//=- ARMScheduleM85.td - ARM Cortex-M85 Scheduling Definitions -*- tablegen -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the machine model for the ARM Cortex-M85 processor. // // All timing is referred to EX2. Thus, operands which are needed at EX1 are // stated to have a ReadAdvance of -1. The FP/MVE pipe actually begins at EX3 // but is described as if it were in EX2 to avoid having unnaturally long latencies // with delayed inputs on every instruction. Instead, whenever an FP instruction // must access a GP register or a non-FP instruction (which includes loads/stores) // must access an FP register, the operand timing is adjusted: // FP accessing GPR: read one cycle later, write one cycle later // NOTE: absolute spec timing already includes this if // referenced to EX2 // non-FP accessing FPR: read one cycle earlier, write one cycle earlier //===----------------------------------------------------------------------===// def CortexM85Model : SchedMachineModel { let IssueWidth = 2; // Dual issue for most instructions. let MicroOpBufferSize = 0; // M85 is in-order. let LoadLatency = 2; // Best case for load-use case. let MispredictPenalty = 4; // Mispredict cost for forward branches is 7, // but 4 works better let CompleteModel = 0; } let SchedModel = CortexM85Model in { //===--------------------------------------------------------------------===// // CortexM85 has two ALU, two LOAD, two STORE, a MAC, a BRANCH and two VFP // pipes (with three units). There are three shifters available: one per // stage. def M85UnitLoadL : ProcResource<1> { let BufferSize = 0; } def M85UnitLoadH : ProcResource<1> { let BufferSize = 0; } def M85UnitLoad : ProcResGroup<[M85UnitLoadL,M85UnitLoadH]> { let BufferSize = 0; } def M85UnitStoreL : ProcResource<1> { let BufferSize = 0; } def M85UnitStoreH : ProcResource<1> { let BufferSize = 0; } def M85UnitStore : ProcResGroup<[M85UnitStoreL,M85UnitStoreH]> { let BufferSize = 0; } def M85UnitALU : ProcResource<2> { let BufferSize = 0; } def M85UnitShift1 : ProcResource<1> { let BufferSize = 0; } def M85UnitShift2 : ProcResource<1> { let BufferSize = 0; } def M85UnitMAC : ProcResource<1> { let BufferSize = 0; } def M85UnitBranch : ProcResource<1> { let BufferSize = 0; } def M85UnitVFPAL : ProcResource<1> { let BufferSize = 0; } def M85UnitVFPAH : ProcResource<1> { let BufferSize = 0; } def M85UnitVFPA : ProcResGroup<[M85UnitVFPAL,M85UnitVFPAH]> { let BufferSize = 0; } def M85UnitVFPBL : ProcResource<1> { let BufferSize = 0; } def M85UnitVFPBH : ProcResource<1> { let BufferSize = 0; } def M85UnitVFPB : ProcResGroup<[M85UnitVFPBL,M85UnitVFPBH]> { let BufferSize = 0; } def M85UnitVFPCL : ProcResource<1> { let BufferSize = 0; } def M85UnitVFPCH : ProcResource<1> { let BufferSize = 0; } def M85UnitVFPC : ProcResGroup<[M85UnitVFPCL,M85UnitVFPCH]> { let BufferSize = 0; } def M85UnitVFPD : ProcResource<1> { let BufferSize = 0; } def M85UnitVPortL : ProcResource<1> { let BufferSize = 0; } def M85UnitVPortH : ProcResource<1> { let BufferSize = 0; } def M85UnitVPort : ProcResGroup<[M85UnitVPortL,M85UnitVPortH]> { let BufferSize = 0; } def M85UnitSIMD : ProcResource<1> { let BufferSize = 0; } def M85UnitLShift : ProcResource<1> { let BufferSize = 0; } def M85UnitDiv : ProcResource<1> { let BufferSize = 0; } def M85UnitSlot0 : ProcResource<1> { let BufferSize = 0; } //===---------------------------------------------------------------------===// // Subtarget-specific SchedWrite types with map ProcResources and set latency. def : WriteRes { let Latency = 1; } // Basic ALU with shifts. let Latency = 1 in { def : WriteRes; def : WriteRes; def : WriteRes; } // Compares. def : WriteRes { let Latency = 1; } def : WriteRes { let Latency = 2; } def : WriteRes { let Latency = 2; } // Multiplies. let Latency = 2 in { def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes { let NumMicroOps = 0; } } // Multiply-accumulates. let Latency = 2 in { def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes { let NumMicroOps = 0; } } // Divisions. def : WriteRes { let Latency = 7; } // Loads/Stores. def : WriteRes { let Latency = 1; } def : WriteRes { let Latency = 2; } def : WriteRes { let Latency = 2; } def M85WriteLdWide : SchedWriteRes<[M85UnitLoadL, M85UnitLoadH]> { let