//===-- ARMInstrMVE.td - MVE support for ARM ---------------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the ARM MVE instruction set. // //===----------------------------------------------------------------------===// // VPT condition mask def vpt_mask : Operand { let PrintMethod = "printVPTMask"; let ParserMatchClass = it_mask_asmoperand; let EncoderMethod = "getVPTMaskOpValue"; let DecoderMethod = "DecodeVPTMaskOperand"; } // VPT/VCMP restricted predicate for sign invariant types def pred_restricted_i_asmoperand : AsmOperandClass { let Name = "CondCodeRestrictedI"; let RenderMethod = "addITCondCodeOperands"; let PredicateMethod = "isITCondCodeRestrictedI"; let ParserMethod = "parseITCondCode"; let DiagnosticString = "condition code for sign-independent integer "# "comparison must be EQ or NE"; } // VPT/VCMP restricted predicate for signed types def pred_restricted_s_asmoperand : AsmOperandClass { let Name = "CondCodeRestrictedS"; let RenderMethod = "addITCondCodeOperands"; let PredicateMethod = "isITCondCodeRestrictedS"; let ParserMethod = "parseITCondCode"; let DiagnosticString = "condition code for signed integer "# "comparison must be EQ, NE, LT, GT, LE or GE"; } // VPT/VCMP restricted predicate for unsigned types def pred_restricted_u_asmoperand : AsmOperandClass { let Name = "CondCodeRestrictedU"; let RenderMethod = "addITCondCodeOperands"; let PredicateMethod = "isITCondCodeRestrictedU"; let ParserMethod = "parseITCondCode"; let DiagnosticString = "condition code for unsigned integer "# "comparison must be EQ, NE, HS or HI"; } // VPT/VCMP restricted predicate for floating point def pred_restricted_fp_asmoperand : AsmOperandClass { let Name = "CondCodeRestrictedFP"; let RenderMethod = "addITCondCodeOperands"; let PredicateMethod = "isITCondCodeRestrictedFP"; let ParserMethod = "parseITCondCode"; let DiagnosticString = "condition code for floating-point "# "comparison must be EQ, NE, LT, GT, LE or GE"; } class VCMPPredicateOperand : Operand; def pred_basic_i : VCMPPredicateOperand { let PrintMethod = "printMandatoryRestrictedPredicateOperand"; let ParserMatchClass = pred_restricted_i_asmoperand; let DecoderMethod = "DecodeRestrictedIPredicateOperand"; let EncoderMethod = "getRestrictedCondCodeOpValue"; } def pred_basic_u : VCMPPredicateOperand { let PrintMethod = "printMandatoryRestrictedPredicateOperand"; let ParserMatchClass = pred_restricted_u_asmoperand; let DecoderMethod = "DecodeRestrictedUPredicateOperand"; let EncoderMethod = "getRestrictedCondCodeOpValue"; } def pred_basic_s : VCMPPredicateOperand { let PrintMethod = "printMandatoryRestrictedPredicateOperand"; let ParserMatchClass = pred_restricted_s_asmoperand; let DecoderMethod = "DecodeRestrictedSPredicateOperand"; let EncoderMethod = "getRestrictedCondCodeOpValue"; } def pred_basic_fp : VCMPPredicateOperand { let PrintMethod = "printMandatoryRestrictedPredicateOperand"; let ParserMatchClass = pred_restricted_fp_asmoperand; let DecoderMethod = "DecodeRestrictedFPPredicateOperand"; let EncoderMethod = "getRestrictedCondCodeOpValue"; } // Register list operands for interleaving load/stores def VecList2QAsmOperand : AsmOperandClass { let Name = "VecListTwoMQ"; let ParserMethod = "parseVectorList"; let RenderMethod = "addMVEVecListOperands"; let DiagnosticString = "operand must be a list of two consecutive "# "q-registers in range [q0,q7]"; } def VecList2Q : RegisterOperand { let ParserMatchClass = VecList2QAsmOperand; let PrintMethod = "printMVEVectorList<2>"; } def VecList4QAsmOperand : AsmOperandClass { let Name = "VecListFourMQ"; let ParserMethod = "parseVectorList"; let RenderMethod = "addMVEVecListOperands"; let DiagnosticString = "operand must be a list of four consecutive "# "q-registers in range [q0,q7]"; } def VecList4Q : RegisterOperand { let ParserMatchClass = VecList4QAsmOperand; let PrintMethod = "printMVEVectorList<4>"; } // taddrmode_imm7 := reg[r0-r7] +/- (imm7 << shift) class TMemImm7ShiftOffsetAsmOperand : AsmOperandClass { let Name = "TMemImm7Shift"#shift#"Offset"; let PredicateMethod = "isMemImm7ShiftedOffset<"#shift#",ARM::tGPRRegClassID>"; let RenderMethod = "addMemImmOffsetOperands"; } class taddrmode_imm7 : MemOperand, ComplexPattern", []> { let ParserMatchClass = TMemImm7ShiftOffsetAsmOperand; // They are printed the same way as the T2 imm8 version let PrintMethod = "printT2AddrModeImm8Operand"; // This can also be the same as the T2 version. let EncoderMethod = "getT2AddrModeImmOpValue<7,"#shift#">"; let DecoderMethod = "DecodeTAddrModeImm7<"#shift#">"; let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm); } // t2addrmode_imm7 := reg +/- (imm7) class MemImm7ShiftOffsetAsmOperand : AsmOperandClass { let Name = "MemImm7Shift"#shift#"Offset"; let PredicateMethod = "isMemImm7ShiftedOffset<" # shift # ",ARM::GPRnopcRegClassID>"; let RenderMethod = "addMemImmOffsetOperands"; } def MemImm7Shift0OffsetAsmOperand : MemImm7ShiftOffsetAsmOperand<0>; def MemImm7Shift1OffsetAsmOperand : MemImm7ShiftOffsetAsmOperand<1>; def MemImm7Shift2OffsetAsmOperand : MemImm7ShiftOffsetAsmOperand<2>; class T2AddrMode_Imm7 : MemOperand, ComplexPattern", []> { let EncoderMethod = "getT2AddrModeImmOpValue<7,"#shift#">"; let DecoderMethod = "DecodeT2AddrModeImm7<"#shift#", 0>"; let ParserMatchClass = !cast("MemImm7Shift"#shift#"OffsetAsmOperand"); let MIOperandInfo = (ops GPRnopc:$base, i32imm:$offsimm); } class t2addrmode_imm7 : T2AddrMode_Imm7 { // They are printed the same way as the imm8 version let PrintMethod = "printT2AddrModeImm8Operand"; } class MemImm7ShiftOffsetWBAsmOperand : AsmOperandClass { let Name = "MemImm7Shift"#shift#"OffsetWB"; let PredicateMethod = "isMemImm7ShiftedOffset<" # shift # ",ARM::rGPRRegClassID>"; let RenderMethod = "addMemImmOffsetOperands"; } def MemImm7Shift0OffsetWBAsmOperand : MemImm7ShiftOffsetWBAsmOperand<0>; def MemImm7Shift1OffsetWBAsmOperand : MemImm7ShiftOffsetWBAsmOperand<1>; def MemImm7Shift2OffsetWBAsmOperand : MemImm7ShiftOffsetWBAsmOperand<2>; class t2addrmode_imm7_pre : T2AddrMode_Imm7 { // They are printed the same way as the imm8 version let PrintMethod = "printT2AddrModeImm8Operand"; let ParserMatchClass = !cast("MemImm7Shift"#shift#"OffsetWBAsmOperand"); let DecoderMethod = "DecodeT2AddrModeImm7<"#shift#", 1>"; let MIOperandInfo = (ops rGPR:$base, i32imm:$offsim); } class t2am_imm7shiftOffsetAsmOperand : AsmOperandClass { let Name = "Imm7Shift"#shift; } def t2am_imm7shift0OffsetAsmOperand : t2am_imm7shiftOffsetAsmOperand<0>; def t2am_imm7shift1OffsetAsmOperand : t2am_imm7shiftOffsetAsmOperand<1>; def t2am_imm7shift2OffsetAsmOperand : t2am_imm7shiftOffsetAsmOperand<2>; class t2am_imm7_offset : MemOperand, ComplexPattern", [], [SDNPWantRoot]> { // They are printed the same way as the imm8 version let PrintMethod = "printT2AddrModeImm8OffsetOperand"; let ParserMatchClass = !cast("t2am_imm7shift"#shift#"OffsetAsmOperand"); let EncoderMethod = "getT2ScaledImmOpValue<7,"#shift#">"; let DecoderMethod = "DecodeT2Imm7<"#shift#">"; } // Operands for gather/scatter loads of the form [Rbase, Qoffsets] class MemRegRQOffsetAsmOperand : AsmOperandClass { let Name = "MemRegRQS"#shift#"Offset"; let PredicateMethod = "isMemRegRQOffset<"#shift#">"; let RenderMethod = "addMemRegRQOffsetOperands"; } def MemRegRQS0OffsetAsmOperand : MemRegRQOffsetAsmOperand<0>; def MemRegRQS1OffsetAsmOperand : MemRegRQOffsetAsmOperand<1>; def MemRegRQS2OffsetAsmOperand : MemRegRQOffsetAsmOperand<2>; def MemRegRQS3OffsetAsmOperand : MemRegRQOffsetAsmOperand<3>; // mve_addr_rq_shift := reg + vreg{ << UXTW #shift} class mve_addr_rq_shift : MemOperand { let EncoderMethod = "getMveAddrModeRQOpValue"; let PrintMethod = "printMveAddrModeRQOperand<"#shift#">"; let ParserMatchClass = !cast("MemRegRQS"#shift#"OffsetAsmOperand"); let DecoderMethod = "DecodeMveAddrModeRQ"; let MIOperandInfo = (ops GPRnopc:$base, MQPR:$offsreg); } class MemRegQOffsetAsmOperand : AsmOperandClass { let Name = "MemRegQS"#shift#"Offset"; let PredicateMethod = "isMemRegQOffset<"#shift#">"; let RenderMethod = "addMemImmOffsetOperands"; } def MemRegQS2OffsetAsmOperand : MemRegQOffsetAsmOperand<2>; def MemRegQS3OffsetAsmOperand : MemRegQOffsetAsmOperand<3>; // mve_addr_q_shift := vreg {+ #imm7s2/4} class mve_addr_q_shift : MemOperand { let EncoderMethod = "getMveAddrModeQOpValue<"#shift#">"; // Can be printed same way as other reg + imm operands let PrintMethod = "printT2AddrModeImm8Operand"; let ParserMatchClass = !cast("MemRegQS"#shift#"OffsetAsmOperand"); let DecoderMethod = "DecodeMveAddrModeQ<"#shift#">"; let MIOperandInfo = (ops MQPR:$base, i32imm:$imm); } // A family of classes wrapping up information about the vector types // used by MVE. class MVEVectorVTInfo size, string suffixletter, bit unsigned> { // The LLVM ValueType representing the vector, so we can use it in // ISel patterns. ValueType Vec = vec; // The LLVM ValueType representing a vector with elements double the size // of those in Vec, so we can use it in ISel patterns. It is up to the // invoker of this class to ensure that this is a correct choice. ValueType DblVec = dblvec; // An LLVM ValueType representing a corresponding vector of // predicate bits, for use in ISel patterns that handle an IR // intrinsic describing the predicated form of the instruction. ValueType Pred = pred; // Same as Pred but for DblVec rather than Vec. ValueType DblPred = dblpred; // The most common representation of the vector element size in MVE // instruction encodings: a 2-bit value V representing an (8< Size = size; // For vectors explicitly mentioning a signedness of integers: 0 for // signed and 1 for unsigned. For anything else, undefined. bit Unsigned = unsigned; // The number of bits in a vector element, in integer form. int LaneBits = !shl(8, Size); // The suffix used in assembly language on an instruction operating // on this lane if it only cares about number of bits. string BitsSuffix = !if(!eq(suffixletter, "p"), !if(!eq(unsigned, 0b0), "8", "16"), !cast(LaneBits)); // The suffix used on an instruction that mentions the whole type. string Suffix = suffixletter # BitsSuffix; // The letter part of the suffix only. string SuffixLetter = suffixletter; } // Integer vector types that don't treat signed and unsigned differently. def MVE_v16i8 : MVEVectorVTInfo; def MVE_v8i16 : MVEVectorVTInfo; def MVE_v4i32 : MVEVectorVTInfo; def MVE_v2i64 : MVEVectorVTInfo; // Explicitly signed and unsigned integer vectors. They map to the // same set of LLVM ValueTypes as above, but are represented // differently in assembly and instruction encodings. def MVE_v16s8 : MVEVectorVTInfo; def MVE_v8s16 : MVEVectorVTInfo; def MVE_v4s32 : MVEVectorVTInfo; def MVE_v2s64 : MVEVectorVTInfo; def MVE_v16u8 : MVEVectorVTInfo; def MVE_v8u16 : MVEVectorVTInfo; def MVE_v4u32 : MVEVectorVTInfo; def MVE_v2u64 : MVEVectorVTInfo; // FP vector types. def MVE_v8f16 : MVEVectorVTInfo; def MVE_v4f32 : MVEVectorVTInfo; def MVE_v2f64 : MVEVectorVTInfo; // Polynomial vector types. def MVE_v16p8 : MVEVectorVTInfo; def MVE_v8p16 : MVEVectorVTInfo; multiclass MVE_TwoOpPattern { // Unpredicated def : Pat<(VTI.Vec (Op (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; // Predicated with select if !ne(VTI.Size, 0b11) then { def : Pat<(VTI.Vec (vselect (VTI.Pred VCCR:$mask), (VTI.Vec (Op (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn))), (VTI.Vec MQPR:$inactive))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg, (VTI.Vec MQPR:$inactive)))>; // Optionally with the select folded through the op def : Pat<(VTI.Vec (Op (VTI.Vec MQPR:$Qm), (VTI.Vec (vselect (VTI.Pred VCCR:$mask), (VTI.Vec MQPR:$Qn), (VTI.Vec IdentityVec))))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg, (VTI.Vec MQPR:$Qm)))>; } // Predicated with intrinsic def : Pat<(VTI.Vec !con((PredInt (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)), PredOperands, (? (VTI.Pred VCCR:$mask), (VTI.Vec MQPR:$inactive)))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg, (VTI.Vec MQPR:$inactive)))>; } multiclass MVE_TwoOpPatternDup { // Unpredicated def : Pat<(VTI.Vec (Op (VTI.Vec MQPR:$Qm), (VTI.Vec (ARMvdup rGPR:$Rn)))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), rGPR:$Rn))>; // Predicated with select if !ne(VTI.Size, 0b11) then { def : Pat<(VTI.Vec (vselect (VTI.Pred VCCR:$mask), (VTI.Vec (Op (VTI.Vec MQPR:$Qm), (VTI.Vec (ARMvdup rGPR:$Rn)))), (VTI.Vec MQPR:$inactive))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), rGPR:$Rn, ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg, (VTI.Vec MQPR:$inactive)))>; // Optionally with the select folded through the op def : Pat<(VTI.Vec (Op (VTI.Vec MQPR:$Qm), (VTI.Vec (vselect (VTI.Pred VCCR:$mask), (ARMvdup rGPR:$Rn), (VTI.Vec IdentityVec))))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), rGPR:$Rn, ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg, (VTI.Vec MQPR:$Qm)))>; } // Predicated with intrinsic def : Pat<(VTI.Vec !con((PredInt (VTI.Vec MQPR:$Qm), (VTI.Vec (ARMvdup rGPR:$Rn))), PredOperands, (? (VTI.Pred VCCR:$mask), (VTI.Vec MQPR:$inactive)))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), rGPR:$Rn, ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg, (VTI.Vec MQPR:$inactive)))>; } // --------- Start of base classes for the instructions themselves class MVE_MI vecsize, list pattern> : Thumb2XI, Requires<[HasMVEInt]> { let D = MVEDomain; let DecoderNamespace = "MVE"; let VecSize = vecsize; } // MVE_p is used for most predicated instructions, to add the cluster // of input operands that provides the VPT suffix (none, T or E) and // the input predicate register. class MVE_p vecsize, list pattern=[]> : MVE_MI { let Inst{31-29} = 0b111; let Inst{27-26} = 0b11; } class MVE_f vecsize, list pattern=[]> : MVE_p { let Predicates = [HasMVEFloat]; } class MVE_MI_with_pred pattern> : Thumb2I, Requires<[HasV8_1MMainline, HasMVEInt]> { let D = MVEDomain; let DecoderNamespace = "MVE"; } class MVE_VMOV_lane_base pattern> : Thumb2I, Requires<[HasV8_1MMainline, HasMVEInt]> { let D = MVEDomain; let DecoderNamespace = "MVE"; } class MVE_ScalarShift pattern=[]> : MVE_MI_with_pred { let Inst{31-20} = 0b111010100101; let Inst{8} = 0b1; let validForTailPredication=1; } class MVE_ScalarShiftSingleReg pattern=[]> : MVE_ScalarShift { bits<4> RdaDest; let Inst{19-16} = RdaDest{3-0}; } class MVE_ScalarShiftSRegImm op5_4> : MVE_ScalarShiftSingleReg("int_arm_mve_" # iname) (i32 rGPR:$RdaSrc), (i32 imm:$imm))))]> { bits<5> imm; let Inst{15} = 0b0; let Inst{14-12} = imm{4-2}; let Inst{11-8} = 0b1111; let Inst{7-6} = imm{1-0}; let Inst{5-4} = op5_4{1-0}; let Inst{3-0} = 0b1111; } def MVE_SQSHL : MVE_ScalarShiftSRegImm<"sqshl", 0b11>; def MVE_SRSHR : MVE_ScalarShiftSRegImm<"srshr", 0b10>; def MVE_UQSHL : MVE_ScalarShiftSRegImm<"uqshl", 0b00>; def MVE_URSHR : MVE_ScalarShiftSRegImm<"urshr", 0b01>; class MVE_ScalarShiftSRegReg op5_4> : MVE_ScalarShiftSingleReg("int_arm_mve_" # iname) (i32 rGPR:$RdaSrc), (i32 rGPR:$Rm))))]> { bits<4> Rm; let Inst{15-12} = Rm{3-0}; let Inst{11-8} = 0b1111; let Inst{7-6} = 0b00; let Inst{5-4} = op5_4{1-0}; let Inst{3-0} = 0b1101; let Unpredictable{8-6} = 0b111; } def MVE_SQRSHR : MVE_ScalarShiftSRegReg<"sqrshr", 0b10>; def MVE_UQRSHL : MVE_ScalarShiftSRegReg<"uqrshl", 0b00>; class MVE_ScalarShiftDoubleReg pattern=[]> : MVE_ScalarShift { bits<4> RdaLo; bits<4> RdaHi; let Inst{19-17} = RdaLo{3-1}; let Inst{11-9} = RdaHi{3-1}; let hasSideEffects = 0; } class MVE_ScalarShiftDRegImm op5_4, bit op16, list pattern=[]> : MVE_ScalarShiftDoubleReg< iname, (ins tGPREven:$RdaLo_src, tGPROdd:$RdaHi_src, long_shift:$imm), "$RdaLo, $RdaHi, $imm", "$RdaLo = $RdaLo_src,$RdaHi = $RdaHi_src", pattern> { bits<5> imm; let Inst{16} = op16; let Inst{15} = 0b0; let Inst{14-12} = imm{4-2}; let Inst{7-6} = imm{1-0}; let Inst{5-4} = op5_4{1-0}; let Inst{3-0} = 0b1111; } class MVE_ScalarShiftDRegRegBase pattern=[]> : MVE_ScalarShiftDoubleReg< iname, iops, asm, "@earlyclobber $RdaHi,@earlyclobber $RdaLo," "$RdaLo = $RdaLo_src,$RdaHi = $RdaHi_src", pattern> { bits<4> Rm; let Inst{16} = op16; let Inst{15-12} = Rm{3-0}; let Inst{6} = 0b0; let Inst{5} = op5; let Inst{4} = 0b0; let Inst{3-0} = 0b1101; // Custom decoder method because of the following overlapping encodings: // ASRL and SQRSHR // LSLL and UQRSHL // SQRSHRL and SQRSHR // UQRSHLL and UQRSHL let DecoderMethod = "DecodeMVEOverlappingLongShift"; } class MVE_ScalarShiftDRegReg pattern=[]> : MVE_ScalarShiftDRegRegBase< iname, (ins tGPREven:$RdaLo_src, tGPROdd:$RdaHi_src, rGPR:$Rm), "$RdaLo, $RdaHi, $Rm", op5, 0b0, pattern> { let Inst{7} = 0b0; } class MVE_ScalarShiftDRegRegWithSat pattern=[]> : MVE_ScalarShiftDRegRegBase< iname, (ins tGPREven:$RdaLo_src, tGPROdd:$RdaHi_src, rGPR:$Rm, saturateop:$sat), "$RdaLo, $RdaHi, $sat, $Rm", op5, 0b1, pattern> { bit sat; let Inst{7} = sat; } def MVE_ASRLr : MVE_ScalarShiftDRegReg<"asrl", 0b1, [(set tGPREven:$RdaLo, tGPROdd:$RdaHi, (ARMasrl tGPREven:$RdaLo_src, tGPROdd:$RdaHi_src, rGPR:$Rm))]>; def MVE_ASRLi : MVE_ScalarShiftDRegImm<"asrl", 0b10, ?, [(set tGPREven:$RdaLo, tGPROdd:$RdaHi, (ARMasrl tGPREven:$RdaLo_src, tGPROdd:$RdaHi_src, (i32 long_shift:$imm)))]>; def MVE_LSLLr : MVE_ScalarShiftDRegReg<"lsll", 0b0, [(set tGPREven:$RdaLo, tGPROdd:$RdaHi, (ARMlsll tGPREven:$RdaLo_src, tGPROdd:$RdaHi_src, rGPR:$Rm))]>; def MVE_LSLLi : MVE_ScalarShiftDRegImm<"lsll", 0b00, ?, [(set tGPREven:$RdaLo, tGPROdd:$RdaHi, (ARMlsll tGPREven:$RdaLo_src, tGPROdd:$RdaHi_src, (i32 long_shift:$imm)))]>; def MVE_LSRL : MVE_ScalarShiftDRegImm<"lsrl", 0b01, ?, [(set tGPREven:$RdaLo, tGPROdd:$RdaHi, (ARMlsrl tGPREven:$RdaLo_src, tGPROdd:$RdaHi_src, (i32 long_shift:$imm)))]>; def MVE_SQRSHRL : MVE_ScalarShiftDRegRegWithSat<"sqrshrl", 0b1>; def MVE_SQSHLL : MVE_ScalarShiftDRegImm<"sqshll", 0b11, 0b1>; def MVE_SRSHRL : MVE_ScalarShiftDRegImm<"srshrl", 0b10, 0b1>; def MVE_UQRSHLL : MVE_ScalarShiftDRegRegWithSat<"uqrshll", 0b0>; def MVE_UQSHLL : MVE_ScalarShiftDRegImm<"uqshll", 0b00, 0b1>; def MVE_URSHRL : MVE_ScalarShiftDRegImm<"urshrl", 0b01, 0b1>; // start of mve_rDest instructions class MVE_rDest vecsize, list pattern=[]> // Always use vpred_n and not vpred_r: with the output register being // a GPR and not a vector register, there can't be any question of // what to put in its inactive lanes. : MVE_p { let Inst{25-23} = 0b101; let Inst{11-9} = 0b111; let Inst{4} = 0b0; } class MVE_VABAV size> : MVE_rDest<(outs rGPR:$Rda), (ins rGPR:$Rda_src, MQPR:$Qn, MQPR:$Qm), NoItinerary, "vabav", suffix, "$Rda, $Qn, $Qm", "$Rda = $Rda_src", size, []> { bits<4> Qm; bits<4> Qn; bits<4> Rda; let Inst{28} = U; let Inst{22} = 0b0; let Inst{21-20} = size{1-0}; let Inst{19-17} = Qn{2-0}; let Inst{16} = 0b0; let Inst{15-12} = Rda{3-0}; let Inst{8} = 0b1; let Inst{7} = Qn{3}; let Inst{6} = 0b0; let Inst{5} = Qm{3}; let Inst{3-1} = Qm{2-0}; let Inst{0} = 0b1; let horizontalReduction = 1; } multiclass MVE_VABAV_m { def "" : MVE_VABAV; defvar Inst = !cast(NAME); let Predicates = [HasMVEInt] in { def : Pat<(i32 (int_arm_mve_vabav (i32 VTI.Unsigned), (i32 rGPR:$Rda_src), (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm))), (i32 (Inst (i32 rGPR:$Rda_src), (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm)))>; def : Pat<(i32 (int_arm_mve_vabav_predicated (i32 VTI.Unsigned), (i32 rGPR:$Rda_src), (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), (VTI.Pred VCCR:$mask))), (i32 (Inst (i32 rGPR:$Rda_src), (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg))>; } } defm MVE_VABAVs8 : MVE_VABAV_m; defm MVE_VABAVs16 : MVE_VABAV_m; defm MVE_VABAVs32 : MVE_VABAV_m; defm MVE_VABAVu8 : MVE_VABAV_m; defm MVE_VABAVu16 : MVE_VABAV_m; defm MVE_VABAVu32 : MVE_VABAV_m; class MVE_VADDV size, list pattern=[]> : MVE_rDest<(outs tGPREven:$Rda), iops, NoItinerary, iname, suffix, "$Rda, $Qm", cstr, size, pattern> { bits<3> Qm; bits<4> Rda; let Inst{28} = U; let Inst{22-20} = 0b111; let Inst{19-18} = size{1-0}; let Inst{17-16} = 0b01; let Inst{15-13} = Rda{3-1}; let Inst{12} = 0b0; let Inst{8-6} = 0b100; let Inst{5} = A; let Inst{3-1} = Qm{2-0}; let Inst{0} = 0b0; let horizontalReduction = 1; let validForTailPredication = 1; } def SDTVecReduceP : SDTypeProfile<1, 2, [ // VADDLVp SDTCisInt<0>, SDTCisVec<1>, SDTCisVec<2> ]>; def ARMVADDVs : SDNode<"ARMISD::VADDVs", SDTVecReduce>; def ARMVADDVu : SDNode<"ARMISD::VADDVu", SDTVecReduce>; def ARMVADDVps : SDNode<"ARMISD::VADDVps", SDTVecReduceP>; def ARMVADDVpu : SDNode<"ARMISD::VADDVpu", SDTVecReduceP>; multiclass MVE_VADDV_A { def acc : MVE_VADDV<"vaddva", VTI.Suffix, (ins tGPREven:$Rda_src, MQPR:$Qm), "$Rda = $Rda_src", 0b1, VTI.Unsigned, VTI.Size>; def no_acc : MVE_VADDV<"vaddv", VTI.Suffix, (ins MQPR:$Qm), "", 0b0, VTI.Unsigned, VTI.Size>; defvar InstA = !cast(NAME # "acc"); defvar InstN = !cast(NAME # "no_acc"); let Predicates = [HasMVEInt] in { if VTI.Unsigned then { def : Pat<(i32 (vecreduce_add (VTI.Vec MQPR:$vec))), (i32 (InstN $vec))>; def : Pat<(i32 (vecreduce_add (VTI.Vec (vselect (VTI.Pred VCCR:$pred), (VTI.Vec MQPR:$vec), (VTI.Vec ARMimmAllZerosV))))), (i32 (InstN $vec, ARMVCCThen, $pred, zero_reg))>; def : Pat<(i32 (ARMVADDVu (VTI.Vec MQPR:$vec))), (i32 (InstN $vec))>; def : Pat<(i32 (ARMVADDVpu (VTI.Vec MQPR:$vec), (VTI.Pred VCCR:$pred))), (i32 (InstN $vec, ARMVCCThen, $pred, zero_reg))>; def : Pat<(i32 (add (i32 (vecreduce_add (VTI.Vec MQPR:$vec))), (i32 tGPREven:$acc))), (i32 (InstA $acc, $vec))>; def : Pat<(i32 (add (i32 (vecreduce_add (VTI.Vec (vselect (VTI.Pred VCCR:$pred), (VTI.Vec MQPR:$vec), (VTI.Vec ARMimmAllZerosV))))), (i32 tGPREven:$acc))), (i32 (InstA $acc, $vec, ARMVCCThen, $pred, zero_reg))>; def : Pat<(i32 (add (i32 (ARMVADDVu (VTI.Vec MQPR:$vec))), (i32 tGPREven:$acc))), (i32 (InstA $acc, $vec))>; def : Pat<(i32 (add (i32 (ARMVADDVpu (VTI.Vec MQPR:$vec), (VTI.Pred VCCR:$pred))), (i32 tGPREven:$acc))), (i32 (InstA $acc, $vec, ARMVCCThen, $pred, zero_reg))>; } else { def : Pat<(i32 (ARMVADDVs (VTI.Vec MQPR:$vec))), (i32 (InstN $vec))>; def : Pat<(i32 (add (i32 (ARMVADDVs (VTI.Vec MQPR:$vec))), (i32 tGPREven:$acc))), (i32 (InstA $acc, $vec))>; def : Pat<(i32 (ARMVADDVps (VTI.Vec MQPR:$vec), (VTI.Pred VCCR:$pred))), (i32 (InstN $vec, ARMVCCThen, $pred, zero_reg))>; def : Pat<(i32 (add (i32 (ARMVADDVps (VTI.Vec MQPR:$vec), (VTI.Pred VCCR:$pred))), (i32 tGPREven:$acc))), (i32 (InstA $acc, $vec, ARMVCCThen, $pred, zero_reg))>; } def : Pat<(i32 (int_arm_mve_addv_predicated (VTI.Vec MQPR:$vec), (i32 VTI.Unsigned), (VTI.Pred VCCR:$pred))), (i32 (InstN $vec, ARMVCCThen, $pred, zero_reg))>; def : Pat<(i32 (add (int_arm_mve_addv_predicated (VTI.Vec MQPR:$vec), (i32 VTI.Unsigned), (VTI.Pred VCCR:$pred)), (i32 tGPREven:$acc))), (i32 (InstA $acc, $vec, ARMVCCThen, $pred, zero_reg))>; } } defm MVE_VADDVs8 : MVE_VADDV_A; defm MVE_VADDVs16 : MVE_VADDV_A; defm MVE_VADDVs32 : MVE_VADDV_A; defm MVE_VADDVu8 : MVE_VADDV_A; defm MVE_VADDVu16 : MVE_VADDV_A; defm MVE_VADDVu32 : MVE_VADDV_A; class MVE_VADDLV pattern=[]> : MVE_rDest<(outs tGPREven:$RdaLo, tGPROdd:$RdaHi), iops, NoItinerary, iname, suffix, "$RdaLo, $RdaHi, $Qm", cstr, 0b10, pattern> { bits<3> Qm; bits<4> RdaLo; bits<4> RdaHi; let Inst{28} = U; let Inst{22-20} = RdaHi{3-1}; let Inst{19-18} = 0b10; let Inst{17-16} = 0b01; let Inst{15-13} = RdaLo{3-1}; let Inst{12} = 0b0; let Inst{8-6} = 0b100; let Inst{5} = A; let Inst{3-1} = Qm{2-0}; let Inst{0} = 0b0; let horizontalReduction = 1; } def SDTVecReduceL : SDTypeProfile<2, 1, [ // VADDLV SDTCisInt<0>, SDTCisInt<1>, SDTCisVec<2> ]>; def SDTVecReduceLA : SDTypeProfile<2, 3, [ // VADDLVA SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>, SDTCisInt<3>, SDTCisVec<4> ]>; def SDTVecReduceLP : SDTypeProfile<2, 2, [ // VADDLVp SDTCisInt<0>, SDTCisInt<1>, SDTCisVec<2>, SDTCisVec<2> ]>; def SDTVecReduceLPA : SDTypeProfile<2, 4, [ // VADDLVAp SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>, SDTCisInt<3>, SDTCisVec<4>, SDTCisVec<5> ]>; multiclass MVE_VADDLV_A { def acc : MVE_VADDLV<"vaddlva", VTI.Suffix, (ins tGPREven:$RdaLo_src, tGPROdd:$RdaHi_src, MQPR:$Qm), "$RdaLo = $RdaLo_src,$RdaHi = $RdaHi_src", 0b1, VTI.Unsigned>; def no_acc : MVE_VADDLV<"vaddlv", VTI.Suffix, (ins MQPR:$Qm), "", 0b0, VTI.Unsigned>; defvar InstA = !cast(NAME # "acc"); defvar InstN = !cast(NAME # "no_acc"); defvar letter = VTI.SuffixLetter; defvar ARMVADDLV = SDNode<"ARMISD::VADDLV" # letter, SDTVecReduceL>; defvar ARMVADDLVA = SDNode<"ARMISD::VADDLVA" # letter, SDTVecReduceLA>; defvar ARMVADDLVp = SDNode<"ARMISD::VADDLVp" # letter, SDTVecReduceLP>; defvar ARMVADDLVAp = SDNode<"ARMISD::VADDLVAp" # letter, SDTVecReduceLPA>; let Predicates = [HasMVEInt] in { def : Pat<(ARMVADDLV (v4i32 MQPR:$vec)), (InstN (v4i32 MQPR:$vec))>; def : Pat<(ARMVADDLVA tGPREven:$acclo, tGPROdd:$acchi, (v4i32 MQPR:$vec)), (InstA tGPREven:$acclo, tGPROdd:$acchi, (v4i32 MQPR:$vec))>; def : Pat<(ARMVADDLVp (v4i32 MQPR:$vec), (VTI.Pred VCCR:$pred)), (InstN (v4i32 MQPR:$vec), ARMVCCThen, (VTI.Pred VCCR:$pred), zero_reg)>; def : Pat<(ARMVADDLVAp tGPREven:$acclo, tGPROdd:$acchi, (v4i32 MQPR:$vec), (VTI.Pred VCCR:$pred)), (InstA tGPREven:$acclo, tGPROdd:$acchi, (v4i32 MQPR:$vec), ARMVCCThen, (VTI.Pred VCCR:$pred), zero_reg)>; } } defm MVE_VADDLVs32 : MVE_VADDLV_A; defm MVE_VADDLVu32 : MVE_VADDLV_A; class MVE_VMINMAXNMV pattern=[]> : MVE_rDest<(outs rGPR:$RdaDest), (ins