//===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// Finalize v8.1-m low-overhead loops by converting the associated pseudo /// instructions into machine operations. /// The expectation is that the loop contains three pseudo instructions: /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop /// form should be in the preheader, whereas the while form should be in the /// preheaders only predecessor. /// - t2LoopDec - placed within in the loop body. /// - t2LoopEnd - the loop latch terminator. /// /// In addition to this, we also look for the presence of the VCTP instruction, /// which determines whether we can generated the tail-predicated low-overhead /// loop form. /// /// Assumptions and Dependencies: /// Low-overhead loops are constructed and executed using a setup instruction: /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range /// but fixed polarity: WLS can only branch forwards and LE can only branch /// backwards. These restrictions mean that this pass is dependent upon block /// layout and block sizes, which is why it's the last pass to run. The same is /// true for ConstantIslands, but this pass does not increase the size of the /// basic blocks, nor does it change the CFG. Instructions are mainly removed /// during the transform and pseudo instructions are replaced by real ones. In /// some cases, when we have to revert to a 'normal' loop, we have to introduce /// multiple instructions for a single pseudo (see RevertWhile and /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd /// are defined to be as large as this maximum sequence of replacement /// instructions. /// //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMBaseInstrInfo.h" #include "ARMBaseRegisterInfo.h" #include "ARMBasicBlockInfo.h" #include "ARMSubtarget.h" #include "Thumb2InstrInfo.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/SmallSet.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineLoopUtils.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/ReachingDefAnalysis.h" #include "llvm/MC/MCInstrDesc.h" using namespace llvm; #define DEBUG_TYPE "arm-low-overhead-loops" #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" namespace { struct PredicatedMI { MachineInstr *MI = nullptr; SetVector Predicates; public: PredicatedMI(MachineInstr *I, SetVector &Preds) : MI(I) { Predicates.insert(Preds.begin(), Preds.end()); } }; // Represent a VPT block, a list of instructions that begins with a VPST and // has a maximum of four proceeding instructions. All instructions within the // block are predicated upon the vpr and we allow instructions to define the // vpr within in the block too. class VPTBlock { std::unique_ptr VPST; PredicatedMI *Divergent = nullptr; SmallVector Insts; public: VPTBlock(MachineInstr *MI, SetVector &Preds) { VPST = std::make_unique(MI, Preds); } void addInst(MachineInstr *MI, SetVector &Preds) { LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI); if (!Divergent && !set_difference(Preds, VPST->Predicates).empty()) { Divergent = &Insts.back(); LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI); } Insts.emplace_back(MI, Preds); assert(Insts.size() <= 4 && "Too many instructions in VPT block!"); } // Have we found an instruction within the block which defines the vpr? If // so, not all the instructions in the block will have the same predicate. bool HasNonUniformPredicate() const { return Divergent != nullptr; } // Is the given instruction part of the predicate set controlling the entry // to the block. bool IsPredicatedOn(MachineInstr *MI) const { return VPST->Predicates.count(MI); } // Is the given instruction the only predicate which controls the entry to // the block. bool IsOnlyPredicatedOn(MachineInstr *MI) const { return IsPredicatedOn(MI) && VPST->Predicates.size() == 1; } unsigned size() const { return Insts.size(); } SmallVectorImpl &getInsts() { return Insts; } MachineInstr *getVPST() const { return VPST->MI; } PredicatedMI *getDivergent() const { return