//===-- ARMInstrVFP.td - VFP support for ARM ---------------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the ARM VFP instruction set. // //===----------------------------------------------------------------------===// def SDT_CMPFP0 : SDTypeProfile<0, 1, [SDTCisFP<0>]>; def SDT_VMOVDRR : SDTypeProfile<1, 2, [SDTCisVT<0, f64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; def SDT_VMOVRRD : SDTypeProfile<2, 1, [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>, SDTCisVT<2, f64>]>; def SDT_VMOVSR : SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisVT<1, i32>]>; def arm_fmstat : SDNode<"ARMISD::FMSTAT", SDTNone, [SDNPInGlue, SDNPOutGlue]>; def arm_cmpfp : SDNode<"ARMISD::CMPFP", SDT_ARMCmp, [SDNPOutGlue]>; def arm_cmpfp0 : SDNode<"ARMISD::CMPFPw0", SDT_CMPFP0, [SDNPOutGlue]>; def arm_cmpfpe : SDNode<"ARMISD::CMPFPE", SDT_ARMCmp, [SDNPOutGlue]>; def arm_cmpfpe0: SDNode<"ARMISD::CMPFPEw0",SDT_CMPFP0, [SDNPOutGlue]>; def arm_fmdrr : SDNode<"ARMISD::VMOVDRR", SDT_VMOVDRR>; def arm_fmrrd : SDNode<"ARMISD::VMOVRRD", SDT_VMOVRRD>; def arm_vmovsr : SDNode<"ARMISD::VMOVSR", SDT_VMOVSR>; def SDT_VMOVhr : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, i32>] >; def SDT_VMOVrh : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisFP<1>] >; def arm_vmovhr : SDNode<"ARMISD::VMOVhr", SDT_VMOVhr>; def arm_vmovrh : SDNode<"ARMISD::VMOVrh", SDT_VMOVrh>; //===----------------------------------------------------------------------===// // Operand Definitions. // // 8-bit floating-point immediate encodings. def FPImmOperand : AsmOperandClass { let Name = "FPImm"; let ParserMethod = "parseFPImm"; } def vfp_f16imm : Operand, PatLeaf<(f16 fpimm), [{ return ARM_AM::getFP16Imm(N->getValueAPF()) != -1; }], SDNodeXFormgetValueAPF(); uint32_t enc = ARM_AM::getFP16Imm(InVal); return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i32); }]>> { let PrintMethod = "printFPImmOperand"; let ParserMatchClass = FPImmOperand; } def vfp_f32f16imm_xform : SDNodeXFormgetValueAPF(); uint32_t enc = ARM_AM::getFP32FP16Imm(InVal); return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i32); }]>; def vfp_f32f16imm : PatLeaf<(f32 fpimm), [{ return ARM_AM::getFP32FP16Imm(N->getValueAPF()) != -1; }], vfp_f32f16imm_xform>; def vfp_f32imm_xform : SDNodeXFormgetValueAPF(); uint32_t enc = ARM_AM::getFP32Imm(InVal); return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i32); }]>; def gi_vfp_f32imm : GICustomOperandRenderer<"renderVFPF32Imm">, GISDNodeXFormEquiv; def vfp_f32imm : Operand, PatLeaf<(f32 fpimm), [{ return ARM_AM::getFP32Imm(N->getValueAPF()) != -1; }], vfp_f32imm_xform> { let PrintMethod = "printFPImmOperand"; let ParserMatchClass = FPImmOperand; let GISelPredicateCode = [{ const auto &MO = MI.getOperand(1); if (!MO.isFPImm()) return false; return ARM_AM::getFP32Imm(MO.getFPImm()->getValueAPF()) != -1; }]; } def vfp_f64imm_xform : SDNodeXFormgetValueAPF(); uint32_t enc = ARM_AM::getFP64Imm(InVal); return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i32); }]>; def gi_vfp_f64imm : GICustomOperandRenderer<"renderVFPF64Imm">, GISDNodeXFormEquiv; def vfp_f64imm : Operand, PatLeaf<(f64 fpimm), [{ return ARM_AM::getFP64Imm(N->getValueAPF()) != -1; }], vfp_f64imm_xform> { let PrintMethod = "printFPImmOperand"; let ParserMatchClass = FPImmOperand; let GISelPredicateCode = [{ const auto &MO = MI.getOperand(1); if (!MO.isFPImm()) return false; return ARM_AM::getFP64Imm(MO.getFPImm()->getValueAPF()) != -1; }]; } def alignedload16 : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlign() >= 2; }]>; def alignedload32 : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlign() >= 4; }]>; def alignedstore16 : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast(N)->getAlign() >= 2; }]>; def alignedstore32 : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast(N)->getAlign() >= 4; }]>; // The VCVT to/from fixed-point instructions encode the 'fbits' operand // (the number of fixed bits) differently than it appears in the assembly // source. It's encoded as "Size - fbits" where Size is the size of the // fixed-point representation (32 or 16) and fbits is the value appearing // in the assembly source, an integer in [0,16] or (0,32], depending on size. def fbits32_asm_operand : AsmOperandClass { let Name = "FBits32"; } def fbits32 : Operand { let PrintMethod = "printFBits32"; let ParserMatchClass = fbits32_asm_operand; } def fbits16_asm_operand : AsmOperandClass { let Name = "FBits16"; } def fbits16 : Operand { let PrintMethod = "printFBits16"; let ParserMatchClass = fbits16_asm_operand; } //===----------------------------------------------------------------------===// // Load / store Instructions. // let canFoldAsLoad = 1, isReMaterializable = 1 in { def VLDRD : ADI5<0b1101, 0b01, (outs DPR:$Dd), (ins addrmode5:$addr), IIC_fpLoad64, "vldr", "\t$Dd, $addr", [(set DPR:$Dd, (f64 (alignedload32 addrmode5:$addr)))]>, Requires<[HasFPRegs]>; def VLDRS : ASI5<0b1101, 0b01, (outs SPR:$Sd), (ins addrmode5:$addr), IIC_fpLoad32, "vldr", "\t$Sd, $addr", [(set SPR:$Sd, (alignedload32 addrmode5:$addr))]>, Requires<[HasFPRegs]> { // Some single precision VFP instructions may be executed on both NEON and VFP // pipelines. let D = VFPNeonDomain; } let isUnpredicable = 1 in def VLDRH : AHI5<0b1101, 0b01, (outs HPR:$Sd), (ins addrmode5fp16:$addr), IIC_fpLoad16, "vldr", ".16\t$Sd, $addr", [(set HPR:$Sd, (f16 (alignedload16 addrmode5fp16:$addr)))]>, Requires<[HasFPRegs16]>; } // End of 'let canFoldAsLoad = 1, isReMaterializable = 1 in' def : Pat<(bf16 (alignedload16 addrmode5fp16:$addr)), (VLDRH addrmode5fp16:$addr)> { let Predicates = [HasFPRegs16]; } def : Pat<(bf16 (alignedload16 addrmode3:$addr)), (COPY_TO_REGCLASS (LDRH addrmode3:$addr), HPR)> { let Predicates = [HasNoFPRegs16, IsARM]; } def : Pat<(bf16 (alignedload16 t2addrmode_imm12:$addr)), (COPY_TO_REGCLASS (t2LDRHi12 t2addrmode_imm12:$addr), HPR)> { let Predicates = [HasNoFPRegs16, IsThumb]; } def VSTRD : ADI5<0b1101, 0b00, (outs), (ins DPR:$Dd, addrmode5:$addr), IIC_fpStore64, "vstr", "\t$Dd, $addr", [(alignedstore32 (f64 DPR:$Dd), addrmode5:$addr)]>, Requires<[HasFPRegs]>; def VSTRS : ASI5<0b1101, 0b00, (outs), (ins SPR:$Sd, addrmode5:$addr), IIC_fpStore32, "vstr", "\t$Sd, $addr", [(alignedstore32 SPR:$Sd, addrmode5:$addr)]>, Requires<[HasFPRegs]> { // Some single precision VFP instructions may be executed on both NEON and VFP // pipelines. let D = VFPNeonDomain; } let isUnpredicable = 1 in def VSTRH : AHI5<0b1101, 0b00, (outs), (ins HPR:$Sd, addrmode5fp16:$addr), IIC_fpStore16, "vstr", ".16\t$Sd, $addr", [(alignedstore16 (f16 HPR:$Sd), addrmode5fp16:$addr)]>, Requires<[HasFPRegs16]>; def : Pat<(alignedstore16 (bf16 HPR:$Sd), addrmode5fp16:$addr), (VSTRH (bf16 HPR:$Sd), addrmode5fp16:$addr)> { let Predicates = [HasFPRegs16]; } def : Pat<(alignedstore16 (bf16 HPR:$Sd), addrmode3:$addr), (STRH (COPY_TO_REGCLASS $Sd, GPR), addrmode3:$addr)> { let Predicates = [HasNoFPRegs16, IsARM]; } def : Pat<(alignedstore16 (bf16 HPR:$Sd), t2addrmode_imm12:$addr), (t2STRHi12 (COPY_TO_REGCLASS $Sd, GPR), t2addrmode_imm12:$addr)> { let Predicates = [HasNoFPRegs16, IsThumb]; } //===----------------------------------------------------------------------===// // Load / store multiple Instructions. // multiclass vfp_ldst_mult { let Predicates = [HasFPRegs] in { // Double Precision def DIA : AXDI4<(outs), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops), IndexModeNone, itin, !strconcat(asm, "ia${p}\t$Rn, $regs"), "", []> { let Inst{24-23} = 0b01; // Increment After let Inst{21} = 0; // No writeback let Inst{20} = L_bit; } def DIA_UPD : AXDI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops), IndexModeUpd, itin_upd, !strconcat(asm, "ia${p}\t$Rn!, $regs"), "$Rn = $wb", []> { let Inst{24-23} = 0b01; // Increment After let Inst{21} = 1; // Writeback let Inst{20} = L_bit; } def DDB_UPD : AXDI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops), IndexModeUpd, itin_upd, !strconcat(asm, "db${p}\t$Rn!, $regs"), "$Rn = $wb", []> { let Inst{24-23} = 0b10; // Decrement Before let Inst{21} = 1; // Writeback let Inst{20} = L_bit; } // Single Precision def SIA : AXSI4<(outs), (ins GPR:$Rn, pred:$p, spr_reglist:$regs, variable_ops), IndexModeNone, itin, !strconcat(asm, "ia${p}\t$Rn, $regs"), "", []> { let Inst{24-23} = 0b01; // Increment After let Inst{21} = 0; // No writeback let Inst{20} = L_bit; // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines. let D = VFPNeonDomain; } def SIA_UPD : AXSI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, spr_reglist:$regs, variable_ops), IndexModeUpd, itin_upd, !strconcat(asm, "ia${p}\t$Rn!, $regs"), "$Rn = $wb", []> { let Inst{24-23} = 0b01; // Increment After let Inst{21} = 1; // Writeback let Inst{20} = L_bit; // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines. let D = VFPNeonDomain; } def SDB_UPD : AXSI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, spr_reglist:$regs, variable_ops), IndexModeUpd, itin_upd, !strconcat(asm, "db${p}\t$Rn!, $regs"), "$Rn = $wb", []> { let Inst{24-23} = 0b10; // Decrement Before let Inst{21} = 1; // Writeback let Inst{20} = L_bit; // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines. let D = VFPNeonDomain; } } } let hasSideEffects = 0 in { let mayLoad = 1, hasExtraDefRegAllocReq = 1 in defm VLDM : vfp_ldst_mult<"vldm", 1, IIC_fpLoad_m, IIC_fpLoad_mu>; let mayStore = 1, hasExtraSrcRegAllocReq = 1 in defm VSTM : vfp_ldst_mult<"vstm", 0, IIC_fpStore_m, IIC_fpStore_mu>; } // hasSideEffects def : MnemonicAlias<"vldm", "vldmia">; def : MnemonicAlias<"vstm", "vstmia">; //===----------------------------------------------------------------------===// // Lazy load / store multiple Instructions // def VLLDM : AXSI4<(outs), (ins GPRnopc:$Rn, pred:$p), IndexModeNone, NoItinerary, "vlldm${p}\t$Rn", "", []>, Requires<[HasV8MMainline, Has8MSecExt]> { let Inst{24-23} = 0b00; let Inst{22} = 0; let Inst{21} = 1; let Inst{20} = 1; let Inst{15-12} = 0; let Inst{7-0} = 0; let mayLoad = 1; let Defs = [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, VPR, FPSCR, FPSCR_NZCV]; } def VLSTM : AXSI4<(outs), (ins GPRnopc:$Rn, pred:$p), IndexModeNone, NoItinerary, "vlstm${p}\t$Rn", "", []>, Requires<[HasV8MMainline, Has8MSecExt]> { let Inst{24-23} = 0b00; let Inst{22} = 0; let Inst{21} = 1; let Inst{20} = 0; let Inst{15-12} = 0; let Inst{7-0} = 0; let mayStore = 1; } def : InstAlias<"vpush${p} $r", (VSTMDDB_UPD SP, pred:$p, dpr_reglist:$r), 0>, Requires<[HasFPRegs]>; def : InstAlias<"vpush${p} $r", (VSTMSDB_UPD SP, pred:$p, spr_reglist:$r), 0>, Requires<[HasFPRegs]>; def : InstAlias<"vpop${p} $r", (VLDMDIA_UPD SP, pred:$p, dpr_reglist:$r), 0>, Requires<[HasFPRegs]>; def : InstAlias<"vpop${p} $r", (VLDMSIA_UPD SP, pred:$p, spr_reglist:$r), 0>, Requires<[HasFPRegs]>; defm : VFPDTAnyInstAlias<"vpush${p}", "$r", (VSTMSDB_UPD SP, pred:$p, spr_reglist:$r)>; defm : VFPDTAnyInstAlias<"vpush${p}", "$r", (VSTMDDB_UPD SP, pred:$p, dpr_reglist:$r)>; defm : VFPDTAnyInstAlias<"vpop${p}", "$r", (VLDMSIA_UPD SP, pred:$p, spr_reglist:$r)>; defm : VFPDTAnyInstAlias<"vpop${p}", "$r", (VLDMDIA_UPD SP, pred:$p, dpr_reglist:$r)>; // FLDMX, FSTMX - Load and store multiple unknown precision registers for // pre-armv6 cores. // These