Latency = 1; } def M85WriteStWide : SchedWriteRes<[M85UnitStoreL, M85UnitStoreH]> { let Latency = 2; } // Branches. def : WriteRes { let Latency = 2; } def : WriteRes { let Latency = 2; } def : WriteRes { let Latency = 2; } // Noop. def : WriteRes { let Latency = 0; let NumMicroOps = 0; } //===---------------------------------------------------------------------===// // Sched definitions for floating-point instructions // // Floating point conversions. def : WriteRes { let Latency = 2; } def : WriteRes { let Latency = 1; } def M85WriteFPMOV64 : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> { let Latency = 1; } // ALU operations (32/64-bit). These go down the FP pipeline. def : WriteRes { let Latency = 2; } def : WriteRes { let Latency = 6; } // Multiplication def : WriteRes { let Latency = 3; } def : WriteRes { let Latency = 8; } // Multiply-accumulate. FPMAC goes down the FP Pipeline. def : WriteRes { let Latency = 5; } def : WriteRes { let Latency = 14; } // Division. Effective scheduling latency is 3, though real latency is larger def : WriteRes { let Latency = 14; } def : WriteRes { let Latency = 29; } // Square-root. Effective scheduling latency is 3, though real latency is larger def : WriteRes { let Latency = 14; } def : WriteRes { let Latency = 29; } let NumMicroOps = 0 in { def M85SingleIssue : SchedWriteRes<[]> { let SingleIssue = 1; } def M85Slot0Only : SchedWriteRes<[M85UnitSlot0]> { } } // What pipeline stage operands need to be ready for depending on // where they come from. def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; def M85Read_ISSm1 : SchedReadAdvance<-2>; // operands needed at ISS def M85Read_ISS : SchedReadAdvance<-1>; // operands needed at EX1 def M85Read_EX1 : SchedReadAdvance<0>; // operands needed at EX2 def M85Read_EX2 : SchedReadAdvance<1>; // operands needed at EX3 def M85Read_EX3 : SchedReadAdvance<2>; // operands needed at EX4 def M85Read_EX4 : SchedReadAdvance<3>; // operands needed at EX5 def M85Write1 : SchedWriteRes<[]> { let Latency = 1; let NumMicroOps = 0; } def M85Write2 : SchedWriteRes<[]> { let Latency = 2; let NumMicroOps = 0; } def M85WriteShift2 : SchedWriteRes<[M85UnitALU, M85UnitShift2]> {} // Non general purpose instructions may not be dual issued. These // use both issue units. def M85NonGeneralPurpose : SchedWriteRes<[]> { // Assume that these will go down the main ALU pipeline. // In reality, many look likely to stall the whole pipeline. let Latency = 3; let SingleIssue = 1; } // List the non general purpose instructions. def : InstRW<[M85NonGeneralPurpose], (instregex "t2MRS", "tSVC", "tBKPT", "t2MSR", "t2DMB", "t2DSB", "t2ISB", "t2HVC", "t2SMC", "t2UDF", "ERET", "tHINT", "t2HINT", "t2CLREX", "t2CLRM", "BUNDLE")>; //===---------------------------------------------------------------------===// // Sched definitions for load/store // // Mark whether the loads/stores must be single-issue // Address operands are needed earlier // Data operands are needed later let NumMicroOps = 0 in { def M85BaseUpdate : SchedWriteRes<[]> { // Update is bypassable out of EX1 let Latency = 0; } def M85MVERBaseUpdate : SchedWriteRes<[]> { let Latency = 1; } // Q register base update is available in EX3 to bypass into EX2/ISS. // Latency=2 matches what we want for ISS, Latency=1 for EX2. Going // with 2, as base update into another load/store is most likely. Could // change later in an override. def M85MVEQBaseUpdate : SchedWriteRes<[]> { let Latency = 2; } def M85LoadLatency1 : SchedWriteRes<[]> { let Latency = 1; } } def M85SlowLoad : SchedWriteRes<[M85UnitLoad]> { let Latency = 2; } // Byte and half-word loads should have greater latency than other loads. // So should load exclusive? def : InstRW<[M85SlowLoad], (instregex "t2LDR(B|H|SB|SH)pc")>; def : InstRW<[M85SlowLoad, M85Read_ISS], (instregex "t2LDR(B|H|SB|SH)T", "t2LDR(B|H|SB|SH)i", "tLDRspi", "tLDR(B|H)i")>; def : InstRW<[M85SlowLoad, M85Read_ISS, M85Read_ISS], (instregex "t2LDR(B|H|SB|SH)s")>; def : InstRW<[M85SlowLoad, M85Read_ISS, M85Read_ISS], (instregex "tLDR(B|H)r", "tLDR(SB|SH)")>; def : InstRW<[M85SlowLoad, M85BaseUpdate, M85Read_ISS], (instregex "t2LDR(B|H|SB|SH)_(POST|PRE)")>; // Exclusive/acquire/release loads/stores cannot be dual-issued def : InstRW<[WriteLd, M85SingleIssue, M85Read_ISS], (instregex "t2LDREX$", "t2LDA(EX)?