rGPR:$RdaSrc, MQPR:$Qm), NoItinerary, iname, suffix, "$RdaSrc, $Qm", "$RdaDest = $RdaSrc", !if(sz, 0b01, 0b10), pattern> { bits<3> Qm; bits<4> RdaDest; let Inst{28} = sz; let Inst{22-20} = 0b110; let Inst{19-18} = 0b11; let Inst{17} = bit_17; let Inst{16} = 0b0; let Inst{15-12} = RdaDest{3-0}; let Inst{8} = 0b1; let Inst{7} = bit_7; let Inst{6-5} = 0b00; let Inst{3-1} = Qm{2-0}; let Inst{0} = 0b0; let horizontalReduction = 1; let Predicates = [HasMVEFloat]; let hasSideEffects = 0; } multiclass MVE_VMINMAXNMV_p { def "": MVE_VMINMAXNMV; defvar Inst = !cast(NAME); defvar unpred_intr = !cast(intrBaseName); defvar pred_intr = !cast(intrBaseName#"_predicated"); let Predicates = [HasMVEFloat] in { def : Pat<(Scalar (unpred_intr (Scalar ScalarReg:$prev), (VTI.Vec MQPR:$vec))), (COPY_TO_REGCLASS (Inst (COPY_TO_REGCLASS ScalarReg:$prev, rGPR), (VTI.Vec MQPR:$vec)), ScalarReg)>; def : Pat<(Scalar (pred_intr (Scalar ScalarReg:$prev), (VTI.Vec MQPR:$vec), (VTI.Pred VCCR:$pred))), (COPY_TO_REGCLASS (Inst (COPY_TO_REGCLASS ScalarReg:$prev, rGPR), (VTI.Vec MQPR:$vec), ARMVCCThen, (VTI.Pred VCCR:$pred), zero_reg), ScalarReg)>; } } multiclass MVE_VMINMAXNMV_fty { defm f32 : MVE_VMINMAXNMV_p; defm f16 : MVE_VMINMAXNMV_p; } defm MVE_VMINNMV : MVE_VMINMAXNMV_fty<"vminnmv", 1, 1, "int_arm_mve_minnmv">; defm MVE_VMAXNMV : MVE_VMINMAXNMV_fty<"vmaxnmv", 1, 0, "int_arm_mve_maxnmv">; defm MVE_VMINNMAV: MVE_VMINMAXNMV_fty<"vminnmav", 0, 1, "int_arm_mve_minnmav">; defm MVE_VMAXNMAV: MVE_VMINMAXNMV_fty<"vmaxnmav", 0, 0, "int_arm_mve_maxnmav">; class MVE_VMINMAXV size, bit bit_17, bit bit_7, list pattern=[]> : MVE_rDest<(outs rGPR:$RdaDest), (ins rGPR:$RdaSrc, MQPR:$Qm), NoItinerary, iname, suffix, "$RdaSrc, $Qm", "$RdaDest = $RdaSrc", size, pattern> { bits<3> Qm; bits<4> RdaDest; let Inst{28} = U; let Inst{22-20} = 0b110; let Inst{19-18} = size{1-0}; let Inst{17} = bit_17; let Inst{16} = 0b0; let Inst{15-12} = RdaDest{3-0}; let Inst{8} = 0b1; let Inst{7} = bit_7; let Inst{6-5} = 0b00; let Inst{3-1} = Qm{2-0}; let Inst{0} = 0b0; let horizontalReduction = 1; } multiclass MVE_VMINMAXV_p { def "": MVE_VMINMAXV; defvar Inst = !cast(NAME); defvar unpred_intr = !cast(intrBaseName); defvar pred_intr = !cast(intrBaseName#"_predicated"); defvar base_args = (? (i32 rGPR:$prev), (VTI.Vec MQPR:$vec)); defvar args = !if(notAbs, !con(base_args, (? (i32 VTI.Unsigned))), base_args); let Predicates = [HasMVEInt] in { def : Pat<(i32 !con(args, (unpred_intr))), (i32 (Inst (i32 rGPR:$prev), (VTI.Vec MQPR:$vec)))>; def : Pat<(i32 !con(args, (pred_intr (VTI.Pred VCCR:$pred)))), (i32 (Inst (i32 rGPR:$prev), (VTI.Vec MQPR:$vec), ARMVCCThen, (VTI.Pred VCCR:$pred), zero_reg))>; } } multiclass MVE_VMINMAXV_ty { defm s8 : MVE_VMINMAXV_p; defm s16: MVE_VMINMAXV_p; defm s32: MVE_VMINMAXV_p; defm u8 : MVE_VMINMAXV_p; defm u16: MVE_VMINMAXV_p; defm u32: MVE_VMINMAXV_p; } def SDTVecReduceR : SDTypeProfile<1, 2, [ // Reduction of an integer and vector into an integer SDTCisInt<0>, SDTCisInt<1>, SDTCisVec<2> ]>; def ARMVMINVu : SDNode<"ARMISD::VMINVu", SDTVecReduceR>; def ARMVMINVs : SDNode<"ARMISD::VMINVs", SDTVecReduceR>; def ARMVMAXVu : SDNode<"ARMISD::VMAXVu", SDTVecReduceR>; def ARMVMAXVs : SDNode<"ARMISD::VMAXVs", SDTVecReduceR>; defm MVE_VMINV : MVE_VMINMAXV_ty<"vminv", 1, "int_arm_mve_minv">; defm MVE_VMAXV : MVE_VMINMAXV_ty<"vmaxv", 0, "int_arm_mve_maxv">; let Predicates = [HasMVEInt] in { def : Pat<(i32 (vecreduce_smax (v16i8 MQPR:$src))), (i32 (MVE_VMAXVs8 (t2MVNi (i32 127)), $src))>; def : Pat<(i32 (vecreduce_smax (v8i16 MQPR:$src))), (i32 (MVE_VMAXVs16 (t2MOVi32imm (i32 -32768)), $src))>; def : Pat<(i32 (vecreduce_smax (v4i32 MQPR:$src))), (i32 (MVE_VMAXVs32 (t2MOVi (i32 -2147483648)), $src))>; def : Pat<(i32 (vecreduce_umax (v16i8 MQPR:$src))), (i32 (MVE_VMAXVu8 (t2MOVi (i32 0)), $src))>; def : Pat<(i32 (vecreduce_umax (v8i16 MQPR:$src))), (i32 (MVE_VMAXVu16 (t2MOVi (i32 0)), $src))>; def : Pat<(i32 (vecreduce_umax (v4i32 MQPR:$src))), (i32 (MVE_VMAXVu32 (t2MOVi (i32 0)), $src))>; def : Pat<(i32 (vecreduce_smin (v16i8 MQPR:$src))), (i32 (MVE_VMINVs8 (t2MOVi (i32 127)), $src))>; def : Pat<(i32 (vecreduce_smin (v8i16 MQPR:$src))), (i32 (MVE_VMINVs16 (t2MOVi16 (i32 32767)), $src))>; def : Pat<(i32 (vecreduce_smin (v4i32 MQPR:$src))), (i32 (MVE_VMINVs32 (t2MVNi (i32 -2147483648)), $src))>; def : Pat<(i32 (vecreduce_umin (v16i8 MQPR:$src))), (i32 (MVE_VMINVu8 (t2MOVi (i32 255)), $src))>; def : Pat<(i32 (vecreduce_umin (v8i16 MQPR:$src))), (i32 (MVE_VMINVu16 (t2MOVi16 (i32 65535)), $src))>; def : Pat<(i32 (vecreduce_umin (v4i32 MQPR:$src))), (i32 (MVE_VMINVu32 (t2MOVi (i32 4294967295)), $src))>; def : Pat<(i32 (ARMVMINVu (i32 rGPR:$x), (v16i8 MQPR:$src))), (i32 (MVE_VMINVu8 $x, $src))>; def : Pat<(i32 (ARMVMINVu (i32 rGPR:$x), (v8i16 MQPR:$src))), (i32 (MVE_VMINVu16 $x, $src))>; def : Pat<(i32 (ARMVMINVu (i32 rGPR:$x), (v4i32 MQPR:$src))), (i32 (MVE_VMINVu32 $x, $src))>; def : Pat<(i32 (ARMVMINVs (i32 rGPR:$x), (v16i8 MQPR:$src))), (i32 (MVE_VMINVs8 $x, $src))>; def : Pat<(i32 (ARMVMINVs (i32 rGPR:$x), (v8i16 MQPR:$src))), (i32 (MVE_VMINVs16 $x, $src))>; def : Pat<(i32 (ARMVMINVs (i32 rGPR:$x), (v4i32 MQPR:$src))), (i32 (MVE_VMINVs32 $x, $src))>; def : Pat<(i32 (ARMVMAXVu (i32 rGPR:$x), (v16i8 MQPR:$src))), (i32 (MVE_VMAXVu8 $x, $src))>; def : Pat<(i32 (ARMVMAXVu (i32 rGPR:$x), (v8i16 MQPR:$src))), (i32 (MVE_VMAXVu16 $x, $src))>; def : Pat<(i32 (ARMVMAXVu (i32 rGPR:$x), (v4i32 MQPR:$src))), (i32 (MVE_VMAXVu32 $x, $src))>; def : Pat<(i32 (ARMVMAXVs (i32 rGPR:$x), (v16i8 MQPR:$src))), (i32 (MVE_VMAXVs8 $x, $src))>; def : Pat<(i32 (ARMVMAXVs (i32 rGPR:$x), (v8i16 MQPR:$src))), (i32 (MVE_VMAXVs16 $x, $src))>; def : Pat<(i32 (ARMVMAXVs (i32 rGPR:$x), (v4i32 MQPR:$src))), (i32 (MVE_VMAXVs32 $x, $src))>; } multiclass MVE_VMINMAXAV_ty { defm s8 : MVE_VMINMAXV_p; defm s16: MVE_VMINMAXV_p; defm s32: MVE_VMINMAXV_p; } defm MVE_VMINAV : MVE_VMINMAXAV_ty<"vminav", 1, "int_arm_mve_minav">; defm MVE_VMAXAV : MVE_VMINMAXAV_ty<"vmaxav", 0, "int_arm_mve_maxav">; class MVE_VMLAMLSDAV vecsize> : MVE_rDest<(outs tGPREven:$RdaDest), iops, NoItinerary, iname, suffix, "$RdaDest, $Qn, $Qm", cstr, vecsize, []> { bits<4> RdaDest; bits<3> Qm; bits<3> Qn; let Inst{28} = bit_28; let Inst{22-20} = 0b111; let Inst{19-17} = Qn{2-0}; let Inst{16} = sz; let Inst{15-13} = RdaDest{3-1}; let Inst{12} = X; let Inst{8} = bit_8; let Inst{7-6} = 0b00; let Inst{5} = A; let Inst{3-1} = Qm{2-0}; let Inst{0} = bit_0; let horizontalReduction = 1; // Allow tail predication for non-exchanging versions. As this is also a // horizontalReduction, ARMLowOverheadLoops will also have to check that // the vector operands contain zeros in their false lanes for the instruction // to be properly valid. let validForTailPredication = !eq(X, 0); } multiclass MVE_VMLAMLSDAV_A { def ""#x#VTI.Suffix : MVE_VMLAMLSDAV; def "a"#x#VTI.Suffix : MVE_VMLAMLSDAV; let Predicates = [HasMVEInt] in { def : Pat<(i32 (int_arm_mve_vmldava (i32 VTI.Unsigned), (i32 bit_0) /* subtract */, (i32 X) /* exchange */, (i32 0) /* accumulator */, (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm))), (i32 (!cast(NAME # x # VTI.Suffix) (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm)))>; def : Pat<(i32 (int_arm_mve_vmldava_predicated (i32 VTI.Unsigned), (i32 bit_0) /* subtract */, (i32 X) /* exchange */, (i32 0) /* accumulator */, (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), (VTI.Pred VCCR:$mask))), (i32 (!cast(NAME # x # VTI.Suffix) (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg))>; def : Pat<(i32 (int_arm_mve_vmldava (i32 VTI.Unsigned), (i32 bit_0) /* subtract */, (i32 X) /* exchange */, (i32 tGPREven:$RdaSrc), (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm))), (i32 (!cast(NAME # "a" # x # VTI.Suffix) (i32 tGPREven:$RdaSrc), (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm)))>; def : Pat<(i32 (int_arm_mve_vmldava_predicated (i32 VTI.Unsigned), (i32 bit_0) /* subtract */, (i32 X) /* exchange */, (i32 tGPREven:$RdaSrc), (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), (VTI.Pred VCCR:$mask))), (i32 (!cast(NAME # "a" # x # VTI.Suffix) (i32 tGPREven:$RdaSrc), (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg))>; } } multiclass MVE_VMLAMLSDAV_AX { defm "" : MVE_VMLAMLSDAV_A; defm "" : MVE_VMLAMLSDAV_A; } multiclass MVE_VMLADAV_multi { defm "" : MVE_VMLAMLSDAV_AX<"vmladav", SVTI, sz, 0b0, bit_8, 0b0>; defm "" : MVE_VMLAMLSDAV_A<"vmladav", "", UVTI, sz, 0b1, 0b0, bit_8, 0b0>; } multiclass MVE_VMLSDAV_multi { defm "" : MVE_VMLAMLSDAV_AX<"vmlsdav", VTI, sz, bit_28, 0b0, 0b1>; } defm MVE_VMLADAV : MVE_VMLADAV_multi; defm MVE_VMLADAV : MVE_VMLADAV_multi; defm MVE_VMLADAV : MVE_VMLADAV_multi; defm MVE_VMLSDAV : MVE_VMLSDAV_multi; defm MVE_VMLSDAV : MVE_VMLSDAV_multi; defm MVE_VMLSDAV : MVE_VMLSDAV_multi; def SDTVecReduce2 : SDTypeProfile<1, 2, [ // VMLAV SDTCisInt<0>, SDTCisVec<1>, SDTCisVec<2> ]>; def SDTVecReduce2L : SDTypeProfile<2, 2, [ // VMLALV SDTCisInt<0>, SDTCisInt<1>, SDTCisVec<2>, SDTCisVec<3> ]>; def SDTVecReduce2LA : SDTypeProfile<2, 4, [ // VMLALVA SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>, SDTCisInt<3>, SDTCisVec<4>, SDTCisVec<5> ]>; def SDTVecReduce2P : SDTypeProfile<1, 3, [ // VMLAV SDTCisInt<0>, SDTCisVec<1>, SDTCisVec<2>, SDTCisVec<3> ]>; def SDTVecReduce2LP : SDTypeProfile<2, 3, [ // VMLALV SDTCisInt<0>, SDTCisInt<1>, SDTCisVec<2>, SDTCisVec<3>, SDTCisVec<4> ]>; def SDTVecReduce2LAP : SDTypeProfile<2, 5, [ // VMLALVA SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>, SDTCisInt<3>, SDTCisVec<4>, SDTCisVec<5>, SDTCisVec<6> ]>; def ARMVMLAVs : SDNode<"ARMISD::VMLAVs", SDTVecReduce2>; def ARMVMLAVu : SDNode<"ARMISD::VMLAVu", SDTVecReduce2>; def ARMVMLALVs : SDNode<"ARMISD::VMLALVs", SDTVecReduce2L>; def ARMVMLALVu : SDNode<"ARMISD::VMLALVu", SDTVecReduce2L>; def ARMVMLALVAs : SDNode<"ARMISD::VMLALVAs", SDTVecReduce2LA>; def ARMVMLALVAu : SDNode<"ARMISD::VMLALVAu", SDTVecReduce2LA>; def ARMVMLAVps : SDNode<"ARMISD::VMLAVps", SDTVecReduce2P>; def ARMVMLAVpu : SDNode<"ARMISD::VMLAVpu", SDTVecReduce2P>; def ARMVMLALVps : SDNode<"ARMISD::VMLALVps", SDTVecReduce2LP>; def ARMVMLALVpu : SDNode<"ARMISD::VMLALVpu", SDTVecReduce2LP>; def ARMVMLALVAps : SDNode<"ARMISD::VMLALVAps", SDTVecReduce2LAP>; def ARMVMLALVApu : SDNode<"ARMISD::VMLALVApu", SDTVecReduce2LAP>; let Predicates = [HasMVEInt] in { def : Pat<(i32 (vecreduce_add (mul (v4i32 MQPR:$src1), (v4i32 MQPR:$src2)))), (i32 (MVE_VMLADAVu32 $src1, $src2))>; def : Pat<(i32 (vecreduce_add (mul (v8i16 MQPR:$src1), (v8i16 MQPR:$src2)))), (i32 (MVE_VMLADAVu16 $src1, $src2))>; def : Pat<(i32 (ARMVMLAVs (v8i16 MQPR:$val1), (v8i16 MQPR:$val2))), (i32 (MVE_VMLADAVs16 (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)))>; def : Pat<(i32 (ARMVMLAVu (v8i16 MQPR:$val1), (v8i16 MQPR:$val2))), (i32 (MVE_VMLADAVu16 (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)))>; def : Pat<(i32 (vecreduce_add (mul (v16i8 MQPR:$src1), (v16i8 MQPR:$src2)))), (i32 (MVE_VMLADAVu8 $src1, $src2))>; def : Pat<(i32 (ARMVMLAVs (v16i8 MQPR:$val1), (v16i8 MQPR:$val2))), (i32 (MVE_VMLADAVs8 (v16i8 MQPR:$val1), (v16i8 MQPR:$val2)))>; def : Pat<(i32 (ARMVMLAVu (v16i8 MQPR:$val1), (v16i8 MQPR:$val2))), (i32 (MVE_VMLADAVu8 (v16i8 MQPR:$val1), (v16i8 MQPR:$val2)))>; def : Pat<(i32 (add (i32 (vecreduce_add (mul (v4i32 MQPR:$src1), (v4i32 MQPR:$src2)))), (i32 tGPREven:$src3))), (i32 (MVE_VMLADAVau32 $src3, $src1, $src2))>; def : Pat<(i32 (add (i32 (vecreduce_add (mul (v8i16 MQPR:$src1), (v8i16 MQPR:$src2)))), (i32 tGPREven:$src3))), (i32 (MVE_VMLADAVau16 $src3, $src1, $src2))>; def : Pat<(i32 (add (ARMVMLAVs (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)), tGPREven:$Rd)), (i32 (MVE_VMLADAVas16 tGPREven:$Rd, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)))>; def : Pat<(i32 (add (ARMVMLAVu (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)), tGPREven:$Rd)), (i32 (MVE_VMLADAVau16 tGPREven:$Rd, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)))>; def : Pat<(i32 (add (i32 (vecreduce_add (mul (v16i8 MQPR:$src1), (v16i8 MQPR:$src2)))), (i32 tGPREven:$src3))), (i32 (MVE_VMLADAVau8 $src3, $src1, $src2))>; def : Pat<(i32 (add (ARMVMLAVs (v16i8 MQPR:$val1), (v16i8 MQPR:$val2)), tGPREven:$Rd)), (i32 (MVE_VMLADAVas8 tGPREven:$Rd, (v16i8 MQPR:$val1), (v16i8 MQPR:$val2)))>; def : Pat<(i32 (add (ARMVMLAVu (v16i8 MQPR:$val1), (v16i8 MQPR:$val2)), tGPREven:$Rd)), (i32 (MVE_VMLADAVau8 tGPREven:$Rd, (v16i8 MQPR:$val1), (v16i8 MQPR:$val2)))>; // Predicated def : Pat<(i32 (vecreduce_add (vselect (v4i1 VCCR:$pred), (mul (v4i32 MQPR:$src1), (v4i32 MQPR:$src2)), (v4i32 ARMimmAllZerosV)))), (i32 (MVE_VMLADAVu32 $src1, $src2, ARMVCCThen, $pred, zero_reg))>; def : Pat<(i32 (vecreduce_add (vselect (v8i1 VCCR:$pred), (mul (v8i16 MQPR:$src1), (v8i16 MQPR:$src2)), (v8i16 ARMimmAllZerosV)))), (i32 (MVE_VMLADAVu16 $src1, $src2, ARMVCCThen, $pred, zero_reg))>; def : Pat<(i32 (ARMVMLAVps (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), (v8i1 VCCR:$pred))), (i32 (MVE_VMLADAVs16 (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), ARMVCCThen, $pred, zero_reg))>; def : Pat<(i32 (ARMVMLAVpu (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), (v8i1 VCCR:$pred))), (i32 (MVE_VMLADAVu16 (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), ARMVCCThen, $pred, zero_reg))>; def : Pat<(i32 (vecreduce_add (vselect (v16i1 VCCR:$pred), (mul (v16i8 MQPR:$src1), (v16i8 MQPR:$src2)), (v16i8 ARMimmAllZerosV)))), (i32 (MVE_VMLADAVu8 $src1, $src2, ARMVCCThen, $pred, zero_reg))>; def : Pat<(i32 (ARMVMLAVps (v16i8 MQPR:$val1), (v16i8 MQPR:$val2), (v16i1 VCCR:$pred))), (i32 (MVE_VMLADAVs8 (v16i8 MQPR:$val1), (v16i8 MQPR:$val2), ARMVCCThen, $pred, zero_reg))>; def : Pat<(i32 (ARMVMLAVpu (v16i8 MQPR:$val1), (v16i8 MQPR:$val2), (v16i1 VCCR:$pred))), (i32 (MVE_VMLADAVu8 (v16i8 MQPR:$val1), (v16i8 MQPR:$val2), ARMVCCThen, $pred, zero_reg))>; def : Pat<(i32 (add (i32 (vecreduce_add (vselect (v4i1 VCCR:$pred), (mul (v4i32 MQPR:$src1), (v4i32 MQPR:$src2)), (v4i32 ARMimmAllZerosV)))), (i32 tGPREven:$src3))), (i32 (MVE_VMLADAVau32 $src3, $src1, $src2, ARMVCCThen, $pred, zero_reg))>; def : Pat<(i32 (add (i32 (vecreduce_add (vselect (v8i1 VCCR:$pred), (mul (v8i16 MQPR:$src1), (v8i16 MQPR:$src2)), (v8i16 ARMimmAllZerosV)))), (i32 tGPREven:$src3))), (i32 (MVE_VMLADAVau16 $src3, $src1, $src2, ARMVCCThen, $pred, zero_reg))>; def : Pat<(i32 (add (ARMVMLAVps (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), (v8i1 VCCR:$pred)), tGPREven:$Rd)), (i32 (MVE_VMLADAVas16 tGPREven:$Rd, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), ARMVCCThen, $pred, zero_reg))>; def : Pat<(i32 (add (ARMVMLAVpu (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), (v8i1 VCCR:$pred)), tGPREven:$Rd)), (i32 (MVE_VMLADAVau16 tGPREven:$Rd, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), ARMVCCThen, $pred, zero_reg))>; def : Pat<(i32 (add (i32 (vecreduce_add (vselect (v16i1 VCCR:$pred), (mul (v16i8 MQPR:$src1), (v16i8 MQPR:$src2)), (v16i8 ARMimmAllZerosV)))), (i32 tGPREven:$src3))), (i32 (MVE_VMLADAVau8 $src3, $src1, $src2, ARMVCCThen, $pred, zero_reg))>; def : Pat<(i32 (add (ARMVMLAVps (v16i8 MQPR:$val1), (v16i8 MQPR:$val2), (v16i1 VCCR:$pred)), tGPREven:$Rd)), (i32 (MVE_VMLADAVas8 tGPREven:$Rd, (v16i8 MQPR:$val1), (v16i8 MQPR:$val2), ARMVCCThen, $pred, zero_reg))>; def : Pat<(i32 (add (ARMVMLAVpu (v16i8 MQPR:$val1), (v16i8 MQPR:$val2), (v16i1 VCCR:$pred)), tGPREven:$Rd)), (i32 (MVE_VMLADAVau8 tGPREven:$Rd, (v16i8 MQPR:$val1), (v16i8 MQPR:$val2), ARMVCCThen, $pred, zero_reg))>; } // vmlav aliases vmladav foreach acc = ["", "a"] in { foreach suffix = ["s8", "s16", "s32", "u8", "u16", "u32"] in { def : MVEInstAlias<"vmlav"#acc#"${vp}."#suffix#"\t$RdaDest, $Qn, $Qm", (!cast("MVE_VMLADAV"#acc#suffix) tGPREven:$RdaDest, MQPR:$Qn, MQPR:$Qm, vpred_n:$vp)>; } } // Base class for VMLALDAV and VMLSLDAV, VRMLALDAVH, VRMLSLDAVH class MVE_VMLALDAVBase vecsize, list pattern=[]> : MVE_rDest<(outs tGPREven:$RdaLoDest, tGPROdd:$RdaHiDest), iops, NoItinerary, iname, suffix, "$RdaLoDest, $RdaHiDest, $Qn, $Qm", cstr, vecsize, pattern> { bits<4> RdaLoDest; bits<4> RdaHiDest; bits<3> Qm; bits<3> Qn; let Inst{28} = bit_28; let Inst{22-20} = RdaHiDest{3-1}; let Inst{19-17} = Qn{2-0}; let Inst{16} = sz; let Inst{15-13} = RdaLoDest{3-1}; let Inst{12} = X; let Inst{8} = bit_8; let Inst{7-6} = 0b00; let Inst{5} = A; let Inst{3-1} = Qm{2-0}; let Inst{0} = bit_0; let horizontalReduction = 1; // Allow tail predication for non-exchanging versions. As this is also a // horizontalReduction, ARMLowOverheadLoops will also have to check that // the vector operands contain zeros in their false lanes for the instruction // to be properly valid. let validForTailPredication = !eq(X, 0); let hasSideEffects = 0; } multiclass MVE_VMLALDAVBase_A vecsize, list pattern=[]> { def ""#x#suffix : MVE_VMLALDAVBase< iname # x, suffix, (ins MQPR:$Qn, MQPR:$Qm), "", sz, bit_28, 0b0, X, bit_8, bit_0, vecsize, pattern>; def "a"#x#suffix : MVE_VMLALDAVBase< iname # "a" # x, suffix, (ins tGPREven:$RdaLoSrc, tGPROdd:$RdaHiSrc, MQPR:$Qn, MQPR:$Qm), "$RdaLoDest = $RdaLoSrc,$RdaHiDest = $RdaHiSrc", sz, bit_28, 0b1, X, bit_8, bit_0, vecsize, pattern>; } multiclass MVE_VMLALDAVBase_AX vecsize, list pattern=[]> { defm "" : MVE_VMLALDAVBase_A; defm "" : MVE_VMLALDAVBase_A; } multiclass MVE_VRMLALDAVH_multi pattern=[]> { defm "" : MVE_VMLALDAVBase_AX<"vrmlaldavh", "s"#VTI.BitsSuffix, 0b0, 0b0, 0b1, 0b0, VTI.Size, pattern>; defm "" : MVE_VMLALDAVBase_A<"vrmlaldavh", "", "u"#VTI.BitsSuffix, 0b0, 0b1, 0b0, 0b1, 0b0, VTI.Size, pattern>; } defm MVE_VRMLALDAVH : MVE_VRMLALDAVH_multi; // vrmlalvh aliases for vrmlaldavh def : MVEInstAlias<"vrmlalvh${vp}.s32\t$RdaLo, $RdaHi, $Qn, $Qm", (MVE_VRMLALDAVHs32 tGPREven:$RdaLo, tGPROdd:$RdaHi, MQPR:$Qn, MQPR:$Qm, vpred_n:$vp)>; def : MVEInstAlias<"vrmlalvha${vp}.s32\t$RdaLo, $RdaHi, $Qn, $Qm", (MVE_VRMLALDAVHas32 tGPREven:$RdaLo, tGPROdd:$RdaHi, MQPR:$Qn, MQPR:$Qm, vpred_n:$vp)>; def : MVEInstAlias<"vrmlalvh${vp}.u32\t$RdaLo, $RdaHi, $Qn, $Qm", (MVE_VRMLALDAVHu32 tGPREven:$RdaLo, tGPROdd:$RdaHi, MQPR:$Qn, MQPR:$Qm, vpred_n:$vp)>; def : MVEInstAlias<"vrmlalvha${vp}.u32\t$RdaLo, $RdaHi, $Qn, $Qm", (MVE_VRMLALDAVHau32 tGPREven:$RdaLo, tGPROdd:$RdaHi, MQPR:$Qn, MQPR:$Qm, vpred_n:$vp)>; multiclass MVE_VMLALDAV_multi pattern=[]> { defm "" : MVE_VMLALDAVBase_AX<"vmlaldav", "s"#VTI.BitsSuffix, VTI.Size{1}, 0b0, 0b0, 0b0, VTI.Size, pattern>; defm "" : MVE_VMLALDAVBase_A<"vmlaldav", "", "u"#VTI.BitsSuffix, VTI.Size{1}, 0b1, 0b0, 0b0, 0b0, VTI.Size, pattern>; } defm MVE_VMLALDAV : MVE_VMLALDAV_multi; defm MVE_VMLALDAV : MVE_VMLALDAV_multi; let Predicates = [HasMVEInt] in { def : Pat<(ARMVMLALVs (v4i32 MQPR:$val1), (v4i32 MQPR:$val2)), (MVE_VMLALDAVs32 (v4i32 MQPR:$val1), (v4i32 MQPR:$val2))>; def : Pat<(ARMVMLALVu (v4i32 MQPR:$val1), (v4i32 MQPR:$val2)), (MVE_VMLALDAVu32 (v4i32 MQPR:$val1), (v4i32 MQPR:$val2))>; def : Pat<(ARMVMLALVs (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)), (MVE_VMLALDAVs16 (v8i16 MQPR:$val1), (v8i16 MQPR:$val2))>; def : Pat<(ARMVMLALVu (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)), (MVE_VMLALDAVu16 (v8i16 MQPR:$val1), (v8i16 MQPR:$val2))>; def : Pat<(ARMVMLALVAs tGPREven:$Rda, tGPROdd:$Rdb, (v4i32 MQPR:$val1), (v4i32 MQPR:$val2)), (MVE_VMLALDAVas32 tGPREven:$Rda, tGPROdd:$Rdb, (v4i32 MQPR:$val1), (v4i32 MQPR:$val2))>; def : Pat<(ARMVMLALVAu tGPREven:$Rda, tGPROdd:$Rdb, (v4i32 MQPR:$val1), (v4i32 MQPR:$val2)), (MVE_VMLALDAVau32 tGPREven:$Rda, tGPROdd:$Rdb, (v4i32 MQPR:$val1), (v4i32 MQPR:$val2))>; def : Pat<(ARMVMLALVAs tGPREven:$Rda, tGPROdd:$Rdb, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)), (MVE_VMLALDAVas16 tGPREven:$Rda, tGPROdd:$Rdb, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2))>; def : Pat<(ARMVMLALVAu tGPREven:$Rda, tGPROdd:$Rdb, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)), (MVE_VMLALDAVau16 tGPREven:$Rda, tGPROdd:$Rdb, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2))>; // Predicated def : Pat<(ARMVMLALVps (v4i32 MQPR:$val1), (v4i32 MQPR:$val2), (v4i1 VCCR:$pred)), (MVE_VMLALDAVs32 (v4i32 MQPR:$val1), (v4i32 MQPR:$val2), ARMVCCThen, $pred, zero_reg)>; def : Pat<(ARMVMLALVpu (v4i32 MQPR:$val1), (v4i32 MQPR:$val2), (v4i1 VCCR:$pred)), (MVE_VMLALDAVu32 (v4i32 MQPR:$val1), (v4i32 MQPR:$val2), ARMVCCThen, $pred, zero_reg)>; def : Pat<(ARMVMLALVps (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), (v8i1 VCCR:$pred)), (MVE_VMLALDAVs16 (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), ARMVCCThen, $pred, zero_reg)>; def : Pat<(ARMVMLALVpu (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), (v8i1 VCCR:$pred)), (MVE_VMLALDAVu16 (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), ARMVCCThen, $pred, zero_reg)>; def : Pat<(ARMVMLALVAps tGPREven:$Rda, tGPROdd:$Rdb, (v4i32 MQPR:$val1), (v4i32 MQPR:$val2), (v4i1 VCCR:$pred)), (MVE_VMLALDAVas32 tGPREven:$Rda, tGPROdd:$Rdb, (v4i32 MQPR:$val1), (v4i32 MQPR:$val2), ARMVCCThen, $pred, zero_reg)>; def : Pat<(ARMVMLALVApu tGPREven:$Rda, tGPROdd:$Rdb, (v4i32 MQPR:$val1), (v4i32 MQPR:$val2), (v4i1 VCCR:$pred)), (MVE_VMLALDAVau32 tGPREven:$Rda, tGPROdd:$Rdb, (v4i32 MQPR:$val1), (v4i32 MQPR:$val2), ARMVCCThen, $pred, zero_reg)>; def : Pat<(ARMVMLALVAps tGPREven:$Rda, tGPROdd:$Rdb, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), (v8i1 VCCR:$pred)), (MVE_VMLALDAVas16 tGPREven:$Rda, tGPROdd:$Rdb, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), ARMVCCThen, $pred, zero_reg)>; def : Pat<(ARMVMLALVApu tGPREven:$Rda, tGPROdd:$Rdb, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), (v8i1 VCCR:$pred)), (MVE_VMLALDAVau16 tGPREven:$Rda, tGPROdd:$Rdb, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), ARMVCCThen, $pred, zero_reg)>; } // vmlalv aliases vmlaldav foreach acc = ["", "a"] in { foreach suffix = ["s16", "s32", "u16", "u32"] in { def : MVEInstAlias<"vmlalv" # acc # "${vp}." # suffix # "\t$RdaLoDest, $RdaHiDest, $Qn, $Qm", (!cast("MVE_VMLALDAV"#acc#suffix) tGPREven:$RdaLoDest, tGPROdd:$RdaHiDest, MQPR:$Qn, MQPR:$Qm, vpred_n:$vp)>; } } multiclass MVE_VMLSLDAV_multi vecsize, list pattern=[]> { defm "" : MVE_VMLALDAVBase_AX; } defm MVE_VMLSLDAV : MVE_VMLSLDAV_multi<"vmlsldav", "s16", 0b0, 0b0, 0b01>; defm MVE_VMLSLDAV : MVE_VMLSLDAV_multi<"vmlsldav", "s32", 0b1, 0b0, 0b10>; defm MVE_VRMLSLDAVH : MVE_VMLSLDAV_multi<"vrmlsldavh", "s32", 0b0, 0b1, 0b10>; // end of mve_rDest instructions // start of mve_comp instructions class MVE_comp vecsize, list pattern=[]> : MVE_p<(outs MQPR:$Qd), (ins MQPR:$Qn, MQPR:$Qm), itin, iname, suffix, "$Qd, $Qn, $Qm", vpred_r, cstr, vecsize, pattern> { bits<4> Qd; bits<4> Qn; bits<4> Qm; let Inst{22} = Qd{3}; let Inst{19-17} = Qn{2-0}; let Inst{16} = 0b0; let Inst{15-13} = Qd{2-0}; let Inst{12} = 0b0; let Inst{10-9} = 0b11; let Inst{7} = Qn{3}; let Inst{5} = Qm{3}; let Inst{3-1} = Qm{2-0}; let Inst{0} = 0b0; } class MVE_VMINMAXNM sz, bit bit_21, list pattern=[]> : MVE_comp { let Inst{28} = 0b1; let Inst{25-24} = 0b11; let Inst{23} = 0b0; let Inst{21} = bit_21; let Inst{20} = sz{0}; let Inst{11} = 0b1; let Inst{8} = 0b1; let Inst{6} = 0b1; let Inst{4} = 0b1; let Predicates = [HasMVEFloat]; let validForTailPredication = 1; } multiclass MVE_VMINMAXNM_m { def "" : MVE_VMINMAXNM; let Predicates = [HasMVEFloat] in { defm : MVE_TwoOpPattern(NAME)>; } } defm MVE_VMAXNMf32 : MVE_VMINMAXNM_m<"vmaxnm", 0b0, MVE_v4f32, fmaxnum, int_arm_mve_max_predicated>; defm MVE_VMAXNMf16 : MVE_VMINMAXNM_m<"vmaxnm", 0b0, MVE_v8f16, fmaxnum, int_arm_mve_max_predicated>; defm MVE_VMINNMf32 : MVE_VMINMAXNM_m<"vminnm", 0b1, MVE_v4f32, fminnum, int_arm_mve_min_predicated>; defm MVE_VMINNMf16 : MVE_VMINMAXNM_m<"vminnm", 0b1, MVE_v8f16, fminnum, int_arm_mve_min_predicated>; class MVE_VMINMAX size, bit bit_4, list pattern=[]> : MVE_comp { let Inst{28} = U; let Inst{25-24} = 0b11; let Inst{23} = 0b0; let Inst{21-20} = size{1-0}; let Inst{11} = 0b0; let Inst{8} = 0b0; let Inst{6} = 0b1; let Inst{4} = bit_4; let validForTailPredication = 1; } multiclass MVE_VMINMAX_m { def "" : MVE_VMINMAX; let Predicates = [HasMVEInt] in { defm : MVE_TwoOpPattern(NAME)>; } } multiclass MVE_VMAX : MVE_VMINMAX_m<"vmax", 0b0, VTI, !if(VTI.Unsigned, umax, smax), int_arm_mve_max_predicated>; multiclass MVE_VMIN : MVE_VMINMAX_m<"vmin", 0b1, VTI, !if(VTI.Unsigned, umin, smin), int_arm_mve_min_predicated>; defm MVE_VMINs8 : MVE_VMIN; defm MVE_VMINs16 : MVE_VMIN; defm MVE_VMINs32 : MVE_VMIN; defm MVE_VMINu8 : MVE_VMIN; defm MVE_VMINu16 : MVE_VMIN; defm MVE_VMINu32 : MVE_VMIN; defm MVE_VMAXs8 : MVE_VMAX; defm MVE_VMAXs16 : MVE_VMAX; defm MVE_VMAXs32 : MVE_VMAX; defm MVE_VMAXu8 : MVE_VMAX; defm MVE_VMAXu16 : MVE_VMAX; defm MVE_VMAXu32 : MVE_VMAX; // end of mve_comp instructions // start of mve_bit instructions class MVE_bit_arith vecsize, list pattern=[]> : MVE_p { bits<4> Qd; bits<4> Qm; let Inst{22} = Qd{3}; let Inst{15-13} = Qd{2-0}; let Inst{5} = Qm{3}; let Inst{3-1} = Qm{2-0}; } def MVE_VBIC : MVE_bit_arith<(outs MQPR:$Qd), (ins MQPR:$Qn, MQPR:$Qm), "vbic", "", "$Qd, $Qn, $Qm", "", 0b00> { bits<4> Qn; let Inst{28} = 0b0; let Inst{25-23} = 0b110; let Inst{21-20} = 0b01; let Inst{19-17} = Qn{2-0}; let Inst{16} = 0b0; let Inst{12-8} = 0b00001; let Inst{7} = Qn{3}; let Inst{6} = 0b1; let Inst{4} = 0b1; let Inst{0} = 0b0; let validForTailPredication = 1; } class MVE_VREV