instruction are deprecated so we don't want them to get selected. // However, there is no UAL syntax for them, so we keep them around for // (dis)assembly only. multiclass vfp_ldstx_mult { let Predicates = [HasFPRegs], hasNoSchedulingInfo = 1 in { // Unknown precision def XIA : AXXI4<(outs), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops), IndexModeNone, !strconcat(asm, "iax${p}\t$Rn, $regs"), "", []> { let Inst{24-23} = 0b01; // Increment After let Inst{21} = 0; // No writeback let Inst{20} = L_bit; } def XIA_UPD : AXXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops), IndexModeUpd, !strconcat(asm, "iax${p}\t$Rn!, $regs"), "$Rn = $wb", []> { let Inst{24-23} = 0b01; // Increment After let Inst{21} = 1; // Writeback let Inst{20} = L_bit; } def XDB_UPD : AXXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops), IndexModeUpd, !strconcat(asm, "dbx${p}\t$Rn!, $regs"), "$Rn = $wb", []> { let Inst{24-23} = 0b10; // Decrement Before let Inst{21} = 1; // Writeback let Inst{20} = L_bit; } } } defm FLDM : vfp_ldstx_mult<"fldm", 1>; defm FSTM : vfp_ldstx_mult<"fstm", 0>; def : VFP2MnemonicAlias<"fldmeax", "fldmdbx">; def : VFP2MnemonicAlias<"fldmfdx", "fldmiax">; def : VFP2MnemonicAlias<"fstmeax", "fstmiax">; def : VFP2MnemonicAlias<"fstmfdx", "fstmdbx">; //===----------------------------------------------------------------------===// // FP Binary Operations. // let TwoOperandAliasConstraint = "$Dn = $Dd" in def VADDD : ADbI<0b11100, 0b11, 0, 0, (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm), IIC_fpALU64, "vadd", ".f64\t$Dd, $Dn, $Dm", [(set DPR:$Dd, (fadd DPR:$Dn, (f64 DPR:$Dm)))]>, Sched<[WriteFPALU64]>; let TwoOperandAliasConstraint = "$Sn = $Sd" in def VADDS : ASbIn<0b11100, 0b11, 0, 0, (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm), IIC_fpALU32, "vadd", ".f32\t$Sd, $Sn, $Sm", [(set SPR:$Sd, (fadd SPR:$Sn, SPR:$Sm))]>, Sched<[WriteFPALU32]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } let TwoOperandAliasConstraint = "$Sn = $Sd" in def VADDH : AHbI<0b11100, 0b11, 0, 0, (outs HPR:$Sd), (ins HPR:$Sn, HPR:$Sm), IIC_fpALU16, "vadd", ".f16\t$Sd, $Sn, $Sm", [(set (f16 HPR:$Sd), (fadd (f16 HPR:$Sn), (f16 HPR:$Sm)))]>, Sched<[WriteFPALU32]>; let TwoOperandAliasConstraint = "$Dn = $Dd" in def VSUBD : ADbI<0b11100, 0b11, 1, 0, (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm), IIC_fpALU64, "vsub", ".f64\t$Dd, $Dn, $Dm", [(set DPR:$Dd, (fsub DPR:$Dn, (f64 DPR:$Dm)))]>, Sched<[WriteFPALU64]>; let TwoOperandAliasConstraint = "$Sn = $Sd" in def VSUBS : ASbIn<0b11100, 0b11, 1, 0, (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm), IIC_fpALU32, "vsub", ".f32\t$Sd, $Sn, $Sm", [(set SPR:$Sd, (fsub SPR:$Sn, SPR:$Sm))]>, Sched<[WriteFPALU32]>{ // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } let TwoOperandAliasConstraint = "$Sn = $Sd" in def VSUBH : AHbI<0b11100, 0b11, 1, 0, (outs HPR:$Sd), (ins HPR:$Sn, HPR:$Sm), IIC_fpALU16, "vsub", ".f16\t$Sd, $Sn, $Sm", [(set (f16 HPR:$Sd), (fsub (f16 HPR:$Sn), (f16 HPR:$Sm)))]>, Sched<[WriteFPALU32]>; let TwoOperandAliasConstraint = "$Dn = $Dd" in def VDIVD : ADbI<0b11101, 0b00, 0, 0, (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm), IIC_fpDIV64, "vdiv", ".f64\t$Dd, $Dn, $Dm", [(set DPR:$Dd, (fdiv DPR:$Dn, (f64 DPR:$Dm)))]>, Sched<[WriteFPDIV64]>; let TwoOperandAliasConstraint = "$Sn = $Sd" in def VDIVS : ASbI<0b11101, 0b00, 0, 0, (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm), IIC_fpDIV32, "vdiv", ".f32\t$Sd, $Sn, $Sm", [(set SPR:$Sd, (fdiv SPR:$Sn, SPR:$Sm))]>, Sched<[WriteFPDIV32]>; let TwoOperandAliasConstraint = "$Sn = $Sd" in def VDIVH : AHbI<0b11101, 0b00, 0, 0, (outs HPR:$Sd), (ins HPR:$Sn, HPR:$Sm), IIC_fpDIV16, "vdiv", ".f16\t$Sd, $Sn, $Sm", [(set (f16 HPR:$Sd), (fdiv (f16 HPR:$Sn), (f16 HPR:$Sm)))]>, Sched<[WriteFPDIV32]>; let TwoOperandAliasConstraint = "$Dn = $Dd" in def VMULD : ADbI<0b11100, 0b10, 0, 0, (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm), IIC_fpMUL64, "vmul", ".f64\t$Dd, $Dn, $Dm", [(set DPR:$Dd, (fmul DPR:$Dn, (f64 DPR:$Dm)))]>, Sched<[WriteFPMUL64, ReadFPMUL, ReadFPMUL]>; let TwoOperandAliasConstraint = "$Sn = $Sd" in def VMULS : ASbIn<0b11100, 0b10, 0, 0, (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm), IIC_fpMUL32, "vmul", ".f32\t$Sd, $Sn, $Sm", [(set SPR:$Sd, (fmul SPR:$Sn, SPR:$Sm))]>, Sched<[WriteFPMUL32, ReadFPMUL, ReadFPMUL]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } let TwoOperandAliasConstraint = "$Sn = $Sd" in def VMULH : AHbI<0b11100, 0b10, 0, 0, (outs HPR:$Sd), (ins HPR:$Sn, HPR:$Sm), IIC_fpMUL16, "vmul", ".f16\t$Sd, $Sn, $Sm", [(set (f16 HPR:$Sd), (fmul (f16 HPR:$Sn), (f16 HPR:$Sm)))]>, Sched<[WriteFPMUL32, ReadFPMUL, ReadFPMUL]>; let TwoOperandAliasConstraint = "$Dn = $Dd" in def VNMULD : ADbI<0b11100, 0b10, 1, 0, (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm), IIC_fpMUL64, "vnmul", ".f64\t$Dd, $Dn, $Dm", [(set DPR:$Dd, (fneg (fmul DPR:$Dn, (f64 DPR:$Dm))))]>, Sched<[WriteFPMUL64, ReadFPMUL, ReadFPMUL]>; let TwoOperandAliasConstraint = "$Sn = $Sd" in def VNMULS : ASbI<0b11100, 0b10, 1, 0, (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm), IIC_fpMUL32, "vnmul", ".f32\t$Sd, $Sn, $Sm", [(set SPR:$Sd, (fneg (fmul SPR:$Sn, SPR:$Sm)))]>, Sched<[WriteFPMUL32, ReadFPMUL, ReadFPMUL]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } let TwoOperandAliasConstraint = "$Sn = $Sd" in def VNMULH : AHbI<0b11100, 0b10, 1, 0, (outs HPR:$Sd), (ins HPR:$Sn, HPR:$Sm), IIC_fpMUL16, "vnmul", ".f16\t$Sd, $Sn, $Sm", [(set (f16 HPR:$Sd), (fneg (fmul (f16 HPR:$Sn), (f16 HPR:$Sm))))]>, Sched<[WriteFPMUL32, ReadFPMUL, ReadFPMUL]>; multiclass vsel_inst opc, int CC> { let DecoderNamespace = "VFPV8", PostEncoderMethod = "", Uses = [CPSR], AddedComplexity = 4, isUnpredicable = 1 in { def H : AHbInp<0b11100, opc, 0, (outs HPR:$Sd), (ins HPR:$Sn, HPR:$Sm), NoItinerary, !strconcat("vsel", op, ".f16\t$Sd, $Sn, $Sm"), [(set (f16 HPR:$Sd), (ARMcmov (f16 HPR:$Sm), (f16 HPR:$Sn), CC))]>, Requires<[HasFullFP16]>; def S : ASbInp<0b11100, opc, 0, (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm), NoItinerary, !strconcat("vsel", op, ".f32\t$Sd, $Sn, $Sm"), [(set SPR:$Sd, (ARMcmov SPR:$Sm, SPR:$Sn, CC))]>, Requires<[HasFPARMv8]>; def D : ADbInp<0b11100, opc, 0, (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm), NoItinerary, !strconcat("vsel", op, ".f64\t$Dd, $Dn, $Dm"), [(set DPR:$Dd, (ARMcmov (f64 DPR:$Dm), (f64 DPR:$Dn), CC))]>, Requires<[HasFPARMv8, HasDPVFP]>; } } // The CC constants here match ARMCC::CondCodes. defm VSELGT : vsel_inst<"gt", 0b11, 12>; defm VSELGE : vsel_inst<"ge", 0b10, 10>; defm VSELEQ : vsel_inst<"eq", 0b00, 0>; defm VSELVS : vsel_inst<"vs", 0b01, 6>; multiclass vmaxmin_inst { let DecoderNamespace = "VFPV8", PostEncoderMethod = "", isUnpredicable = 1 in { def H : AHbInp<0b11101, 0b00, opc, (outs HPR:$Sd), (ins HPR:$Sn, HPR:$Sm), NoItinerary, !strconcat(op, ".f16\t$Sd, $Sn, $Sm"), [(set (f16 HPR:$Sd), (SD (f16 HPR:$Sn), (f16 HPR:$Sm)))]>, Requires<[HasFullFP16]>; def S : ASbInp<0b11101, 0b00, opc, (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm), NoItinerary, !strconcat(op, ".f32\t$Sd, $Sn, $Sm"), [(set SPR:$Sd, (SD SPR:$Sn, SPR:$Sm))]>, Requires<[HasFPARMv8]>; def D : ADbInp<0b11101, 0b00, opc, (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm), NoItinerary, !strconcat(op, ".f64\t$Dd, $Dn, $Dm"), [(set DPR:$Dd, (f64 (SD (f64 DPR:$Dn), (f64 DPR:$Dm))))]>, Requires<[HasFPARMv8, HasDPVFP]>; } } defm VFP_VMAXNM : vmaxmin_inst<"vmaxnm", 0, fmaxnum>; defm VFP_VMINNM : vmaxmin_inst<"vminnm", 1, fminnum>; // Match reassociated forms only if not sign dependent rounding. def : Pat<(fmul (fneg DPR:$a), (f64 DPR:$b)), (VNMULD DPR:$a, DPR:$b)>, Requires<[NoHonorSignDependentRounding,HasDPVFP]>; def : Pat<(fmul (fneg SPR:$a), SPR:$b), (VNMULS SPR:$a, SPR:$b)>, Requires<[NoHonorSignDependentRounding]>; // These are encoded as unary instructions. let Defs = [FPSCR_NZCV] in { def VCMPED : ADuI<0b11101, 0b11, 0b0100, 0b11, 0, (outs), (ins DPR:$Dd, DPR:$Dm), IIC_fpCMP64, "vcmpe", ".f64\t$Dd, $Dm", "", [(arm_cmpfpe DPR:$Dd, (f64 DPR:$Dm))]>; def VCMPES : ASuI<0b11101, 0b11, 0b0100, 0b11, 0, (outs), (ins SPR:$Sd, SPR:$Sm), IIC_fpCMP32, "vcmpe", ".f32\t$Sd, $Sm", "", [(arm_cmpfpe SPR:$Sd, SPR:$Sm)]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def VCMPEH : AHuI<0b11101, 0b11, 0b0100, 0b11, 0, (outs), (ins HPR:$Sd, HPR:$Sm), IIC_fpCMP16, "vcmpe", ".f16\t$Sd, $Sm", [(arm_cmpfpe (f16 HPR:$Sd), (f16 HPR:$Sm))]>; def VCMPD : ADuI<0b11101, 0b11, 0b0100, 0b01, 0, (outs), (ins DPR:$Dd, DPR:$Dm), IIC_fpCMP64, "vcmp", ".f64\t$Dd, $Dm", "", [(arm_cmpfp DPR:$Dd, (f64 DPR:$Dm))]>; def VCMPS : ASuI<0b11101, 0b11, 0b0100, 0b01, 0, (outs), (ins SPR:$Sd, SPR:$Sm), IIC_fpCMP32, "vcmp", ".f32\t$Sd, $Sm", "", [(arm_cmpfp SPR:$Sd, SPR:$Sm)]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def VCMPH : AHuI<0b11101, 0b11, 0b0100, 0b01, 0, (outs), (ins HPR:$Sd, HPR:$Sm), IIC_fpCMP16, "vcmp", ".f16\t$Sd, $Sm", [(arm_cmpfp (f16 HPR:$Sd), (f16 HPR:$Sm))]>; } // Defs = [FPSCR_NZCV] //===----------------------------------------------------------------------===// // FP Unary Operations. // def VABSD : ADuI<0b11101, 0b11, 0b0000, 0b11, 0, (outs DPR:$Dd), (ins DPR:$Dm), IIC_fpUNA64, "vabs", ".f64\t$Dd, $Dm", "", [(set DPR:$Dd, (fabs (f64 DPR:$Dm)))]>; def VABSS : ASuIn<0b11101, 0b11, 0b0000, 0b11, 0, (outs SPR:$Sd), (ins SPR:$Sm), IIC_fpUNA32, "vabs", ".f32\t$Sd, $Sm", [(set SPR:$Sd, (fabs SPR:$Sm))]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def VABSH : AHuI<0b11101, 0b11, 0b0000, 0b11, 0, (outs HPR:$Sd), (ins HPR:$Sm), IIC_fpUNA16, "vabs", ".f16\t$Sd, $Sm", [(set (f16 HPR:$Sd), (fabs (f16 HPR:$Sm)))]>; let Defs = [FPSCR_NZCV] in { def VCMPEZD : ADuI<0b11101, 0b11, 0b0101, 0b11, 0, (outs), (ins DPR:$Dd), IIC_fpCMP64, "vcmpe", ".f64\t$Dd, #0", "", [(arm_cmpfpe0 (f64 DPR:$Dd))]> { let Inst{3-0} = 0b0000; let Inst{5} = 0; } def VCMPEZS : ASuI<0b11101, 0b11, 0b0101, 0b11, 0, (outs), (ins SPR:$Sd), IIC_fpCMP32, "vcmpe", ".f32\t$Sd, #0", "", [(arm_cmpfpe0 SPR:$Sd)]> { let Inst{3-0} = 0b0000; let Inst{5} = 0; // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def VCMPEZH : AHuI<0b11101, 0b11, 0b0101, 0b11, 0, (outs), (ins HPR:$Sd), IIC_fpCMP16, "vcmpe", ".f16\t$Sd, #0", [(arm_cmpfpe0 (f16 HPR:$Sd))]> { let Inst{3-0} = 0b0000; let Inst{5} = 0; } def VCMPZD : ADuI<0b11101, 0b11, 0b0101, 0b01, 0, (outs), (ins DPR:$Dd), IIC_fpCMP64, "vcmp", ".f64\t$Dd, #0", "", [(arm_cmpfp0 (f64 DPR:$Dd))]> { let Inst{3-0} = 0b0000; let Inst{5} = 0; } def VCMPZS : ASuI<0b11101, 0b11, 0b0101, 0b01, 0, (outs), (ins SPR:$Sd), IIC_fpCMP32, "vcmp", ".f32\t$Sd, #0", "", [(arm_cmpfp0 SPR:$Sd)]> { let Inst{3-0} = 0b0000; let Inst{5} = 0; // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def VCMPZH : AHuI<0b11101, 0b11, 0b0101, 0b01, 0, (outs), (ins HPR:$Sd), IIC_fpCMP16, "vcmp", ".f16\t$Sd, #0", [(arm_cmpfp0 (f16 HPR:$Sd))]> { let Inst{3-0} = 0b0000; let Inst{5} = 0; } } // Defs = [FPSCR_NZCV] def VCVTDS : ASuI<0b11101, 0b11, 0b0111, 0b11, 0, (outs DPR:$Dd), (ins SPR:$Sm), IIC_fpCVTDS, "vcvt", ".f64.f32\t$Dd, $Sm", "", [(set DPR:$Dd, (fpextend SPR:$Sm))]>, Sched<[WriteFPCVT]> { // Instruction operands. bits<5> Dd; bits<5> Sm; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{15-12} = Dd{3-0}; let