$")>; def : InstRW<[M85WriteLdWide, M85LoadLatency1, M85SingleIssue, M85Read_ISS], (instregex "t2LDAEXD$")>; def : InstRW<[M85SlowLoad, M85SingleIssue, M85Read_ISS], (instregex "t2LDREX(B|H)", "t2LDA(EX)?(B|H)$")>; def : InstRW<[WriteST, M85SingleIssue, M85Read_EX2, M85Read_ISS], (instregex "t2STREX(B|H)?$", "t2STL(EX)?(B|H)?$")>; def : InstRW<[M85WriteStWide, M85SingleIssue, M85Read_EX2, M85Read_EX2, M85Read_ISS], (instregex "t2STLEXD$")>; // Load/store multiples end issue groups. def : InstRW<[M85WriteLdWide, M85SingleIssue, M85Read_ISS], (instregex "(t|t2)LDM(DB|IA)$")>; def : InstRW<[M85WriteStWide, M85SingleIssue, M85Read_ISS], (instregex "(t|t2)STM(DB|IA)$")>; def : InstRW<[M85BaseUpdate, M85WriteLdWide, M85SingleIssue, M85Read_ISS], (instregex "(t|t2)LDM(DB|IA)_UPD$", "tPOP")>; def : InstRW<[M85BaseUpdate, M85WriteStWide, M85SingleIssue, M85Read_ISS], (instregex "(t|t2)STM(DB|IA)_UPD$", "tPUSH")>; // Load/store doubles def : InstRW<[M85BaseUpdate, M85WriteStWide, M85Read_EX2, M85Read_EX2, M85Read_ISS], (instregex "t2STRD_(PRE|POST)")>; def : InstRW<[M85WriteStWide, M85Read_EX2, M85Read_EX2, M85Read_ISS], (instregex "t2STRDi")>; def : InstRW<[M85WriteLdWide, M85LoadLatency1, M85BaseUpdate, M85Read_ISS], (instregex "t2LDRD_(PRE|POST)")>; def : InstRW<[M85WriteLdWide, M85LoadLatency1, M85Read_ISS], (instregex "t2LDRDi")>; // Word load / preload def : InstRW<[WriteLd], (instregex "t2LDRpc", "t2PL[DI]pci", "tLDRpci")>; def : InstRW<[WriteLd, M85Read_ISS], (instregex "t2LDR(i|T)", "t2PL[DI](W)?i", "tLDRi")>; def : InstRW<[WriteLd, M85Read_ISS, M85Read_ISS], (instregex "t2LDRs", "t2PL[DI](w)?s", "tLDRr")>; def : InstRW<[WriteLd, M85BaseUpdate, M85Read_ISS], (instregex "t2LDR_(POST|PRE)")>; // Stores def : InstRW<[M85BaseUpdate, WriteST, M85Read_EX2, M85Read_ISS], (instregex "t2STR(B|H)?_(POST|PRE)")>; def : InstRW<[WriteST, M85Read_EX2, M85Read_ISS, M85Read_ISS], (instregex "t2STR(B|H)?s$", "tSTR(B|H)?r$")>; def : InstRW<[WriteST, M85Read_EX2, M85Read_ISS], (instregex "t2STR(B|H)?(i|T)", "tSTR(B|H)?i$", "tSTRspi")>; // TBB/TBH - single-issue only def M85TableLoad : SchedWriteRes<[M85UnitLoad]> { let SingleIssue = 1; } def : InstRW<[M85TableLoad, M85Read_ISS, M85Read_ISS], (instregex "t2TB")>; // VFP/MVE loads and stores // Note: timing for VLDR/VSTR special has not been broken out // Note 2: see notes at top of file for the reason load latency is 1 and // store data is in EX3. def M85LoadSP : SchedWriteRes<[M85UnitLoad, M85UnitVPort]>; def M85LoadDP : SchedWriteRes<[M85UnitLoadL, M85UnitLoadH, M85UnitVPortL, M85UnitVPortH]>; def M85LoadSys : SchedWriteRes<[M85UnitLoad, M85UnitVPort, M85UnitVFPA, M85UnitVFPB, M85UnitVFPC, M85UnitVFPD]> { let Latency = 4; } def M85StoreSP : SchedWriteRes<[M85UnitStore, M85UnitVPort]>; def M85StoreDP : SchedWriteRes<[M85UnitStoreL, M85UnitStoreH, M85UnitVPortL, M85UnitVPortH]>; def M85StoreSys : SchedWriteRes<[M85UnitStore, M85UnitVPort, M85UnitVFPA, M85UnitVFPB, M85UnitVFPC, M85UnitVFPD]>; let ReleaseAtCycles = [2,2,1,1], EndGroup = 1 in { def M85LoadMVE : SchedWriteRes<[M85UnitLoadL, M85UnitLoadH, M85UnitVPortL, M85UnitVPortH]>; def M85LoadMVELate : SchedWriteRes<[M85UnitLoadL, M85UnitLoadH, M85UnitVPortL, M85UnitVPortH]> { let Latency = 4; // 3 cycles later } def M85StoreMVE : SchedWriteRes<[M85UnitStoreL, M85UnitStoreH, M85UnitVPortL, M85UnitVPortH]>; } def : InstRW<[M85LoadSP, M85Read_ISS], (instregex "VLDR(S|H)$")>; def : InstRW<[M85LoadSys, M85Read_ISS], (instregex "VLDR_")>; def : InstRW<[M85LoadDP, M85Read_ISS], (instregex "VLDRD$")>; def : InstRW<[M85StoreSP, M85Read_EX3, M85Read_ISS], (instregex "VSTR(S|H)$")>; def : InstRW<[M85StoreSys, M85Read_EX1, M85Read_ISS], (instregex "VSTR_")>; def : InstRW<[M85StoreDP, M85Read_EX3, M85Read_ISS], (instregex "VSTRD$")>; def : InstRW<[M85LoadMVELate, M85Read_ISS], (instregex "MVE_VLD[24]._[0-9]+$")>; def : InstRW<[M85LoadMVELate, M85MVERBaseUpdate, M85Read_ISS], (instregex "MVE_VLD[24].*wb")>; def : InstRW<[M85LoadMVE, M85Read_ISS], (instregex "MVE_VLDR.*(8|16|32|64)$")>; def : InstRW<[M85LoadMVE, M85SingleIssue, M85Read_ISS, M85Read_ISS], (instregex "MVE_VLDR.*(_rq|_rq|_rq_u)$")>; def : InstRW<[M85LoadMVE, M85SingleIssue, M85Read_ISS], (instregex "MVE_VLDR.