Divergent; } }; struct LowOverheadLoop { MachineLoop *ML = nullptr; MachineFunction *MF = nullptr; MachineInstr *InsertPt = nullptr; MachineInstr *Start = nullptr; MachineInstr *Dec = nullptr; MachineInstr *End = nullptr; MachineInstr *VCTP = nullptr; VPTBlock *CurrentBlock = nullptr; SetVector CurrentPredicate; SmallVector VPTBlocks; bool Revert = false; bool CannotTailPredicate = false; LowOverheadLoop(MachineLoop *ML) : ML(ML) { MF = ML->getHeader()->getParent(); } // If this is an MVE instruction, check that we know how to use tail // predication with it. Record VPT blocks and return whether the // instruction is valid for tail predication. bool ValidateMVEInst(MachineInstr *MI); void AnalyseMVEInst(MachineInstr *MI) { CannotTailPredicate = !ValidateMVEInst(MI); } bool IsTailPredicationLegal() const { // For now, let's keep things really simple and only support a single // block for tail predication. return !Revert && FoundAllComponents() && VCTP && !CannotTailPredicate && ML->getNumBlocks() == 1; } bool ValidateTailPredicate(MachineInstr *StartInsertPt, ReachingDefAnalysis *RDA, MachineLoopInfo *MLI); // Is it safe to define LR with DLS/WLS? // LR can be defined if it is the operand to start, because it's the same // value, or if it's going to be equivalent to the operand to Start. MachineInstr *IsSafeToDefineLR(ReachingDefAnalysis *RDA); // Check the branch targets are within range and we satisfy our // restrictions. void CheckLegality(ARMBasicBlockUtils *BBUtils, ReachingDefAnalysis *RDA, MachineLoopInfo *MLI); bool FoundAllComponents() const { return Start && Dec && End; } SmallVectorImpl &getVPTBlocks() { return VPTBlocks; } // Return the loop iteration count, or the number of elements if we're tail // predicating. MachineOperand &getCount() { return IsTailPredicationLegal() ? VCTP->getOperand(1) : Start->getOperand(0); } unsigned getStartOpcode() const { bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; if (!IsTailPredicationLegal()) return IsDo ? ARM::t2DLS : ARM::t2WLS; return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo); } void dump() const { if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP; if (!FoundAllComponents()) dbgs() << "ARM Loops: Not a low-overhead loop.\n"; else if (!(Start && Dec && End)) dbgs() << "ARM Loops: Failed to find all loop components.\n"; } }; class ARMLowOverheadLoops : public MachineFunctionPass { MachineFunction *MF = nullptr; MachineLoopInfo *MLI = nullptr; ReachingDefAnalysis *RDA = nullptr; const ARMBaseInstrInfo *TII = nullptr; MachineRegisterInfo *MRI = nullptr; const TargetRegisterInfo *TRI = nullptr; std::unique_ptr BBUtils = nullptr; public: static char ID; ARMLowOverheadLoops() : MachineFunctionPass(ID) { } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs).set( MachineFunctionProperties::Property::TracksLiveness); } StringRef getPassName() const override { return ARM_LOW_OVERHEAD_LOOPS_NAME; } private: bool ProcessLoop(MachineLoop *ML); bool RevertNonLoops(); void RevertWhile(MachineInstr *MI) const; bool RevertLoopDec(MachineInstr *MI, bool AllowFlags = false) const; void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; void RemoveLoopUpdate(LowOverheadLoop &LoLoop); void ConvertVPTBlocks(LowOverheadLoop &LoLoop); MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); void Expand(LowOverheadLoop &LoLoop); }; } char ARMLowOverheadLoops::ID = 0; INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, false, false) MachineInstr *LowOverheadLoop::IsSafeToDefineLR(ReachingDefAnalysis *RDA) { // We can define LR because LR already contains the same value. if (Start->getOperand(0).getReg() == ARM::LR) return Start; unsigned CountReg = Start->getOperand(0).getReg(); auto IsMoveLR = [&CountReg](MachineInstr *MI) { return MI->getOpcode() == ARM::tMOVr && MI->getOperand(0).getReg() == ARM::LR && MI->getOperand(1).getReg() == CountReg && MI->getOperand(2).getImm() == ARMCC::AL; }; MachineBasicBlock *MBB = Start->getParent(); // Find