Inst{22} = Dd{4}; let Predicates = [HasVFP2, HasDPVFP]; let hasSideEffects = 0; } // Special case encoding: bits 11-8 is 0b1011. def VCVTSD : VFPAI<(outs SPR:$Sd), (ins DPR:$Dm), VFPUnaryFrm, IIC_fpCVTSD, "vcvt", ".f32.f64\t$Sd, $Dm", "", [(set SPR:$Sd, (fpround DPR:$Dm))]>, Sched<[WriteFPCVT]> { // Instruction operands. bits<5> Sd; bits<5> Dm; // Encode instruction operands. let Inst{3-0} = Dm{3-0}; let Inst{5} = Dm{4}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let Inst{27-23} = 0b11101; let Inst{21-16} = 0b110111; let Inst{11-8} = 0b1011; let Inst{7-6} = 0b11; let Inst{4} = 0; let Predicates = [HasVFP2, HasDPVFP]; let hasSideEffects = 0; } // Between half, single and double-precision. let hasSideEffects = 0 in def VCVTBHS: ASuI<0b11101, 0b11, 0b0010, 0b01, 0, (outs SPR:$Sd), (ins SPR:$Sm), /* FIXME */ IIC_fpCVTSH, "vcvtb", ".f32.f16\t$Sd, $Sm", "", [/* Intentionally left blank, see patterns below */]>, Requires<[HasFP16]>, Sched<[WriteFPCVT]>; def : FP16Pat<(f32 (fpextend (f16 HPR:$Sm))), (VCVTBHS (COPY_TO_REGCLASS (f16 HPR:$Sm), SPR))>; def : FP16Pat<(f16_to_fp GPR:$a), (VCVTBHS (COPY_TO_REGCLASS GPR:$a, SPR))>; let hasSideEffects = 0 in def VCVTBSH: ASuI<0b11101, 0b11, 0b0011, 0b01, 0, (outs SPR:$Sd), (ins SPR:$Sda, SPR:$Sm), /* FIXME */ IIC_fpCVTHS, "vcvtb", ".f16.f32\t$Sd, $Sm", "$Sd = $Sda", [/* Intentionally left blank, see patterns below */]>, Requires<[HasFP16]>, Sched<[WriteFPCVT]>; def : FP16Pat<(f16 (fpround SPR:$Sm)), (COPY_TO_REGCLASS (VCVTBSH (IMPLICIT_DEF), SPR:$Sm), HPR)>; def : FP16Pat<(fp_to_f16 SPR:$a), (i32 (COPY_TO_REGCLASS (VCVTBSH (IMPLICIT_DEF), SPR:$a), GPR))>; def : FP16Pat<(insertelt (v8f16 MQPR:$src1), (f16 (fpround (f32 SPR:$src2))), imm_even:$lane), (v8f16 (INSERT_SUBREG (v8f16 MQPR:$src1), (VCVTBSH (EXTRACT_SUBREG (v8f16 MQPR:$src1), (SSubReg_f16_reg imm:$lane)), SPR:$src2), (SSubReg_f16_reg imm:$lane)))>; def : FP16Pat<(insertelt (v4f16 DPR:$src1), (f16 (fpround (f32 SPR:$src2))), imm_even:$lane), (v4f16 (INSERT_SUBREG (v4f16 DPR:$src1), (VCVTBSH (EXTRACT_SUBREG (v4f16 DPR:$src1), (SSubReg_f16_reg imm:$lane)), SPR:$src2), (SSubReg_f16_reg imm:$lane)))>; let hasSideEffects = 0 in def VCVTTHS: ASuI<0b11101, 0b11, 0b0010, 0b11, 0, (outs SPR:$Sd), (ins SPR:$Sm), /* FIXME */ IIC_fpCVTSH, "vcvtt", ".f32.f16\t$Sd, $Sm", "", [/* Intentionally left blank, see patterns below */]>, Requires<[HasFP16]>, Sched<[WriteFPCVT]>; def : FP16Pat<(f32 (fpextend (extractelt (v8f16 MQPR:$src), imm_odd:$lane))), (VCVTTHS (EXTRACT_SUBREG MQPR:$src, (SSubReg_f16_reg imm_odd:$lane)))>; def : FP16Pat<(f32 (fpextend (extractelt (v4f16 DPR:$src), imm_odd:$lane))), (VCVTTHS (EXTRACT_SUBREG (v2f32 (COPY_TO_REGCLASS (v4f16 DPR:$src), DPR_VFP2)), (SSubReg_f16_reg imm_odd:$lane)))>; let hasSideEffects = 0 in def VCVTTSH: ASuI<0b11101, 0b11, 0b0011, 0b11, 0, (outs SPR:$Sd), (ins SPR:$Sda, SPR:$Sm), /* FIXME */ IIC_fpCVTHS, "vcvtt", ".f16.f32\t$Sd, $Sm", "$Sd = $Sda", [/* Intentionally left blank, see patterns below */]>, Requires<[HasFP16]>, Sched<[WriteFPCVT]>; def : FP16Pat<(insertelt (v8f16 MQPR:$src1), (f16 (fpround (f32 SPR:$src2))), imm_odd:$lane), (v8f16 (INSERT_SUBREG (v8f16 MQPR:$src1), (VCVTTSH (EXTRACT_SUBREG (v8f16 MQPR:$src1), (SSubReg_f16_reg imm:$lane)), SPR:$src2), (SSubReg_f16_reg imm:$lane)))>; def : FP16Pat<(insertelt (v4f16 DPR:$src1), (f16 (fpround (f32 SPR:$src2))), imm_odd:$lane), (v4f16 (INSERT_SUBREG (v4f16 DPR:$src1), (VCVTTSH (EXTRACT_SUBREG (v4f16 DPR:$src1), (SSubReg_f16_reg imm:$lane)), SPR:$src2), (SSubReg_f16_reg imm:$lane)))>; def VCVTBHD : ADuI<0b11101, 0b11, 0b0010, 0b01, 0, (outs DPR:$Dd), (ins SPR:$Sm), NoItinerary, "vcvtb", ".f64.f16\t$Dd, $Sm", "", [/* Intentionally left blank, see patterns below */]>, Requires<[HasFPARMv8, HasDPVFP]>, Sched<[WriteFPCVT]> { // Instruction operands. bits<5> Sm; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let hasSideEffects = 0; } def : FullFP16Pat<(f64 (fpextend (f16 HPR:$Sm))), (VCVTBHD (COPY_TO_REGCLASS (f16 HPR:$Sm), SPR))>, Requires<[HasFPARMv8, HasDPVFP]>; def : FP16Pat<(f64 (f16_to_fp GPR:$a)), (VCVTBHD (COPY_TO_REGCLASS GPR:$a, SPR))>, Requires<[HasFPARMv8, HasDPVFP]>; def VCVTBDH : ADuI<0b11101, 0b11, 0b0011, 0b01, 0, (outs SPR:$Sd), (ins SPR:$Sda, DPR:$Dm), NoItinerary, "vcvtb", ".f16.f64\t$Sd, $Dm", "$Sd = $Sda", [/* Intentionally left blank, see patterns below */]>, Requires<[HasFPARMv8, HasDPVFP]> { // Instruction operands. bits<5> Sd; bits<5> Dm; // Encode instruction operands. let Inst{3-0} = Dm{3-0}; let Inst{5} = Dm{4}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let hasSideEffects = 0; } def : FullFP16Pat<(f16 (fpround DPR:$Dm)), (COPY_TO_REGCLASS (VCVTBDH (IMPLICIT_DEF), DPR:$Dm), HPR)>, Requires<[HasFPARMv8, HasDPVFP]>; def : FP16Pat<(fp_to_f16 (f64 DPR:$a)), (i32 (COPY_TO_REGCLASS (VCVTBDH (IMPLICIT_DEF), DPR:$a), GPR))>, Requires<[HasFPARMv8, HasDPVFP]>; def VCVTTHD : ADuI<0b11101, 0b11, 0b0010, 0b11, 0, (outs DPR:$Dd), (ins SPR:$Sm), NoItinerary, "vcvtt", ".f64.f16\t$Dd, $Sm", "", []>, Requires<[HasFPARMv8, HasDPVFP]> { // Instruction operands. bits<5> Sm; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let hasSideEffects = 0; } def VCVTTDH : ADuI<0b11101, 0b11, 0b0011, 0b11, 0, (outs SPR:$Sd), (ins SPR:$Sda, DPR:$Dm), NoItinerary, "vcvtt", ".f16.f64\t$Sd, $Dm", "$Sd = $Sda", []>, Requires<[HasFPARMv8, HasDPVFP]> { // Instruction operands. bits<5> Sd; bits<5> Dm; // Encode instruction operands. let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let Inst{3-0} = Dm{3-0}; let Inst{5} = Dm{4}; let hasSideEffects = 0; } multiclass vcvt_inst rm, SDPatternOperator node = null_frag> { let PostEncoderMethod = "", DecoderNamespace = "VFPV8", hasSideEffects = 0 in { def SH : AHuInp<0b11101, 0b11, 0b1100, 0b11, 0, (outs SPR:$Sd), (ins HPR:$Sm), NoItinerary, !strconcat("vcvt", opc, ".s32.f16\t$Sd, $Sm"), []>, Requires<[HasFullFP16]> { let Inst{17-16} = rm; } def UH : AHuInp<0b11101, 0b11, 0b1100, 0b01, 0, (outs SPR:$Sd), (ins HPR:$Sm), NoItinerary, !strconcat("vcvt", opc, ".u32.f16\t$Sd, $Sm"), []>, Requires<[HasFullFP16]> { let Inst{17-16} = rm; } def SS : ASuInp<0b11101, 0b11, 0b1100, 0b11, 0, (outs SPR:$Sd), (ins SPR:$Sm), NoItinerary, !strconcat("vcvt", opc, ".s32.f32\t$Sd, $Sm"), []>, Requires<[HasFPARMv8]> { let Inst{17-16} = rm; } def US : ASuInp<0b11101, 0b11, 0b1100, 0b01, 0, (outs SPR:$Sd), (ins SPR:$Sm), NoItinerary, !strconcat("vcvt", opc, ".u32.f32\t$Sd, $Sm"), []>, Requires<[HasFPARMv8]> { let Inst{17-16} = rm; } def SD : ASuInp<0b11101, 0b11, 0b1100, 0b11, 0, (outs SPR:$Sd), (ins DPR:$Dm), NoItinerary, !strconcat("vcvt", opc, ".s32.f64\t$Sd, $Dm"), []>, Requires<[HasFPARMv8, HasDPVFP]> { bits<5> Dm; let Inst{17-16} = rm; // Encode instruction operands. let Inst{3-0} = Dm{3-0}; let Inst{5} = Dm{4}; let Inst{8} = 1; } def UD : ASuInp<0b11101, 0b11, 0b1100, 0b01, 0, (outs SPR:$Sd), (ins DPR:$Dm), NoItinerary, !strconcat("vcvt", opc, ".u32.f64\t$Sd, $Dm"), []>, Requires<[HasFPARMv8, HasDPVFP]> { bits<5> Dm; let Inst{17-16} = rm; // Encode instruction operands let Inst{3-0} = Dm{3-0}; let Inst{5} = Dm{4}; let Inst{8} = 1; } } let Predicates = [HasFPARMv8] in { let Predicates = [HasFullFP16] in { def : Pat<(i32 (fp_to_sint (node (f16 HPR:$a)))), (COPY_TO_REGCLASS (!cast(NAME#"SH") (f16 HPR:$a)), GPR)>; def : Pat<(i32 (fp_to_uint (node (f16 HPR:$a)))), (COPY_TO_REGCLASS (!cast(NAME#"UH") (f16 HPR:$a)), GPR)>; } def : Pat<(i32 (fp_to_sint (node SPR:$a))), (COPY_TO_REGCLASS (!cast(NAME#"SS") SPR:$a), GPR)>; def : Pat<(i32 (fp_to_uint (node SPR:$a))), (COPY_TO_REGCLASS (!cast(NAME#"US") SPR:$a), GPR)>; } let Predicates = [HasFPARMv8, HasDPVFP] in { def : Pat<(i32 (fp_to_sint (node (f64 DPR:$a)))), (COPY_TO_REGCLASS (!cast(NAME#"SD") DPR:$a), GPR)>; def : Pat<(i32 (fp_to_uint (node (f64 DPR:$a)))), (COPY_TO_REGCLASS (!cast(NAME#"UD") DPR:$a), GPR)>; } } defm VCVTA : vcvt_inst<"a", 0b00, fround>; defm VCVTN : vcvt_inst<"n", 0b01>; defm VCVTP : vcvt_inst<"p", 0b10, fceil>; defm VCVTM : vcvt_inst<"m", 0b11, ffloor>; def VNEGD : ADuI<0b11101, 0b11, 0b0001, 0b01, 0, (outs DPR:$Dd), (ins DPR:$Dm), IIC_fpUNA64, "vneg", ".f64\t$Dd, $Dm", "", [(set DPR:$Dd, (fneg (f64 DPR:$Dm)))]>; def VNEGS : ASuIn<0b11101, 0b11, 0b0001, 0b01, 0, (outs SPR:$Sd), (ins SPR:$Sm), IIC_fpUNA32, "vneg", ".f32\t$Sd, $Sm", [(set SPR:$Sd, (fneg SPR:$Sm))]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def VNEGH : AHuI<0b11101, 0b11, 0b0001, 0b01, 0, (outs HPR:$Sd), (ins HPR:$Sm), IIC_fpUNA16, "vneg", ".f16\t$Sd, $Sm", [(set (f16 HPR:$Sd), (fneg (f16 HPR:$Sm)))]>; multiclass vrint_inst_zrx { def H : AHuI<0b11101, 0b11, 0b0110, 0b11, 0, (outs HPR:$Sd), (ins HPR:$Sm), NoItinerary, !strconcat("vrint", opc), ".f16\t$Sd, $Sm", [(set (f16 HPR:$Sd), (node (f16 HPR:$Sm)))]>, Requires<[HasFullFP16]> { let Inst{7} = op2; let Inst{16} = op; } def S : ASuI<0b11101, 0b11, 0b0110, 0b11, 0, (outs SPR:$Sd), (ins SPR:$Sm), NoItinerary, !strconcat("vrint", opc), ".f32\t$Sd, $Sm", "", [(set (f32 SPR:$Sd), (node (f32 SPR:$Sm)))]>, Requires<[HasFPARMv8]> { let Inst{7} = op2; let Inst{16} = op; } def D : ADuI<0b11101, 0b11, 0b0110, 0b11, 0, (outs DPR:$Dd), (ins DPR:$Dm), NoItinerary, !strconcat("vrint", opc), ".f64\t$Dd, $Dm", "", [(set (f64 DPR:$Dd), (node (f64 DPR:$Dm)))]>, Requires<[HasFPARMv8, HasDPVFP]> { let Inst{7} = op2; let Inst{16} = op; } def : InstAlias(NAME#"H") SPR:$Sd, SPR:$Sm, pred:$p), 0>, Requires<[HasFullFP16]>; def : InstAlias(NAME#"S") SPR:$Sd, SPR:$Sm, pred:$p), 0>, Requires<[HasFPARMv8]>; def : InstAlias(NAME#"D") DPR:$Dd, DPR:$Dm, pred:$p), 0>, Requires<[HasFPARMv8,HasDPVFP]>; } defm VRINTZ : vrint_inst_zrx<"z", 0, 1, ftrunc>; defm VRINTR : vrint_inst_zrx<"r", 0, 0, fnearbyint>; defm VRINTX : vrint_inst_zrx<"x", 1, 0, frint>; multiclass vrint_inst_anpm rm, SDPatternOperator node = null_frag> { let PostEncoderMethod = "", DecoderNamespace = "VFPV8", isUnpredicable = 1 in { def H : AHuInp<0b11101, 0b11, 0b1000, 0b01, 0, (outs HPR:$Sd), (ins HPR:$Sm), NoItinerary, !strconcat("vrint", opc, ".f16\t$Sd, $Sm"), [(set (f16 HPR:$Sd), (node (f16 HPR:$Sm)))]>, Requires<[HasFullFP16]> { let Inst{17-16} = rm; } def S : ASuInp<0b11101, 0b11, 0b1000, 0b01, 0, (outs SPR:$Sd), (ins SPR:$Sm), NoItinerary, !strconcat("vrint", opc, ".f32\t$Sd, $Sm"), [(set (f32 SPR:$Sd), (node (f32 SPR:$Sm)))]>, Requires<[HasFPARMv8]> { let Inst{17-16} = rm; } def D : ADuInp<0b11101, 0b11, 0b1000, 0b01, 0, (outs DPR:$Dd), (ins DPR:$Dm), NoItinerary, !strconcat("vrint", opc, ".f64\t$Dd, $Dm"), [(set (f64 DPR:$Dd), (node (f64 DPR:$Dm)))]>, Requires<[HasFPARMv8, HasDPVFP]> { let Inst{17-16} = rm; } } def : InstAlias(NAME#"H") HPR:$Sd, HPR:$Sm), 0>, Requires<[HasFullFP16]>; def : InstAlias(NAME#"S") SPR:$Sd, SPR:$Sm), 0>, Requires<[HasFPARMv8]>; def : InstAlias(NAME#"D") DPR:$Dd, DPR:$Dm), 0>, Requires<[HasFPARMv8,HasDPVFP]>; } defm VRINTA : vrint_inst_anpm<"a", 0b00, fround>; defm VRINTN : vrint_inst_anpm<"n", 0b01, int_arm_neon_vrintn>; defm VRINTP : vrint_inst_anpm<"p", 0b10, fceil>; defm VRINTM : vrint_inst_anpm<"m", 0b11, ffloor>; def VSQRTD : ADuI<0b11101, 0b11, 0b0001, 0b11, 0, (outs DPR:$Dd), (ins DPR:$Dm), IIC_fpSQRT64, "vsqrt", ".f64\t$Dd, $Dm", "", [(set DPR:$Dd, (fsqrt (f64 DPR:$Dm)))]>, Sched<[WriteFPSQRT64]>; def