*_qi$")>; def : InstRW<[M85MVERBaseUpdate, M85LoadMVE, M85Read_ISS], (instregex "MVE_VLDR.*(_post|[^i]_pre)$")>; def : InstRW<[M85MVEQBaseUpdate, M85SingleIssue, M85LoadMVE, M85Read_ISS], (instregex "MVE_VLDR.*(qi_pre)$")>; def : InstRW<[M85StoreMVE, M85Read_EX3, M85Read_ISS], (instregex "MVE_VST[24]._[0-9]+$")>; def : InstRW<[M85StoreMVE, M85Read_EX3, M85MVERBaseUpdate, M85Read_ISS], (instregex "MVE_VST[24].*wb")>; def : InstRW<[M85StoreMVE, M85Read_EX3, M85Read_ISS], (instregex "MVE_VSTR.*(8|16|32|64)$")>; def : InstRW<[M85StoreMVE, M85SingleIssue, M85Read_EX3, M85Read_ISS, M85Read_ISS], (instregex "MVE_VSTR.*(_rq|_rq|_rq_u)$")>; def : InstRW<[M85StoreMVE, M85SingleIssue, M85Read_EX3, M85Read_ISS], (instregex "MVE_VSTR.*_qi$")>; def : InstRW<[M85MVERBaseUpdate, M85StoreMVE, M85Read_EX3, M85Read_ISS], (instregex "MVE_VSTR.*(_post|[^i]_pre)$")>; def : InstRW<[M85MVEQBaseUpdate, M85SingleIssue, M85StoreMVE, M85Read_EX3, M85Read_ISS], (instregex "MVE_VSTR.*(qi_pre)$")>; // Load/store multiples end issue groups. def : InstRW<[M85WriteLdWide, M85SingleIssue, M85Read_ISS], (instregex "VLDM(S|D|Q)(DB|IA)$")>; def : InstRW<[M85WriteStWide, M85SingleIssue, M85Read_ISS, M85Read_EX3], (instregex "VSTM(S|D|Q)(DB|IA)$")>; def : InstRW<[M85BaseUpdate, M85WriteLdWide, M85SingleIssue, M85Read_ISS], (instregex "VLDM(S|D|Q)(DB|IA)_UPD$", "VLLDM")>; def : InstRW<[M85BaseUpdate, M85WriteStWide, M85SingleIssue, M85Read_ISS, M85Read_EX3], (instregex "VSTM(S|D|Q)(DB|IA)_UPD$", "VLSTM")>; //===---------------------------------------------------------------------===// // Sched definitions for ALU // // Non-small shifted ALU operands are read a cycle early; small LSLs // aren't, as they don't require the shifter. def M85NonsmallShiftWrite : SchedWriteRes<[M85UnitALU,M85UnitShift1]> { let Latency = 1; } def M85WriteALUsi : SchedWriteVariant<[ SchedVar ]>; def M85Ex1ReadNoFastBypass : SchedReadAdvance<-1, [WriteLd, M85WriteLdWide, M85LoadLatency1]>; def M85ReadALUsi : SchedReadVariant<[ SchedVar ]>; def : InstRW<[M85WriteALUsi, M85Read_EX1, M85ReadALUsi], (instregex "t2(ADC|ADDS|BIC|EOR|ORN|ORR|RSBS|RSB|SBC|" "SUBS|CMP|CMNz|TEQ|TST)rs$")>; def : InstRW<[M85WriteALUsi, M85ReadALUsi], (instregex "t2MVNs")>; // CortexM85 treats LSL #0 as needing a shifter. In practice the throughput // seems to reliably be 2 when run on a cyclemodel, so we don't require a // shift resource. def : InstRW<[M85WriteALUsi, M85Read_EX1, M85ReadALUsi], (instregex "t2(ADC|ADDS|BIC|EOR|ORN|ORR|RSBS|RSB|SBC|" "SUBS|CMP|CMNz|TEQ|TST)rr$")>; def : InstRW<[M85WriteALUsi, M85ReadALUsi], (instregex "t2MVNr")>; // Shift instructions: most pure shifts (i.e. MOV w/ shift) will use whichever // shifter is free, thus it is possible to dual-issue them freely with anything // else. As a result, they are not modeled as needing a shifter. // RRX is odd because it must use the EX2 shifter, so it cannot dual-issue with // itself. // // Note that pure shifts which use the EX1 shifter would need their operands // a cycle earlier. However, they are only forced to use the EX1 shifter // when issuing against an RRX instructions, which should be rare. def : InstRW<[M85WriteShift2], (instregex "t2RRX$")>; def : InstRW<[WriteALU], (instregex "(t|t2)(LSL|LSR|ASR|ROR|SBFX|UBFX)", "t2MOVsr(a|l)")>; // Instructions that use the shifter, but have normal timing def : InstRW<[WriteALUsi,M85Slot0Only], (instregex "t2(BFC|BFI)$")>; // Stack pointer add/sub happens in EX1 with checks in EX2 def M85WritesToSPPred : MCSchedPredicate>; def M85ReadForSP : SchedReadVariant<[ SchedVar, SchedVar ]>; def M85ReadForSPShift : SchedReadVariant<[ SchedVar, SchedVar ]>; def : InstRW<[WriteALU, M85Read_ISS], (instregex "tADDspi", "tSUBspi")>; def : InstRW<[WriteALU, M85ReadForSP], (instregex "t2(ADD|SUB)ri", "t2MOVr", "tMOVr")>; def : InstRW<[WriteALU, M85ReadForSP, M85ReadForSP], (instregex "tADDrSP", "tADDspr", "tADDhirr")>; def : InstRW<[M85WriteALUsi, M85ReadForSP, M85ReadForSPShift], (instregex "t2(ADD|SUB)rs")>; def : InstRW<[WriteALU, M85Slot0Only], (instregex "t2CLZ")>; // MAC operations that don't have SchedRW set def : InstRW<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC], (instregex "t2SML[AS]D")>; // Divides are special because