size, bits<2> bit_8_7, bits<2> vecsize, string cstr=""> : MVE_bit_arith<(outs MQPR:$Qd), (ins MQPR:$Qm), iname, suffix, "$Qd, $Qm", cstr, vecsize> { let Inst{28} = 0b1; let Inst{25-23} = 0b111; let Inst{21-20} = 0b11; let Inst{19-18} = size; let Inst{17-16} = 0b00; let Inst{12-9} = 0b0000; let Inst{8-7} = bit_8_7; let Inst{6} = 0b1; let Inst{4} = 0b0; let Inst{0} = 0b0; } def MVE_VREV64_8 : MVE_VREV<"vrev64", "8", 0b00, 0b00, 0b11, "@earlyclobber $Qd">; def MVE_VREV64_16 : MVE_VREV<"vrev64", "16", 0b01, 0b00, 0b11, "@earlyclobber $Qd">; def MVE_VREV64_32 : MVE_VREV<"vrev64", "32", 0b10, 0b00, 0b11, "@earlyclobber $Qd">; def MVE_VREV32_8 : MVE_VREV<"vrev32", "8", 0b00, 0b01, 0b10>; def MVE_VREV32_16 : MVE_VREV<"vrev32", "16", 0b01, 0b01, 0b10>; def MVE_VREV16_8 : MVE_VREV<"vrev16", "8", 0b00, 0b10, 0b01>; let Predicates = [HasMVEInt] in { def : Pat<(v8i16 (bswap (v8i16 MQPR:$src))), (v8i16 (MVE_VREV16_8 (v8i16 MQPR:$src)))>; def : Pat<(v4i32 (bswap (v4i32 MQPR:$src))), (v4i32 (MVE_VREV32_8 (v4i32 MQPR:$src)))>; } multiclass MVE_VREV_basic_patterns VTIs, Instruction Inst> { defvar unpred_op = !cast("ARMvrev" # revbits); foreach VTI = VTIs in { def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$src))), (VTI.Vec (Inst (VTI.Vec MQPR:$src)))>; def : Pat<(VTI.Vec (int_arm_mve_vrev_predicated (VTI.Vec MQPR:$src), revbits, (VTI.Pred VCCR:$pred), (VTI.Vec MQPR:$inactive))), (VTI.Vec (Inst (VTI.Vec MQPR:$src), ARMVCCThen, (VTI.Pred VCCR:$pred), zero_reg, (VTI.Vec MQPR:$inactive)))>; } } let Predicates = [HasMVEInt] in { defm: MVE_VREV_basic_patterns<64, [MVE_v4i32, MVE_v4f32], MVE_VREV64_32>; defm: MVE_VREV_basic_patterns<64, [MVE_v8i16, MVE_v8f16], MVE_VREV64_16>; defm: MVE_VREV_basic_patterns<64, [MVE_v16i8 ], MVE_VREV64_8>; defm: MVE_VREV_basic_patterns<32, [MVE_v8i16, MVE_v8f16], MVE_VREV32_16>; defm: MVE_VREV_basic_patterns<32, [MVE_v16i8 ], MVE_VREV32_8>; defm: MVE_VREV_basic_patterns<16, [MVE_v16i8 ], MVE_VREV16_8>; } def MVE_VMVN : MVE_bit_arith<(outs MQPR:$Qd), (ins MQPR:$Qm), "vmvn", "", "$Qd, $Qm", "", 0b00> { let Inst{28} = 0b1; let Inst{25-23} = 0b111; let Inst{21-16} = 0b110000; let Inst{12-6} = 0b0010111; let Inst{4} = 0b0; let Inst{0} = 0b0; let validForTailPredication = 1; } let Predicates = [HasMVEInt] in { foreach VTI = [ MVE_v16i8, MVE_v8i16, MVE_v4i32, MVE_v2i64 ] in { def : Pat<(VTI.Vec (vnotq (VTI.Vec MQPR:$val1))), (VTI.Vec (MVE_VMVN (VTI.Vec MQPR:$val1)))>; def : Pat<(VTI.Vec (int_arm_mve_mvn_predicated (VTI.Vec MQPR:$val1), (VTI.Pred VCCR:$pred), (VTI.Vec MQPR:$inactive))), (VTI.Vec (MVE_VMVN (VTI.Vec MQPR:$val1), ARMVCCThen, (VTI.Pred VCCR:$pred), zero_reg, (VTI.Vec MQPR:$inactive)))>; } } class MVE_bit_ops bit_21_20, bit bit_28> : MVE_bit_arith<(outs MQPR:$Qd), (ins MQPR:$Qn, MQPR:$Qm), iname, "", "$Qd, $Qn, $Qm", "", 0b00> { bits<4> Qn; let Inst{28} = bit_28; let Inst{25-23} = 0b110; let Inst{21-20} = bit_21_20; let Inst{19-17} = Qn{2-0}; let Inst{16} = 0b0; let Inst{12-8} = 0b00001; let Inst{7} = Qn{3}; let Inst{6} = 0b1; let Inst{4} = 0b1; let Inst{0} = 0b0; let validForTailPredication = 1; } def MVE_VEOR : MVE_bit_ops<"veor", 0b00, 0b1>; def MVE_VORN : MVE_bit_ops<"vorn", 0b11, 0b0>; def MVE_VORR : MVE_bit_ops<"vorr", 0b10, 0b0>; def MVE_VAND : MVE_bit_ops<"vand", 0b00, 0b0>; // add ignored suffixes as aliases foreach s=["s8", "s16", "s32", "u8", "u16", "u32", "i8", "i16", "i32", "f16", "f32"] in { def : MVEInstAlias<"vbic${vp}." # s # "\t$QdSrc, $QnSrc, $QmSrc", (MVE_VBIC MQPR:$QdSrc, MQPR:$QnSrc, MQPR:$QmSrc, vpred_r:$vp)>; def : MVEInstAlias<"veor${vp}." # s # "\t$QdSrc, $QnSrc, $QmSrc", (MVE_VEOR MQPR:$QdSrc, MQPR:$QnSrc, MQPR:$QmSrc, vpred_r:$vp)>; def : MVEInstAlias<"vorn${vp}." # s # "\t$QdSrc, $QnSrc, $QmSrc", (MVE_VORN MQPR:$QdSrc, MQPR:$QnSrc, MQPR:$QmSrc, vpred_r:$vp)>; def : MVEInstAlias<"vorr${vp}." # s # "\t$QdSrc, $QnSrc, $QmSrc", (MVE_VORR MQPR:$QdSrc, MQPR:$QnSrc, MQPR:$QmSrc, vpred_r:$vp)>; def : MVEInstAlias<"vand${vp}." # s # "\t$QdSrc, $QnSrc, $QmSrc", (MVE_VAND MQPR:$QdSrc, MQPR:$QnSrc, MQPR:$QmSrc, vpred_r:$vp)>; } let Predicates = [HasMVEInt] in { defm : MVE_TwoOpPattern; defm : MVE_TwoOpPattern; defm : MVE_TwoOpPattern; defm : MVE_TwoOpPattern; defm : MVE_TwoOpPattern; defm : MVE_TwoOpPattern; defm : MVE_TwoOpPattern; defm : MVE_TwoOpPattern; defm : MVE_TwoOpPattern; defm : MVE_TwoOpPattern; defm : MVE_TwoOpPattern; defm : MVE_TwoOpPattern; defm : MVE_TwoOpPattern, int_arm_mve_bic_predicated, (? ), MVE_VBIC>; defm : MVE_TwoOpPattern, int_arm_mve_bic_predicated, (? ), MVE_VBIC>; defm : MVE_TwoOpPattern, int_arm_mve_bic_predicated, (? ), MVE_VBIC>; defm : MVE_TwoOpPattern, int_arm_mve_bic_predicated, (? ), MVE_VBIC>; defm : MVE_TwoOpPattern, int_arm_mve_orn_predicated, (? ), MVE_VORN>; defm : MVE_TwoOpPattern, int_arm_mve_orn_predicated, (? ), MVE_VORN>; defm : MVE_TwoOpPattern, int_arm_mve_orn_predicated, (? ), MVE_VORN>; defm : MVE_TwoOpPattern, int_arm_mve_orn_predicated, (? ), MVE_VORN>; } class MVE_bit_cmode vecsize> : MVE_p<(outs MQPR:$Qd), inOps, NoItinerary, iname, suffix, "$Qd, $imm", vpred_n, "$Qd = $Qd_src", vecsize> { bits<12> imm; bits<4> Qd; let Inst{28} = imm{7}; let Inst{27-23} = 0b11111; let Inst{22} = Qd{3}; let Inst{21-19} = 0b000; let Inst{18-16} = imm{6-4}; let Inst{15-13} = Qd{2-0}; let Inst{12} = 0b0; let Inst{11} = halfword; let Inst{10} = !if(halfword, 0, imm{10}); let Inst{9} = imm{9}; let Inst{8} = 0b1; let Inst{7-6} = 0b01; let Inst{4} = 0b1; let Inst{3-0} = imm{3-0}; } multiclass MVE_bit_cmode_p { def "" : MVE_bit_cmode { let Inst{5} = opcode; let validForTailPredication = 1; } defvar Inst = !cast(NAME); defvar UnpredPat = (VTI.Vec (op (VTI.Vec MQPR:$src), timm:$simm)); let Predicates = [HasMVEInt] in { def : Pat; def : Pat<(VTI.Vec (vselect (VTI.Pred VCCR:$pred), UnpredPat, (VTI.Vec MQPR:$src))), (VTI.Vec (Inst (VTI.Vec MQPR:$src), imm_type:$simm, ARMVCCThen, (VTI.Pred VCCR:$pred), zero_reg))>; } } multiclass MVE_VORRimm { defm "": MVE_bit_cmode_p<"vorr", 0, VTI, imm_type, ARMvorrImm>; } multiclass MVE_VBICimm { defm "": MVE_bit_cmode_p<"vbic", 1, VTI, imm_type, ARMvbicImm>; } defm MVE_VORRimmi16 : MVE_VORRimm; defm MVE_VORRimmi32 : MVE_VORRimm; defm MVE_VBICimmi16 : MVE_VBICimm; defm MVE_VBICimmi32 : MVE_VBICimm; def MVE_VORNimmi16 : MVEInstAlias<"vorn${vp}.i16\t$Qd, $imm", (MVE_VORRimmi16 MQPR:$Qd, nImmSplatNotI16:$imm, vpred_n:$vp), 0>; def MVE_VORNimmi32 : MVEInstAlias<"vorn${vp}.i32\t$Qd, $imm", (MVE_VORRimmi32 MQPR:$Qd, nImmSplatNotI32:$imm, vpred_n:$vp), 0>; def MVE_VANDimmi16 : MVEInstAlias<"vand${vp}.i16\t$Qd, $imm", (MVE_VBICimmi16 MQPR:$Qd, nImmSplatNotI16:$imm, vpred_n:$vp), 0>; def MVE_VANDimmi32 : MVEInstAlias<"vand${vp}.i32\t$Qd, $imm", (MVE_VBICimmi32 MQPR:$Qd, nImmSplatNotI32:$imm, vpred_n:$vp), 0>; def MVE_VMOV : MVEInstAlias<"vmov${vp}\t$Qd, $Qm", (MVE_VORR MQPR:$Qd, MQPR:$Qm, MQPR:$Qm, vpred_r:$vp)>; class MVE_VMOV_lane_direction { bit bit_20; dag oops; dag iops; string ops; string cstr; } def MVE_VMOV_from_lane : MVE_VMOV_lane_direction { let bit_20 = 0b1; let oops = (outs rGPR:$Rt); let iops = (ins MQPR:$Qd); let ops = "$Rt, $Qd$Idx"; let cstr = ""; } def MVE_VMOV_to_lane : MVE_VMOV_lane_direction { let bit_20 = 0b0; let oops = (outs MQPR:$Qd); let iops = (ins MQPR:$Qd_src, rGPR:$Rt); let ops = "$Qd$Idx, $Rt"; let cstr = "$Qd = $Qd_src"; } class MVE_VMOV_lane : MVE_VMOV_lane_base { bits<4> Qd; bits<4> Rt; let Inst{31-24} = 0b11101110; let Inst{23} = U; let Inst{20} = dir.bit_20; let Inst{19-17} = Qd{2-0}; let Inst{15-12} = Rt{3-0}; let Inst{11-8} = 0b1011; let Inst{7} = Qd{3}; let Inst{4-0} = 0b10000; let hasSideEffects = 0; } class MVE_VMOV_lane_32 : MVE_VMOV_lane<"32", 0b0, (ins MVEVectorIndex<4>:$Idx), dir> { bits<2> Idx; let Inst{22} = 0b0; let Inst{6-5} = 0b00; let Inst{16} = Idx{1}; let Inst{21} = Idx{0}; let VecSize = 0b10; let Predicates = [HasFPRegsV8_1M]; } class MVE_VMOV_lane_16 : MVE_VMOV_lane:$Idx), dir> { bits<3> Idx; let Inst{22} = 0b0; let Inst{5} = 0b1; let Inst{16} = Idx{2}; let Inst{21} = Idx{1}; let Inst{6} = Idx{0}; let VecSize = 0b01; } class MVE_VMOV_lane_8 : MVE_VMOV_lane:$Idx), dir> { bits<4> Idx; let Inst{22} = 0b1; let Inst{16} = Idx{3}; let Inst{21} = Idx{2}; let Inst{6} = Idx{1}; let Inst{5} = Idx{0}; let VecSize = 0b00; } def MVE_VMOV_from_lane_32 : MVE_VMOV_lane_32< MVE_VMOV_from_lane>; def MVE_VMOV_from_lane_s16 : MVE_VMOV_lane_16<"s16", 0b0, MVE_VMOV_from_lane>; def MVE_VMOV_from_lane_u16 : MVE_VMOV_lane_16<"u16", 0b1, MVE_VMOV_from_lane>; def MVE_VMOV_from_lane_s8 : MVE_VMOV_lane_8 < "s8", 0b0, MVE_VMOV_from_lane>; def MVE_VMOV_from_lane_u8 : MVE_VMOV_lane_8 < "u8", 0b1, MVE_VMOV_from_lane>; let isInsertSubreg = 1 in def MVE_VMOV_to_lane_32 : MVE_VMOV_lane_32< MVE_VMOV_to_lane>; def MVE_VMOV_to_lane_16 : MVE_VMOV_lane_16< "16", 0b0, MVE_VMOV_to_lane>; def MVE_VMOV_to_lane_8 : MVE_VMOV_lane_8 < "8", 0b0, MVE_VMOV_to_lane>; // This is the same as insertelt but allows the inserted value to be an i32 as // will be used when it is the only legal type. def ARMVecInsert : SDTypeProfile<1, 3, [ SDTCisVT<2, i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<3> ]>; def ARMinsertelt : SDNode<"ISD::INSERT_VECTOR_ELT", ARMVecInsert>; let Predicates = [HasMVEInt] in { def : Pat<(extractelt (v2f64 MQPR:$src), imm:$lane), (f64 (EXTRACT_SUBREG MQPR:$src, (DSubReg_f64_reg imm:$lane)))>; def : Pat<(insertelt (v2f64 MQPR:$src1), DPR:$src2, imm:$lane), (INSERT_SUBREG (v2f64 (COPY_TO_REGCLASS MQPR:$src1, MQPR)), DPR:$src2, (DSubReg_f64_reg imm:$lane))>; def : Pat<(extractelt (v4i32 MQPR:$src), imm:$lane), (COPY_TO_REGCLASS (i32 (EXTRACT_SUBREG MQPR:$src, (SSubReg_f32_reg imm:$lane))), rGPR)>; def : Pat<(insertelt (v4i32 MQPR:$src1), rGPR:$src2, imm:$lane), (MVE_VMOV_to_lane_32 MQPR:$src1, rGPR:$src2, imm:$lane)>; // This tries to copy from one lane to another, without going via GPR regs def : Pat<(insertelt (v4i32 MQPR:$src1), (extractelt (v4i32 MQPR:$src2), imm:$extlane), imm:$inslane), (v4i32 (COPY_TO_REGCLASS (INSERT_SUBREG (v4f32 (COPY_TO_REGCLASS (v4i32 MQPR:$src1), MQPR)), (f32 (EXTRACT_SUBREG (v4f32 (COPY_TO_REGCLASS (v4i32 MQPR:$src2), MQPR)), (SSubReg_f32_reg imm:$extlane))), (SSubReg_f32_reg imm:$inslane)), MQPR))>; def : Pat<(vector_insert (v16i8 MQPR:$src1), rGPR:$src2, imm:$lane), (MVE_VMOV_to_lane_8 MQPR:$src1, rGPR:$src2, imm:$lane)>; def : Pat<(vector_insert (v8i16 MQPR:$src1), rGPR:$src2, imm:$lane), (MVE_VMOV_to_lane_16 MQPR:$src1, rGPR:$src2, imm:$lane)>; def : Pat<(ARMvgetlanes (v16i8 MQPR:$src), imm:$lane), (MVE_VMOV_from_lane_s8 MQPR:$src, imm:$lane)>; def : Pat<(ARMvgetlanes (v8i16 MQPR:$src), imm:$lane), (MVE_VMOV_from_lane_s16 MQPR:$src, imm:$lane)>; def : Pat<(ARMvgetlanes (v8f16 MQPR:$src), imm:$lane), (MVE_VMOV_from_lane_s16 MQPR:$src, imm:$lane)>; def : Pat<(ARMvgetlaneu (v16i8 MQPR:$src), imm:$lane), (MVE_VMOV_from_lane_u8 MQPR:$src, imm:$lane)>; def : Pat<(ARMvgetlaneu (v8i16 MQPR:$src), imm:$lane), (MVE_VMOV_from_lane_u16 MQPR:$src, imm:$lane)>; def : Pat<(ARMvgetlaneu (v8f16 MQPR:$src), imm:$lane), (MVE_VMOV_from_lane_u16 MQPR:$src, imm:$lane)>; // For i16's inserts being extracted from low lanes, then may use VINS. let Predicates = [HasFullFP16] in { def : Pat<(ARMinsertelt (v8i16 MQPR:$src1), (ARMvgetlaneu (v8i16 MQPR:$src2), imm_even:$extlane), imm_odd:$inslane), (COPY_TO_REGCLASS (INSERT_SUBREG (v4f32 (COPY_TO_REGCLASS MQPR:$src1, MQPR)), (VINSH (EXTRACT_SUBREG MQPR:$src1, (SSubReg_f16_reg imm_odd:$inslane)), (EXTRACT_SUBREG MQPR:$src2, (SSubReg_f16_reg imm_even:$extlane))), (SSubReg_f16_reg imm_odd:$inslane)), MQPR)>; } def : Pat<(v16i8 (scalar_to_vector GPR:$src)), (MVE_VMOV_to_lane_8 (v16i8 (IMPLICIT_DEF)), rGPR:$src, (i32 0))>; def : Pat<(v8i16 (scalar_to_vector GPR:$src)), (MVE_VMOV_to_lane_16 (v8i16 (IMPLICIT_DEF)), rGPR:$src, (i32 0))>; def : Pat<(v4i32 (scalar_to_vector GPR:$src)), (MVE_VMOV_to_lane_32 (v4i32 (IMPLICIT_DEF)), rGPR:$src, (i32 0))>; // Floating point patterns, still enabled under HasMVEInt def : Pat<(extractelt (v4f32 MQPR:$src), imm:$lane), (COPY_TO_REGCLASS (f32 (EXTRACT_SUBREG MQPR:$src, (SSubReg_f32_reg imm:$lane))), SPR)>; def : Pat<(insertelt (v4f32 MQPR:$src1), (f32 SPR:$src2), imm:$lane), (INSERT_SUBREG (v4f32 (COPY_TO_REGCLASS MQPR:$src1, MQPR)), SPR:$src2, (SSubReg_f32_reg imm:$lane))>; def : Pat<(insertelt (v8f16 MQPR:$src1), (f16 HPR:$src2), imm_even:$lane), (MVE_VMOV_to_lane_16 MQPR:$src1, (COPY_TO_REGCLASS (f16 HPR:$src2), rGPR), imm:$lane)>; let Predicates = [HasFullFP16] in { def : Pat<(insertelt (v8f16 MQPR:$src1), (f16 HPR:$src2), imm_odd:$lane), (COPY_TO_REGCLASS (INSERT_SUBREG (v4f32 (COPY_TO_REGCLASS MQPR:$src1, MQPR)), (VINSH (EXTRACT_SUBREG MQPR:$src1, (SSubReg_f16_reg imm_odd:$lane)), (COPY_TO_REGCLASS