VSQRTS : ASuI<0b11101, 0b11, 0b0001, 0b11, 0, (outs SPR:$Sd), (ins SPR:$Sm), IIC_fpSQRT32, "vsqrt", ".f32\t$Sd, $Sm", "", [(set SPR:$Sd, (fsqrt SPR:$Sm))]>, Sched<[WriteFPSQRT32]>; def VSQRTH : AHuI<0b11101, 0b11, 0b0001, 0b11, 0, (outs HPR:$Sd), (ins HPR:$Sm), IIC_fpSQRT16, "vsqrt", ".f16\t$Sd, $Sm", [(set (f16 HPR:$Sd), (fsqrt (f16 HPR:$Sm)))]>; let hasSideEffects = 0 in { let isMoveReg = 1 in { def VMOVD : ADuI<0b11101, 0b11, 0b0000, 0b01, 0, (outs DPR:$Dd), (ins DPR:$Dm), IIC_fpUNA64, "vmov", ".f64\t$Dd, $Dm", "", []>, Requires<[HasFPRegs64]>; def VMOVS : ASuI<0b11101, 0b11, 0b0000, 0b01, 0, (outs SPR:$Sd), (ins SPR:$Sm), IIC_fpUNA32, "vmov", ".f32\t$Sd, $Sm", "", []>, Requires<[HasFPRegs]>; } // isMoveReg let PostEncoderMethod = "", DecoderNamespace = "VFPV8", isUnpredicable = 1 in { def VMOVH : ASuInp<0b11101, 0b11, 0b0000, 0b01, 0, (outs SPR:$Sd), (ins SPR:$Sm), IIC_fpUNA16, "vmovx.f16\t$Sd, $Sm", []>, Requires<[HasFullFP16]>; def VINSH : ASuInp<0b11101, 0b11, 0b0000, 0b11, 0, (outs SPR:$Sd), (ins SPR:$Sda, SPR:$Sm), IIC_fpUNA16, "vins.f16\t$Sd, $Sm", []>, Requires<[HasFullFP16]> { let Constraints = "$Sd = $Sda"; } } // PostEncoderMethod } // hasSideEffects //===----------------------------------------------------------------------===// // FP <-> GPR Copies. Int <-> FP Conversions. // let isMoveReg = 1 in { def VMOVRS : AVConv2I<0b11100001, 0b1010, (outs GPR:$Rt), (ins SPR:$Sn), IIC_fpMOVSI, "vmov", "\t$Rt, $Sn", [(set GPR:$Rt, (bitconvert SPR:$Sn))]>, Requires<[HasFPRegs]>, Sched<[WriteFPMOV]> { // Instruction operands. bits<4> Rt; bits<5> Sn; // Encode instruction operands. let Inst{19-16} = Sn{4-1}; let Inst{7} = Sn{0}; let Inst{15-12} = Rt; let Inst{6-5} = 0b00; let Inst{3-0} = 0b0000; // Some single precision VFP instructions may be executed on both NEON and VFP // pipelines. let D = VFPNeonDomain; } // Bitcast i32 -> f32. NEON prefers to use VMOVDRR. def VMOVSR : AVConv4I<0b11100000, 0b1010, (outs SPR:$Sn), (ins GPR:$Rt), IIC_fpMOVIS, "vmov", "\t$Sn, $Rt", [(set SPR:$Sn, (bitconvert GPR:$Rt))]>, Requires<[HasFPRegs, UseVMOVSR]>, Sched<[WriteFPMOV]> { // Instruction operands. bits<5> Sn; bits<4> Rt; // Encode instruction operands. let Inst{19-16} = Sn{4-1}; let Inst{7} = Sn{0}; let Inst{15-12} = Rt; let Inst{6-5} = 0b00; let Inst{3-0} = 0b0000; // Some single precision VFP instructions may be executed on both NEON and VFP // pipelines. let D = VFPNeonDomain; } } // isMoveReg def : Pat<(arm_vmovsr GPR:$Rt), (VMOVSR GPR:$Rt)>, Requires<[HasFPRegs, UseVMOVSR]>; let hasSideEffects = 0 in { def VMOVRRD : AVConv3I<0b11000101, 0b1011, (outs GPR:$Rt, GPR:$Rt2), (ins DPR:$Dm), IIC_fpMOVDI, "vmov", "\t$Rt, $Rt2, $Dm", [(set GPR:$Rt, GPR:$Rt2, (arm_fmrrd DPR:$Dm))]>, Requires<[HasFPRegs]>, Sched<[WriteFPMOV]> { // Instruction operands. bits<5> Dm; bits<4> Rt; bits<4> Rt2; // Encode instruction operands. let Inst{3-0} = Dm{3-0}; let Inst{5} = Dm{4}; let Inst{15-12} = Rt; let Inst{19-16} = Rt2; let Inst{7-6} = 0b00; // Some single precision VFP instructions may be executed on both NEON and VFP // pipelines. let D = VFPNeonDomain; // This instruction is equivalent to // $Rt = EXTRACT_SUBREG $Dm, ssub_0 // $Rt2 = EXTRACT_SUBREG $Dm, ssub_1 let isExtractSubreg = 1; } def VMOVRRS : AVConv3I<0b11000101, 0b1010, (outs GPR:$Rt, GPR:$Rt2), (ins SPR:$src1, SPR:$src2), IIC_fpMOVDI, "vmov", "\t$Rt, $Rt2, $src1, $src2", [/* For disassembly only; pattern left blank */]>, Requires<[HasFPRegs]>, Sched<[WriteFPMOV]> { bits<5> src1; bits<4> Rt; bits<4> Rt2; // Encode instruction operands. let Inst{3-0} = src1{4-1}; let Inst{5} = src1{0}; let Inst{15-12} = Rt; let Inst{19-16} = Rt2; let Inst{7-6} = 0b00; // Some single precision VFP instructions may be executed on both NEON and VFP // pipelines. let D = VFPNeonDomain; let DecoderMethod = "DecodeVMOVRRS"; } } // hasSideEffects // FMDHR: GPR -> SPR // FMDLR: GPR -> SPR def VMOVDRR : AVConv5I<0b11000100, 0b1011, (outs DPR:$Dm), (ins GPR:$Rt, GPR:$Rt2), IIC_fpMOVID, "vmov", "\t$Dm, $Rt, $Rt2", [(set DPR:$Dm, (arm_fmdrr GPR:$Rt, GPR:$Rt2))]>, Requires<[HasFPRegs]>, Sched<[WriteFPMOV]> { // Instruction operands. bits<5> Dm; bits<4> Rt; bits<4> Rt2; // Encode instruction operands. let Inst{3-0} = Dm{3-0}; let Inst{5} = Dm{4}; let Inst{15-12} = Rt; let Inst{19-16} = Rt2; let Inst{7-6} = 0b00; // Some single precision VFP instructions may be executed on both NEON and VFP // pipelines. let D = VFPNeonDomain; // This instruction is equivalent to // $Dm = REG_SEQUENCE $Rt, ssub_0, $Rt2, ssub_1 let isRegSequence = 1; } // Hoist an fabs or a fneg of a value coming from integer registers // and do the fabs/fneg on the integer value. This is never a lose // and could enable the conversion to float to be removed completely. def : Pat<(fabs (arm_fmdrr GPR:$Rl, GPR:$Rh)), (VMOVDRR GPR:$Rl, (BFC GPR:$Rh, (i32 0x7FFFFFFF)))>, Requires<[IsARM, HasV6T2]>; def : Pat<(fabs (arm_fmdrr GPR:$Rl, GPR:$Rh)), (VMOVDRR GPR:$Rl, (t2BFC GPR:$Rh, (i32 0x7FFFFFFF)))>, Requires<[IsThumb2, HasV6T2]>; def : Pat<(fneg (arm_fmdrr GPR:$Rl, GPR:$Rh)), (VMOVDRR GPR:$Rl, (EORri GPR:$Rh, (i32 0x80000000)))>, Requires<[IsARM]>; def : Pat<(fneg (arm_fmdrr GPR:$Rl, GPR:$Rh)), (VMOVDRR GPR:$Rl, (t2EORri GPR:$Rh, (i32 0x80000000)))>, Requires<[IsThumb2]>; let hasSideEffects = 0 in def VMOVSRR : AVConv5I<0b11000100, 0b1010, (outs SPR:$dst1, SPR:$dst2), (ins GPR:$src1, GPR:$src2), IIC_fpMOVID, "vmov", "\t$dst1, $dst2, $src1, $src2", [/* For disassembly only; pattern left blank */]>, Requires<[HasFPRegs]>, Sched<[WriteFPMOV]> { // Instruction operands. bits<5> dst1; bits<4> src1; bits<4> src2; // Encode instruction operands. let Inst{3-0} = dst1{4-1}; let Inst{5} = dst1{0}; let Inst{15-12} = src1; let Inst{19-16} = src2; let Inst{7-6} = 0b00; // Some single precision VFP instructions may be executed on both NEON and VFP // pipelines. let D = VFPNeonDomain; let DecoderMethod = "DecodeVMOVSRR"; } // Move H->R, clearing top 16 bits def VMOVRH : AVConv2I<0b11100001, 0b1001, (outs rGPR:$Rt), (ins HPR:$Sn), IIC_fpMOVSI, "vmov", ".f16\t$Rt, $Sn", []>, Requires<[HasFPRegs16]>, Sched<[WriteFPMOV]> { // Instruction operands. bits<4> Rt; bits<5> Sn; // Encode instruction operands. let Inst{19-16} = Sn{4-1}; let Inst{7} = Sn{0}; let Inst{15-12} = Rt; let Inst{6-5} = 0b00; let Inst{3-0} = 0b0000; let isUnpredicable = 1; } // Move R->H, clearing top 16 bits def VMOVHR : AVConv4I<0b11100000, 0b1001, (outs HPR:$Sn), (ins rGPR:$Rt), IIC_fpMOVIS, "vmov", ".f16\t$Sn, $Rt", []>, Requires<[HasFPRegs16]>, Sched<[WriteFPMOV]> { // Instruction operands. bits<5> Sn; bits<4> Rt; // Encode instruction operands. let Inst{19-16} = Sn{4-1}; let Inst{7} = Sn{0}; let Inst{15-12} = Rt; let Inst{6-5} = 0b00; let Inst{3-0} = 0b0000; let isUnpredicable = 1; } def : FPRegs16Pat<(arm_vmovrh (f16 HPR:$Sn)), (VMOVRH (f16 HPR:$Sn))>; def : FPRegs16Pat<(arm_vmovrh (bf16 HPR:$Sn)), (VMOVRH (bf16 HPR:$Sn))>; def : FPRegs16Pat<(f16 (arm_vmovhr rGPR:$Rt)), (VMOVHR rGPR:$Rt)>; def : FPRegs16Pat<(bf16 (arm_vmovhr rGPR:$Rt)), (VMOVHR rGPR:$Rt)>; // FMRDH: SPR -> GPR // FMRDL: SPR -> GPR // FMRRS: SPR -> GPR // FMRX: SPR system reg -> GPR // FMSRR: GPR -> SPR // FMXR: GPR -> VFP system reg // Int -> FP: class AVConv1IDs_Encode opcod1, bits<2> opcod2, bits<4> opcod3, bits<4> opcod4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AVConv1I { // Instruction operands. bits<5> Dd; bits<5> Sm; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{15-12} = Dd{3-0}; let Inst{22} = Dd{4}; let Predicates = [HasVFP2, HasDPVFP]; let hasSideEffects = 0; } class AVConv1InSs_Encode opcod1, bits<2> opcod2, bits<4> opcod3, bits<4> opcod4, dag oops, dag iops,InstrItinClass itin, string opc, string asm, list pattern> : AVConv1In { // Instruction operands. bits<5> Sd; bits<5> Sm; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let hasSideEffects = 0; } class AVConv1IHs_Encode opcod1, bits<2> opcod2, bits<4> opcod3, bits<4> opcod4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AVConv1I { // Instruction operands. bits<5> Sd; bits<5> Sm; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let Predicates = [HasFullFP16]; let hasSideEffects = 0; } def VSITOD : AVConv1IDs_Encode<0b11101, 0b11, 0b1000, 0b1011, (outs DPR:$Dd), (ins SPR:$Sm), IIC_fpCVTID, "vcvt", ".f64.s32\t$Dd, $Sm", []>, Sched<[WriteFPCVT]> { let Inst{7} = 1; // s32 } let Predicates=[HasVFP2, HasDPVFP] in { def : VFPPat<(f64 (sint_to_fp GPR:$a)), (VSITOD (COPY_TO_REGCLASS GPR:$a, SPR))>; def : VFPPat<(f64 (sint_to_fp (i32 (alignedload32 addrmode5:$a)))), (VSITOD (VLDRS addrmode5:$a))>; } def VSITOS : AVConv1InSs_Encode<0b11101, 0b11, 0b1000, 0b1010, (outs SPR:$Sd),(ins SPR:$Sm), IIC_fpCVTIS, "vcvt", ".f32.s32\t$Sd, $Sm", []>, Sched<[WriteFPCVT]> { let Inst{7} = 1; // s32 // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def : VFPNoNEONPat<(f32 (sint_to_fp GPR:$a)), (VSITOS (COPY_TO_REGCLASS GPR:$a, SPR))>; def : VFPNoNEONPat<(f32 (sint_to_fp (i32 (alignedload32 addrmode5:$a)))), (VSITOS (VLDRS addrmode5:$a))>; def VSITOH : AVConv1IHs_Encode<0b11101, 0b11, 0b1000, 0b1001, (outs HPR:$Sd), (ins SPR:$Sm), IIC_fpCVTIH, "vcvt", ".f16.s32\t$Sd, $Sm", []>, Sched<[WriteFPCVT]> { let Inst{7} = 1; // s32 let isUnpredicable = 1; } def : VFPNoNEONPat<(f16 (sint_to_fp GPR:$a)), (VSITOH (COPY_TO_REGCLASS GPR:$a, SPR))>; def VUITOD : AVConv1IDs_Encode<0b11101, 0b11, 0b1000, 0b1011, (outs DPR:$Dd), (ins SPR:$Sm), IIC_fpCVTID, "vcvt", ".f64.u32\t$Dd, $Sm", []>, Sched<[WriteFPCVT]> { let Inst{7} = 0; // u32 } let Predicates=[HasVFP2, HasDPVFP] in { def : VFPPat<(f64 (uint_to_fp GPR:$a)), (VUITOD (COPY_TO_REGCLASS GPR:$a, SPR))>; def : VFPPat<(f64 (uint_to_fp (i32 (alignedload32 addrmode5:$a)))), (VUITOD (VLDRS addrmode5:$a))>; } def VUITOS : AVConv1InSs_Encode<0b11101, 0b11, 0b1000, 0b1010, (outs SPR:$Sd), (ins SPR:$Sm), IIC_fpCVTIS, "vcvt", ".f32.u32\t$Sd, $Sm", []>, Sched<[WriteFPCVT]> { let Inst{7} = 0; // u32 // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def : VFPNoNEONPat<(f32 (uint_to_fp GPR:$a)), (VUITOS (COPY_TO_REGCLASS GPR:$a, SPR))>; def : VFPNoNEONPat<(f32 (uint_to_fp (i32 (alignedload32 addrmode5:$a)))), (VUITOS (VLDRS addrmode5:$a))>; def VUITOH : AVConv1IHs_Encode<0b11101, 0b11, 0b1000, 0b1001, (outs HPR:$Sd), (ins SPR:$Sm), IIC_fpCVTIH, "vcvt", ".f16.u32\t$Sd, $Sm", []>, Sched<[WriteFPCVT]> { let Inst{7} = 0; // u32 let isUnpredicable = 1; } def : VFPNoNEONPat<(f16 (uint_to_fp GPR:$a)), (VUITOH (COPY_TO_REGCLASS GPR:$a, SPR))>; // FP -> Int: class AVConv1IsD_Encode opcod1, bits<2> opcod2, bits<4> opcod3, bits<4> opcod4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AVConv1I { // Instruction operands. bits<5> Sd; bits<5> Dm; // Encode instruction operands. let Inst{3-0} = Dm{3-0}; let Inst{5} = Dm{4}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let Predicates = [HasVFP2, HasDPVFP]; let hasSideEffects = 0; } class AVConv1InsS_Encode opcod1, bits<2> opcod2, bits<4> opcod3, bits<4> opcod4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AVConv1In { // Instruction operands. bits<5> Sd; bits<5> Sm; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let hasSideEffects = 0; } class AVConv1IsH_Encode opcod1, bits<2> opcod2, bits<4> opcod3, bits<4> opcod4, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AVConv1I { // Instruction operands. bits<5> Sd; bits<5> Sm; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let Predicates = [HasFullFP16]; let hasSideEffects = 0; } // Always set Z bit in the instruction, i.e. "round towards zero" variants. def VTOSIZD : AVConv1IsD_Encode<0b11101, 0b11, 0b1101, 0b1011, (outs SPR:$Sd), (ins DPR:$Dm), IIC_fpCVTDI, "vcvt", ".s32.f64\t$Sd, $Dm", []>, Sched<[WriteFPCVT]> { let Inst{7} = 1; // Z bit } let Predicates=[HasVFP2, HasDPVFP] in { def : VFPPat<(i32 (fp_to_sint (f64 DPR:$a))), (COPY_TO_REGCLASS (VTOSIZD DPR:$a), GPR)>; def : VFPPat<(i32 (fp_to_sint_sat (f64 DPR:$a), i32)), (COPY_TO_REGCLASS (VTOSIZD DPR:$a), GPR)>; def : VFPPat<(alignedstore32 (i32 (fp_to_sint (f64 DPR:$a))), addrmode5:$ptr), (VSTRS (VTOSIZD DPR:$a), addrmode5:$ptr)>; def : VFPPat<(alignedstore32 (i32 (fp_to_sint_sat (f64 DPR:$a), i32)), addrmode5:$ptr), (VSTRS (VTOSIZD DPR:$a), addrmode5:$ptr)>; } def VTOSIZS : AVConv1InsS_Encode<0b11101, 0b11, 0b1101, 0b1010, (outs SPR:$Sd), (ins SPR:$Sm), IIC_fpCVTSI, "vcvt", ".s32.f32\t$Sd, $Sm", []>, Sched<[WriteFPCVT]> { let Inst{7} = 1; // Z bit // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def : VFPNoNEONPat<(i32 (fp_to_sint SPR:$a)), (COPY_TO_REGCLASS (VTOSIZS SPR:$a), GPR)>; def : VFPPat<(i32 (fp_to_sint_sat SPR:$a, i32)), (COPY_TO_REGCLASS (VTOSIZS SPR:$a), GPR)>; def : VFPNoNEONPat<(alignedstore32 (i32 (fp_to_sint (f32 SPR:$a))), addrmode5:$ptr), (VSTRS (VTOSIZS SPR:$a), addrmode5:$ptr)>; def : VFPPat<(alignedstore32 (i32 (fp_to_sint_sat (f32 SPR:$a), i32)), addrmode5:$ptr), (VSTRS (VTOSIZS SPR:$a), addrmode5:$ptr)>; def VTOSIZH : AVConv1IsH_Encode<0b11101, 0b11, 0b1101, 0b1001, (outs SPR:$Sd), (ins HPR:$Sm), IIC_fpCVTHI, "vcvt", ".s32.f16\t$Sd, $Sm", []>, Sched<[WriteFPCVT]> { let Inst{7} = 1; // Z bit let isUnpredicable = 1; } def : VFPNoNEONPat<(i32 (fp_to_sint (f16 HPR:$a))), (COPY_TO_REGCLASS (VTOSIZH (f16 HPR:$a)), GPR)>; def : VFPPat<(i32 (fp_to_sint_sat (f16 HPR:$a), i32)), (COPY_TO_REGCLASS (VTOSIZH (f16 HPR:$a)), GPR)>; def VTOUIZD : AVConv1IsD_Encode<0b11101, 0b11, 0b1100, 0b1011, (outs SPR:$Sd), (ins DPR:$Dm), IIC_fpCVTDI, "vcvt", ".u32.f64\t$Sd, $Dm", []>, Sched<[WriteFPCVT]> { let Inst{7} = 1; // Z bit } let Predicates=[HasVFP2, HasDPVFP] in { def : VFPPat<(i32 (fp_to_uint (f64 DPR:$a))), (COPY_TO_REGCLASS (VTOUIZD DPR:$a), GPR)>; def : VFPPat<(i32 (fp_to_uint_sat (f64 DPR:$a), i32)), (COPY_TO_REGCLASS (VTOUIZD DPR:$a), GPR)>; def : VFPPat<(alignedstore32 (i32 (fp_to_uint (f64 DPR:$a))), addrmode5:$ptr), (VSTRS (VTOUIZD DPR:$a), addrmode5:$ptr)>; def : VFPPat<(alignedstore32 (i32 (fp_to_uint_sat (f64 DPR:$a), i32)), addrmode5:$ptr), (VSTRS (VTOUIZD DPR:$a), addrmode5:$ptr)>; } def VTOUIZS : AVConv1InsS_Encode<0b11101, 0b11, 0b1100, 0b1010, (outs SPR:$Sd), (ins SPR:$Sm), IIC_fpCVTSI, "vcvt", ".u32.f32\t$Sd, $Sm", []>, Sched<[WriteFPCVT]> { let Inst{7} = 1; // Z bit // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def : VFPNoNEONPat<(i32 (fp_to_uint SPR:$a)), (COPY_TO_REGCLASS (VTOUIZS SPR:$a), GPR)>; def : VFPPat<(i32 (fp_to_uint_sat SPR:$a, i32)), (COPY_TO_REGCLASS (VTOUIZS SPR:$a), GPR)>; def : VFPNoNEONPat<(alignedstore32 (i32 (fp_to_uint (f32 SPR:$a))), addrmode5:$ptr), (VSTRS (VTOUIZS SPR:$a), addrmode5:$ptr)>; def : VFPPat<(alignedstore32 (i32 (fp_to_uint_sat (f32 SPR:$a), i32)), addrmode5:$ptr), (VSTRS (VTOUIZS SPR:$a), addrmode5:$ptr)>; def VTOUIZH : AVConv1IsH_Encode<0b11101, 0b11, 0b1100, 0b1001, (outs SPR:$Sd), (ins HPR:$Sm), IIC_fpCVTHI, "vcvt", ".u32.f16\t$Sd, $Sm", []>, Sched<[WriteFPCVT]> { let Inst{7} = 1; // Z bit let isUnpredicable = 1; } def : VFPNoNEONPat<(i32 (fp_to_uint (f16 HPR:$a))), (COPY_TO_REGCLASS (VTOUIZH (f16 HPR:$a)), GPR)>; def : VFPPat<(i32 (fp_to_uint_sat (f16 HPR:$a), i32)), (COPY_TO_REGCLASS (VTOUIZH (f16 HPR:$a)), GPR)>; // And the Z bit '0' variants, i.e. use the rounding mode specified by FPSCR. let Uses = [FPSCR] in { def VTOSIRD : AVConv1IsD_Encode<0b11101, 0b11, 0b1101, 0b1011, (outs SPR:$Sd), (ins DPR:$Dm), IIC_fpCVTDI, "vcvtr", ".s32.f64\t$Sd, $Dm", [(set SPR:$Sd, (int_arm_vcvtr (f64 DPR:$Dm)))]>, Sched<[WriteFPCVT]> { let Inst{7} = 0; // Z bit } def VTOSIRS : AVConv1InsS_Encode<0b11101, 0b11, 0b1101, 0b1010, (outs SPR:$Sd), (ins SPR:$Sm), IIC_fpCVTSI, "vcvtr", ".s32.f32\t$Sd, $Sm", [(set SPR:$Sd, (int_arm_vcvtr SPR:$Sm))]>, Sched<[WriteFPCVT]> { let Inst{7} = 0; // Z bit } def VTOSIRH : AVConv1IsH_Encode<0b11101, 0b11, 0b1101, 0b1001, (outs SPR:$Sd), (ins SPR:$Sm), IIC_fpCVTHI, "vcvtr", ".s32.f16\t$Sd, $Sm", []>, Sched<[WriteFPCVT]> { let Inst{7} = 0; // Z bit let isUnpredicable = 1; } def VTOUIRD : AVConv1IsD_Encode<0b11101, 0b11, 0b1100, 0b1011, (outs SPR:$Sd), (ins DPR:$Dm), IIC_fpCVTDI, "vcvtr", ".u32.f64\t$Sd, $Dm", [(set SPR:$Sd, (int_arm_vcvtru(f64 DPR:$Dm)))]>, Sched<[WriteFPCVT]> { let Inst{7} = 0; // Z bit } def VTOUIRS : AVConv1InsS_Encode<0b11101, 0b11, 0b1100, 0b1010, (outs SPR:$Sd), (ins SPR:$Sm), IIC_fpCVTSI, "vcvtr", ".u32.f32\t$Sd, $Sm", [(set SPR:$Sd, (int_arm_vcvtru SPR:$Sm))]>, Sched<[WriteFPCVT]> { let Inst{7} = 0; // Z bit } def VTOUIRH : AVConv1IsH_Encode<0b11101, 0b11, 0b1100, 0b1001, (outs SPR:$Sd), (ins SPR:$Sm), IIC_fpCVTHI, "vcvtr", ".u32.f16\t$Sd, $Sm", []>, Sched<[WriteFPCVT]> { let Inst{7} = 0; // Z bit let isUnpredicable = 1; } } // v8.3-a Javascript Convert to Signed fixed-point def VJCVT : AVConv1IsD_Encode<0b11101, 0b11, 0b1001, 0b1011, (outs SPR:$Sd), (ins DPR:$Dm), IIC_fpCVTDI, "vjcvt", ".s32.f64\t$Sd, $Dm", []>, Requires<[HasFPARMv8, HasV8_3a]> { let Inst{7} = 1; // Z bit } // Convert between floating-point and fixed-point // Data type for fixed-point naming convention: // S16 (U=0, sx=0) -> SH // U16 (U=1, sx=0) -> UH // S32 (U=0, sx=1) -> SL // U32 (U=1, sx=1) -> UL let Constraints = "$a = $dst" in { // FP to Fixed-Point: // Single Precision register class AVConv1XInsS_Encode op1, bits<2> op2, bits<4> op3, bits<4> op4, bit op5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AVConv1XI { bits<5> dst; // if dp_operation then UInt(D:Vd) else UInt(Vd:D); let Inst{22} = dst{0}; let Inst{15-12} = dst{4-1}; let hasSideEffects = 0; } // Double Precision register class AVConv1XInsD_Encode op1, bits<2> op2, bits<4> op3, bits<4> op4, bit op5, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AVConv1XI { bits<5> dst; // if dp_operation then UInt(D:Vd) else UInt(Vd:D); let Inst{22} = dst{4}; let Inst{15-12} = dst{3-0}; let hasSideEffects = 0; let Predicates = [HasVFP2, HasDPVFP]; } let isUnpredicable = 1 in { def VTOSHH : AVConv1XInsS_Encode<0b11101, 0b11, 0b1110, 0b1001, 0, (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits), IIC_fpCVTHI, "vcvt", ".s16.f16\t$dst, $a, $fbits", []>, Requires<[HasFullFP16]>, Sched<[WriteFPCVT]>; def VTOUHH : AVConv1XInsS_Encode<0b11101, 0b11, 0b1111, 0b1001, 0, (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits), IIC_fpCVTHI, "vcvt", ".u16.f16\t$dst, $a, $fbits", []>, Requires<[HasFullFP16]>, Sched<[WriteFPCVT]>; def VTOSLH : AVConv1XInsS_Encode<0b11101, 0b11, 0b1110, 0b1001, 1, (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits), IIC_fpCVTHI, "vcvt", ".s32.f16\t$dst, $a, $fbits", []>, Requires<[HasFullFP16]>, Sched<[WriteFPCVT]>; def VTOULH : AVConv1XInsS_Encode<0b11101, 0b11, 0b1111, 0b1001, 1, (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits), IIC_fpCVTHI, "vcvt", ".u32.f16\t$dst, $a, $fbits", []>, Requires<[HasFullFP16]>, Sched<[WriteFPCVT]>; } // End of 'let isUnpredicable = 1 in' def VTOSHS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1110, 0b1010, 0, (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits), IIC_fpCVTSI, "vcvt", ".s16.f32\t$dst, $a, $fbits", []>, Sched<[WriteFPCVT]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def VTOUHS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1111, 0b1010, 0, (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits), IIC_fpCVTSI, "vcvt", ".u16.f32\t$dst, $a, $fbits", []>, Sched<[WriteFPCVT]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def VTOSLS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1110, 0b1010, 1, (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits), IIC_fpCVTSI, "vcvt", ".s32.f32\t$dst, $a, $fbits", []>, Sched<[WriteFPCVT]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def VTOULS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1111, 0b1010, 1, (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits), IIC_fpCVTSI, "vcvt", ".u32.f32\t$dst, $a, $fbits", []>, Sched<[WriteFPCVT]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def VTOSHD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1110, 0b1011, 0, (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits), IIC_fpCVTDI, "vcvt", ".s16.f64\t$dst, $a, $fbits", []>, Sched<[WriteFPCVT]>; def VTOUHD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1111, 0b1011, 0, (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits), IIC_fpCVTDI, "vcvt", ".u16.f64\t$dst, $a, $fbits", []>, Sched<[WriteFPCVT]>; def VTOSLD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1110, 0b1011, 1, (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits), IIC_fpCVTDI, "vcvt", ".s32.f64\t$dst, $a, $fbits", []>, Sched<[WriteFPCVT]>; def VTOULD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1111, 0b1011, 1, (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits), IIC_fpCVTDI, "vcvt", ".u32.f64\t$dst, $a, $fbits", []>, Sched<[WriteFPCVT]>; // Fixed-Point to FP: let isUnpredicable = 1 in { def VSHTOH : AVConv1XInsS_Encode<0b11101, 0b11, 0b1010, 0b1001, 0, (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits), IIC_fpCVTIH, "vcvt", ".f16.s16\t$dst, $a, $fbits", []>, Requires<[HasFullFP16]>, Sched<[WriteFPCVT]>; def VUHTOH : AVConv1XInsS_Encode<0b11101, 0b11, 0b1011, 0b1001, 0, (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits), IIC_fpCVTIH, "vcvt", ".f16.u16\t$dst, $a, $fbits", []>, Requires<[HasFullFP16]>, Sched<[WriteFPCVT]>; def VSLTOH : AVConv1XInsS_Encode<0b11101, 0b11, 0b1010, 0b1001, 1, (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits), IIC_fpCVTIH, "vcvt", ".f16.s32\t$dst, $a, $fbits", []>, Requires<[HasFullFP16]>, Sched<[WriteFPCVT]>; def VULTOH : AVConv1XInsS_Encode<0b11101, 0b11, 0b1011, 0b1001, 1, (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits), IIC_fpCVTIH, "vcvt", ".f16.u32\t$dst, $a, $fbits", []>, Requires<[HasFullFP16]>, Sched<[WriteFPCVT]>; } // End of 'let isUnpredicable = 1 in' def VSHTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1010, 0b1010, 0, (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits), IIC_fpCVTIS, "vcvt", ".f32.s16\t$dst, $a, $fbits", []>, Sched<[WriteFPCVT]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def VUHTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1011, 0b1010, 0, (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits), IIC_fpCVTIS, "vcvt", ".f32.u16\t$dst, $a, $fbits", []>, Sched<[WriteFPCVT]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def VSLTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1010, 0b1010, 1, (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits), IIC_fpCVTIS, "vcvt", ".f32.s32\t$dst, $a, $fbits", []>, Sched<[WriteFPCVT]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def VULTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1011, 0b1010, 1, (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits), IIC_fpCVTIS, "vcvt", ".f32.u32\t$dst, $a, $fbits", []>, Sched<[WriteFPCVT]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def VSHTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1010, 0b1011, 0, (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits), IIC_fpCVTID, "vcvt", ".f64.s16\t$dst, $a, $fbits", []>, Sched<[WriteFPCVT]>; def VUHTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1011, 0b1011, 0, (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits), IIC_fpCVTID, "vcvt", ".f64.u16\t$dst, $a, $fbits", []>, Sched<[WriteFPCVT]>; def VSLTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1010, 0b1011, 1, (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits), IIC_fpCVTID, "vcvt", ".f64.s32\t$dst, $a, $fbits", []>, Sched<[WriteFPCVT]>; def VULTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1011, 0b1011, 1, (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits), IIC_fpCVTID, "vcvt", ".f64.u32\t$dst, $a, $fbits", []>, Sched<[WriteFPCVT]>; } // End of 'let Constraints = "$a = $dst" in' // BFloat16 - Single precision, unary, predicated class BF16_VCVT op7_6> : VFPAI<(outs SPR:$Sd), (ins SPR:$dst, SPR:$Sm), VFPUnaryFrm, NoItinerary, opc, ".bf16.f32\t$Sd, $Sm", "", []>, RegConstraint<"$dst = $Sd">, Requires<[HasBF16]>, Sched<[]> { bits<5> Sd; bits<5> Sm; // Encode instruction operands. let Inst{3-0} = Sm{4-1}; let Inst{5} = Sm{0}; let Inst{15-12} = Sd{4-1}; let Inst{22} = Sd{0}; let Inst{27-23} = 0b11101; // opcode1 let Inst{21-20} = 0b11; // opcode2 let Inst{19-16} = 0b0011; // opcode3 let Inst{11-8} = 0b1001; let Inst{7-6} = op7_6; let Inst{4} = 0; let DecoderNamespace = "VFPV8"; let hasSideEffects = 0; } def BF16_VCVTB : BF16_VCVT<"vcvtb", 0b01>; def BF16_VCVTT : BF16_VCVT<"vcvtt", 0b11>; //===----------------------------------------------------------------------===// // FP Multiply-Accumulate Operations. // def VMLAD : ADbI<0b11100, 0b00, 0, 0, (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm), IIC_fpMAC64, "vmla", ".f64\t$Dd, $Dn, $Dm", [(set DPR:$Dd, (fadd_mlx (fmul_su DPR:$Dn, DPR:$Dm), (f64 DPR:$Ddin)))]>, RegConstraint<"$Ddin = $Dd">, Requires<[HasVFP2,HasDPVFP,UseFPVMLx]>, Sched<[WriteFPMAC64, ReadFPMAC, ReadFPMUL, ReadFPMUL]>; def VMLAS : ASbIn<0b11100, 0b00, 0, 0, (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm), IIC_fpMAC32, "vmla", ".f32\t$Sd, $Sn, $Sm", [(set SPR:$Sd, (fadd_mlx (fmul_su SPR:$Sn, SPR:$Sm), SPR:$Sdin))]>, RegConstraint<"$Sdin = $Sd">, Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>, Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def VMLAH : AHbI<0b11100, 0b00, 0, 0, (outs HPR:$Sd), (ins HPR:$Sdin, HPR:$Sn, HPR:$Sm), IIC_fpMAC16, "vmla", ".f16\t$Sd, $Sn, $Sm", [(set (f16 HPR:$Sd), (fadd_mlx (fmul_su (f16 HPR:$Sn), (f16 HPR:$Sm)), (f16 HPR:$Sdin)))]>, RegConstraint<"$Sdin = $Sd">, Requires<[HasFullFP16,UseFPVMLx]>; def : Pat<(fadd_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))), (VMLAD DPR:$dstin, DPR:$a, DPR:$b)>, Requires<[HasVFP2,HasDPVFP,UseFPVMLx]>; def : Pat<(fadd_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)), (VMLAS SPR:$dstin, SPR:$a, SPR:$b)>, Requires<[HasVFP2,DontUseNEONForFP, UseFPVMLx]>; def : Pat<(fadd_mlx HPR:$dstin, (fmul_su (f16 HPR:$a), HPR:$b)), (VMLAH HPR:$dstin, (f16 HPR:$a), HPR:$b)>, Requires<[HasFullFP16,DontUseNEONForFP, UseFPVMLx]>; def VMLSD : ADbI<0b11100, 0b00, 1, 0, (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm), IIC_fpMAC64, "vmls", ".f64\t$Dd, $Dn, $Dm", [(set DPR:$Dd, (fadd_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)), (f64 DPR:$Ddin)))]>, RegConstraint<"$Ddin = $Dd">, Requires<[HasVFP2,HasDPVFP,UseFPVMLx]>, Sched<[WriteFPMAC64, ReadFPMAC, ReadFPMUL, ReadFPMUL]>; def VMLSS : ASbIn<0b11100, 0b00, 1, 0, (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm), IIC_fpMAC32, "vmls", ".f32\t$Sd, $Sn, $Sm", [(set SPR:$Sd, (fadd_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)), SPR:$Sdin))]>, RegConstraint<"$Sdin = $Sd">, Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>, Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def VMLSH : AHbI<0b11100, 0b00, 1, 0, (outs HPR:$Sd), (ins HPR:$Sdin, HPR:$Sn, HPR:$Sm), IIC_fpMAC16, "vmls", ".f16\t$Sd, $Sn, $Sm", [(set (f16 HPR:$Sd), (fadd_mlx (fneg (fmul_su (f16 HPR:$Sn), (f16 HPR:$Sm))), (f16 HPR:$Sdin)))]>, RegConstraint<"$Sdin = $Sd">, Requires<[HasFullFP16,UseFPVMLx]>; def : Pat<(fsub_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))), (VMLSD DPR:$dstin, DPR:$a, DPR:$b)>, Requires<[HasVFP2,HasDPVFP,UseFPVMLx]>; def : Pat<(fsub_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)), (VMLSS SPR:$dstin, SPR:$a, SPR:$b)>, Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>; def : Pat<(fsub_mlx HPR:$dstin, (fmul_su (f16 HPR:$a), HPR:$b)), (VMLSH HPR:$dstin, (f16 HPR:$a), HPR:$b)>, Requires<[HasFullFP16,DontUseNEONForFP,UseFPVMLx]>; def VNMLAD : ADbI<0b11100, 0b01, 1, 0, (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm), IIC_fpMAC64, "vnmla", ".f64\t$Dd, $Dn, $Dm", [(set DPR:$Dd,(fsub_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)), (f64 DPR:$Ddin)))]>, RegConstraint<"$Ddin = $Dd">, Requires<[HasVFP2,HasDPVFP,UseFPVMLx]>, Sched<[WriteFPMAC64, ReadFPMAC, ReadFPMUL, ReadFPMUL]>; def VNMLAS : ASbI<0b11100, 0b01, 1, 0, (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm), IIC_fpMAC32, "vnmla", ".f32\t$Sd, $Sn, $Sm", [(set SPR:$Sd, (fsub_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)), SPR:$Sdin))]>, RegConstraint<"$Sdin = $Sd">, Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>, Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def VNMLAH : AHbI<0b11100, 0b01, 1, 0, (outs HPR:$Sd), (ins HPR:$Sdin, HPR:$Sn, HPR:$Sm), IIC_fpMAC16, "vnmla", ".f16\t$Sd, $Sn, $Sm", [(set (f16 HPR:$Sd), (fsub_mlx (fneg (fmul_su (f16 HPR:$Sn), (f16 HPR:$Sm))), (f16 HPR:$Sdin)))]>, RegConstraint<"$Sdin = $Sd">, Requires<[HasFullFP16,UseFPVMLx]>; // (-(a * b) - dst) -> -(dst + (a * b)) def : Pat<(fsub_mlx (fneg (fmul_su DPR:$a, (f64 DPR:$b))), DPR:$dstin), (VNMLAD DPR:$dstin, DPR:$a, DPR:$b)>, Requires<[HasVFP2,HasDPVFP,UseFPVMLx]>; def : Pat<(fsub_mlx (fneg (fmul_su SPR:$a, SPR:$b)), SPR:$dstin), (VNMLAS SPR:$dstin, SPR:$a, SPR:$b)>, Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>; def : Pat<(fsub_mlx (fneg (fmul_su (f16 HPR:$a), HPR:$b)), HPR:$dstin), (VNMLAH HPR:$dstin, (f16 HPR:$a), HPR:$b)>, Requires<[HasFullFP16,DontUseNEONForFP,UseFPVMLx]>; // (-dst - (a * b)) -> -(dst + (a * b)) def : Pat<(fsub_mlx (fneg DPR:$dstin), (fmul_su DPR:$a, (f64 DPR:$b))), (VNMLAD DPR:$dstin, DPR:$a, DPR:$b)>, Requires<[HasVFP2,HasDPVFP,UseFPVMLx]>; def : Pat<(fsub_mlx (fneg SPR:$dstin), (fmul_su SPR:$a, SPR:$b)), (VNMLAS SPR:$dstin, SPR:$a, SPR:$b)>, Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>; def : Pat<(fsub_mlx (fneg HPR:$dstin), (fmul_su (f16 HPR:$a), HPR:$b)), (VNMLAH HPR:$dstin, (f16 HPR:$a), HPR:$b)>, Requires<[HasFullFP16,DontUseNEONForFP,UseFPVMLx]>; def VNMLSD : ADbI<0b11100, 0b01, 0, 0, (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm), IIC_fpMAC64, "vnmls", ".f64\t$Dd, $Dn, $Dm", [(set DPR:$Dd, (fsub_mlx (fmul_su DPR:$Dn, DPR:$Dm), (f64 DPR:$Ddin)))]>, RegConstraint<"$Ddin = $Dd">, Requires<[HasVFP2,HasDPVFP,UseFPVMLx]>, Sched<[WriteFPMAC64, ReadFPMAC, ReadFPMUL, ReadFPMUL]>; def VNMLSS : ASbI<0b11100, 0b01, 0, 0, (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm), IIC_fpMAC32, "vnmls", ".f32\t$Sd, $Sn, $Sm", [(set SPR:$Sd, (fsub_mlx (fmul_su SPR:$Sn, SPR:$Sm), SPR:$Sdin))]>, RegConstraint<"$Sdin = $Sd">, Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>, Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines on A8. let D = VFPNeonA8Domain; } def VNMLSH : AHbI<0b11100, 0b01, 0, 0, (outs HPR:$Sd), (ins HPR:$Sdin, HPR:$Sn, HPR:$Sm), IIC_fpMAC16, "vnmls", ".f16\t$Sd, $Sn, $Sm", [(set (f16 HPR:$Sd), (fsub_mlx (fmul_su (f16 HPR:$Sn), (f16 HPR:$Sm)), (f16 HPR:$Sdin)))]>, RegConstraint<"$Sdin = $Sd">, Requires<[HasFullFP16,UseFPVMLx]>; def : Pat<(fsub_mlx (fmul_su DPR:$a, (f64 DPR:$b)), DPR:$dstin), (VNMLSD DPR:$dstin, DPR:$a, DPR:$b)>, Requires<[HasVFP2,HasDPVFP,UseFPVMLx]>; def : Pat<(fsub_mlx (fmul_su SPR:$a, SPR:$b), SPR:$dstin), (VNMLSS SPR:$dstin, SPR:$a, SPR:$b)>, Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>; def : Pat<(fsub_mlx (fmul_su (f16 HPR:$a), HPR:$b), HPR:$dstin), (VNMLSH HPR:$dstin, (f16 HPR:$a), HPR:$b)>, Requires<[HasFullFP16,DontUseNEONForFP,UseFPVMLx]>; //===----------------------------------------------------------------------===// // Fused FP Multiply-Accumulate Operations. // def VFMAD : ADbI<0b11101, 0b10, 0, 0, (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm), IIC_fpFMAC64, "vfma", ".f64\t$Dd, $Dn, $Dm", [(set DPR:$Dd, (fadd_mlx (fmul_su DPR:$Dn, DPR:$Dm), (f64 DPR:$Ddin)))]>, RegConstraint<"$Ddin = $Dd">, Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>, Sched<[WriteFPMAC64, ReadFPMAC, ReadFPMUL, ReadFPMUL]>; def VFMAS : ASbIn<0b11101, 0b10, 0, 0, (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm), IIC_fpFMAC32, "vfma", ".f32\t$Sd, $Sn, $Sm", [(set SPR:$Sd, (fadd_mlx (fmul_su SPR:$Sn, SPR:$Sm), SPR:$Sdin))]>, RegConstraint<"$Sdin = $Sd">, Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>, Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines. } def VFMAH : AHbI<0b11101, 0b10, 0, 0, (outs HPR:$Sd), (ins HPR:$Sdin, HPR:$Sn, HPR:$Sm), IIC_fpFMAC16, "vfma", ".f16\t$Sd, $Sn, $Sm", [(set (f16 HPR:$Sd), (fadd_mlx (fmul_su (f16 HPR:$Sn), (f16 HPR:$Sm)), (f16 HPR:$Sdin)))]>, RegConstraint<"$Sdin = $Sd">, Requires<[HasFullFP16,UseFusedMAC]>, Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]>; def : Pat<(fadd_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))), (VFMAD DPR:$dstin, DPR:$a, DPR:$b)>, Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>; def : Pat<(fadd_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)), (VFMAS SPR:$dstin, SPR:$a, SPR:$b)>, Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>; def : Pat<(fadd_mlx HPR:$dstin, (fmul_su (f16 HPR:$a), HPR:$b)), (VFMAH HPR:$dstin, (f16 HPR:$a), HPR:$b)>, Requires<[HasFullFP16,DontUseNEONForFP,UseFusedMAC]>; // Match @llvm.fma.