they stall for their latency, and so look like // two cycles as far as scheduling opportunities go. By putting M85Write2 // first, we make the operand latency 2, but keep the instruction latency 7. // Divide operands are read early. def : InstRW<[M85Write2, WriteDIV, M85Read_ISS, M85Read_ISS, WriteALU], (instregex "t2(S|U)DIV")>; // DSP extension operations def M85WriteSIMD1 : SchedWriteRes<[M85UnitSIMD, M85UnitALU, M85UnitSlot0]> { let Latency = 1; } def M85WriteSIMD2 : SchedWriteRes<[M85UnitSIMD, M85UnitALU, M85UnitSlot0]> { let Latency = 2; } def M85WriteShSIMD0 : SchedWriteRes<[M85UnitSIMD, M85UnitALU, M85UnitShift1, M85UnitSlot0]> { let Latency = 0; // Finishes at EX1 } def M85WriteShSIMD1 : SchedWriteRes<[M85UnitSIMD, M85UnitALU, M85UnitShift1, M85UnitSlot0]> { let Latency = 1; } def M85WriteShSIMD2 : SchedWriteRes<[M85UnitSIMD, M85UnitALU, M85UnitShift1, M85UnitSlot0]> { let Latency = 2; } def : InstRW<[M85WriteShSIMD2, M85Read_ISS], (instregex "t2(S|U)SAT")>; def : InstRW<[M85WriteSIMD1, ReadALU], (instregex "(t|t2)(S|U)XT(B|H)")>; def : InstRW<[M85WriteSIMD1, ReadALU, ReadALU], (instregex "t2(S|SH|U|UH)(ADD16|ADD8|ASX|SAX|SUB16|SUB8)", "t2SEL")>; def : InstRW<[M85WriteSIMD2, ReadALU, ReadALU], (instregex "t2(Q|UQ)(ADD|ASX|SAX|SUB)", "t2USAD8")>; def : InstRW<[M85WriteShSIMD2, M85Read_ISS, M85Read_ISS], (instregex "t2QD(ADD|SUB)")>; def : InstRW<[M85WriteShSIMD0, M85Read_ISS], (instregex "t2(RBIT|REV)", "tREV")>; def : InstRW<[M85WriteShSIMD1, ReadALU, M85Read_ISS], (instregex "t2PKH(BT|TB)", "t2(S|U)XTA")>; def : InstRW<[M85WriteSIMD2, ReadALU, ReadALU, M85Read_EX2], (instregex "t2USADA8")>; // MSR/MRS def : InstRW<[M85NonGeneralPurpose], (instregex "MSR", "MRS")>; // 64-bit shift operations in EX3 def M85WriteLShift : SchedWriteRes<[M85UnitLShift, M85UnitALU]> { let Latency = 2; } def M85WriteLat2 : SchedWriteRes<[]> { let Latency = 2; let NumMicroOps = 0; } def : InstRW<[M85WriteLShift, M85WriteLat2, M85Read_EX2, M85Read_EX2], (instregex "MVE_(ASRLi|LSLLi|LSRL|SQSHLL|SRSHRL|UQSHLL|URSHRL)$")>; def : InstRW<[M85WriteLShift, M85WriteLat2, M85Read_EX2, M85Read_EX2, M85Read_EX2], (instregex "MVE_(ASRLr|LSLLr|SQRSHRL|UQRSHLL)$")>; def : InstRW<[M85WriteLShift, M85Read_EX2, M85Read_EX2], (instregex "MVE_(SQRSHR|UQRSHL)$")>; def : InstRW<[M85WriteLShift, M85Read_EX2], (instregex "MVE_(SQSHL|SRSHR|UQSHL|URSHR)$")>; // Loop control/branch future instructions def M85LE : SchedWriteRes<[]> { let NumMicroOps = 0; let Latency = -2; } def : InstRW<[WriteALU], (instregex "t2BF(_|Lr|i|Li|r)")>; def : InstRW<[WriteALU], (instregex "MVE_LCTP")>; def : InstRW<[WriteALU], (instregex "t2DLS", "t2WLS", "MVE_DLSTP", "MVE_WLSTP")>; def : InstRW<[M85LE], (instregex "t2LE$")>; def : InstRW<[M85LE, M85Read_ISSm1], (instregex "t2LEUpdate", "MVE_LETP")>; // LE is executed at ISS // Conditional selects def : InstRW<[M85WriteLShift, M85Read_EX2, M85Read_EX2, M85Read_EX2], (instregex "t2(CSEL|CSINC|CSINV|CSNEG)")>; //===---------------------------------------------------------------------===// // Sched definitions for FP and MVE operations let NumMicroOps = 0 in { def M85OverrideVFPLat5 : SchedWriteRes<[]> { let Latency = 5; } def M85OverrideVFPLat4 : SchedWriteRes<[]> { let Latency = 4; } def M85OverrideVFPLat3 : SchedWriteRes<[]> { let Latency = 3; } def M85OverrideVFPLat2 : SchedWriteRes<[]> { let Latency = 2; } } let Latency = 1 in { def M85GroupALat1S : SchedWriteRes<[M85UnitVFPA, M85UnitVPort, M85UnitSlot0]>; def M85GroupBLat1S : SchedWriteRes<[M85UnitVFPB, M85UnitVPort, M85UnitSlot0]>; def M85GroupCLat1S : SchedWriteRes<[M85UnitVFPC, M85UnitVPort, M85UnitSlot0]>; def M85GroupALat1D : SchedWriteRes<[M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>; def M85GroupBLat1D : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>; def M85GroupCLat1D : SchedWriteRes<[M85UnitVFPCL, M85UnitVFPCH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>; def M85GroupABLat1S : SchedWriteRes<[M85UnitVPort, M85UnitSlot0]>; } let Latency = 2 in { def M85GroupBLat2S : SchedWriteRes<[M85UnitVFPB, M85UnitVPort, M85UnitSlot0]>; def M85GroupBLat2D : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>; def M85GroupABLat2S : SchedWriteRes<[M85UnitVPort, M85UnitSlot0]>; def M85GroupABLat2D : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>; } // Instructions which are missing default schedules def : InstRW<[M85GroupALat1S], (instregex "V(FP_VMAXNM|FP_VMINNM)(H|S)$")>; def : InstRW<[M85GroupALat1D], (instregex "V(FP_VMAXNM|FP_VMINNM)D$")>; def : InstRW<[M85GroupCLat1S], (instregex "VCMPE?Z?