1); mask ^= BitsAboveLowBit; } Inst.addOperand(MCOperand::createImm(pred)); Inst.addOperand(MCOperand::createImm(mask)); return S; } static DecodeStatus DecodeT2LDRDPreInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rt = fieldFromInstruction(Insn, 12, 4); unsigned Rt2 = fieldFromInstruction(Insn, 8, 4); unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned addr = fieldFromInstruction(Insn, 0, 8); unsigned W = fieldFromInstruction(Insn, 21, 1); unsigned U = fieldFromInstruction(Insn, 23, 1); unsigned P = fieldFromInstruction(Insn, 24, 1); bool writeback = (W == 1) | (P == 0); addr |= (U << 8) | (Rn << 9); if (writeback && (Rn == Rt || Rn == Rt2)) Check(S, MCDisassembler::SoftFail); if (Rt == Rt2) Check(S, MCDisassembler::SoftFail); // Rt if (!Check(S, DecoderGPRRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; // Rt2 if (!Check(S, DecoderGPRRegisterClass(Inst, Rt2, Address, Decoder))) return MCDisassembler::Fail; // Writeback operand if (!Check(S, DecoderGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; // addr if (!Check(S, DecodeT2AddrModeImm8s4(Inst, addr, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeT2STRDPreInstruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rt = fieldFromInstruction(Insn, 12, 4); unsigned Rt2 = fieldFromInstruction(Insn, 8, 4); unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned addr = fieldFromInstruction(Insn, 0, 8); unsigned W = fieldFromInstruction(Insn, 21, 1); unsigned U = fieldFromInstruction(Insn, 23, 1); unsigned P = fieldFromInstruction(Insn, 24, 1); bool writeback = (W == 1) | (P == 0); addr |= (U << 8) | (Rn << 9); if (writeback && (Rn == Rt || Rn == Rt2)) Check(S, MCDisassembler::SoftFail); // Writeback operand if (!Check(S, DecoderGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; // Rt if (!Check(S, DecoderGPRRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; // Rt2 if (!Check(S, DecoderGPRRegisterClass(Inst, Rt2, Address, Decoder))) return MCDisassembler::Fail; // addr if (!Check(S, DecodeT2AddrModeImm8s4(Inst, addr, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeT2Adr(MCInst &Inst, uint32_t Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned sign1 = fieldFromInstruction(Insn, 21, 1); unsigned sign2 = fieldFromInstruction(Insn, 23, 1); if (sign1 != sign2) return MCDisassembler::Fail; const unsigned Rd = fieldFromInstruction(Insn, 8, 4); assert(Inst.getNumOperands() == 0 && "We should receive an empty Inst"); DecodeStatus S = DecoderGPRRegisterClass(Inst, Rd, Address, Decoder); unsigned Val = fieldFromInstruction(Insn, 0, 8); Val |= fieldFromInstruction(Insn, 12, 3) << 8; Val |= fieldFromInstruction(Insn, 26, 1) << 11; // If sign, then it is decreasing the address. if (sign1) { // Following ARMv7 Architecture Manual, when the offset // is zero, it is decoded as a subw, not as a adr.w if (!Val) { Inst.setOpcode(ARM::t2SUBri12); Inst.addOperand(MCOperand::createReg(ARM::PC)); } else Val = -Val; } Inst.addOperand(MCOperand::createImm(Val)); return S; } static DecodeStatus DecodeT2ShifterImmOperand(MCInst &Inst, uint32_t Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; // Shift of "asr #32" is not allowed in Thumb2 mode. if (Val == 0x20) S = MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(Val)); return S; } static DecodeStatus DecodeSwap(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned Rt = fieldFromInstruction(Insn, 12, 4); unsigned Rt2 = fieldFromInstruction(Insn, 0, 4); unsigned Rn = fieldFromInstruction(Insn, 16, 4); unsigned pred = fieldFromInstruction(Insn, 28, 4); if (pred == 0xF) return DecodeCPSInstruction(Inst, Insn, Address, Decoder); DecodeStatus S = MCDisassembler::Success; if (Rt == Rn || Rn == Rt2) S = MCDisassembler::SoftFail; if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rt2, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeVCVTD(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { const FeatureBitset &featureBits = ((const MCDisassembler *)Decoder)->getSubtargetInfo().getFeatureBits(); bool hasFullFP16 = featureBits[ARM::FeatureFullFP16]; unsigned Vd = (fieldFromInstruction(Insn, 12, 4) << 0); Vd |= (fieldFromInstruction(Insn, 22, 1) << 4); unsigned Vm = (fieldFromInstruction(Insn, 0, 4) << 0); Vm |= (fieldFromInstruction(Insn, 5, 1) << 4); unsigned imm = fieldFromInstruction(Insn, 16, 6); unsigned cmode = fieldFromInstruction(Insn, 8, 4); unsigned op = fieldFromInstruction(Insn, 5, 1); DecodeStatus S = MCDisassembler::Success; // If the top 3 bits of imm are clear, this is a VMOV (immediate) if (!(imm & 0x38)) { if (cmode == 0xF) { if (op == 1) return MCDisassembler::Fail; Inst.setOpcode(ARM::VMOVv2f32); } if (hasFullFP16) { if (cmode == 0xE) { if (op == 1) { Inst.setOpcode(ARM::VMOVv1i64); } else { Inst.setOpcode(ARM::VMOVv8i8); } } if (cmode == 0xD) { if (op == 1) { Inst.setOpcode(ARM::VMVNv2i32); } else { Inst.setOpcode(ARM::VMOVv2i32); } } if (cmode == 0xC) { if (op == 1) { Inst.setOpcode(ARM::VMVNv2i32); } else { Inst.setOpcode(ARM::VMOVv2i32); } } } return DecodeVMOVModImmInstruction(Inst, Insn, Address, Decoder); } if (!(imm & 0x20)) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Vd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Vm, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(64 - imm)); return S; } static DecodeStatus DecodeVCVTQ(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { const FeatureBitset &featureBits = ((const MCDisassembler *)Decoder)->getSubtargetInfo().getFeatureBits(); bool hasFullFP16 = featureBits[ARM::FeatureFullFP16]; unsigned Vd = (fieldFromInstruction(Insn, 12, 4) << 0); Vd |= (fieldFromInstruction(Insn, 22, 1) << 4); unsigned Vm = (fieldFromInstruction(Insn, 0, 4) << 0); Vm |= (fieldFromInstruction(Insn, 5, 1) << 4); unsigned imm = fieldFromInstruction(Insn, 16, 6); unsigned cmode = fieldFromInstruction(Insn, 8, 4); unsigned op = fieldFromInstruction(Insn, 5, 1); DecodeStatus S = MCDisassembler::Success; // If the top 3 bits of imm are clear, this is a VMOV (immediate) if (!(imm & 0x38)) { if (cmode == 0xF) { if (op == 1) return MCDisassembler::Fail; Inst.setOpcode(ARM::VMOVv4f32); } if (hasFullFP16) { if (cmode == 0xE) { if (op == 1) { Inst.setOpcode(ARM::VMOVv2i64); } else { Inst.setOpcode(ARM::VMOVv16i8); } } if (cmode == 0xD) { if (op == 1) { Inst.setOpcode(ARM::VMVNv4i32); } else { Inst.setOpcode(ARM::VMOVv4i32); } } if (cmode == 0xC) { if (op == 1) { Inst.setOpcode(ARM::VMVNv4i32); } else { Inst.setOpcode(ARM::VMOVv4i32); } } } return DecodeVMOVModImmInstruction(Inst, Insn, Address, Decoder); } if (!(imm & 0x20)) return MCDisassembler::Fail; if (!Check(S, DecodeQPRRegisterClass(Inst, Vd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeQPRRegisterClass(Inst, Vm, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(64 - imm)); return S; } static DecodeStatus DecodeNEONComplexLane64Instruction(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned Vd = (fieldFromInstruction(Insn, 12, 4) << 0); Vd |= (fieldFromInstruction(Insn, 22, 1) << 4); unsigned Vn = (fieldFromInstruction(Insn, 16, 4) << 0); Vn |= (fieldFromInstruction(Insn, 7, 1) << 4); unsigned Vm = (fieldFromInstruction(Insn, 0, 4) << 0); Vm |= (fieldFromInstruction(Insn, 5, 1) << 4); unsigned q = (fieldFromInstruction(Insn, 6, 1) << 0); unsigned rotate = (fieldFromInstruction(Insn, 20, 2) << 0); DecodeStatus S = MCDisassembler::Success; auto DestRegDecoder = q ? DecodeQPRRegisterClass : DecodeDPRRegisterClass; if (!Check(S, DestRegDecoder(Inst, Vd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DestRegDecoder(Inst, Vd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DestRegDecoder(Inst, Vn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeDPRRegisterClass(Inst, Vm, Address, Decoder))) return MCDisassembler::Fail; // The lane index