an insertion point: // - Is there a (mov lr, Count) before Start? If so, and nothing else writes // to Count before Start, we can insert at that mov. if (auto *LRDef = RDA->getReachingMIDef(Start, ARM::LR)) if (IsMoveLR(LRDef) && RDA->hasSameReachingDef(Start, LRDef, CountReg)) return LRDef; // - Is there a (mov lr, Count) after Start? If so, and nothing else writes // to Count after Start, we can insert at that mov. if (auto *LRDef = RDA->getLocalLiveOutMIDef(MBB, ARM::LR)) if (IsMoveLR(LRDef) && RDA->hasSameReachingDef(Start, LRDef, CountReg)) return LRDef; // We've found no suitable LR def and Start doesn't use LR directly. Can we // just define LR anyway? if (!RDA->isRegUsedAfter(Start, ARM::LR)) return Start; return nullptr; } // Can we safely move 'From' to just before 'To'? To satisfy this, 'From' must // not define a register that is used by any instructions, after and including, // 'To'. These instructions also must not redefine any of Froms operands. template static bool IsSafeToMove(MachineInstr *From, MachineInstr *To, ReachingDefAnalysis *RDA) { SmallSet Defs; // First check that From would compute the same value if moved. for (auto &MO : From->operands()) { if (!MO.isReg() || MO.isUndef() || !MO.getReg()) continue; if (MO.isDef()) Defs.insert(MO.getReg()); else if (!RDA->hasSameReachingDef(From, To, MO.getReg())) return false; } // Now walk checking that the rest of the instructions will compute the same // value. for (auto I = ++Iterator(From), E = Iterator(To); I != E; ++I) { for (auto &MO : I->operands()) if (MO.isReg() && MO.getReg() && MO.isUse() && Defs.count(MO.getReg())) return false; } return true; } bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt, ReachingDefAnalysis *RDA, MachineLoopInfo *MLI) { assert(VCTP && "VCTP instruction expected but is not set"); // All predication within the loop should be based on vctp. If the block // isn't predicated on entry, check whether the vctp is within the block // and that all other instructions are then predicated on it. for (auto &Block : VPTBlocks) { if (Block.IsPredicatedOn(VCTP)) continue; if (!Block.HasNonUniformPredicate() || !isVCTP(Block.getDivergent()->MI)) { LLVM_DEBUG(dbgs() << "ARM Loops: Found unsupported diverging predicate: " << *Block.getDivergent()->MI); return false; } SmallVectorImpl &Insts = Block.getInsts(); for (auto &PredMI : Insts) { if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI)) continue; LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI << " - which is predicated on:\n"; for (auto *MI : PredMI.Predicates) dbgs() << " - " << *MI; ); return false; } } // For tail predication, we need to provide the number of elements, instead // of the iteration count, to the loop start instruction. The number of // elements is provided to the vctp instruction, so we need to check that // we can use this register at InsertPt. Register NumElements = VCTP->getOperand(1).getReg(); // If the register is defined within loop, then we can't perform TP. // TODO: Check whether this is just a mov of a register that would be // available. if (RDA->getReachingDef(VCTP, NumElements) >= 0) { LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); return false; } // The element count register maybe defined after InsertPt, in which case we // need to try to move either InsertPt or the def so that the [w|d]lstp can // use the value. MachineBasicBlock *InsertBB = InsertPt->getParent(); if (!RDA->isReachingDefLiveOut(InsertPt, NumElements)) { if (auto *ElemDef = RDA->getLocalLiveOutMIDef(InsertBB, NumElements)) { if (IsSafeToMove(ElemDef, InsertPt, RDA)) { ElemDef->removeFromParent(); InsertBB->insert(MachineBasicBlock::iterator(InsertPt), ElemDef); LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " << *ElemDef); } else if (IsSafeToMove(InsertPt, ElemDef, RDA)) { InsertPt->removeFromParent(); InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), InsertPt); LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); } else { LLVM_DEBUG(dbgs() << "ARM Loops: Unable to move element count to loop " << "start instruction.