HPR:$src2, SPR)), (SSubReg_f16_reg imm_odd:$lane)), MQPR)>; } def : Pat<(extractelt (v8f16 MQPR:$src), imm_even:$lane), (EXTRACT_SUBREG MQPR:$src, (SSubReg_f16_reg imm_even:$lane))>; let Predicates = [HasFullFP16] in { def : Pat<(extractelt (v8f16 MQPR:$src), imm_odd:$lane), (COPY_TO_REGCLASS (VMOVH (EXTRACT_SUBREG MQPR:$src, (SSubReg_f16_reg imm_odd:$lane))), HPR)>; } def : Pat<(v2f64 (scalar_to_vector (f64 DPR:$src))), (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), DPR:$src, dsub_0)>; def : Pat<(v4f32 (scalar_to_vector SPR:$src)), (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), SPR:$src, ssub_0)>; def : Pat<(v4f32 (scalar_to_vector GPR:$src)), (MVE_VMOV_to_lane_32 (v4f32 (IMPLICIT_DEF)), rGPR:$src, (i32 0))>; def : Pat<(v8f16 (scalar_to_vector (f16 HPR:$src))), (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), (f16 HPR:$src), ssub_0)>; def : Pat<(v8f16 (scalar_to_vector GPR:$src)), (MVE_VMOV_to_lane_16 (v8f16 (IMPLICIT_DEF)), rGPR:$src, (i32 0))>; } // end of mve_bit instructions // start of MVE Integer instructions class MVE_int size, list pattern=[]> : MVE_p<(outs MQPR:$Qd), (ins MQPR:$Qn, MQPR:$Qm), NoItinerary, iname, suffix, "$Qd, $Qn, $Qm", vpred_r, "", size, pattern> { bits<4> Qd; bits<4> Qn; bits<4> Qm; let Inst{22} = Qd{3}; let Inst{21-20} = size; let Inst{19-17} = Qn{2-0}; let Inst{15-13} = Qd{2-0}; let Inst{7} = Qn{3}; let Inst{6} = 0b1; let Inst{5} = Qm{3}; let Inst{3-1} = Qm{2-0}; } class MVE_VMULt1 size, list pattern=[]> : MVE_int { let Inst{28} = 0b0; let Inst{25-23} = 0b110; let Inst{16} = 0b0; let Inst{12-8} = 0b01001; let Inst{4} = 0b1; let Inst{0} = 0b0; let validForTailPredication = 1; } multiclass MVE_VMUL_m { def "" : MVE_VMULt1<"vmul", VTI.Suffix, VTI.Size>; let Predicates = [HasMVEInt] in { defm : MVE_TwoOpPattern(NAME), ARMimmOneV>; } } defm MVE_VMULi8 : MVE_VMUL_m; defm MVE_VMULi16 : MVE_VMUL_m; defm MVE_VMULi32 : MVE_VMUL_m; class MVE_VQxDMULH_Base size, bit rounding, list pattern=[]> : MVE_int { let Inst{28} = rounding; let Inst{25-23} = 0b110; let Inst{16} = 0b0; let Inst{12-8} = 0b01011; let Inst{4} = 0b0; let Inst{0} = 0b0; let validForTailPredication = 1; } def MVEvqdmulh : SDNode<"ARMISD::VQDMULH", SDTIntBinOp>; multiclass MVE_VQxDMULH_m { def "" : MVE_VQxDMULH_Base; defvar Inst = !cast(NAME); let Predicates = [HasMVEInt] in { defm : MVE_TwoOpPattern; // Extra unpredicated multiply intrinsic patterns def : Pat<(VTI.Vec (unpred_int (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; } } multiclass MVE_VQxDMULH : MVE_VQxDMULH_m; defm MVE_VQDMULHi8 : MVE_VQxDMULH<"vqdmulh", MVE_v16s8, 0b0>; defm MVE_VQDMULHi16 : MVE_VQxDMULH<"vqdmulh", MVE_v8s16, 0b0>; defm MVE_VQDMULHi32 : MVE_VQxDMULH<"vqdmulh", MVE_v4s32, 0b0>; defm MVE_VQRDMULHi8 : MVE_VQxDMULH<"vqrdmulh", MVE_v16s8, 0b1>; defm MVE_VQRDMULHi16 : MVE_VQxDMULH<"vqrdmulh", MVE_v8s16, 0b1>; defm MVE_VQRDMULHi32 : MVE_VQxDMULH<"vqrdmulh", MVE_v4s32, 0b1>; class MVE_VADDSUB size, bit subtract, list pattern=[]> : MVE_int { let Inst{28} = subtract; let Inst{25-23} = 0b110; let Inst{16} = 0b0; let Inst{12-8} = 0b01000; let Inst{4} = 0b0; let Inst{0} = 0b0; let validForTailPredication = 1; } multiclass MVE_VADDSUB_m { def "" : MVE_VADDSUB; defvar Inst = !cast(NAME); let Predicates = [HasMVEInt] in { defm : MVE_TwoOpPattern(NAME), ARMimmAllZerosV>; } } multiclass MVE_VADD : MVE_VADDSUB_m<"vadd", VTI, 0b0, add, int_arm_mve_add_predicated>; multiclass MVE_VSUB : MVE_VADDSUB_m<"vsub", VTI, 0b1, sub, int_arm_mve_sub_predicated>; defm MVE_VADDi8 : MVE_VADD; defm MVE_VADDi16 : MVE_VADD; defm MVE_VADDi32 : MVE_VADD; defm MVE_VSUBi8 : MVE_VSUB; defm MVE_VSUBi16 : MVE_VSUB; defm MVE_VSUBi32 : MVE_VSUB; class MVE_VQADDSUB size> : MVE_int { let Inst{28} = U; let Inst{25-23} = 0b110; let Inst{16} = 0b0; let Inst{12-10} = 0b000; let Inst{9} = subtract; let Inst{8} = 0b0; let Inst{4} = 0b1; let Inst{0} = 0b0; let validForTailPredication = 1; } class MVE_VQADD_ size> : MVE_VQADDSUB<"vqadd", suffix, U, 0b0, size>; class MVE_VQSUB_ size> : MVE_VQADDSUB<"vqsub", suffix, U, 0b1, size>; multiclass MVE_VQADD_m { def "" : MVE_VQADD_; defvar Inst = !cast(NAME); let Predicates = [HasMVEInt] in { defm : MVE_TwoOpPattern(NAME)>; } } multiclass MVE_VQADD : MVE_VQADD_m; defm MVE_VQADDs8 : MVE_VQADD; defm MVE_VQADDs16 : MVE_VQADD; defm MVE_VQADDs32 : MVE_VQADD; defm MVE_VQADDu8 : MVE_VQADD; defm MVE_VQADDu16 : MVE_VQADD; defm MVE_VQADDu32 : MVE_VQADD; multiclass MVE_VQSUB_m { def "" : MVE_VQSUB_; defvar Inst = !cast(NAME); let Predicates = [HasMVEInt] in { defm : MVE_TwoOpPattern(NAME)>; } } multiclass MVE_VQSUB : MVE_VQSUB_m; defm MVE_VQSUBs8 : MVE_VQSUB; defm MVE_VQSUBs16 : MVE_VQSUB; defm MVE_VQSUBs32 : MVE_VQSUB; defm MVE_VQSUBu8 : MVE_VQSUB; defm MVE_VQSUBu16 : MVE_VQSUB; defm MVE_VQSUBu32 : MVE_VQSUB; class MVE_VABD_int size, list pattern=[]> : MVE_int<"vabd", suffix, size, pattern> { let Inst{28} = U; let Inst{25-23} = 0b110; let Inst{16} = 0b0; let Inst{12-8} = 0b00111; let Inst{4} = 0b0; let Inst{0} = 0b0; let validForTailPredication = 1; } multiclass MVE_VABD_m { def "" : MVE_VABD_int; defvar Inst = !cast(NAME); let Predicates = [HasMVEInt] in { defm : MVE_TwoOpPattern(NAME)>; // Unpredicated absolute difference def : Pat<(VTI.Vec (unpred_int (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), (i32 VTI.Unsigned))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; } } multiclass MVE_VABD : MVE_VABD_m; defm MVE_VABDs8 : MVE_VABD; defm MVE_VABDs16 : MVE_VABD; defm MVE_VABDs32 : MVE_VABD; defm MVE_VABDu8 : MVE_VABD; defm MVE_VABDu16 : MVE_VABD; defm MVE_VABDu32 : MVE_VABD; class MVE_VRHADD_Base size, list pattern=[]> : MVE_int<"vrhadd", suffix, size, pattern> { let Inst{28} = U; let Inst{25-23} = 0b110; let Inst{16} = 0b0; let Inst{12-8} = 0b00001; let Inst{4} = 0b0; let Inst{0} = 0b0; let validForTailPredication = 1; } def addnuw : PatFrag<(ops node:$lhs, node:$rhs), (add node:$lhs, node:$rhs), [{ return N->getFlags().hasNoUnsignedWrap(); }]>; def addnsw : PatFrag<(ops node:$lhs, node:$rhs), (add node:$lhs, node:$rhs), [{ return N->getFlags().hasNoSignedWrap(); }]>; def subnuw : PatFrag<(ops node:$lhs, node:$rhs), (sub node:$lhs, node:$rhs), [{ return N->getFlags().hasNoUnsignedWrap(); }]>; def subnsw : PatFrag<(ops node:$lhs, node:$rhs), (sub node:$lhs, node:$rhs), [{ return N->getFlags().hasNoSignedWrap(); }]>; multiclass MVE_VRHADD_m { def "" : MVE_VRHADD_Base; defvar Inst = !cast(NAME); defm : MVE_TwoOpPattern(NAME)>; let Predicates = [HasMVEInt] in { // Unpredicated rounding add-with-divide-by-two intrinsic def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), (i32 VTI.Unsigned))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; } } multiclass MVE_VRHADD : MVE_VRHADD_m; defm MVE_VRHADDs8 : MVE_VRHADD; defm MVE_VRHADDs16 : MVE_VRHADD; defm MVE_VRHADDs32 : MVE_VRHADD; defm MVE_VRHADDu8 : MVE_VRHADD; defm MVE_VRHADDu16 : MVE_VRHADD; defm MVE_VRHADDu32 : MVE_VRHADD; // Rounding Halving Add perform the arithemtic operation with an extra bit of // precision, before performing the shift, to void clipping errors. We're not // modelling that here with these patterns, but we're using no wrap forms of // add to ensure that the extra bit of information is not needed for the // arithmetic or the rounding. let Predicates = [HasMVEInt] in { def : Pat<(v16i8 (ARMvshrsImm (addnsw (addnsw (v16i8 MQPR:$Qm), (v16i8 MQPR:$Qn)), (v16i8 (ARMvmovImm (i32 3585)))), (i32 1))), (MVE_VRHADDs8 MQPR:$Qm, MQPR:$Qn)>; def : Pat<(v8i16 (ARMvshrsImm (addnsw (addnsw (v8i16 MQPR:$Qm), (v8i16 MQPR:$Qn)), (v8i16 (ARMvmovImm (i32 2049)))), (i32 1))), (MVE_VRHADDs16 MQPR:$Qm, MQPR:$Qn)>; def : Pat<(v4i32 (ARMvshrsImm (addnsw (addnsw (v4i32 MQPR:$Qm), (v4i32 MQPR:$Qn)), (v4i32 (ARMvmovImm (i32 1)))), (i32 1))), (MVE_VRHADDs32 MQPR:$Qm, MQPR:$Qn)>; def : Pat<(v16i8 (ARMvshruImm (addnuw (addnuw (v16i8 MQPR:$Qm), (v16i8 MQPR:$Qn)), (v16i8 (ARMvmovImm (i32 3585)))), (i32 1))), (MVE_VRHADDu8 MQPR:$Qm, MQPR:$Qn)>; def : Pat<(v8i16 (ARMvshruImm (addnuw (addnuw (v8i16 MQPR:$Qm), (v8i16 MQPR:$Qn)), (v8i16 (ARMvmovImm (i32 2049)))), (i32 1))), (MVE_VRHADDu16 MQPR:$Qm, MQPR:$Qn)>; def : Pat<(v4i32 (ARMvshruImm (addnuw (addnuw (v4i32 MQPR:$Qm), (v4i32 MQPR:$Qn)), (v4i32 (ARMvmovImm (i32 1)))), (i32 1))), (MVE_VRHADDu32 MQPR:$Qm, MQPR:$Qn)>; def : Pat<(v16i8 (ARMvshrsImm (addnsw (addnsw (v16i8 MQPR:$Qm), (v16i8 MQPR:$Qn)), (v16i8 (ARMvdup (i32 1)))), (i32 1))), (MVE_VRHADDs8 MQPR:$Qm, MQPR:$Qn)>; def : Pat<(v8i16 (ARMvshrsImm (addnsw (addnsw (v8i16 MQPR:$Qm), (v8i16 MQPR:$Qn)), (v8i16 (ARMvdup (i32 1)))), (i32 1))), (MVE_VRHADDs16 MQPR:$Qm, MQPR:$Qn)>; def : Pat<(v4i32 (ARMvshrsImm (addnsw (addnsw (v4i32 MQPR:$Qm), (v4i32 MQPR:$Qn)), (v4i32 (ARMvdup (i32 1)))), (i32 1))), (MVE_VRHADDs32 MQPR:$Qm, MQPR:$Qn)>; def : Pat<(v16i8 (ARMvshruImm (addnuw (addnuw (v16i8 MQPR:$Qm), (v16i8 MQPR:$Qn)), (v16i8 (ARMvdup (i32 1)))), (i32 1))), (MVE_VRHADDu8 MQPR:$Qm, MQPR:$Qn)>; def : Pat<(v8i16 (ARMvshruImm (addnuw (addnuw (v8i16 MQPR:$Qm), (v8i16 MQPR:$Qn)), (v8i16 (ARMvdup (i32 1)))), (i32 1))), (MVE_VRHADDu16 MQPR:$Qm, MQPR:$Qn)>; def : Pat<(v4i32 (ARMvshruImm (addnuw (addnuw (v4i32 MQPR:$Qm), (v4i32 MQPR:$Qn)), (v4i32 (ARMvdup (i32 1)))), (i32 1))), (MVE_VRHADDu32 MQPR:$Qm, MQPR:$Qn)>; } class MVE_VHADDSUB size, list pattern=[]> : MVE_int { let Inst{28} = U; let Inst{25-23} = 0b110; let Inst{16} = 0b0; let Inst{12-10} = 0b000; let Inst{9} = subtract; let Inst{8} = 0b0; let Inst{4} = 0b0; let Inst{0} = 0b0; let validForTailPredication = 1; } class MVE_VHADD_ size, list pattern=[]> : MVE_VHADDSUB<"vhadd", suffix, U, 0b0, size, pattern>; class MVE_VHSUB_ size, list pattern=[]> : MVE_VHADDSUB<"vhsub", suffix, U, 0b1, size, pattern>; multiclass MVE_VHADD_m { def "" : MVE_VHADD_; defvar Inst = !cast(NAME); defm : MVE_TwoOpPattern(NAME)>; let Predicates = [HasMVEInt] in { // Unpredicated add-and-divide-by-two def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), (i32 VTI.Unsigned))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; def : Pat<(VTI.Vec (shift_op (add_op (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)), (i32 1))), (Inst MQPR:$Qm, MQPR:$Qn)>; } } multiclass MVE_VHADD : MVE_VHADD_m; // Halving add/sub perform the arithemtic operation with an extra bit of // precision, before performing the shift, to void clipping errors. We're not // modelling that here with these patterns, but we're using no wrap forms of // add/sub to ensure that the extra bit of information is not needed. defm MVE_VHADDs8 : MVE_VHADD; defm MVE_VHADDs16 : MVE_VHADD; defm MVE_VHADDs32 : MVE_VHADD; defm MVE_VHADDu8 : MVE_VHADD; defm MVE_VHADDu16 : MVE_VHADD; defm MVE_VHADDu32 : MVE_VHADD; multiclass MVE_VHSUB_m { def "" : MVE_VHSUB_; defvar Inst = !cast(NAME); let Predicates = [HasMVEInt] in { // Unpredicated subtract-and-divide-by-two def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), (i32 VTI.Unsigned))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; def : Pat<(VTI.Vec (shift_op (sub_op (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)), (i32 1))), (Inst MQPR:$Qm, MQPR:$Qn)>; // Predicated subtract-and-divide-by-two def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), (i32 VTI.Unsigned), (VTI.Pred VCCR:$mask), (VTI.Vec MQPR:$inactive))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg, (VTI.Vec MQPR:$inactive)))>; } } multiclass MVE_VHSUB : MVE_VHSUB_m; defm MVE_VHSUBs8 : MVE_VHSUB; defm MVE_VHSUBs16 : MVE_VHSUB; defm MVE_VHSUBs32 : MVE_VHSUB; defm MVE_VHSUBu8 : MVE_VHSUB; defm MVE_VHSUBu16 : MVE_VHSUB; defm MVE_VHSUBu32 : MVE_VHSUB; class MVE_VDUP vecsize, list pattern=[]> : MVE_p<(outs MQPR:$Qd), (ins rGPR:$Rt), NoItinerary, "vdup", suffix, "$Qd, $Rt", vpred_r, "", vecsize, pattern> { bits<4> Qd; bits<4> Rt; let Inst{28} = 0b0; let Inst{25-23} = 0b101; let Inst{22} = B; let Inst{21-20} = 0b10; let Inst{19-17} = Qd{2-0}; let Inst{16} = 0b0; let Inst{15-12} = Rt; let Inst{11-8} = 0b1011; let Inst{7} = Qd{3}; let Inst{6} = 0b0; let Inst{5} = E; let Inst{4-0} = 0b10000; let validForTailPredication = 1; } def MVE_VDUP32 : MVE_VDUP<"32", 0b0, 0b0, 0b10>; def MVE_VDUP16 : MVE_VDUP<"16", 0b0, 0b1, 0b01>; def MVE_VDUP8 : MVE_VDUP<"8", 0b1, 0b0, 0b00>; let Predicates = [HasMVEInt] in { def : Pat<(v16i8 (ARMvdup (i32 rGPR:$elem))), (MVE_VDUP8 rGPR:$elem)>; def : Pat<(v8i16 (ARMvdup (i32 rGPR:$elem))), (MVE_VDUP16 rGPR:$elem)>; def : Pat<(v4i32 (ARMvdup (i32 rGPR:$elem))), (MVE_VDUP32 rGPR:$elem)>; def : Pat<(v8f16 (ARMvdup (i32 rGPR:$elem))), (MVE_VDUP16 rGPR:$elem)>; def : Pat<(v4f32 (ARMvdup (i32 rGPR:$elem))), (MVE_VDUP32 rGPR:$elem)>; // Match a vselect with an ARMvdup as a predicated MVE_VDUP def : Pat<(v16i8 (vselect (v16i1 VCCR:$pred), (v16i8 (ARMvdup (i32 rGPR:$elem))), (v16i8 MQPR:$inactive))), (MVE_VDUP8 rGPR:$elem, ARMVCCThen, (v16i1 VCCR:$pred), zero_reg, (v16i8 MQPR:$inactive))>; def : Pat<(v8i16 (vselect (v8i1 VCCR:$pred), (v8i16 (ARMvdup (i32 rGPR:$elem))), (v8i16 MQPR:$inactive))), (MVE_VDUP16 rGPR:$elem, ARMVCCThen, (v8i1 VCCR:$pred), zero_reg, (v8i16 MQPR:$inactive))>; def : Pat<(v4i32 (vselect (v4i1 VCCR:$pred), (v4i32 (ARMvdup (i32 rGPR:$elem))), (v4i32 MQPR:$inactive))), (MVE_VDUP32 rGPR:$elem, ARMVCCThen, (v4i1 VCCR:$pred), zero_reg, (v4i32 MQPR:$inactive))>; def : Pat<(v4f32 (vselect (v4i1 VCCR:$pred), (v4f32 (ARMvdup (i32 rGPR:$elem))), (v4f32 MQPR:$inactive))), (MVE_VDUP32 rGPR:$elem, ARMVCCThen, (v4i1 VCCR:$pred), zero_reg, (v4f32 MQPR:$inactive))>; def : Pat<(v8f16 (vselect (v8i1 VCCR:$pred), (v8f16 (ARMvdup (i32 rGPR:$elem))), (v8f16 MQPR:$inactive))), (MVE_VDUP16 rGPR:$elem, ARMVCCThen, (v8i1 VCCR:$pred), zero_reg, (v8f16 MQPR:$inactive))>; } class MVEIntSingleSrc size, list pattern=[]> : MVE_p<(outs MQPR:$Qd), (ins MQPR:$Qm), NoItinerary, iname, suffix, "$Qd, $Qm", vpred_r, "", size, pattern> { bits<4> Qd; bits<4> Qm; let Inst{22} = Qd{3}; let Inst{19-18} = size{1-0}; let Inst{15-13} = Qd{2-0}; let Inst{5} = Qm{3}; let Inst{3-1} = Qm{2-0}; } class MVE_VCLSCLZ size, bit count_zeroes, list pattern=[]> : MVEIntSingleSrc { let Inst{28} = 0b1; let Inst{25-23} = 0b111; let Inst{21-20} = 0b11; let Inst{17-16} = 0b00; let Inst{12-8} = 0b00100; let Inst{7} = count_zeroes; let Inst{6} = 0b1; let Inst{4} = 0b0; let Inst{0} = 0b0; let validForTailPredication = 1; } multiclass MVE_VCLSCLZ_p { def "": MVE_VCLSCLZ<"v"#opname, VTI.Suffix, VTI.Size, opcode>; defvar Inst = !cast(NAME); defvar pred_int = !cast("int_arm_mve_"#opname#"_predicated"); let Predicates = [HasMVEInt] in { def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$val))), (VTI.Vec (Inst (VTI.Vec MQPR:$val)))>; def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$val), (VTI.Pred VCCR:$pred), (VTI.Vec MQPR:$inactive))), (VTI.Vec (Inst (VTI.Vec MQPR:$val), ARMVCCThen, (VTI.Pred VCCR:$pred), zero_reg, (VTI.Vec MQPR:$inactive)))>; } } defm MVE_VCLSs8 : MVE_VCLSCLZ_p<"cls", 0, MVE_v16s8, int_arm_mve_vcls>; defm MVE_VCLSs16 : MVE_VCLSCLZ_p<"cls", 0, MVE_v8s16, int_arm_mve_vcls>; defm MVE_VCLSs32 : MVE_VCLSCLZ_p<"cls", 0, MVE_v4s32, int_arm_mve_vcls>; defm MVE_VCLZs8 : MVE_VCLSCLZ_p<"clz", 1, MVE_v16i8, ctlz>; defm MVE_VCLZs16 : MVE_VCLSCLZ_p<"clz", 1, MVE_v8i16, ctlz>; defm MVE_VCLZs32 : MVE_VCLSCLZ_p<"clz", 1, MVE_v4i32, ctlz>; class MVE_VABSNEG_int size, bit negate, bit saturate, list pattern=[]> : MVEIntSingleSrc { let Inst{28} = 0b1; let Inst{25-23} = 0b111; let Inst{21-20} = 0b11; let Inst{17} = 0b0; let Inst{16} = !eq(saturate, 0); let Inst{12-11} = 0b00; let Inst{10} = saturate; let Inst{9-8} = 0b11; let Inst{7} = negate; let Inst{6} = 0b1; let Inst{4} = 0b0; let Inst{0} = 0b0; let validForTailPredication = 1; } multiclass MVE_VABSNEG_int_m { def "" : MVE_VABSNEG_int; defvar Inst = !cast(NAME); let Predicates = [HasMVEInt] in { // VQABS and VQNEG have more difficult isel patterns defined elsewhere if !not(saturate) then { def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$v))), (VTI.Vec (Inst $v))>; } def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$v), (VTI.Pred VCCR:$mask), (VTI.Vec MQPR:$inactive))), (VTI.Vec (Inst $v, ARMVCCThen, $mask, zero_reg, $inactive))>; } } foreach VTI = [ MVE_v16s8, MVE_v8s16, MVE_v4s32 ] in { defm "MVE_VABS" # VTI.Suffix : MVE_VABSNEG_int_m< "vabs", 0, 0, abs, int_arm_mve_abs_predicated, VTI>; defm "MVE_VQABS" # VTI.Suffix : MVE_VABSNEG_int_m< "vqabs", 0, 1, ?, int_arm_mve_qabs_predicated, VTI>; defm "MVE_VNEG" # VTI.Suffix : MVE_VABSNEG_int_m< "vneg", 1, 0, vnegq, int_arm_mve_neg_predicated, VTI>; defm "MVE_VQNEG" # VTI.Suffix : MVE_VABSNEG_int_m< "vqneg", 1, 1, ?, int_arm_mve_qneg_predicated, VTI>; } // int_min/int_max: vector containing INT_MIN/INT_MAX VTI.Size times // zero_vec: v4i32-initialized zero vector, potentially wrapped in a bitconvert multiclass vqabsneg_pattern { let Predicates = [HasMVEInt] in { // The below tree can be replaced by a vqabs instruction, as it represents // the following vectorized expression (r being the value in $reg): // r > 0 ? r : (r == INT_MIN ? INT_MAX : -r) def : Pat<(VTI.Vec (vselect (VTI.Pred (ARMvcmpz (VTI.Vec MQPR:$reg), ARMCCgt)), (VTI.Vec MQPR:$reg), (VTI.Vec (vselect (VTI.Pred (ARMvcmp (VTI.Vec MQPR:$reg), int_min, ARMCCeq)), int_max, (sub (VTI.Vec zero_vec), (VTI.Vec MQPR:$reg)))))), (VTI.Vec (vqabs_instruction (VTI.Vec MQPR:$reg)))>; // Similarly, this tree represents vqneg, i.e. the following vectorized expression: // r == INT_MIN ? INT_MAX : -r def : Pat<(VTI.Vec (vselect (VTI.Pred (ARMvcmp (VTI.Vec MQPR:$reg), int_min, ARMCCeq)), int_max, (sub (VTI.Vec zero_vec), (VTI.Vec MQPR:$reg)))), (VTI.Vec (vqneg_instruction (VTI.Vec MQPR:$reg)))>; } } defm MVE_VQABSNEG_Ps8 : vqabsneg_pattern; defm MVE_VQABSNEG_Ps16 : vqabsneg_pattern; defm MVE_VQABSNEG_Ps32 : vqabsneg_pattern; class MVE_mod_imm cmode, bit op, dag iops, bits<2> vecsize, list pattern=[]> : MVE_p<(outs MQPR:$Qd), iops, NoItinerary, iname, suffix, "$Qd, $imm", vpred_r, "", vecsize, pattern> { bits<13> imm; bits<4> Qd; let Inst{28} = imm{7}; let Inst{25-23} = 0b111; let Inst{22} = Qd{3}; let Inst{21-19} = 0b000; let Inst{18-16} = imm{6-4}; let Inst{15-13} = Qd{2-0}; let Inst{12} = 0b0; let Inst{11-8} = cmode{3-0}; let Inst{7-6} = 0b01; let Inst{5} = op; let Inst{4} = 0b1; let Inst{3-0} = imm{3-0}; let DecoderMethod = "DecodeMVEModImmInstruction"; let validForTailPredication = 1; } let isReMaterializable = 1 in { let isAsCheapAsAMove = 1 in { def MVE_VMOVimmi8 : MVE_mod_imm<"vmov", "i8", {1,1,1,0}, 0b0, (ins nImmSplatI8:$imm), 0b00>; def MVE_VMOVimmi16 : MVE_mod_imm<"vmov", "i16", {1,0,?,0}, 0b0, (ins nImmSplatI16:$imm), 0b01> { let Inst{9} = imm{9}; } def MVE_VMOVimmi32 : MVE_mod_imm<"vmov", "i32", {?,?,?,?}, 0b0, (ins nImmVMOVI32:$imm), 0b10> { let Inst{11-8} = imm{11-8}; } def MVE_VMOVimmi64 : MVE_mod_imm<"vmov", "i64", {1,1,1,0}, 0b1, (ins nImmSplatI64:$imm), 0b11>; def MVE_VMOVimmf32 : MVE_mod_imm<"vmov", "f32", {1,1,1,1}, 0b0, (ins nImmVMOVF32:$imm), 0b10>; } // let isAsCheapAsAMove = 1 def MVE_VMVNimmi16 : MVE_mod_imm<"vmvn", "i16", {1,0,?,0}, 0b1, (ins nImmSplatI16:$imm), 0b01> { let Inst{9} = imm{9}; } def MVE_VMVNimmi32 : MVE_mod_imm<"vmvn", "i32", {?,?,?,?}, 0b1, (ins nImmVMOVI32:$imm), 0b10> { let Inst{11-8} = imm{11-8}; } } // let isReMaterializable = 1 let Predicates = [HasMVEInt] in { def : Pat<(v16i8 (ARMvmovImm timm:$simm)), (v16i8 (MVE_VMOVimmi8 nImmSplatI8:$simm))>; def : Pat<(v8i16 (ARMvmovImm timm:$simm)), (v8i16 (MVE_VMOVimmi16 nImmSplatI16:$simm))>; def : Pat<(v4i32 (ARMvmovImm timm:$simm)), (v4i32 (MVE_VMOVimmi32 nImmVMOVI32:$simm))>; def : Pat<(v2i64 (ARMvmovImm timm:$simm)), (v2i64 (MVE_VMOVimmi64 nImmSplatI64:$simm))>; def : Pat<(v8i16 (ARMvmvnImm timm:$simm)), (v8i16 (MVE_VMVNimmi16 nImmSplatI16:$simm))>; def : Pat<(v4i32 (ARMvmvnImm timm:$simm)), (v4i32 (MVE_VMVNimmi32 nImmVMOVI32:$simm))>; def : Pat<(v4f32 (ARMvmovFPImm timm:$simm)), (v4f32 (MVE_VMOVimmf32 nImmVMOVF32:$simm))>; def : Pat<(v8i16 (vselect (v8i1 VCCR:$pred), (ARMvmvnImm timm:$simm), MQPR:$inactive)), (v8i16 (MVE_VMVNimmi16 nImmSplatI16:$simm, ARMVCCThen, VCCR:$pred, zero_reg, MQPR:$inactive))>; def : Pat<(v4i32 (vselect (v4i1 VCCR:$pred), (ARMvmvnImm timm:$simm), MQPR:$inactive)), (v4i32 (MVE_VMVNimmi32 nImmSplatI32:$simm, ARMVCCThen, VCCR:$pred, zero_reg, MQPR:$inactive))>; } class MVE_VMINMAXA size, bit bit_12, list pattern=[]> : MVE_p<(outs MQPR:$Qd), (ins MQPR:$Qd_src, MQPR:$Qm), NoItinerary, iname, suffix, "$Qd, $Qm", vpred_n, "$Qd = $Qd_src", size, pattern> { bits<4> Qd; bits<4> Qm; let Inst{28} = 0b0; let Inst{25-23} = 0b100; let Inst{22} = Qd{3}; let Inst{21-20} = 0b11; let Inst{19-18} = size; let Inst{17-16} = 0b11; let Inst{15-13} = Qd{2-0}; let Inst{12} = bit_12; let Inst{11-6} = 0b111010; let Inst{5} = Qm{3}; let Inst{4} = 0b0; let Inst{3-1} = Qm{2-0}; let Inst{0} = 0b1; let validForTailPredication = 1; } multiclass MVE_VMINMAXA_m { def "" : MVE_VMINMAXA; defvar Inst = !cast(NAME); let Predicates = [HasMVEInt] in { // Unpredicated v(min|max)a def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$Qd), (abs (VTI.Vec MQPR:$Qm)))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qd), (VTI.Vec MQPR:$Qm)))>; // Predicated v(min|max)a def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$Qd), (VTI.Vec MQPR:$Qm), (VTI.Pred VCCR:$mask))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qd), (VTI.Vec MQPR:$Qm), ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg))>; } } multiclass MVE_VMINA : MVE_VMINMAXA_m<"vmina", VTI, umin, int_arm_mve_vmina_predicated, 0b1>; defm MVE_VMINAs8 : MVE_VMINA; defm MVE_VMINAs16 : MVE_VMINA; defm MVE_VMINAs32 : MVE_VMINA; multiclass MVE_VMAXA : MVE_VMINMAXA_m<"vmaxa", VTI, umax, int_arm_mve_vmaxa_predicated, 0b0>; defm MVE_VMAXAs8 : MVE_VMAXA; defm MVE_VMAXAs16 : MVE_VMAXA; defm MVE_VMAXAs32 : MVE_VMAXA; // end of MVE Integer instructions // start of mve_imm_shift instructions def MVE_VSHLC : MVE_p<(outs rGPR:$RdmDest, MQPR:$Qd), (ins MQPR:$QdSrc, rGPR:$RdmSrc, long_shift:$imm), NoItinerary, "vshlc", "", "$QdSrc, $RdmSrc, $imm", vpred_n, "$RdmDest = $RdmSrc,$Qd = $QdSrc", 0b10> { bits<5> imm; bits<4> Qd; bits<4> RdmDest; let Inst{28} = 0b0; let Inst{25-23} = 0b101; let Inst{22} = Qd{3}; let Inst{21} = 0b1; let Inst{20-16} = imm{4-0}; let Inst{15-13} = Qd{2-0}; let Inst{12-4} = 0b011111100; let Inst{3-0} = RdmDest{3-0}; } class MVE_shift_imm vecsize, list pattern=[]> : MVE_p { bits<4> Qd; bits<4> Qm; let Inst{22} = Qd{3}; let Inst{15-13} = Qd{2-0}; let Inst{5} = Qm{3}; let Inst{3-1} = Qm{2-0}; } class MVE_VMOVL sz, bit U, bit top, list pattern=[]> : MVE_shift_imm<(outs MQPR:$Qd), (ins MQPR:$Qm), iname, suffix, "$Qd, $Qm", vpred_r, "", sz, pattern> { let Inst{28} = U; let Inst{25-23} = 0b101; let Inst{21} = 0b1; let Inst{20-19} = sz{1-0}; let Inst{18-16} = 0b000; let Inst{12} = top; let Inst{11-6} = 0b111101; let Inst{4} = 0b0; let Inst{0} = 0b0; let doubleWidthResult = 1; } multiclass MVE_VMOVL_m { def "": MVE_VMOVL<"vmovl" # chr, InVTI.Suffix, OutVTI.Size, InVTI.Unsigned, top>; defvar Inst = !cast(NAME); def : Pat<(OutVTI.Vec (int_arm_mve_vmovl_predicated (InVTI.Vec MQPR:$src), (i32 InVTI.Unsigned), (i32 top), (OutVTI.Pred VCCR:$pred), (OutVTI.Vec MQPR:$inactive))), (OutVTI.Vec (Inst (InVTI.Vec MQPR:$src), ARMVCCThen, (OutVTI.Pred VCCR:$pred), zero_reg, (OutVTI.Vec MQPR:$inactive)))>; } defm MVE_VMOVLs8bh : MVE_VMOVL_m<0, "b", MVE_v8s16, MVE_v16s8>; defm MVE_VMOVLs8th : MVE_VMOVL_m<1, "t", MVE_v8s16, MVE_v16s8>; defm MVE_VMOVLu8bh : MVE_VMOVL_m<0, "b", MVE_v8u16, MVE_v16u8>; defm MVE_VMOVLu8th : MVE_VMOVL_m<1, "t", MVE_v8u16, MVE_v16u8>; defm MVE_VMOVLs16bh : MVE_VMOVL_m<0, "b", MVE_v4s32, MVE_v8s16>; defm MVE_VMOVLs16th : MVE_VMOVL_m<1, "t", MVE_v4s32, MVE_v8s16>; defm MVE_VMOVLu16bh : MVE_VMOVL_m<0, "b", MVE_v4s32, MVE_v8u16>; defm MVE_VMOVLu16th : MVE_VMOVL_m<1, "t", MVE_v4s32, MVE_v8u16>; let Predicates = [HasMVEInt] in { def : Pat<(sext_inreg (v4i32 MQPR:$src), v4i16), (MVE_VMOVLs16bh MQPR:$src)>; def : Pat<(sext_inreg (v8i16 MQPR:$src), v8i8), (MVE_VMOVLs8bh MQPR:$src)>; def : Pat<(sext_inreg (v4i32 MQPR:$src), v4i8), (MVE_VMOVLs16bh (MVE_VMOVLs8bh MQPR:$src))>; def : Pat<(sext_inreg (v8i16 (ARMVectorRegCast (ARMvrev16 (v16i8 MQPR:$src)))), v8i8), (MVE_VMOVLs8th MQPR:$src)>; def : Pat<(sext_inreg (v4i32 (ARMVectorRegCast (ARMvrev32 (v8i16 MQPR:$src)))), v4i16), (MVE_VMOVLs16th MQPR:$src)>; // zext_inreg 8 -> 16 def : Pat<(ARMvbicImm (v8i16 MQPR:$src), (i32 0xAFF)), (MVE_VMOVLu8bh MQPR:$src)>; // zext_inreg 16 -> 32 def : Pat<(and (v4i32 MQPR:$src), (v4i32 (ARMvmovImm (i32 0xCFF)))), (MVE_VMOVLu16bh MQPR:$src)>; // Same zext_inreg with vrevs, picking the top half def : Pat<(ARMvbicImm (v8i16 (ARMVectorRegCast (ARMvrev16 (v16i8 MQPR:$src)))), (i32 0xAFF)), (MVE_VMOVLu8th MQPR:$src)>; def : Pat<(and (v4i32 (ARMVectorRegCast (ARMvrev32 (v8i16 MQPR:$src)))), (v4i32 (ARMvmovImm (i32 0xCFF)))), (MVE_VMOVLu16th MQPR:$src)>; } class MVE_VSHLL_imm vecsize, list pattern=[]> : MVE_shift_imm<(outs MQPR:$Qd), (ins MQPR:$Qm, immtype:$imm), iname, suffix, "$Qd, $Qm, $imm", vpred_r, "", vecsize, pattern> { let Inst{28} = U; let Inst{25-23} = 0b101; let Inst{21} = 0b1; let Inst{12} = th; let Inst{11-6} = 0b111101; let Inst{4} = 0b0; let Inst{0} = 0b0; // For the MVE_VSHLL_patterns multiclass to refer to Operand immediateType = immtype; let doubleWidthResult = 1; } // The immediate VSHLL instructions accept shift