does not have any bits in the encoding, because it can only // be 0. Inst.addOperand(MCOperand::createImm(0)); Inst.addOperand(MCOperand::createImm(rotate)); return S; } static DecodeStatus DecodeLDR(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rn = fieldFromInstruction(Val, 16, 4); unsigned Rt = fieldFromInstruction(Val, 12, 4); unsigned Rm = fieldFromInstruction(Val, 0, 4); Rm |= (fieldFromInstruction(Val, 23, 1) << 4); unsigned Cond = fieldFromInstruction(Val, 28, 4); if (fieldFromInstruction(Val, 8, 4) != 0 || Rn == Rt) S = MCDisassembler::SoftFail; if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeAddrMode7Operand(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodePostIdxReg(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodePredicateOperand(Inst, Cond, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecoderForMRRC2AndMCRR2(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned CRm = fieldFromInstruction(Val, 0, 4); unsigned opc1 = fieldFromInstruction(Val, 4, 4); unsigned cop = fieldFromInstruction(Val, 8, 4); unsigned Rt = fieldFromInstruction(Val, 12, 4); unsigned Rt2 = fieldFromInstruction(Val, 16, 4); if ((cop & ~0x1) == 0xa) return MCDisassembler::Fail; if (Rt == Rt2) S = MCDisassembler::SoftFail; // We have to check if the instruction is MRRC2 // or MCRR2 when constructing the operands for // Inst. Reason is because MRRC2 stores to two // registers so it's tablegen desc has two // outputs whereas MCRR doesn't store to any // registers so all of it's operands are listed // as inputs, therefore the operand order for // MRRC2 needs to be [Rt, Rt2, cop, opc1, CRm] // and MCRR2 operand order is [cop, opc1, Rt, Rt2, CRm] if (Inst.getOpcode() == ARM::MRRC2) { if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rt2, Address, Decoder))) return MCDisassembler::Fail; } Inst.addOperand(MCOperand::createImm(cop)); Inst.addOperand(MCOperand::createImm(opc1)); if (Inst.getOpcode() == ARM::MCRR2) { if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rt2, Address, Decoder))) return MCDisassembler::Fail; } Inst.addOperand(MCOperand::createImm(CRm)); return S; } static DecodeStatus DecodeForVMRSandVMSR(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { const FeatureBitset &featureBits = ((const MCDisassembler *)Decoder)->getSubtargetInfo().getFeatureBits(); DecodeStatus S = MCDisassembler::Success; // Add explicit operand for the destination sysreg, for cases where // we have to model it for code generation purposes. switch (Inst.getOpcode()) { case ARM::VMSR_FPSCR_NZCVQC: Inst.addOperand(MCOperand::createReg(ARM::FPSCR_NZCV)); break; case ARM::VMSR_P0: Inst.addOperand(MCOperand::createReg(ARM::VPR)); break; } if (Inst.getOpcode() != ARM::FMSTAT) { unsigned Rt = fieldFromInstruction(Val, 12, 4); if (featureBits[ARM::ModeThumb] && !featureBits[ARM::HasV8Ops]) { if (Rt == 13 || Rt == 15) S = MCDisassembler::SoftFail; Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder)); } else Check(S, DecodeGPRnopcRegisterClass(Inst, Rt, Address, Decoder)); } // Add explicit operand for the source sysreg, similarly to above. switch (Inst.getOpcode()) { case ARM::VMRS_FPSCR_NZCVQC: Inst.addOperand(MCOperand::createReg(ARM::FPSCR_NZCV)); break; case ARM::VMRS_P0: Inst.addOperand(MCOperand::createReg(ARM::VPR)); break; } if (featureBits[ARM::ModeThumb]) { Inst.addOperand(MCOperand::createImm(ARMCC::AL)); Inst.addOperand(MCOperand::createReg(0)); } else { unsigned pred = fieldFromInstruction(Val, 28, 4); if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) return MCDisassembler::Fail; } return S; } template static DecodeStatus DecodeBFLabelOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; if (Val == 0 && !zeroPermitted) S = MCDisassembler::Fail; uint64_t DecVal; if (isSigned) DecVal = SignExtend32(Val << 1); else DecVal = (Val << 1); if (!tryAddingSymbolicOperand(Address, Address + DecVal + 4, true, 4, Inst, Decoder)) Inst.addOperand(MCOperand::createImm(isNeg ? -DecVal : DecVal)); return S; } static DecodeStatus DecodeBFAfterTargetOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { uint64_t LocImm = Inst.getOperand(0).getImm(); Val = LocImm + (2 << Val); if (!tryAddingSymbolicOperand(Address, Address + Val + 4, true, 4, Inst, Decoder)) Inst.addOperand(MCOperand::createImm(Val)); return MCDisassembler::Success; } static DecodeStatus DecodePredNoALOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { if (Val >= ARMCC::AL) // also exclude the non-condition NV return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(Val)); return MCDisassembler::Success; } static DecodeStatus DecodeLOLoop(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; if (Inst.getOpcode() == ARM::MVE_LCTP) return S; unsigned Imm = fieldFromInstruction(Insn, 11, 1) | fieldFromInstruction(Insn, 1, 10) << 1; switch (Inst.getOpcode()) { case ARM::t2LEUpdate: case ARM::MVE_LETP: Inst.addOperand(MCOperand::createReg(ARM::LR)); Inst.addOperand(MCOperand::createReg(ARM::LR)); [[fallthrough]]; case ARM::t2LE: if (!Check(S, DecodeBFLabelOperand( Inst, Imm, Address, Decoder))) return MCDisassembler::Fail; break; case ARM::t2WLS: case ARM::MVE_WLSTP_8: case ARM::MVE_WLSTP_16: case ARM::MVE_WLSTP_32: case ARM::MVE_WLSTP_64: Inst.addOperand(MCOperand::createReg(ARM::LR)); if (!Check(S, DecoderGPRRegisterClass(Inst, fieldFromInstruction(Insn, 16, 4), Address, Decoder)) || !Check(S, DecodeBFLabelOperand( Inst, Imm, Address, Decoder))) return MCDisassembler::Fail; break; case ARM::t2DLS: case ARM::MVE_DLSTP_8: case ARM::MVE_DLSTP_16: case ARM::MVE_DLSTP_32: case ARM::MVE_DLSTP_64: unsigned Rn = fieldFromInstruction(Insn, 16, 4); if (Rn == 0xF) { // Enforce all the rest of the instruction bits in LCTP, which // won't have been reliably checked based on LCTP's own tablegen // record, because we came to this decode by a roundabout route. uint32_t CanonicalLCTP = 0xF00FE001, SBZMask = 0x00300FFE; if ((Insn & ~SBZMask) != CanonicalLCTP) return MCDisassembler::Fail; // a mandatory bit is wrong: hard fail if (Insn != CanonicalLCTP) Check(S, MCDisassembler::SoftFail); // an SBZ bit is wrong: soft fail Inst.setOpcode(ARM::MVE_LCTP); } else { Inst.addOperand(MCOperand::createReg(ARM::LR)); if (!Check(S, DecoderGPRRegisterClass(Inst, fieldFromInstruction(Insn, 16, 4), Address, Decoder))) return MCDisassembler::Fail; } break; } return S; } static DecodeStatus DecodeLongShiftOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; if (Val == 0) Val = 32; Inst.addOperand(MCOperand::createImm(Val)); return S; } static DecodeStatus DecodetGPROddRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if ((RegNo) + 1 > 11) return MCDisassembler::Fail; unsigned Register = GPRDecoderTable[(RegNo) + 1]; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static DecodeStatus DecodetGPREvenRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if ((RegNo) > 14) return MCDisassembler::Fail; unsigned Register = GPRDecoderTable[(RegNo)]; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static DecodeStatus DecodeGPRwithAPSR_NZCVnospRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if (RegNo == 15) { Inst.addOperand(MCOperand::createReg(ARM::APSR_NZCV)); return MCDisassembler::Success; } unsigned Register = GPRDecoderTable[RegNo]; Inst.addOperand(MCOperand::createReg(Register)); if (RegNo == 13) return MCDisassembler::SoftFail; return MCDisassembler::Success; } static DecodeStatus DecodeVSCCLRM(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; Inst.addOperand(MCOperand::createImm(ARMCC::AL)); Inst.addOperand(MCOperand::createReg(0)); if (Inst.getOpcode() == ARM::VSCCLRMD) { unsigned reglist = (fieldFromInstruction(Insn, 1, 7) << 1) | (fieldFromInstruction(Insn, 12, 4) << 8) | (fieldFromInstruction(Insn, 22, 1) << 12); if (!Check(S, DecodeDPRRegListOperand(Inst, reglist, Address, Decoder))) { return MCDisassembler::Fail; } } else { unsigned reglist = fieldFromInstruction(Insn, 0, 8) | (fieldFromInstruction(Insn, 22, 1) << 8) | (fieldFromInstruction(Insn, 12, 4) << 9); if (!Check(S, DecodeSPRRegListOperand(Inst, reglist, Address, Decoder))) { return MCDisassembler::Fail; } } Inst.addOperand(MCOperand::createReg(ARM::VPR)); return S; } static DecodeStatus DecodeMQPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if (RegNo > 7) return MCDisassembler::Fail; unsigned Register = QPRDecoderTable[RegNo]; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static const uint16_t QQPRDecoderTable[] = { ARM::Q0_Q1, ARM::Q1_Q2, ARM::Q2_Q3, ARM::Q3_Q4, ARM::Q4_Q5, ARM::Q5_Q6, ARM::Q6_Q7 }; static DecodeStatus DecodeMQQPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if (RegNo > 6) return MCDisassembler::Fail; unsigned Register = QQPRDecoderTable[RegNo]; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static const uint16_t QQQQPRDecoderTable[] = { ARM::Q0_Q1_Q2_Q3, ARM::Q1_Q2_Q3_Q4, ARM::Q2_Q3_Q4_Q5, ARM::Q3_Q4_Q5_Q6, ARM::Q4_Q5_Q6_Q7 }; static DecodeStatus DecodeMQQQQPRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if (RegNo > 4) return MCDisassembler::Fail; unsigned Register = QQQQPRDecoderTable[RegNo]; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static DecodeStatus DecodeVPTMaskOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; // Parse VPT mask and encode it in the MCInst as an immediate with the same // format as the it_mask. That is, from the second 'e|t' encode 'e' as 1 and // 't' as 0 and finish with a 1. unsigned Imm = 0; // We always start with a 't'. unsigned CurBit = 0; for (int i = 3; i >= 0; --i) { // If the bit we are looking at is not the same as last one, invert the // CurBit, if it is the same leave it as is. CurBit ^= (Val >> i) & 1U; // Encode the CurBit at the right place in the immediate. Imm |= (CurBit << i); // If we are done, finish the encoding with a 1. if ((Val & ~(~0U << i)) == 0) { Imm |= 1U << i; break; } } Inst.addOperand(MCOperand::createImm(Imm)); return S; } static DecodeStatus DecodeVpredROperand(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { // The vpred_r operand type includes an MQPR register field derived // from the encoding. But we don't actually want to add an operand // to the MCInst at this stage, because AddThumbPredicate will do it // later, and will infer the register number from the TIED_TO // constraint. So this is a deliberately empty decoder method that // will inhibit the auto-generated disassembly code from adding an // operand at all. return MCDisassembler::Success; } [[maybe_unused]] static DecodeStatus DecodeVpredNOperand(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { // Similar to above, we want to ensure that no operands are added for the // vpred operands. (This is marked "maybe_unused" for the moment; because // DecoderEmitter currently (wrongly) omits operands with no instruction bits, // the decoder doesn't actually call it yet. That will be addressed in a // future change.) return MCDisassembler::Success; } static DecodeStatus DecodeRestrictedIPredicateOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { Inst.addOperand(MCOperand::createImm((Val & 0x1) == 0 ? ARMCC::EQ : ARMCC::NE)); return MCDisassembler::Success; } static DecodeStatus DecodeRestrictedSPredicateOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { unsigned Code; switch (Val & 0x3) { case 0: Code = ARMCC::GE; break; case 1: Code = ARMCC::LT; break; case 2: Code = ARMCC::GT; break; case 3: Code = ARMCC::LE; break; } Inst.addOperand(MCOperand::createImm(Code)); return MCDisassembler::Success; } static DecodeStatus DecodeRestrictedUPredicateOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { Inst.addOperand(MCOperand::createImm((Val & 0x1) == 0 ? ARMCC::HS : ARMCC::HI)); return