\n"); return false; } } } // Especially in the case of while loops, InsertBB may not be the // preheader, so we need to check that the register isn't redefined // before entering the loop. auto CannotProvideElements = [&RDA](MachineBasicBlock *MBB, Register NumElements) { // NumElements is redefined in this block. if (RDA->getReachingDef(&MBB->back(), NumElements) >= 0) return true; // Don't continue searching up through multiple predecessors. if (MBB->pred_size() > 1) return true; return false; }; // First, find the block that looks like the preheader. MachineBasicBlock *MBB = MLI->findLoopPreheader(ML, true); if (!MBB) { LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n"); return false; } // Then search backwards for a def, until we get to InsertBB. while (MBB != InsertBB) { if (CannotProvideElements(MBB, NumElements)) { LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); return false; } MBB = *MBB->pred_begin(); } LLVM_DEBUG(dbgs() << "ARM Loops: Will use tail predication.\n"); return true; } void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils, ReachingDefAnalysis *RDA, MachineLoopInfo *MLI) { if (Revert) return; if (!End->getOperand(1).isMBB()) report_fatal_error("Expected LoopEnd to target basic block"); // TODO Maybe there's cases where the target doesn't have to be the header, // but for now be safe and revert. if (End->getOperand(1).getMBB() != ML->getHeader()) { LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n"); Revert = true; return; } // The WLS and LE instructions have 12-bits for the label offset. WLS // requires a positive offset, while LE uses negative. if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML->getHeader()) || !BBUtils->isBBInRange(End, ML->getHeader(), 4094)) { LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); Revert = true; return; } if (Start->getOpcode() == ARM::t2WhileLoopStart && (BBUtils->getOffsetOf(Start) > BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); Revert = true; return; } InsertPt = Revert ? nullptr : IsSafeToDefineLR(RDA); if (!InsertPt) { LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); Revert = true; return; } else LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt); if (!IsTailPredicationLegal()) { LLVM_DEBUG(if (!VCTP) dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; dbgs() << "ARM Loops: Tail-predication is not valid.\n"); return; } assert(ML->getBlocks().size() == 1 && "Shouldn't be processing a loop with more than one block"); CannotTailPredicate = !ValidateTailPredicate(InsertPt, RDA, MLI); LLVM_DEBUG(if (CannotTailPredicate) dbgs() << "ARM Loops: Couldn't validate tail predicate.\n"); } bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { if (CannotTailPredicate) return false; // Only support a single vctp. if (isVCTP(MI) && VCTP) return false; // Start a new vpt block when we discover a vpt. if (MI->getOpcode() == ARM::MVE_VPST) { VPTBlocks.emplace_back(MI, CurrentPredicate); CurrentBlock = &VPTBlocks.back(); return true; } else if (isVCTP(MI)) VCTP = MI; else if (MI->getOpcode() == ARM::MVE_VPSEL || MI->getOpcode() == ARM::MVE_VPNOT) return false; // TODO: Allow VPSEL and VPNOT, we currently cannot because: // 1) It will use the VPR as a predicate operand, but doesn't have to be // instead a VPT block, which means we can assert while building up // the VPT block because we don't find another VPST to being a new // one. // 2) VPSEL still requires a VPR operand even after tail predicating, // which means we can't remove it unless there is another // instruction, such as vcmp, that can provide the VPR def. bool IsUse = false; bool IsDef = false; const MCInstrDesc &MCID = MI->getDesc(); for (int i = MI->getNumOperands() - 1; i >= 0; --i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || MO.getReg() != ARM::VPR) continue; if (MO.isDef()) { CurrentPredicate.insert(MI); IsDef = true; } else