* intrinsics // (fma x, y, z) -> (vfms z, x, y) def : Pat<(f64 (fma DPR:$Dn, DPR:$Dm, DPR:$Ddin)), (VFMAD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>, Requires<[HasVFP4,HasDPVFP]>; def : Pat<(f32 (fma SPR:$Sn, SPR:$Sm, SPR:$Sdin)), (VFMAS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>, Requires<[HasVFP4]>; def : Pat<(f16 (fma HPR:$Sn, HPR:$Sm, (f16 HPR:$Sdin))), (VFMAH (f16 HPR:$Sdin), (f16 HPR:$Sn), (f16 HPR:$Sm))>, Requires<[HasFullFP16]>; def VFMSD : ADbI<0b11101, 0b10, 1, 0, (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm), IIC_fpFMAC64, "vfms", ".f64\t$Dd, $Dn, $Dm", [(set DPR:$Dd, (fadd_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)), (f64 DPR:$Ddin)))]>, RegConstraint<"$Ddin = $Dd">, Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>, Sched<[WriteFPMAC64, ReadFPMAC, ReadFPMUL, ReadFPMUL]>; def VFMSS : ASbIn<0b11101, 0b10, 1, 0, (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm), IIC_fpFMAC32, "vfms", ".f32\t$Sd, $Sn, $Sm", [(set SPR:$Sd, (fadd_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)), SPR:$Sdin))]>, RegConstraint<"$Sdin = $Sd">, Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>, Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines. } def VFMSH : AHbI<0b11101, 0b10, 1, 0, (outs HPR:$Sd), (ins HPR:$Sdin, HPR:$Sn, HPR:$Sm), IIC_fpFMAC16, "vfms", ".f16\t$Sd, $Sn, $Sm", [(set (f16 HPR:$Sd), (fadd_mlx (fneg (fmul_su (f16 HPR:$Sn), (f16 HPR:$Sm))), (f16 HPR:$Sdin)))]>, RegConstraint<"$Sdin = $Sd">, Requires<[HasFullFP16,UseFusedMAC]>, Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]>; def : Pat<(fsub_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))), (VFMSD DPR:$dstin, DPR:$a, DPR:$b)>, Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>; def : Pat<(fsub_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)), (VFMSS SPR:$dstin, SPR:$a, SPR:$b)>, Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>; def : Pat<(fsub_mlx HPR:$dstin, (fmul_su (f16 HPR:$a), HPR:$b)), (VFMSH HPR:$dstin, (f16 HPR:$a), HPR:$b)>, Requires<[HasFullFP16,DontUseNEONForFP,UseFusedMAC]>; // Match @llvm.fma.* intrinsics // (fma (fneg x), y, z) -> (vfms z, x, y) def : Pat<(f64 (fma (fneg DPR:$Dn), DPR:$Dm, DPR:$Ddin)), (VFMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>, Requires<[HasVFP4,HasDPVFP]>; def : Pat<(f32 (fma (fneg SPR:$Sn), SPR:$Sm, SPR:$Sdin)), (VFMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>, Requires<[HasVFP4]>; def : Pat<(f16 (fma (fneg (f16 HPR:$Sn)), (f16 HPR:$Sm), (f16 HPR:$Sdin))), (VFMSH (f16 HPR:$Sdin), (f16 HPR:$Sn), (f16 HPR:$Sm))>, Requires<[HasFullFP16]>; def VFNMAD : ADbI<0b11101, 0b01, 1, 0, (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm), IIC_fpFMAC64, "vfnma", ".f64\t$Dd, $Dn, $Dm", [(set DPR:$Dd,(fsub_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)), (f64 DPR:$Ddin)))]>, RegConstraint<"$Ddin = $Dd">, Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>, Sched<[WriteFPMAC64, ReadFPMAC, ReadFPMUL, ReadFPMUL]>; def VFNMAS : ASbI<0b11101, 0b01, 1, 0, (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm), IIC_fpFMAC32, "vfnma", ".f32\t$Sd, $Sn, $Sm", [(set SPR:$Sd, (fsub_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)), SPR:$Sdin))]>, RegConstraint<"$Sdin = $Sd">, Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>, Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines. } def VFNMAH : AHbI<0b11101, 0b01, 1, 0, (outs HPR:$Sd), (ins HPR:$Sdin, HPR:$Sn, HPR:$Sm), IIC_fpFMAC16, "vfnma", ".f16\t$Sd, $Sn, $Sm", [(set (f16 HPR:$Sd), (fsub_mlx (fneg (fmul_su (f16 HPR:$Sn), (f16 HPR:$Sm))), (f16 HPR:$Sdin)))]>, RegConstraint<"$Sdin = $Sd">, Requires<[HasFullFP16,UseFusedMAC]>, Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]>; def : Pat<(fsub_mlx (fneg (fmul_su DPR:$a, (f64 DPR:$b))), DPR:$dstin), (VFNMAD DPR:$dstin, DPR:$a, DPR:$b)>, Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>; def : Pat<(fsub_mlx (fneg (fmul_su SPR:$a, SPR:$b)), SPR:$dstin), (VFNMAS SPR:$dstin, SPR:$a, SPR:$b)>, Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>; // Match @llvm.fma.* intrinsics // (fneg (fma x, y, z)) -> (vfnma z, x, y) def : Pat<(fneg (fma (f64 DPR:$Dn), (f64 DPR:$Dm), (f64 DPR:$Ddin))), (VFNMAD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>, Requires<[HasVFP4,HasDPVFP]>; def : Pat<(fneg (fma (f32 SPR:$Sn), (f32 SPR:$Sm), (f32 SPR:$Sdin))), (VFNMAS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>, Requires<[HasVFP4]>; def : Pat<(fneg (fma (f16 HPR:$Sn), (f16 HPR:$Sm), (f16 (f16 HPR:$Sdin)))), (VFNMAH (f16 HPR:$Sdin), (f16 HPR:$Sn), (f16 HPR:$Sm))>, Requires<[HasFullFP16]>; // (fma (fneg x), y, (fneg z)) -> (vfnma z, x, y) def : Pat<(f64 (fma (fneg DPR:$Dn), DPR:$Dm, (fneg DPR:$Ddin))), (VFNMAD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>, Requires<[HasVFP4,HasDPVFP]>; def : Pat<(f32 (fma (fneg SPR:$Sn), SPR:$Sm, (fneg SPR:$Sdin))), (VFNMAS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>, Requires<[HasVFP4]>; def : Pat<(f16 (fma (fneg (f16 HPR:$Sn)), (f16 HPR:$Sm), (fneg (f16 HPR:$Sdin)))), (VFNMAH (f16 HPR:$Sdin), (f16 HPR:$Sn), (f16 HPR:$Sm))>, Requires<[HasFullFP16]>; def VFNMSD : ADbI<0b11101, 0b01, 0, 0, (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm), IIC_fpFMAC64, "vfnms", ".f64\t$Dd, $Dn, $Dm", [(set DPR:$Dd, (fsub_mlx (fmul_su DPR:$Dn, DPR:$Dm), (f64 DPR:$Ddin)))]>, RegConstraint<"$Ddin = $Dd">, Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>, Sched<[WriteFPMAC64, ReadFPMAC, ReadFPMUL, ReadFPMUL]>; def VFNMSS : ASbI<0b11101, 0b01, 0, 0, (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm), IIC_fpFMAC32, "vfnms", ".f32\t$Sd, $Sn, $Sm", [(set SPR:$Sd, (fsub_mlx (fmul_su SPR:$Sn, SPR:$Sm), SPR:$Sdin))]>, RegConstraint<"$Sdin = $Sd">, Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>, Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]> { // Some single precision VFP instructions may be executed on both NEON and // VFP pipelines. } def VFNMSH : AHbI<0b11101, 0b01, 0, 0, (outs HPR:$Sd), (ins HPR:$Sdin, HPR:$Sn, HPR:$Sm), IIC_fpFMAC16, "vfnms", ".f16\t$Sd, $Sn, $Sm", [(set (f16 HPR:$Sd), (fsub_mlx (fmul_su (f16 HPR:$Sn), (f16 HPR:$Sm)), (f16 HPR:$Sdin)))]>, RegConstraint<"$Sdin = $Sd">, Requires<[HasFullFP16,UseFusedMAC]>, Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]>; def : Pat<(fsub_mlx (fmul_su DPR:$a, (f64 DPR:$b)), DPR:$dstin), (VFNMSD DPR:$dstin, DPR:$a, DPR:$b)>, Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>; def : Pat<(fsub_mlx (fmul_su SPR:$a, SPR:$b), SPR:$dstin), (VFNMSS SPR:$dstin, SPR:$a, SPR:$b)>, Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>; // Match @llvm.fma.* intrinsics // (fma x, y, (fneg z)) -> (vfnms z, x, y)) def : Pat<(f64 (fma DPR:$Dn, DPR:$Dm, (fneg DPR:$Ddin))), (VFNMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>, Requires<[HasVFP4,HasDPVFP]>; def : Pat<(f32 (fma SPR:$Sn, SPR:$Sm, (fneg SPR:$Sdin))), (VFNMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>, Requires<[HasVFP4]>; def : Pat<(f16 (fma (f16 HPR:$Sn), (f16 HPR:$Sm), (fneg (f16 HPR:$Sdin)))), (VFNMSH (f16 HPR:$Sdin), (f16 HPR:$Sn), (f16 HPR:$Sm))>, Requires<[HasFullFP16]>; // (fneg (fma (fneg x), y, z)) -> (vfnms z, x, y) def : Pat<(fneg (f64 (fma (fneg DPR:$Dn), DPR:$Dm, DPR:$Ddin))), (VFNMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>, Requires<[HasVFP4,HasDPVFP]>; def : Pat<(fneg (f32 (fma (fneg SPR:$Sn), SPR:$Sm, SPR:$Sdin))), (VFNMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>, Requires<[HasVFP4]>; def : Pat<(fneg (f16 (fma (fneg (f16 HPR:$Sn)), (f16 HPR:$Sm), (f16 HPR:$Sdin)))), (VFNMSH (f16 HPR:$Sdin), (f16 HPR:$Sn), (f16 HPR:$Sm))>, Requires<[HasFullFP16]>; //===----------------------------------------------------------------------===// // FP Conditional moves. // let hasSideEffects = 0 in { def VMOVDcc : PseudoInst<(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm, cmovpred:$p), IIC_fpUNA64, [(set (f64 DPR:$Dd), (ARMcmov DPR:$Dn, DPR:$Dm, cmovpred:$p))]>, RegConstraint<"$Dn = $Dd">, Requires<[HasFPRegs64]>; def VMOVScc : PseudoInst<(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm, cmovpred:$p), IIC_fpUNA32, [(set (f32 SPR:$Sd), (ARMcmov SPR:$Sn, SPR:$Sm, cmovpred:$p))]>, RegConstraint<"$Sn = $Sd">, Requires<[HasFPRegs]>; def VMOVHcc : PseudoInst<(outs HPR:$Sd), (ins HPR:$Sn, HPR:$Sm, cmovpred:$p), IIC_fpUNA16, [(set (f16 HPR:$Sd), (ARMcmov (f16 HPR:$Sn), (f16 HPR:$Sm), cmovpred:$p))]>, RegConstraint<"$Sd = $Sn">, Requires<[HasFPRegs]>; } // hasSideEffects //===----------------------------------------------------------------------===// // Move from VFP System Register to ARM core register. // class MovFromVFP opc19_16, dag oops, dag iops, string opc, string asm, list pattern>: VFPAI { // Instruction operand. bits<4> Rt; let Inst{27-20} = 0b11101111; let Inst{19-16} = opc19_16; let Inst{15-12} = Rt; let Inst{11-8} = 0b1010; let Inst{7} = 0; let Inst{6-5} = 0b00; let Inst{4} = 1; let Inst{3-0} = 0b0000; let Unpredictable{7-5} = 0b111; let Unpredictable{3-0} = 0b1111; } let DecoderMethod = "DecodeForVMRSandVMSR" in { // APSR is the application level alias of CPSR. This FPSCR N, Z, C, V flags // to APSR. let Defs = [CPSR], Uses = [FPSCR_NZCV], Predicates = [HasFPRegs], Rt = 0b1111 /* apsr_nzcv */ in def FMSTAT : MovFromVFP<0b0001 /* fpscr */, (outs), (ins), "vmrs", "\tAPSR_nzcv, fpscr", [(arm_fmstat)]>; // Application level FPSCR -> GPR let hasSideEffects = 1, Uses = [FPSCR], Predicates = [HasFPRegs] in def VMRS : MovFromVFP<0b0001 /* fpscr */, (outs GPRnopc:$Rt), (ins), "vmrs", "\t$Rt, fpscr", [(set GPRnopc:$Rt, (int_arm_get_fpscr))]>; // System level FPEXC, FPSID -> GPR let Uses = [FPSCR] in { def VMRS_FPEXC : MovFromVFP<0b1000 /* fpexc */, (outs GPRnopc:$Rt), (ins), "vmrs", "\t$Rt, fpexc", []>; def VMRS_FPSID : MovFromVFP<0b0000 /* fpsid */, (outs GPRnopc:$Rt), (ins), "vmrs", "\t$Rt, fpsid", []>; def VMRS_MVFR0 : MovFromVFP<0b0111 /* mvfr0 */, (outs GPRnopc:$Rt), (ins), "vmrs", "\t$Rt, mvfr0", []>; def VMRS_MVFR1 : MovFromVFP<0b0110 /* mvfr1 */, (outs GPRnopc:$Rt), (ins), "vmrs", "\t$Rt, mvfr1", []>; let Predicates = [HasFPARMv8] in { def VMRS_MVFR2 : MovFromVFP<0b0101 /* mvfr2 */, (outs GPRnopc:$Rt), (ins), "vmrs", "\t$Rt, mvfr2", []>; } def VMRS_FPINST : MovFromVFP<0b1001 /* fpinst */, (outs GPRnopc:$Rt), (ins), "vmrs", "\t$Rt, fpinst", []>; def VMRS_FPINST2 : MovFromVFP<0b1010 /* fpinst2 */, (outs GPRnopc:$Rt), (ins), "vmrs", "\t$Rt, fpinst2", []>; let Predicates = [HasV8_1MMainline, HasFPRegs] in { // System level FPSCR_NZCVQC -> GPR def VMRS_FPSCR_NZCVQC : MovFromVFP<0b0010 /* fpscr_nzcvqc */, (outs GPR:$Rt), (ins cl_FPSCR_NZCV:$fpscr_in), "vmrs", "\t$Rt, fpscr_nzcvqc", []>; } } let Predicates = [HasV8_1MMainline, Has8MSecExt] in { // System level FPSCR -> GPR, with context saving for security extensions def VMRS_FPCXTNS : MovFromVFP<0b1110 /* fpcxtns */, (outs GPR:$Rt), (ins), "vmrs", "\t$Rt, fpcxtns", []>; } let Predicates = [HasV8_1MMainline, Has8MSecExt] in { // System level FPSCR -> GPR, with context saving for security extensions def VMRS_FPCXTS : MovFromVFP<0b1111 /* fpcxts */, (outs GPR:$Rt), (ins), "vmrs", "\t$Rt, fpcxts", []>; } let Predicates = [HasV8_1MMainline, HasMVEInt] in { // System level VPR/P0 -> GPR let Uses = [VPR] in def VMRS_VPR : MovFromVFP<0b1100 /* vpr */, (outs GPR:$Rt), (ins), "vmrs", "\t$Rt, vpr", []>; def VMRS_P0 : MovFromVFP<0b1101 /* p0 */, (outs GPR:$Rt), (ins VCCR:$cond), "vmrs", "\t$Rt, p0", []>; } } //===----------------------------------------------------------------------===// // Move from ARM core register to VFP System Register. // class MovToVFP opc19_16, dag oops, dag iops, string opc, string asm, list pattern>: VFPAI { // Instruction operand. bits<4> Rt; let Inst{27-20} = 0b11101110; let Inst{19-16} = opc19_16; let Inst{15-12} = Rt; let Inst{11-8} = 0b1010; let Inst{7} = 0; let Inst{6-5} = 0b00; let Inst{4} = 1; let Inst{3-0} = 0b0000; let Predicates = [HasVFP2]; let Unpredictable{7-5} = 0b111; let Unpredictable{3-0} = 0b1111; } let DecoderMethod = "DecodeForVMRSandVMSR" in { let Defs = [FPSCR] in { let Predicates = [HasFPRegs] in // Application level GPR -> FPSCR def VMSR : MovToVFP<0b0001 /* fpscr */, (outs), (ins GPRnopc:$Rt), "vmsr", "\tfpscr, $Rt", [(int_arm_set_fpscr GPRnopc:$Rt)]>; // System level GPR -> FPEXC def VMSR_FPEXC : MovToVFP<0b1000 /* fpexc */, (outs), (ins GPRnopc:$Rt), "vmsr", "\tfpexc, $Rt", []>; // System level GPR -> FPSID def VMSR_FPSID : MovToVFP<0b0000 /* fpsid */, (outs), (ins GPRnopc:$Rt), "vmsr", "\tfpsid, $Rt", []>; def VMSR_FPINST : MovToVFP<0b1001 /* fpinst */, (outs), (ins GPRnopc:$Rt), "vmsr", "\tfpinst, $Rt", []>; def VMSR_FPINST2 : MovToVFP<0b1010 /* fpinst2 */, (outs), (ins GPRnopc:$Rt), "vmsr", "\tfpinst2, $Rt", []>; } let Predicates = [HasV8_1MMainline, Has8MSecExt] in { // System level GPR -> FPSCR with context saving for security extensions def VMSR_FPCXTNS : MovToVFP<0b1110 /* fpcxtns */, (outs), (ins GPR:$Rt), "vmsr", "\tfpcxtns, $Rt", []>; } let Predicates = [HasV8_1MMainline, Has8MSecExt] in { // System level GPR -> FPSCR with context saving for security extensions def VMSR_FPCXTS : MovToVFP<0b1111 /* fpcxts */, (outs), (ins GPR:$Rt), "vmsr", "\tfpcxts, $Rt", []>; } let Predicates = [HasV8_1MMainline, HasFPRegs] in { // System level GPR -> FPSCR_NZCVQC def VMSR_FPSCR_NZCVQC : MovToVFP<0b0010 /* fpscr_nzcvqc */, (outs cl_FPSCR_NZCV:$fpscr_out), (ins GPR:$Rt), "vmsr", "\tfpscr_nzcvqc, $Rt", []>; } let Predicates = [HasV8_1MMainline, HasMVEInt] in { // System level GPR -> VPR/P0 let Defs = [VPR] in def VMSR_VPR : MovToVFP<0b1100 /* vpr */, (outs), (ins GPR:$Rt), "vmsr", "\tvpr, $Rt", []>; def VMSR_P0 : MovToVFP<0b1101 /* p0 */, (outs VCCR:$cond), (ins GPR:$Rt), "vmsr", "\tp0, $Rt", []>; } } //===----------------------------------------------------------------------===// // Misc. // // Materialize FP immediates. VFP3 only. let isReMaterializable = 1 in { def FCONSTD : VFPAI<(outs DPR:$Dd), (ins vfp_f64imm:$imm), VFPMiscFrm, IIC_fpUNA64, "vmov", ".f64\t$Dd, $imm", "", [(set DPR:$Dd, vfp_f64imm:$imm)]>, Requires<[HasVFP3,HasDPVFP]> { bits<5> Dd; bits<8> imm; let Inst{27-23} = 0b11101; let Inst{22} = Dd{4}; let Inst{21-20} = 0b11; let Inst{19-16} = imm{7-4}; let Inst{15-12} = Dd{3-0}; let Inst{11-9} = 0b101; let Inst{8} = 1; // Double precision. let Inst{7-4} = 0b0000; let Inst{3-0} = imm{3-0}; } def FCONSTS : VFPAI<(outs SPR:$Sd), (ins vfp_f32imm:$imm), VFPMiscFrm, IIC_fpUNA32, "vmov", ".f32\t$Sd, $imm", "", [(set SPR:$Sd, vfp_f32imm:$imm)]>, Requires<[HasVFP3]> { bits<5> Sd; bits<8> imm; let Inst{27-23} = 0b11101; let Inst{22} = Sd{0}; let Inst{21-20} = 0b11; let Inst{19-16} = imm{7-4}; let Inst{15-12} = Sd{4-1}; let Inst{11-9} = 0b101; let Inst{8} = 0; // Single precision. let Inst{7-4} = 0b0000; let Inst{3-0} = imm{3-0}; } def FCONSTH : VFPAI<(outs HPR:$Sd), (ins vfp_f16imm:$imm), VFPMiscFrm, IIC_fpUNA16, "vmov", ".f16\t$Sd, $imm", "", [(set (f16 HPR:$Sd), vfp_f16imm:$imm)]>, Requires<[HasFullFP16]> { bits<5> Sd; bits<8> imm; let Inst{27-23} = 0b11101; let Inst{22} = Sd{0}; let Inst{21-20} = 0b11; let Inst{19-16} = imm{7-4}; let Inst{15-12} = Sd{4-1}; let Inst{11-8} = 0b1001; // Half precision let Inst{7-4} = 0b0000; let Inst{3-0} = imm{3-0}; let isUnpredicable = 1; } } def : Pat<(f32 (vfp_f32f16imm:$imm)), (f32 (COPY_TO_REGCLASS (f16 (FCONSTH (vfp_f32f16imm_xform (f32 $imm)))), SPR))> { let Predicates = [HasFullFP16]; } // Floating-point environment management. def : Pat<(get_fpenv), (VMRS)>; def : Pat<(set_fpenv GPRnopc:$Rt), (VMSR GPRnopc:$Rt)>; def : Pat<(reset_fpenv), (VMSR (MOVi 0))>, Requires<[IsARM]>; def : Pat<(reset_fpenv), (VMSR (tMOVi8 0))>, Requires<[IsThumb]>; def : Pat<(get_fpmode), (VMRS)>; //===----------------------------------------------------------------------===// // Assembler aliases. // // A few mnemonic aliases for pre-unifixed syntax. We don't guarantee to // support them all, but supporting at least some of the basics is // good to be friendly. def : VFP2MnemonicAlias<"flds", "vldr">; def : VFP2MnemonicAlias<"fldd", "vldr">; def : VFP2MnemonicAlias<"fmrs", "vmov">; def : VFP2MnemonicAlias<"fmsr", "vmov">; def : VFP2MnemonicAlias<"fsqrts", "vsqrt">; def : VFP2MnemonicAlias<"fsqrtd", "vsqrt">; def : VFP2MnemonicAlias<"fadds", "vadd.f32">; def : VFP2MnemonicAlias<"faddd", "vadd.f64">; def : VFP2MnemonicAlias<"fmrdd", "vmov">; def : VFP2MnemonicAlias<"fmrds", "vmov">; def : VFP2MnemonicAlias<"fmrrd", "vmov">; def : VFP2MnemonicAlias<"fmdrr", "vmov">; def : VFP2MnemonicAlias<"fmuls", "vmul.f32">; def : VFP2MnemonicAlias<"fmuld", "vmul.f64">; def : VFP2MnemonicAlias<"fnegs", "vneg.f32">; def : VFP2MnemonicAlias<"fnegd", "vneg.f64">; def : VFP2MnemonicAlias<"ftosizd", "vcvt.s32.f64">; def : VFP2MnemonicAlias<"ftosid", "vcvtr.s32.f64">; def : VFP2MnemonicAlias<"ftosizs", "vcvt.s32.f32">; def : VFP2MnemonicAlias<"ftosis", "vcvtr.s32.f32">; def : VFP2MnemonicAlias<"ftouizd", "vcvt.u32.f64">; def : VFP2MnemonicAlias<"ftouid", "vcvtr.u32.f64">; def : VFP2MnemonicAlias<"ftouizs", "vcvt.u32.f32">; def : VFP2MnemonicAlias<"ftouis", "vcvtr.u32.f32">; def : VFP2MnemonicAlias<"fsitod", "vcvt.f64.s32">; def : VFP2MnemonicAlias<"fsitos", "vcvt.f32.s32">; def : VFP2MnemonicAlias<"fuitod", "vcvt.f64.u32">; def : VFP2MnemonicAlias<"fuitos", "vcvt.f32.u32">; def : VFP2MnemonicAlias<"fsts", "vstr">; def : VFP2MnemonicAlias<"fstd", "vstr">; def : VFP2MnemonicAlias<"fmacd", "vmla.f64">; def : VFP2MnemonicAlias<"fmacs", "vmla.f32">; def : VFP2MnemonicAlias<"fcpys", "vmov.f32">; def : VFP2MnemonicAlias<"fcpyd", "vmov.f64">; def : VFP2MnemonicAlias<"fcmps", "vcmp.f32">; def : VFP2MnemonicAlias<"fcmpd", "vcmp.f64">; def : VFP2MnemonicAlias<"fdivs", "vdiv.f32">; def : VFP2MnemonicAlias<"fdivd", "vdiv.f64">; def : VFP2MnemonicAlias<"fmrx", "vmrs">; def : VFP2MnemonicAlias<"fmxr", "vmsr">; // Be friendly and accept the old form of zero-compare def : VFP2DPInstAlias<"fcmpzd${p} $val", (VCMPZD DPR:$val, pred:$p)>; def : VFP2InstAlias<"fcmpzs${p} $val", (VCMPZS SPR:$val, pred:$p)>; def : InstAlias<"fmstat${p}", (FMSTAT pred:$p), 0>, Requires<[HasFPRegs]>; def : VFP2InstAlias<"fadds${p} $Sd, $Sn, $Sm", (VADDS SPR:$Sd, SPR:$Sn, SPR:$Sm, pred:$p)>; def : VFP2DPInstAlias<"faddd${p} $Dd, $Dn, $Dm", (VADDD DPR:$Dd, DPR:$Dn, DPR:$Dm, pred:$p)>; def : VFP2InstAlias<"fsubs${p} $Sd, $Sn, $Sm", (VSUBS SPR:$Sd, SPR:$Sn, SPR:$Sm, pred:$p)>; def : VFP2DPInstAlias<"fsubd${p} $Dd, $Dn, $Dm", (VSUBD DPR:$Dd, DPR:$Dn, DPR:$Dm, pred:$p)>; // No need for the size suffix on VSQRT. It's implied by the register classes. def : VFP2InstAlias<"vsqrt${p} $Sd, $Sm", (VSQRTS SPR:$Sd, SPR:$Sm, pred:$p)>; def : VFP2DPInstAlias<"vsqrt${p} $Dd, $Dm", (VSQRTD DPR:$Dd, DPR:$Dm, pred:$p)>; // VLDR/VSTR accept an optional type suffix. def : VFP2InstAlias<"vldr${p}.32 $Sd, $addr", (VLDRS SPR:$Sd, addrmode5:$addr, pred:$p)>; def : VFP2InstAlias<"vstr${p}.32 $Sd, $addr", (VSTRS SPR:$Sd, addrmode5:$addr, pred:$p)>; def : VFP2InstAlias<"vldr${p}.64 $Dd, $addr", (VLDRD DPR:$Dd, addrmode5:$addr, pred:$p)>; def : VFP2InstAlias<"vstr${p}.64 $Dd, $addr", (VSTRD DPR:$Dd, addrmode5:$addr, pred:$p)>; // VMOV can accept optional 32-bit or less data type suffix suffix. def : VFP2InstAlias<"vmov${p}.8 $Rt, $Sn", (VMOVRS GPR:$Rt, SPR:$Sn, pred:$p)>; def : VFP2InstAlias<"vmov${p}.16 $Rt, $Sn", (VMOVRS GPR:$Rt, SPR:$Sn, pred:$p)>; def : VFP2InstAlias<"vmov${p}.32 $Rt, $Sn", (VMOVRS GPR:$Rt, SPR:$Sn, pred:$p)>; def : VFP2InstAlias<"vmov${p}.8 $Sn, $Rt", (VMOVSR SPR:$Sn, GPR:$Rt, pred:$p)>; def : VFP2InstAlias<"vmov${p}.16 $Sn, $Rt", (VMOVSR SPR:$Sn, GPR:$Rt, pred:$p)>; def : VFP2InstAlias<"vmov${p}.32 $Sn, $Rt", (VMOVSR SPR:$Sn, GPR:$Rt, pred:$p)>; def : VFP2InstAlias<"vmov${p}.f64 $Rt, $Rt2, $Dn", (VMOVRRD GPR:$Rt, GPR:$Rt2, DPR:$Dn, pred:$p)>; def : VFP2InstAlias<"vmov${p}.f64 $Dn, $Rt, $Rt2", (VMOVDRR DPR:$Dn, GPR:$Rt, GPR:$Rt2, pred:$p)>; // VMOVS doesn't need the .f32 to disambiguate from the NEON encoding the way // VMOVD does. def : VFP2InstAlias<"vmov${p} $Sd, $Sm", (VMOVS SPR:$Sd, SPR:$Sm, pred:$p)>; // FCONSTD/FCONSTS alias for vmov.f64/vmov.f32 // These aliases provide added functionality over vmov.f instructions by // allowing users to write assembly containing encoded floating point constants // (e.g. #0x70 vs #1.0). Without these alises there is no way for the // assembler to accept encoded fp constants (but the equivalent fp-literal is // accepted directly by vmovf). def : VFP3InstAlias<"fconstd${p} $Dd, $val", (FCONSTD DPR:$Dd, vfp_f64imm:$val, pred:$p)>; def : VFP3InstAlias<"fconsts${p} $Sd, $val", (FCONSTS SPR:$Sd, vfp_f32imm:$val, pred:$p)>; def VSCCLRMD : VFPXI<(outs), (ins pred:$p, fp_dreglist_with_vpr:$regs, variable_ops), AddrModeNone, 4, IndexModeNone, VFPMiscFrm, NoItinerary, "vscclrm{$p}\t$regs", "", []>, Sched<[]> { bits<13> regs; let Inst{31-23} = 0b111011001; let Inst{22} = regs{12}; let Inst{21-16} = 0b011111; let Inst{15-12} = regs{11-8}; let Inst{11-8} = 0b1011; let Inst{7-1} = regs{7-1}; let Inst{0} = 0; let DecoderMethod = "DecodeVSCCLRM"; list Predicates = [HasV8_1MMainline, Has8MSecExt]; } def VSCCLRMS : VFPXI<(outs), (ins pred:$p, fp_sreglist_with_vpr:$regs, variable_ops), AddrModeNone, 4, IndexModeNone, VFPMiscFrm, NoItinerary, "vscclrm{$p}\t$regs", "", []>, Sched<[]> { bits<13> regs; let Inst{31-23} = 0b111011001; let Inst{22} = regs{8}; let Inst{21-16} = 0b011111; let Inst{15-12} = regs{12-9}; let Inst{11-8} = 0b1010; let Inst{7-0} = regs{7-0}; let DecoderMethod = "DecodeVSCCLRM"; list Predicates = [HasV8_1MMainline, Has8MSecExt]; } //===----------------------------------------------------------------------===// // Store VFP System Register to memory. // class vfp_vstrldr SysReg, string sysreg, dag oops, dag iops, IndexMode im, string Dest, string cstr> : VFPI, Sched<[]> { bits<12> addr; let Inst{27-25} = 0b110; let Inst{24} = P; let Inst{23} = addr{7}; let Inst{22} = SysReg{3}; let Inst{21} = W; let Inst{20} = opc; let Inst{19-16} = addr{11-8}; let Inst{15-13} = SysReg{2-0}; let Inst{12-7} = 0b011111; let Inst{6-0} = addr{6-0}; list Predicates = [HasFPRegs, HasV8_1MMainline]; let mayLoad = opc; let mayStore = !if(opc, 0b0, 0b1); let hasSideEffects = 1; } multiclass vfp_vstrldr_sysreg SysReg, string sysreg, dag oops=(outs), dag iops=(ins)> { def _off : vfp_vstrldr { let DecoderMethod = "DecodeVSTRVLDR_SYSREG"; } def _pre : vfp_vstrldr { let DecoderMethod = "DecodeVSTRVLDR_SYSREG"; } def _post : vfp_vstrldr { bits<4> Rn; let Inst{19-16} = Rn{3-0}; let DecoderMethod = "DecodeVSTRVLDR_SYSREG"; } } let Defs = [FPSCR] in { defm VSTR_FPSCR : vfp_vstrldr_sysreg<0b0,0b0001, "fpscr">; defm VSTR_FPSCR_NZCVQC : vfp_vstrldr_sysreg<0b0,0b0010, "fpscr_nzcvqc">; let Predicates = [HasV8_1MMainline, Has8MSecExt] in { defm VSTR_FPCXTNS : vfp_vstrldr_sysreg<0b0,0b1110, "fpcxtns">; defm VSTR_FPCXTS : vfp_vstrldr_sysreg<0b0,0b1111, "fpcxts">; } } let Predicates = [HasV8_1MMainline, HasMVEInt] in { let Uses = [VPR] in { defm VSTR_VPR : vfp_vstrldr_sysreg<0b0,0b1100, "vpr">; } defm VSTR_P0 : vfp_vstrldr_sysreg<0b0,0b1101, "p0", (outs), (ins VCCR:$P0)>; let Defs = [VPR] in { defm VLDR_VPR : vfp_vstrldr_sysreg<0b1,0b1100, "vpr">; } defm VLDR_P0 : vfp_vstrldr_sysreg<0b1,0b1101, "p0", (outs VCCR:$P0), (ins)>; } let Uses = [FPSCR] in { defm VLDR_FPSCR : vfp_vstrldr_sysreg<0b1,0b0001, "fpscr">; defm VLDR_FPSCR_NZCVQC : vfp_vstrldr_sysreg<0b1,0b0010, "fpscr_nzcvqc">; let Predicates = [HasV8_1MMainline, Has8MSecExt] in { defm VLDR_FPCXTNS : vfp_vstrldr_sysreg<0b1,0b1110, "fpcxtns">; defm VLDR_FPCXTS : vfp_vstrldr_sysreg<0b1,0b1111, "fpcxts">; } }