MCDisassembler::Success; } static DecodeStatus DecodeRestrictedFPPredicateOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { unsigned Code; switch (Val) { default: return MCDisassembler::Fail; case 0: Code = ARMCC::EQ; break; case 1: Code = ARMCC::NE; break; case 4: Code = ARMCC::GE; break; case 5: Code = ARMCC::LT; break; case 6: Code = ARMCC::GT; break; case 7: Code = ARMCC::LE; break; } Inst.addOperand(MCOperand::createImm(Code)); return MCDisassembler::Success; } static DecodeStatus DecodeVCVTImmOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned DecodedVal = 64 - Val; switch (Inst.getOpcode()) { case ARM::MVE_VCVTf16s16_fix: case ARM::MVE_VCVTs16f16_fix: case ARM::MVE_VCVTf16u16_fix: case ARM::MVE_VCVTu16f16_fix: if (DecodedVal > 16) return MCDisassembler::Fail; break; case ARM::MVE_VCVTf32s32_fix: case ARM::MVE_VCVTs32f32_fix: case ARM::MVE_VCVTf32u32_fix: case ARM::MVE_VCVTu32f32_fix: if (DecodedVal > 32) return MCDisassembler::Fail; break; } Inst.addOperand(MCOperand::createImm(64 - Val)); return S; } static unsigned FixedRegForVSTRVLDR_SYSREG(unsigned Opcode) { switch (Opcode) { case ARM::VSTR_P0_off: case ARM::VSTR_P0_pre: case ARM::VSTR_P0_post: case ARM::VLDR_P0_off: case ARM::VLDR_P0_pre: case ARM::VLDR_P0_post: return ARM::P0; default: return 0; } } template static DecodeStatus DecodeVSTRVLDR_SYSREG(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { switch (Inst.getOpcode()) { case ARM::VSTR_FPSCR_pre: case ARM::VSTR_FPSCR_NZCVQC_pre: case ARM::VLDR_FPSCR_pre: case ARM::VLDR_FPSCR_NZCVQC_pre: case ARM::VSTR_FPSCR_off: case ARM::VSTR_FPSCR_NZCVQC_off: case ARM::VLDR_FPSCR_off: case ARM::VLDR_FPSCR_NZCVQC_off: case ARM::VSTR_FPSCR_post: case ARM::VSTR_FPSCR_NZCVQC_post: case ARM::VLDR_FPSCR_post: case ARM::VLDR_FPSCR_NZCVQC_post: const FeatureBitset &featureBits = ((const MCDisassembler *)Decoder)->getSubtargetInfo().getFeatureBits(); if (!featureBits[ARM::HasMVEIntegerOps] && !featureBits[ARM::FeatureVFP2]) return MCDisassembler::Fail; } DecodeStatus S = MCDisassembler::Success; if (unsigned Sysreg = FixedRegForVSTRVLDR_SYSREG(Inst.getOpcode())) Inst.addOperand(MCOperand::createReg(Sysreg)); unsigned Rn = fieldFromInstruction(Val, 16, 4); unsigned addr = fieldFromInstruction(Val, 0, 7) | (fieldFromInstruction(Val, 23, 1) << 7) | (Rn << 8); if (Writeback) { if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; } if (!Check(S, DecodeT2AddrModeImm7s4(Inst, addr, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(ARMCC::AL)); Inst.addOperand(MCOperand::createReg(0)); return S; } static inline DecodeStatus DecodeMVE_MEM_pre(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder, unsigned Rn, OperandDecoder RnDecoder, OperandDecoder AddrDecoder) { DecodeStatus S = MCDisassembler::Success; unsigned Qd = fieldFromInstruction(Val, 13, 3); unsigned addr = fieldFromInstruction(Val, 0, 7) | (fieldFromInstruction(Val, 23, 1) << 7) | (Rn << 8); if (!Check(S, RnDecoder(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeMQPRRegisterClass(Inst, Qd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, AddrDecoder(Inst, addr, Address, Decoder))) return MCDisassembler::Fail; return S; } template static DecodeStatus DecodeMVE_MEM_1_pre(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { return DecodeMVE_MEM_pre(Inst, Val, Address, Decoder, fieldFromInstruction(Val, 16, 3), DecodetGPRRegisterClass, DecodeTAddrModeImm7); } template static DecodeStatus DecodeMVE_MEM_2_pre(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { return DecodeMVE_MEM_pre(Inst, Val, Address, Decoder, fieldFromInstruction(Val, 16, 4), DecoderGPRRegisterClass, DecodeT2AddrModeImm7); } template static DecodeStatus DecodeMVE_MEM_3_pre(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { return DecodeMVE_MEM_pre(Inst, Val, Address, Decoder, fieldFromInstruction(Val, 17, 3), DecodeMQPRRegisterClass, DecodeMveAddrModeQ); } template