if (ARM::isVpred(MCID.OpInfo[i].OperandType)) { CurrentBlock->addInst(MI, CurrentPredicate); IsUse = true; } else { LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); return false; } } // If we find a vpr def that is not already predicated on the vctp, we've // got disjoint predicates that may not be equivalent when we do the // conversion. if (IsDef && !IsUse && VCTP && !isVCTP(MI)) { LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI); return false; } uint64_t Flags = MCID.TSFlags; if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) return true; // If we find an instruction that has been marked as not valid for tail // predication, only allow the instruction if it's contained within a valid // VPT block. if ((Flags & ARMII::ValidForTailPredication) == 0 && !IsUse) { LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI); return false; } return true; } bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { const ARMSubtarget &ST = static_cast(mf.getSubtarget()); if (!ST.hasLOB()) return false; MF = &mf; LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); MLI = &getAnalysis(); RDA = &getAnalysis(); MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); MRI = &MF->getRegInfo(); TII = static_cast(ST.getInstrInfo()); TRI = ST.getRegisterInfo(); BBUtils = std::unique_ptr(new ARMBasicBlockUtils(*MF)); BBUtils->computeAllBlockSizes(); BBUtils->adjustBBOffsetsAfter(&MF->front()); bool Changed = false; for (auto ML : *MLI) { if (!ML->getParentLoop()) Changed |= ProcessLoop(ML); } Changed |= RevertNonLoops(); return Changed; } bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { bool Changed = false; // Process inner loops first. for (auto I = ML->begin(), E = ML->end(); I != E; ++I) Changed |= ProcessLoop(*I); LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; if (auto *Preheader = ML->getLoopPreheader()) dbgs() << " - " << Preheader->getName() << "\n"; else if (auto *Preheader = MLI->findLoopPreheader(ML)) dbgs() << " - " << Preheader->getName() << "\n"; for (auto *MBB : ML->getBlocks()) dbgs() << " - " << MBB->getName() << "\n"; ); // Search the given block for a loop start instruction. If one isn't found, // and there's only one predecessor block, search that one too. std::function SearchForStart = [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { for (auto &MI : *MBB) { if (isLoopStart(MI)) return &MI; } if (MBB->pred_size() == 1) return SearchForStart(*MBB->pred_begin()); return nullptr; }; LowOverheadLoop LoLoop(ML); // Search the preheader for the start intrinsic. // FIXME: I don't see why we shouldn't be supporting multiple predecessors // with potentially multiple set.loop.iterations, so we need to enable this. if (auto *Preheader = ML->getLoopPreheader()) LoLoop.Start = SearchForStart(Preheader); else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) LoLoop.Start = SearchForStart(Preheader); else return false; // Find the low-overhead loop components and decide whether or not to fall // back to a normal loop. Also look for a vctp instructions and decide // whether we can convert that predicate using tail predication. for (auto *MBB : reverse(ML->getBlocks())) { for (auto &MI : *MBB) { if (MI.getOpcode() == ARM::t2LoopDec) LoLoop.Dec = &MI; else if (MI.getOpcode() == ARM::t2LoopEnd) LoLoop.End = &MI; else if (isLoopStart(MI)) LoLoop.Start = &MI; else if (MI.getDesc().isCall()) { // TODO: Though the call will require LE to execute again, does this // mean we should revert? Always executing LE hopefully should be // faster than performing a sub,cmp,br or even subs,br. LoLoop.Revert = true; LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); } else { // Record VPR defs and build up their corresponding vpt blocks. // Check we know how to tail predicate any mve instructions. LoLoop.AnalyseMVEInst(&MI); } // We need to ensure that LR is not used or defined inbetween LoopDec and // LoopEnd. if (!LoLoop.Dec || LoLoop.End || LoLoop.Revert) continue; // If we find