(H|S)$")>; def : InstRW<[M85GroupCLat1D], (instregex "VCMPE?Z?D$")>; def : InstRW<[M85GroupBLat2S], (instregex "VCVT(A|M|N|P|R|X|Z)(S|U)(H|S)", "VRINT(A|M|N|P|R|X|Z)(H|S)")>; def : InstRW<[M85GroupBLat2D], (instregex "VCVT(B|T)(DH|HD)", "VCVT(A|M|N|P|R|X|Z)(S|U)D", "V.*TOD", "VTO.*D", "VCVTDS", "VCVTSD", "VRINT(A|M|N|P|R|X|Z)D")>; def : InstRW<[M85GroupABLat1S], (instregex "VINSH")>; def : InstRW<[M85GroupBLat1S], (instregex "V(ABS|NEG)(H|S)$")>; def : InstRW<[M85GroupBLat1D], (instregex "V(ABS|NEG)D$")>; // VMRS/VMSR let SingleIssue = 1 in { def M85VMRSEarly : SchedWriteRes<[M85UnitVPort]> { let Latency = 2;} def M85VMRSLate : SchedWriteRes<[M85UnitVPort]> { let Latency = 4; } def M85VMSREarly : SchedWriteRes<[M85UnitVPort]> { let Latency = 1; } def M85VMSRLate : SchedWriteRes<[M85UnitVPort]> { let Latency = 3; } } def M85FPSCRFlagPred : MCSchedPredicate< CheckAll<[CheckIsRegOperand<0>, CheckRegOperand<0, PC>]>>; def M85VMRSFPSCR : SchedWriteVariant<[ SchedVar, SchedVar ]>; def : InstRW<[M85VMSREarly, M85Read_EX2], (instregex "VMSR$", "VMSR_FPSCR_NZCVQC", "VMSR_P0", "VMSR_VPR")>; def : InstRW<[M85VMRSEarly], (instregex "VMRS_P0", "VMRS_VPR", "FMSTAT")>; def : InstRW<[M85VMRSLate], (instregex "VMRS_FPSCR_NZCVQC")>; def : InstRW<[M85VMRSFPSCR], (instregex "VMRS$")>; // Not matching properly //def : InstRW<[M85VMSRLate, M85Read_EX2], (instregex "VMSR_FPCTX(NS|S)")>; //def : InstRW<[M85VMRSLate], (instregex "VMRS_FPCTX(NS|S)")>; // VSEL cannot bypass in its implied $cpsr operand; model as earlier read def : InstRW<[M85GroupBLat1S, ReadALU, ReadALU, M85Read_ISS], (instregex "VSEL.*(S|H)$")>; def : InstRW<[M85GroupBLat1D, ReadALU, ReadALU, M85Read_ISS], (instregex "VSEL.*D$")>; // VMOV def : InstRW<[WriteFPMOV], (instregex "VMOV(H|S)$", "FCONST(H|S)")>; def : InstRW<[WriteFPMOV, M85Read_EX2], (instregex "VMOVHR$", "VMOVSR$")>; def : InstRW<[M85GroupABLat2S], (instregex "VMOVRH$", "VMOVRS$")>; def : InstRW<[M85WriteFPMOV64], (instregex "VMOVD$")>; def : InstRW<[M85WriteFPMOV64], (instregex "FCONSTD")>; def : InstRW<[M85WriteFPMOV64, M85Read_EX2, M85Read_EX2], (instregex "VMOVDRR")>; def : InstRW<[M85WriteFPMOV64, M85Write1, M85Read_EX2, M85Read_EX2], (instregex "VMOVSRR")>; def : InstRW<[M85GroupABLat2D, M85Write2], (instregex "VMOV(RRD|RRS)")>; // These shouldn't even exist, but Cortex-m55 defines them, so here they are. def : InstRW<[WriteFPMOV, M85Read_EX2], (instregex "VGETLNi32$")>; def : InstRW<[M85GroupABLat2S], (instregex "VSETLNi32")>; // Larger-latency overrides def M85FPDIV16 : SchedWriteRes<[M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> { let Latency = 8; } def : InstRW<[M85OverrideVFPLat2, M85FPDIV16], (instregex "VDIVH")>; def : InstRW<[M85OverrideVFPLat2, WriteFPDIV32], (instregex "VDIVS")>; def : InstRW<[M85OverrideVFPLat2, WriteFPDIV64], (instregex "VDIVD")>; def : InstRW<[M85OverrideVFPLat2, M85FPDIV16], (instregex "VSQRTH")>; def : InstRW<[M85OverrideVFPLat2, WriteFPSQRT32], (instregex "VSQRTS")>; def : InstRW<[M85OverrideVFPLat2, WriteFPSQRT64], (instregex "VSQRTD")>; def : InstRW<[M85OverrideVFPLat3, WriteFPMUL64], (instregex "V(MUL|NMUL)D")>; def : InstRW<[M85OverrideVFPLat2, WriteFPALU64], (instregex "V(ADD|SUB)D")>; // Multiply-accumulate. Chained SP timing is correct; rest need overrides // Double-precision chained MAC should also be seen as having latency of 5, // as stalls stall everything. def : InstRW<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL], (instregex "VN?ML(A|S)H")>; def : InstRW<[M85OverrideVFPLat5, WriteFPMAC64, ReadFPMUL, ReadFPMUL, ReadFPMUL], (instregex "VN?ML(A|S)D$")>; // Single-precision fused MACs look like latency 4 with advance of 2. def M85ReadFPMAC2 : SchedReadAdvance<2>; def : InstRW<[M85OverrideVFPLat4, WriteFPMAC32, M85ReadFPMAC2, ReadFPMUL, ReadFPMUL], (instregex "VF(N)?M(A|S)(H|S)$")>; // Double-precision fused MAC looks like latency 4. def : InstRW<[M85OverrideVFPLat4, WriteFPMAC64, ReadFPMUL, ReadFPMUL, ReadFPMUL], (instregex "VF(N)?M(A|S)D$")>; // MVE beatwise instructions // NOTE: Q-register timing for the 2nd beat is off by a cycle and needs // DAG overrides to correctly set latencies. // NOTE2: MVE integer MAC->MAC accumulate latencies are set as if the // accumulate value arrives from an unmatching MAC instruction; // matching ones are handled via DAG mutation. These are marked as // "limited accumulate bypass" let Latency = 4, EndGroup = 1 in { def M85GrpALat2MveR : SchedWriteRes<[M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> { let ReleaseAtCycles = [2,2,1,1,1]; } def M85GrpABLat2MveR : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>; def M85GrpBLat2MveR : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> { let ReleaseAtCycles = [2,2,1,1,1]; } def M85Lat2MveR : SchedWriteRes<[]> { let NumMicroOps = 0; } def M85GrpBLat4Mve : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> { let ReleaseAtCycles = [2,2,1,1,1]; } } let Latency = 3, EndGroup = 1 in { def M85GrpBLat3Mve : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> { let ReleaseAtCycles = [2,2,1,1,1]; } def M85GrpBLat1MveR : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> { let ReleaseAtCycles = [2,2,1,1,1]; } def M85Lat1MveR : SchedWriteRes<[]> { let NumMicroOps = 0; } } let Latency = 2, EndGroup = 1 in { def M85GrpALat2Mve : SchedWriteRes<[M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> { let ReleaseAtCycles = [2,2,1,1,1]; } def M85GrpABLat2Mve : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>; def M85GrpBLat2Mve : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> { let ReleaseAtCycles = [2,2,1,1,1]; } def M85Lat2Mve : SchedWriteRes<[]> { let NumMicroOps = 0; } } let Latency = 1, EndGroup = 1 in { def M85GrpALat1Mve : SchedWriteRes<[M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> { let ReleaseAtCycles = [2,2,1,1,1]; } def M85GrpABLat1Mve : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>; def M85GrpBLat1Mve : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> { let ReleaseAtCycles = [2,2,1,1,1]; } def M85GrpCLat1Mve : SchedWriteRes<[M85UnitVFPCL, M85UnitVFPCH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> { let ReleaseAtCycles = [2,2,1,1,1]; } def M85GrpDLat1Mve : SchedWriteRes<[M85UnitVFPD, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> { let ReleaseAtCycles = [2,1,1,1]; } } def : InstRW<[M85GrpABLat1Mve, M85Read_EX1, M85Read_EX2, M85Read_EX2], (instregex "MVE_VMOV_q_rr")>; def : InstRW<[M85GrpABLat1Mve, M85Read_EX2], (instregex "MVE_VMOV_to_lane_(8|16|32)")>; def : InstRW<[M85GrpABLat1Mve], (instregex "MVE_VAND$", "MVE_VBIC$", "MVE_VBICimm", "MVE_VCLSs(8|16|32)", "MVE_VCLZs(8|16|32)", "MVE_VEOR", "MVE_VMOVimmf32", "MVE_VMOVimmi(8|16|32|64)", "MVE_VMVN$", "MVE_VMVNimmi(16|32)", "MVE_VORN$", "MVE_VORR$", "MVE_VORRimm", "MQPRCopy", "MVE_VPSEL", "MVE_VREV(16|32|64)_(8|16|32)" )>; def : InstRW<[M85GrpABLat2MveR, M85Lat2MveR], (instregex "MVE_VMOV_rr_q")>; def : InstRW<[M85GrpABLat2MveR], (instregex "MVE_VMOV_from_lane_(32|u8|s8|u16|s16)")>; def : InstRW<[M85GrpALat1Mve, M85Lat1MveR, M85Read_EX1, M85Read_EX1, M85Read_EX2], (instregex "MVE_VADC$")>; def : InstRW<[M85GrpALat1Mve, M85Lat1MveR], (instregex "MVE_VADCI")>; def : InstRW<[M85GrpALat1Mve, M85Read_EX1, M85Read_EX2], (instregex "MVE_VADD_qr_i(8|16|32)", "MVE_VBRSR(16|32|8)", "MVE_VHADD_qr_[su](8|16|32)", "MVE_VHSUB_qr_[su](8|16|32)", "MVE_VQADD_qr_[su](8|16|32)", "MVE_VQSUB_qr_[su](8|16|32)", "MVE_VSHL_qr[su](8|16|32)", "MVE_VSUB_qr_i(8|16|32)" )>; def : InstRW<[M85GrpALat1Mve], (instregex "MVE_VABD(s|u)(8|16|32)", "MVE_VABS(s|u)(8|16|32)", "MVE_V(MAX|MIN)A?[us](8|16|32)", "MVE_VADDi(8|16|32)", "MVE_VCADDi(8|16|32)", "MVE_VHCADDs(8|16|32)", "MVE_VHSUB[su](8|16|32)", "MVE_VMOVL[su](8|16)[tb]h", "MVE_VMOVNi(16|32)[tb]h", "MVE_VMULL[BT]?[p](8|16|32)(bh|th)?", "MVE_VNEGs(8|16|32)", "MVE_VQABSs(8|16|32)", "MVE_VQADD[su](8|16|32)", "MVE_VQNEGs(8|16|32)", "MVE_VQSUB[su](8|16|32)", "MVE_VR?HADD[su](8|16|32)", "MVE_VSBC$", "MVE_VSBCI", "MVE_VSHL_by_vec[su](8|16|32)", "MVE_VSHL_immi(8|16|32)", "MVE_VSHLL_imm[su](8|16)[bt]h", "MVE_VSHLL_lw[su](8|16)[bt]h", "MVE_VSHRNi(16|32)[bt]h", "MVE_VSHR_imm[su](8|16|32)", "MVE_VSLIimm[su]?(8|16|32)", "MVE_VSRIimm[su]?