static DecodeStatus DecodePowerTwoOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; if (Val < MinLog || Val > MaxLog) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(1LL << Val)); return S; } template static DecodeStatus DecodeMVEPairVectorIndexOperand(MCInst &Inst, unsigned Val, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; Inst.addOperand(MCOperand::createImm(start + Val)); return S; } static DecodeStatus DecodeMVEVMOVQtoDReg(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rt = fieldFromInstruction(Insn, 0, 4); unsigned Rt2 = fieldFromInstruction(Insn, 16, 4); unsigned Qd = ((fieldFromInstruction(Insn, 22, 1) << 3) | fieldFromInstruction(Insn, 13, 3)); unsigned index = fieldFromInstruction(Insn, 4, 1); if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rt2, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeMQPRRegisterClass(Inst, Qd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeMVEPairVectorIndexOperand<2>(Inst, index, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeMVEPairVectorIndexOperand<0>(Inst, index, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeMVEVMOVDRegtoQ(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Rt = fieldFromInstruction(Insn, 0, 4); unsigned Rt2 = fieldFromInstruction(Insn, 16, 4); unsigned Qd = ((fieldFromInstruction(Insn, 22, 1) << 3) | fieldFromInstruction(Insn, 13, 3)); unsigned index = fieldFromInstruction(Insn, 4, 1); if (!Check(S, DecodeMQPRRegisterClass(Inst, Qd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeMQPRRegisterClass(Inst, Qd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeGPRRegisterClass(Inst, Rt2, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeMVEPairVectorIndexOperand<2>(Inst, index, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeMVEPairVectorIndexOperand<0>(Inst, index, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeMVEOverlappingLongShift(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned RdaLo = fieldFromInstruction(Insn, 17, 3) << 1; unsigned RdaHi = fieldFromInstruction(Insn, 9, 3) << 1; unsigned Rm = fieldFromInstruction(Insn, 12, 4); if (RdaHi == 14) { // This value of RdaHi (really indicating pc, because RdaHi has to // be an odd-numbered register, so the low bit will be set by the // decode function below) indicates that we must decode as SQRSHR // or UQRSHL, which both have a single Rda register field with all // four bits. unsigned Rda = fieldFromInstruction(Insn, 16, 4); switch (Inst.getOpcode()) { case ARM::MVE_ASRLr: case ARM::MVE_SQRSHRL: Inst.setOpcode(ARM::MVE_SQRSHR); break; case ARM::MVE_LSLLr: case ARM::MVE_UQRSHLL: Inst.setOpcode(ARM::MVE_UQRSHL); break; default: llvm_unreachable("Unexpected starting opcode!"); } // Rda as output parameter if (!Check(S, DecoderGPRRegisterClass(Inst, Rda, Address, Decoder))) return MCDisassembler::Fail; // Rda again as input parameter if (!Check(S, DecoderGPRRegisterClass(Inst, Rda, Address, Decoder))) return MCDisassembler::Fail; // Rm, the amount to shift by if (!Check(S, DecoderGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; if (fieldFromInstruction (Insn, 6, 3) != 4) return MCDisassembler::SoftFail; if (Rda == Rm) return MCDisassembler::SoftFail; return S; } // Otherwise, we decode as whichever opcode our caller has already // put into Inst. Those all look the same: // RdaLo,RdaHi as output parameters if (!Check(S, DecodetGPREvenRegisterClass(Inst, RdaLo, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodetGPROddRegisterClass(Inst, RdaHi, Address, Decoder))) return MCDisassembler::Fail; // RdaLo,RdaHi again as input parameters if (!Check(S, DecodetGPREvenRegisterClass(Inst, RdaLo, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodetGPROddRegisterClass(Inst, RdaHi, Address, Decoder))) return MCDisassembler::Fail; // Rm, the amount to shift by if (!Check(S, DecoderGPRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; if (Inst.getOpcode() == ARM::MVE_SQRSHRL || Inst.getOpcode() == ARM::MVE_UQRSHLL) { unsigned Saturate = fieldFromInstruction(Insn, 7, 1); // Saturate, the bit position for saturation Inst.addOperand(MCOperand::createImm(Saturate)); } return S; } static DecodeStatus DecodeMVEVCVTt1fp(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; unsigned Qd = ((fieldFromInstruction(Insn, 22, 1) << 3) | fieldFromInstruction(Insn, 13, 3)); unsigned Qm = ((fieldFromInstruction(Insn, 5, 1) << 3) | fieldFromInstruction(Insn, 1, 3)); unsigned imm6 = fieldFromInstruction(Insn, 16, 6); if (!Check(S, DecodeMQPRRegisterClass(Inst, Qd, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeMQPRRegisterClass(Inst, Qm, Address, Decoder))) return MCDisassembler::Fail; if (!Check(S, DecodeVCVTImmOperand(Inst, imm6, Address, Decoder))) return MCDisassembler::Fail; return S; } template static DecodeStatus DecodeMVEVCMP(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; Inst.addOperand(MCOperand::createReg(ARM::VPR)); unsigned Qn = fieldFromInstruction(Insn, 17, 3); if (!Check(S, DecodeMQPRRegisterClass(Inst, Qn, Address, Decoder))) return MCDisassembler::Fail; unsigned fc; if (scalar) { fc = fieldFromInstruction(Insn, 12, 1) << 2 | fieldFromInstruction(Insn, 7, 1) | fieldFromInstruction(Insn, 5, 1) << 1; unsigned Rm = fieldFromInstruction(Insn, 0, 4); if (!Check(S, DecodeGPRwithZRRegisterClass(Inst, Rm, Address, Decoder))) return MCDisassembler::Fail; } else { fc = fieldFromInstruction(Insn, 12, 1) << 2 | fieldFromInstruction(Insn, 7, 1) | fieldFromInstruction(Insn, 0, 1) << 1; unsigned Qm = fieldFromInstruction(Insn, 5, 1) << 4 | fieldFromInstruction(Insn, 1, 3); if (!Check(S, DecodeMQPRRegisterClass(Inst, Qm, Address, Decoder))) return MCDisassembler::Fail; } if (!Check(S, predicate_decoder(Inst, fc, Address, Decoder))) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(ARMVCC::None)); Inst.addOperand(MCOperand::createReg(0)); Inst.addOperand(MCOperand::createImm(0)); return S; } static DecodeStatus DecodeMveVCTP(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; Inst.addOperand(MCOperand::createReg(ARM::VPR)); unsigned Rn = fieldFromInstruction(Insn, 16, 4); if (!Check(S, DecoderGPRRegisterClass(Inst, Rn, Address, Decoder))) return MCDisassembler::Fail; return S; } static DecodeStatus DecodeMVEVPNOT(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { DecodeStatus S = MCDisassembler::Success; Inst.addOperand(MCOperand::createReg(ARM::VPR)); Inst.addOperand(MCOperand::createReg(ARM::VPR)); return S; } static DecodeStatus DecodeT2AddSubSPImm(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { const unsigned Rd = fieldFromInstruction(Insn, 8, 4); const unsigned Rn = fieldFromInstruction(Insn, 16, 4); const unsigned Imm12 = fieldFromInstruction(Insn, 26, 1) << 11 | fieldFromInstruction(Insn, 12, 3) << 8 | fieldFromInstruction(Insn, 0, 8); const unsigned TypeT3 = fieldFromInstruction(Insn, 25, 1); unsigned sign1 = fieldFromInstruction(Insn, 21, 1); unsigned sign2 = fieldFromInstruction(Insn, 23, 1); unsigned S = fieldFromInstruction(Insn, 20, 1); if (sign1 != sign2) return MCDisassembler::Fail; // T3 does a zext of imm12, where T2 does a ThumbExpandImm (T2SOImm) DecodeStatus DS = MCDisassembler::Success; if ((!Check(DS, DecodeGPRspRegisterClass(Inst, Rd, Address, Decoder))) || // dst (!Check(DS, DecodeGPRspRegisterClass(Inst, Rn, Address, Decoder)))) return MCDisassembler::Fail; if (TypeT3) { Inst.setOpcode(sign1 ? ARM::t2SUBspImm12 : ARM::t2ADDspImm12); Inst.addOperand(MCOperand::createImm(Imm12)); // zext imm12 } else { Inst.setOpcode(sign1 ? ARM::t2SUBspImm : ARM::t2ADDspImm); if (!Check(DS, DecodeT2SOImm(Inst, Imm12, Address, Decoder))) // imm12 return MCDisassembler::Fail; if (!Check(DS, DecodeCCOutOperand(Inst, S, Address, Decoder))) // cc_out return MCDisassembler::Fail; } return DS; }