that LR has been written or read between LoopDec and // LoopEnd, expect that the decremented value is being used else where. // Because this value isn't actually going to be produced until the // latch, by LE, we would need to generate a real sub. The value is also // likely to be copied/reloaded for use of LoopEnd - in which in case // we'd need to perform an add because it gets subtracted again by LE! // The other option is to then generate the other form of LE which doesn't // perform the sub. for (auto &MO : MI.operands()) { if (MI.getOpcode() != ARM::t2LoopDec && MO.isReg() && MO.getReg() == ARM::LR) { LLVM_DEBUG(dbgs() << "ARM Loops: Found LR Use/Def: " << MI); LoLoop.Revert = true; break; } } } } LLVM_DEBUG(LoLoop.dump()); if (!LoLoop.FoundAllComponents()) { LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); return false; } LoLoop.CheckLegality(BBUtils.get(), RDA, MLI); Expand(LoLoop); return true; } // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a // beq that branches to the exit branch. // TODO: We could also try to generate a cbz if the value in LR is also in // another low register. void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); MachineBasicBlock *MBB = MI->getParent(); MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2CMPri)); MIB.add(MI->getOperand(0)); MIB.addImm(0); MIB.addImm(ARMCC::AL); MIB.addReg(ARM::NoRegister); MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc; MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); MIB.add(MI->getOperand(1)); // branch target MIB.addImm(ARMCC::EQ); // condition code MIB.addReg(ARM::CPSR); MI->eraseFromParent(); } bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI, bool SetFlags) const { LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); MachineBasicBlock *MBB = MI->getParent(); // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. if (SetFlags && (RDA->isRegUsedAfter(MI, ARM::CPSR) || !RDA->hasSameReachingDef(MI, &MBB->back(), ARM::CPSR))) SetFlags = false; MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri)); MIB.addDef(ARM::LR); MIB.add(MI->getOperand(1)); MIB.add(MI->getOperand(2)); MIB.addImm(ARMCC::AL); MIB.addReg(0); if (SetFlags) { MIB.addReg(ARM::CPSR); MIB->getOperand(5).setIsDef(true); } else MIB.addReg(0); MI->eraseFromParent(); return SetFlags; } // Generate a subs, or sub and cmp, and a branch instead of an LE. void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); MachineBasicBlock *MBB = MI->getParent(); // Create cmp if (!SkipCmp) { MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2CMPri)); MIB.addReg(ARM::LR); MIB.addImm(0); MIB.addImm(ARMCC::AL); MIB.addReg(ARM::NoRegister); } MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc; // Create bne MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); MIB.add(MI->getOperand(1)); // branch target MIB.addImm(ARMCC::NE); // condition code MIB.addReg(ARM::CPSR); MI->eraseFromParent(); } MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { MachineInstr *InsertPt = LoLoop.InsertPt; MachineInstr *Start = LoLoop.Start; MachineBasicBlock *MBB = InsertPt->getParent(); bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; unsigned Opc = LoLoop.getStartOpcode(); MachineOperand &Count = LoLoop.getCount(); MachineInstrBuilder MIB = BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc)); MIB.addDef(ARM::LR); MIB.add(Count); if (!IsDo) MIB.add(Start->getOperand(1)); // When using tail-predication, try to delete the dead code that was used to // calculate the number of loop iterations. if (LoLoop.IsTailPredicationLegal()) { SmallVector Killed; SmallVector Dead; if (auto *Def = RDA->getReachingMIDef(Start, Start->getOperand(0).getReg())) { Killed.push_back(Def); while (!Killed.empty()) { MachineInstr *Def = Killed.back(); Killed.pop_back(); Dead.push_back(Def); for (auto &MO : Def->operands()) { if (!MO.isReg() || !MO.isKill()) continue; MachineInstr *Kill = RDA->getReachingMIDef(Def, MO.getReg()); if (Kill && RDA->getNumUses(Kill, MO.getReg()) == 1) Killed.push_back(Kill); } } for (auto *MI : Dead) MI->eraseFromParent(); } } // If we're inserting at a mov lr, then remove it as it's redundant. if (InsertPt != Start) InsertPt->eraseFromParent(); Start->eraseFromParent(); LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); return &*MIB; } // Goal is to optimise and clean-up these loops: // // vector.body: // renamable $vpr = MVE_VCTP32 renamable $r3, 0, $noreg // renamable $r3, dead $cpsr = tSUBi8 killed renamable $r3(tied-def 0), 4 // .. // $lr = MVE_DLSTP_32 renamable $r3 // // The SUB is the old update of the loop iteration count expression, which // is no longer needed. This sub is removed when the element count, which is in // r3 in this example, is defined by an instruction in the loop, and it has // no uses. // void ARMLowOverheadLoops::RemoveLoopUpdate(LowOverheadLoop &LoLoop) { Register ElemCount = LoLoop.VCTP->getOperand(1).getReg(); MachineInstr *LastInstrInBlock = &LoLoop.VCTP->getParent()->back(); LLVM_DEBUG(dbgs() << "ARM Loops: Trying to remove loop update stmt\n"); if (LoLoop.ML->getNumBlocks() != 1) { LLVM_DEBUG(dbgs() << "ARM Loops: Single block loop expected\n"); return; } LLVM_DEBUG(dbgs() << "ARM Loops: Analyzing elemcount in operand: "; LoLoop.VCTP->getOperand(1).dump()); // Find the definition we are interested in removing, if there is one. MachineInstr *Def = RDA->getReachingMIDef(LastInstrInBlock, ElemCount); if (!Def) { LLVM_DEBUG(dbgs() << "ARM Loops: Can't find a def, nothing to do.\n"); return; } // Bail if we define CPSR and it is not dead if (!Def->registerDefIsDead(ARM::CPSR, TRI)) { LLVM_DEBUG(dbgs() << "ARM Loops: CPSR is not dead\n"); return; } // Bail if elemcount is used in exit blocks, i.e. if it is live-in. if (isRegLiveInExitBlocks(LoLoop.ML, ElemCount)) { LLVM_DEBUG(dbgs() << "ARM Loops: Elemcount is live-out, can't remove stmt\n"); return; } // Bail if there are uses after this Def in the block. SmallVector Uses; RDA->getReachingLocalUses(Def, ElemCount, Uses); if (Uses.size()) { LLVM_DEBUG(dbgs() << "ARM Loops: Local uses in block, can't remove stmt\n"); return; } Uses.clear(); RDA->getAllInstWithUseBefore(Def, ElemCount, Uses); // Remove Def if there are no uses, or if the only use is the VCTP // instruction. if (!Uses.size() || (Uses.size() == 1 && Uses[0] == LoLoop.VCTP)) { LLVM_DEBUG(dbgs() << "ARM Loops: Removing loop update instruction: "; Def->dump()); Def->eraseFromParent(); return; } LLVM_DEBUG(dbgs() << "ARM Loops: Can't remove loop update, it's used by:\n"; for (auto U : Uses) U->dump()); } void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { auto RemovePredicate = [](MachineInstr *MI) { LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && "Expected Then predicate!"); MI->getOperand(PIdx).setImm(ARMVCC::None); MI->getOperand(PIdx+1).setReg(0); } else llvm_unreachable("trying to unpredicate a non-predicated instruction"); }; // There are a few scenarios which we have to fix up: // 1) A VPT block with is only predicated by the vctp and has no internal vpr // defs. // 2) A VPT block which is only predicated by the vctp but has an internal // vpr def. // 3) A VPT block which is predicated upon the vctp as well as another vpr // def. // 4) A VPT block which is not predicated upon a vctp, but contains it and // all instructions within the block are predicated upon in. for (auto &Block : LoLoop.getVPTBlocks()) { SmallVectorImpl &Insts = Block.getInsts(); if (Block.HasNonUniformPredicate()) { PredicatedMI *Divergent = Block.getDivergent(); if (isVCTP(Divergent->MI)) { // The vctp will be removed, so the size of the vpt block needs to be // modified. uint64_t Size = getARMVPTBlockMask(Block.size() - 1); Block.getVPST()->getOperand(0).setImm(Size); LLVM_DEBUG(dbgs() << "ARM Loops: Modified VPT block mask.