(8|16|32)", "MVE_VSUBi(8|16|32)" )>; def : InstRW<[M85GrpALat2Mve, M85Lat2MveR, M85Read_EX2, M85Read_EX2], (instregex "MVE_V(D|I)WDUPu(8|16|32)")>; def : InstRW<[M85GrpALat2Mve, M85Lat2MveR, M85Read_EX2], (instregex "MVE_V(D|I)DUPu(8|16|32)")>; def : InstRW<[M85GrpALat2Mve, M85Read_EX1, M85Read_EX2], (instregex "MVE_V(Q|R|QR)SHL_qr[su](8|16|32)", "MVE_VADD_qr_f(16|32)", "MVE_VSUB_qr_f(16|32)" )>; def : InstRW<[M85GrpALat1Mve, M85Read_EX2], (instregex "MVE_VDUP(8|16|32)")>; def : InstRW<[M85GrpBLat1Mve], (instregex "MVE_VABSf(16|32)", "MVE_V(MAX|MIN)NMA?f(16|32)", "MVE_VNEGf(16|32)" )>; def : InstRW<[M85GrpBLat2MveR, M85Lat2MveR, M85Read_EX3, M85Read_EX3], (instregex "MVE_VADDLV[us]32acc")>; def : InstRW<[M85GrpBLat2MveR, M85Lat2MveR], (instregex "MVE_VADDLV[us]32no_acc")>; def : InstRW<[M85GrpBLat2MveR, M85Read_EX3], (instregex "MVE_VADDV[us](8|16|32)acc" )>; def : InstRW<[M85GrpALat2MveR, M85Read_EX3], (instregex "MVE_V(MAX|MIN)A?V[us](8|16|32)", "MVE_VABAV(s|u)(8|16|32)" )>; def : InstRW<[M85GrpALat2MveR], (instregex "MVE_VADDV[us](8|16|32)no_acc")>; def : InstRW<[M85GrpALat2Mve], (instregex "MVE_V(Q|R|QR)SHL_by_vec[su](8|16|32)", "MVE_VABDf(16|32)", "MVE_VADDf(16|32)", "MVE_VCADDf(16|32)", "MVE_VQMOVU?N[su](8|16|32)[tb]h", "MVE_VQR?SHL(U_)?imm[su](8|16|32)", "MVE_VQR?SHRN[bt]h[su](16|32)", "MVE_VQR?SHRUNs(16|32)[bt]h", "MVE_VRSHR_imm[su](8|16|32)", "MVE_VRSHRNi(16|32)[bt]h", "MVE_VSUBf(16|32)" )>; def : InstRW<[M85GrpBLat2MveR, M85Read_EX2], (instregex "MVE_V(MAX|MIN)NMA?Vf(16|32)")>; def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX2], (instregex "MVE_VMUL_qr_i(8|16|32)")>; def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX2], (instregex "MVE_VQDMULL_qr_s(16|32)[tb]h")>; def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX2], (instregex "MVE_VQR?DMULH_qr_s(8|16|32)")>; def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX1, M85Read_EX3], // limited accumulate bypass (instregex "MVE_VMLAS?_qr_i(8|16|32)")>; def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX1, M85Read_EX2], // limited accumulate bypass (instregex "MVE_VQR?DMLAS?H_qrs(8|16|32)")>; def : InstRW<[M85GrpBLat2Mve], // limited accumulate bypass (instregex "MVE_VQR?DML[AS]DHX?s(8|16|32)")>; def : InstRW<[M85GrpBLat2MveR, M85Lat2MveR, M85Read_EX3, M85Read_EX3], (instregex "MVE_VR?ML[AS]LDAVH?ax?[su](8|16|32)")>; def : InstRW<[M85GrpBLat2MveR, M85Lat2MveR], (instregex "MVE_VR?ML[AS]LDAVH?x?[su](8|16|32)")>; def : InstRW<[M85GrpBLat2MveR, M85Read_EX3], (instregex "MVE_VML[AS]DAVax?[su](8|16|32)")>; def : InstRW<[M85GrpBLat2MveR], (instregex "MVE_VML[AS]DAVx?[su](8|16|32)")>; def : InstRW<[M85GrpBLat2Mve], (instregex "MVE_VCVTf16(u|s)16", "MVE_VCVTf32(u|s)32", "MVE_VCVT(u|s)16f16", "MVE_VCVT(u|s)32f32", "MVE_VCVTf16f32", "MVE_VCVTf32f16", "MVE_VMULL[BT]?[su](8|16|32)(bh|th)?", "MVE_VMUL(t1)*i(8|16|32)", "MVE_VQDMULLs(16|32)[tb]h", "MVE_VQR?DMULHi(8|16|32)", "MVE_VR?MULH[su](8|16|32)", "MVE_VRINTf(16|32)" )>; def : InstRW<[M85GrpBLat3Mve, M85Read_EX1, M85Read_EX2], (instregex "MVE_VMUL_qr_f(16|32)")>; def : InstRW<[M85GrpBLat3Mve], (instregex "MVE_VCMULf(16|32)", "MVE_VMULf(16|32)" )>; def : InstRW<[M85GrpBLat4Mve, M85Read_EX3, M85Read_EX1, M85Read_EX2], (instregex "MVE_VFMA_qr_Sf(16|32)", // VFMAS "MVE_VFMA_qr_f(16|32)" // VFMA )>; def : InstRW<[M85GrpBLat4Mve, M85Read_EX3], (instregex "MVE_VCMLAf(16|32)")>; def : InstRW<[M85GrpBLat4Mve, M85Read_EX3], (instregex "MVE_VFM(A|S)f(16|32)")>; def : InstRW<[M85GrpCLat1Mve, M85Read_EX1, M85Read_EX1, M85Read_EX2], (instregex "MVE_VPTv(4|8)f(16|32)r")>; def : InstRW<[M85GrpCLat1Mve, M85Read_EX1, M85Read_EX1, M85Read_EX2], (instregex "MVE_VPTv(4|8|16)(i|s|u)(8|16|32)r")>; def : InstRW<[M85GrpCLat1Mve, M85Read_EX1, M85Read_EX2], (instregex "MVE_VCMP[isu](8|16|32)r$", "MVE_VCMPf(16|32)r$")>; def : InstRW<[M85GrpDLat1Mve, M85Read_EX2], (instregex "MVE_VCTP(8|16|32|64)")>; def : InstRW<[M85GrpCLat1Mve], (instregex "MVE_VCMPf(16|32)$", "MVE_VCMP[isu](8|16|32)$", "MVE_VPTv(4|8)f(16|32)$", "MVE_VPTv(4|8|16)(i|s|u)(8|16|32)$" )>; def : InstRW<[M85GrpDLat1Mve], (instregex "MVE_VPNOT", "MVE_VPST" )>; def : InstRW<[M85Lat2MveR, M85GrpALat2Mve, M85Read_EX1, M85Read_EX2], (instregex "MVE_VSHLC")>; // VFP instructions def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; } // SchedModel = CortexCortexM85Model