\n"); } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { // The VPT block has a non-uniform predicate but it's entry is guarded // only by a vctp, which means we: // - Need to remove the original vpst. // - Then need to unpredicate any following instructions, until // we come across the divergent vpr def. // - Insert a new vpst to predicate the instruction(s) that following // the divergent vpr def. // TODO: We could be producing more VPT blocks than necessary and could // fold the newly created one into a proceeding one. for (auto I = ++MachineBasicBlock::iterator(Block.getVPST()), E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I) RemovePredicate(&*I); unsigned Size = 0; auto E = MachineBasicBlock::reverse_iterator(Divergent->MI); auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI); MachineInstr *InsertAt = nullptr; while (I != E) { InsertAt = &*I; ++Size; ++I; } MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt, InsertAt->getDebugLoc(), TII->get(ARM::MVE_VPST)); MIB.addImm(getARMVPTBlockMask(Size)); LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); Block.getVPST()->eraseFromParent(); } } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { // A vpt block which is only predicated upon vctp and has no internal vpr // defs: // - Remove vpst. // - Unpredicate the remaining instructions. LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); Block.getVPST()->eraseFromParent(); for (auto &PredMI : Insts) RemovePredicate(PredMI.MI); } } LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *LoLoop.VCTP); LoLoop.VCTP->eraseFromParent(); } void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { // Combine the LoopDec and LoopEnd instructions into LE(TP). auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { MachineInstr *End = LoLoop.End; MachineBasicBlock *MBB = End->getParent(); unsigned Opc = LoLoop.IsTailPredicationLegal() ? ARM::MVE_LETP : ARM::t2LEUpdate; MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), TII->get(Opc)); MIB.addDef(ARM::LR); MIB.add(End->getOperand(0)); MIB.add(End->getOperand(1)); LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); LoLoop.End->eraseFromParent(); LoLoop.Dec->eraseFromParent(); return &*MIB; }; // TODO: We should be able to automatically remove these branches before we // get here - probably by teaching analyzeBranch about the pseudo // instructions. // If there is an unconditional branch, after I, that just branches to the // next block, remove it. auto RemoveDeadBranch = [](MachineInstr *I) { MachineBasicBlock *BB = I->getParent(); MachineInstr *Terminator = &BB->instr_back(); if (Terminator->isUnconditionalBranch() && I != Terminator) { MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); if (BB->isLayoutSuccessor(Succ)) { LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); Terminator->eraseFromParent(); } } }; if (LoLoop.Revert) { if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) RevertWhile(LoLoop.Start); else LoLoop.Start->eraseFromParent(); bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec, true); RevertLoopEnd(LoLoop.End, FlagsAlreadySet); } else { LoLoop.Start = ExpandLoopStart(LoLoop); RemoveDeadBranch(LoLoop.Start); LoLoop.End = ExpandLoopEnd(LoLoop); RemoveDeadBranch(LoLoop.End); if (LoLoop.IsTailPredicationLegal()) { RemoveLoopUpdate(LoLoop); ConvertVPTBlocks(LoLoop); } } } bool ARMLowOverheadLoops::RevertNonLoops() { LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); bool Changed = false; for (auto &MBB : *MF) { SmallVector Starts; SmallVector Decs; SmallVector Ends; for (auto &I : MBB) { if (isLoopStart(I)) Starts.push_back(&I); else if (I.getOpcode() == ARM::t2LoopDec) Decs.push_back(&I); else if (I.getOpcode() == ARM::t2LoopEnd) Ends.push_back(&I); } if (Starts.empty() && Decs.empty() && Ends.empty()) continue; Changed = true; for (auto *Start : Starts) { if (Start->getOpcode() == ARM::t2WhileLoopStart) RevertWhile(Start); else Start->eraseFromParent(); } for (auto *Dec : Decs) RevertLoopDec(Dec); for (auto *End : Ends) RevertLoopEnd(End); } return Changed; } FunctionPass *llvm::createARMLowOverheadLoopsPass() { return new ARMLowOverheadLoops(); }