counts from 1 up to // the lane width (8 or 16), but the full-width shifts have an // entirely separate encoding, given below with 'lw' in the name. class MVE_VSHLL_imm8 pattern=[]> : MVE_VSHLL_imm { bits<3> imm; let Inst{20-19} = 0b01; let Inst{18-16} = imm; } class MVE_VSHLL_imm16 pattern=[]> : MVE_VSHLL_imm { bits<4> imm; let Inst{20} = 0b1; let Inst{19-16} = imm; } def MVE_VSHLL_imms8bh : MVE_VSHLL_imm8 <"vshllb", "s8", 0b0, 0b0>; def MVE_VSHLL_imms8th : MVE_VSHLL_imm8 <"vshllt", "s8", 0b0, 0b1>; def MVE_VSHLL_immu8bh : MVE_VSHLL_imm8 <"vshllb", "u8", 0b1, 0b0>; def MVE_VSHLL_immu8th : MVE_VSHLL_imm8 <"vshllt", "u8", 0b1, 0b1>; def MVE_VSHLL_imms16bh : MVE_VSHLL_imm16<"vshllb", "s16", 0b0, 0b0>; def MVE_VSHLL_imms16th : MVE_VSHLL_imm16<"vshllt", "s16", 0b0, 0b1>; def MVE_VSHLL_immu16bh : MVE_VSHLL_imm16<"vshllb", "u16", 0b1, 0b0>; def MVE_VSHLL_immu16th : MVE_VSHLL_imm16<"vshllt", "u16", 0b1, 0b1>; class MVE_VSHLL_by_lane_width size, bit U, string ops, list pattern=[]> : MVE_shift_imm<(outs MQPR:$Qd), (ins MQPR:$Qm), iname, suffix, ops, vpred_r, "", !if(size, 0b10, 0b01), pattern> { let Inst{28} = U; let Inst{25-23} = 0b100; let Inst{21-20} = 0b11; let Inst{19-18} = size{1-0}; let Inst{17-16} = 0b01; let Inst{11-6} = 0b111000; let Inst{4} = 0b0; let Inst{0} = 0b1; let doubleWidthResult = 1; } multiclass MVE_VSHLL_lw sz, bit U, string ops, list pattern=[]> { def bh : MVE_VSHLL_by_lane_width { let Inst{12} = 0b0; } def th : MVE_VSHLL_by_lane_width { let Inst{12} = 0b1; } } defm MVE_VSHLL_lws8 : MVE_VSHLL_lw<"vshll", "s8", 0b00, 0b0, "$Qd, $Qm, #8">; defm MVE_VSHLL_lws16 : MVE_VSHLL_lw<"vshll", "s16", 0b01, 0b0, "$Qd, $Qm, #16">; defm MVE_VSHLL_lwu8 : MVE_VSHLL_lw<"vshll", "u8", 0b00, 0b1, "$Qd, $Qm, #8">; defm MVE_VSHLL_lwu16 : MVE_VSHLL_lw<"vshll", "u16", 0b01, 0b1, "$Qd, $Qm, #16">; multiclass MVE_VSHLL_patterns { defvar suffix = !strconcat(VTI.Suffix, !if(top, "th", "bh")); defvar inst_imm = !cast("MVE_VSHLL_imm" # suffix); defvar inst_lw = !cast("MVE_VSHLL_lw" # suffix); defvar unpred_int = int_arm_mve_vshll_imm; defvar pred_int = int_arm_mve_vshll_imm_predicated; defvar imm = inst_imm.immediateType; def : Pat<(VTI.DblVec (unpred_int (VTI.Vec MQPR:$src), imm:$imm, (i32 VTI.Unsigned), (i32 top))), (VTI.DblVec (inst_imm (VTI.Vec MQPR:$src), imm:$imm))>; def : Pat<(VTI.DblVec (unpred_int (VTI.Vec MQPR:$src), (i32 VTI.LaneBits), (i32 VTI.Unsigned), (i32 top))), (VTI.DblVec (inst_lw (VTI.Vec MQPR:$src)))>; def : Pat<(VTI.DblVec (pred_int (VTI.Vec MQPR:$src), imm:$imm, (i32 VTI.Unsigned), (i32 top), (VTI.DblPred VCCR:$mask), (VTI.DblVec MQPR:$inactive))), (VTI.DblVec (inst_imm (VTI.Vec MQPR:$src), imm:$imm, ARMVCCThen, (VTI.DblPred VCCR:$mask), zero_reg, (VTI.DblVec MQPR:$inactive)))>; def : Pat<(VTI.DblVec (pred_int (VTI.Vec MQPR:$src), (i32 VTI.LaneBits), (i32 VTI.Unsigned), (i32 top), (VTI.DblPred VCCR:$mask), (VTI.DblVec MQPR:$inactive))), (VTI.DblVec (inst_lw (VTI.Vec MQPR:$src), ARMVCCThen, (VTI.DblPred VCCR:$mask), zero_reg, (VTI.DblVec MQPR:$inactive)))>; } foreach VTI = [MVE_v16s8, MVE_v8s16, MVE_v16u8, MVE_v8u16] in foreach top = [0, 1] in defm : MVE_VSHLL_patterns; class MVE_shift_imm_partial vecsize> : MVE_shift_imm<(outs MQPR:$Qd), (ins MQPR:$QdSrc, MQPR:$Qm, imm:$imm), iname, suffix, "$Qd, $Qm, $imm", vpred_n, "$Qd = $QdSrc", vecsize> { Operand immediateType = imm; } class MVE_VxSHRN vecsize> : MVE_shift_imm_partial { bits<5> imm; let Inst{28} = bit_28; let Inst{25-23} = 0b101; let Inst{21} = 0b0; let Inst{20-16} = imm{4-0}; let Inst{12} = bit_12; let Inst{11-6} = 0b111111; let Inst{4} = 0b0; let Inst{0} = 0b1; let validForTailPredication = 1; let retainsPreviousHalfElement = 1; } def MVE_VRSHRNi16bh : MVE_VxSHRN<"vrshrnb", "i16", 0b0, 0b1, shr_imm8, 0b01> { let Inst{20-19} = 0b01; } def MVE_VRSHRNi16th : MVE_VxSHRN<"vrshrnt", "i16", 0b1, 0b1, shr_imm8, 0b01> { let Inst{20-19} = 0b01; } def MVE_VRSHRNi32bh : MVE_VxSHRN<"vrshrnb", "i32", 0b0, 0b1, shr_imm16, 0b10> { let Inst{20} = 0b1; } def MVE_VRSHRNi32th : MVE_VxSHRN<"vrshrnt", "i32", 0b1, 0b1, shr_imm16, 0b10> { let Inst{20} = 0b1; } def MVE_VSHRNi16bh : MVE_VxSHRN<"vshrnb", "i16", 0b0, 0b0, shr_imm8, 0b01> { let Inst{20-19} = 0b01; } def MVE_VSHRNi16th : MVE_VxSHRN<"vshrnt", "i16", 0b1, 0b0, shr_imm8, 0b01> { let Inst{20-19} = 0b01; } def MVE_VSHRNi32bh : MVE_VxSHRN<"vshrnb", "i32", 0b0, 0b0, shr_imm16, 0b10> { let Inst{20} = 0b1; } def MVE_VSHRNi32th : MVE_VxSHRN<"vshrnt", "i32", 0b1, 0b0, shr_imm16, 0b10> { let Inst{20} = 0b1; } class MVE_VxQRSHRUN vecsize> : MVE_shift_imm_partial { bits<5> imm; let Inst{28} = bit_28; let Inst{25-23} = 0b101; let Inst{21} = 0b0; let Inst{20-16} = imm{4-0}; let Inst{12} = bit_12; let Inst{11-6} = 0b111111; let Inst{4} = 0b0; let Inst{0} = 0b0; let validForTailPredication = 1; let retainsPreviousHalfElement = 1; } def MVE_VQRSHRUNs16bh : MVE_VxQRSHRUN< "vqrshrunb", "s16", 0b1, 0b0, shr_imm8, 0b01> { let Inst{20-19} = 0b01; } def MVE_VQRSHRUNs16th : MVE_VxQRSHRUN< "vqrshrunt", "s16", 0b1, 0b1, shr_imm8, 0b01> { let Inst{20-19} = 0b01; } def MVE_VQRSHRUNs32bh : MVE_VxQRSHRUN< "vqrshrunb", "s32", 0b1, 0b0, shr_imm16, 0b10> { let Inst{20} = 0b1; } def MVE_VQRSHRUNs32th : MVE_VxQRSHRUN< "vqrshrunt", "s32", 0b1, 0b1, shr_imm16, 0b10> { let Inst{20} = 0b1; } def MVE_VQSHRUNs16bh : MVE_VxQRSHRUN< "vqshrunb", "s16", 0b0, 0b0, shr_imm8, 0b01> { let Inst{20-19} = 0b01; } def MVE_VQSHRUNs16th : MVE_VxQRSHRUN< "vqshrunt", "s16", 0b0, 0b1, shr_imm8, 0b01> { let Inst{20-19} = 0b01; } def MVE_VQSHRUNs32bh : MVE_VxQRSHRUN< "vqshrunb", "s32", 0b0, 0b0, shr_imm16, 0b10> { let Inst{20} = 0b1; } def MVE_VQSHRUNs32th : MVE_VxQRSHRUN< "vqshrunt", "s32", 0b0, 0b1, shr_imm16, 0b10> { let Inst{20} = 0b1; } class MVE_VxQRSHRN vecsize> : MVE_shift_imm_partial { bits<5> imm; let Inst{25-23} = 0b101; let Inst{21} = 0b0; let Inst{20-16} = imm{4-0}; let Inst{12} = bit_12; let Inst{11-6} = 0b111101; let Inst{4} = 0b0; let Inst{0} = bit_0; let validForTailPredication = 1; let retainsPreviousHalfElement = 1; } multiclass MVE_VxQRSHRN_types { def s16 : MVE_VxQRSHRN { let Inst{28} = 0b0; let Inst{20-19} = 0b01; } def u16 : MVE_VxQRSHRN { let Inst{28} = 0b1; let Inst{20-19} = 0b01; } def s32 : MVE_VxQRSHRN { let Inst{28} = 0b0; let Inst{20} = 0b1; } def u32 : MVE_VxQRSHRN { let Inst{28} = 0b1; let Inst{20} = 0b1; } } defm MVE_VQRSHRNbh : MVE_VxQRSHRN_types<"vqrshrnb", 0b1, 0b0>; defm MVE_VQRSHRNth : MVE_VxQRSHRN_types<"vqrshrnt", 0b1, 0b1>; defm MVE_VQSHRNbh : MVE_VxQRSHRN_types<"vqshrnb", 0b0, 0b0>; defm MVE_VQSHRNth : MVE_VxQRSHRN_types<"vqshrnt", 0b0, 0b1>; multiclass MVE_VSHRN_patterns { defvar inparams = (? (OutVTI.Vec MQPR:$QdSrc), (InVTI.Vec MQPR:$Qm), (inst.immediateType:$imm), (i32 q), (i32 r), (i32 OutVTI.Unsigned), (i32 InVTI.Unsigned), (i32 top)); defvar outparams = (inst (OutVTI.Vec MQPR:$QdSrc), (InVTI.Vec MQPR:$Qm), (imm:$imm)); def : Pat<(OutVTI.Vec !setdagop(inparams, int_arm_mve_vshrn)), (OutVTI.Vec outparams)>; def : Pat<(OutVTI.Vec !con(inparams, (int_arm_mve_vshrn_predicated (InVTI.Pred VCCR:$pred)))), (OutVTI.Vec !con(outparams, (? ARMVCCThen, VCCR:$pred, zero_reg)))>; } defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; defm : MVE_VSHRN_patterns; // end of mve_imm_shift instructions // start of mve_shift instructions class MVE_shift_by_vec size, bit bit_4, bit bit_8> : MVE_p<(outs MQPR:$Qd), (ins MQPR:$Qm, MQPR:$Qn), NoItinerary, iname, suffix, "$Qd, $Qm, $Qn", vpred_r, "", size, []> { // Shift instructions which take a vector of shift counts bits<4> Qd; bits<4> Qm; bits<4> Qn; let Inst{28} = U; let Inst{25-24} = 0b11; let Inst{23} = 0b0; let Inst{22} = Qd{3}; let Inst{21-20} = size; let Inst{19-17} = Qn{2-0}; let Inst{16} = 0b0; let Inst{15-13} = Qd{2-0}; let Inst{12-9} = 0b0010; let Inst{8} = bit_8; let Inst{7} = Qn{3}; let Inst{6} = 0b1; let Inst{5} = Qm{3}; let Inst{4} = bit_4; let Inst{3-1} = Qm{2-0}; let Inst{0} = 0b0; let validForTailPredication = 1; } multiclass MVE_shift_by_vec_p { def "" : MVE_shift_by_vec; defvar Inst = !cast(NAME); def : Pat<(VTI.Vec (int_arm_mve_vshl_vector (VTI.Vec MQPR:$in), (VTI.Vec MQPR:$sh), (i32 q), (i32 r), (i32 VTI.Unsigned))), (VTI.Vec (Inst (VTI.Vec MQPR:$in), (VTI.Vec MQPR:$sh)))>; def : Pat<(VTI.Vec (int_arm_mve_vshl_vector_predicated (VTI.Vec MQPR:$in), (VTI.Vec MQPR:$sh), (i32 q), (i32 r), (i32 VTI.Unsigned), (VTI.Pred VCCR:$mask), (VTI.Vec MQPR:$inactive))), (VTI.Vec (Inst (VTI.Vec MQPR:$in), (VTI.Vec MQPR:$sh), ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg, (VTI.Vec MQPR:$inactive)))>; } multiclass mve_shift_by_vec_multi { defm s8 : MVE_shift_by_vec_p; defm s16 : MVE_shift_by_vec_p; defm s32 : MVE_shift_by_vec_p; defm u8 : MVE_shift_by_vec_p; defm u16 : MVE_shift_by_vec_p; defm u32 : MVE_shift_by_vec_p; } defm MVE_VSHL_by_vec : mve_shift_by_vec_multi<"vshl", 0b0, 0b0>; defm MVE_VQSHL_by_vec : mve_shift_by_vec_multi<"vqshl", 0b1, 0b0>; defm MVE_VQRSHL_by_vec : mve_shift_by_vec_multi<"vqrshl", 0b1, 0b1>; defm MVE_VRSHL_by_vec : mve_shift_by_vec_multi<"vrshl", 0b0, 0b1>; let Predicates = [HasMVEInt] in { def : Pat<(v4i32 (ARMvshlu (v4i32 MQPR:$Qm), (v4i32 MQPR:$Qn))), (v4i32 (MVE_VSHL_by_vecu32 (v4i32 MQPR:$Qm), (v4i32 MQPR:$Qn)))>; def : Pat<(v8i16 (ARMvshlu (v8i16 MQPR:$Qm), (v8i16 MQPR:$Qn))), (v8i16 (MVE_VSHL_by_vecu16 (v8i16 MQPR:$Qm), (v8i16 MQPR:$Qn)))>; def : Pat<(v16i8 (ARMvshlu (v16i8 MQPR:$Qm), (v16i8 MQPR:$Qn))), (v16i8 (MVE_VSHL_by_vecu8 (v16i8 MQPR:$Qm), (v16i8 MQPR:$Qn)))>; def : Pat<(v4i32 (ARMvshls (v4i32 MQPR:$Qm), (v4i32 MQPR:$Qn))), (v4i32 (MVE_VSHL_by_vecs32 (v4i32 MQPR:$Qm), (v4i32 MQPR:$Qn)))>; def : Pat<(v8i16 (ARMvshls (v8i16 MQPR:$Qm), (v8i16 MQPR:$Qn))), (v8i16 (MVE_VSHL_by_vecs16 (v8i16 MQPR:$Qm), (v8i16 MQPR:$Qn)))>; def : Pat<(v16i8 (ARMvshls (v16i8 MQPR:$Qm), (v16i8 MQPR:$Qn))), (v16i8 (MVE_VSHL_by_vecs8 (v16i8 MQPR:$Qm), (v16i8 MQPR:$Qn)))>; } class MVE_shift_with_imm vecsize, list pattern=[]> : MVE_p { bits<4> Qd; bits<4> Qm; let Inst{23} = 0b1; let Inst{22} = Qd{3}; let Inst{15-13} = Qd{2-0}; let Inst{12-11} = 0b00; let Inst{7-6} = 0b01; let Inst{5} = Qm{3}; let Inst{4} = 0b1; let Inst{3-1} = Qm{2-0}; let Inst{0} = 0b0; let validForTailPredication = 1; // For the MVE_shift_imm_patterns multiclass to refer to MVEVectorVTInfo VTI; Operand immediateType; Intrinsic unpred_int; Intrinsic pred_int; dag unsignedFlag = (?); } class MVE_VSxI_imm vecsize> : MVE_shift_with_imm { bits<6> imm; let Inst{28} = 0b1; let Inst{25-24} = 0b11; let Inst{21-16} = imm; let Inst{10-9} = 0b10; let Inst{8} = bit_8; let validForTailPredication = 1; Operand immediateType = immType; } def MVE_VSRIimm8 : MVE_VSxI_imm<"vsri", "8", 0b0, shr_imm8, 0b00> { let Inst{21-19} = 0b001; } def MVE_VSRIimm16 : MVE_VSxI_imm<"vsri", "16", 0b0, shr_imm16, 0b01> { let Inst{21-20} = 0b01; } def MVE_VSRIimm32 : MVE_VSxI_imm<"vsri", "32", 0b0, shr_imm32, 0b10> { let Inst{21} = 0b1; } def MVE_VSLIimm8 : MVE_VSxI_imm<"vsli", "8", 0b1, imm0_7, 0b00> { let Inst{21-19} = 0b001; } def MVE_VSLIimm16 : MVE_VSxI_imm<"vsli", "16", 0b1, imm0_15, 0b01> { let Inst{21-20} = 0b01; } def MVE_VSLIimm32 : MVE_VSxI_imm<"vsli", "32", 0b1,imm0_31, 0b10> { let Inst{21} = 0b1; } multiclass MVE_VSxI_patterns { defvar inparams = (? (VTI.Vec MQPR:$QdSrc), (VTI.Vec MQPR:$Qm), (inst.immediateType:$imm)); defvar outparams = (inst (VTI.Vec MQPR:$QdSrc), (VTI.Vec MQPR:$Qm), (inst.immediateType:$imm)); defvar unpred_int = !cast("int_arm_mve_" # name); defvar pred_int = !cast("int_arm_mve_" # name # "_predicated"); def : Pat<(VTI.Vec !setdagop(inparams, unpred_int)), (VTI.Vec outparams)>; def : Pat<(VTI.Vec !con(inparams, (pred_int (VTI.Pred VCCR:$pred)))), (VTI.Vec !con(outparams, (? ARMVCCThen, VCCR:$pred, zero_reg)))>; } defm : MVE_VSxI_patterns; defm : MVE_VSxI_patterns; defm : MVE_VSxI_patterns; defm : MVE_VSxI_patterns; defm : MVE_VSxI_patterns; defm : MVE_VSxI_patterns; class MVE_VQSHL_imm : MVE_shift_with_imm<"vqshl", VTI_.Suffix, (outs MQPR:$Qd), (ins MQPR:$Qm, immType:$imm), "$Qd, $Qm, $imm", vpred_r, "", VTI_.Size> { bits<6> imm; let Inst{28} = VTI_.Unsigned; let Inst{25-24} = 0b11; let Inst{21-16} = imm; let Inst{10-8} = 0b111; let VTI = VTI_; let immediateType = immType; let unsignedFlag = (? (i32 VTI.Unsigned)); } let unpred_int = int_arm_mve_vqshl_imm, pred_int = int_arm_mve_vqshl_imm_predicated in { def MVE_VQSHLimms8 : MVE_VQSHL_imm { let Inst{21-19} = 0b001; } def MVE_VQSHLimmu8 : MVE_VQSHL_imm { let Inst{21-19} = 0b001; } def MVE_VQSHLimms16 : MVE_VQSHL_imm { let Inst{21-20} = 0b01; } def MVE_VQSHLimmu16 : MVE_VQSHL_imm { let Inst{21-20} = 0b01; } def MVE_VQSHLimms32 : MVE_VQSHL_imm { let Inst{21} = 0b1; } def MVE_VQSHLimmu32 : MVE_VQSHL_imm { let Inst{21} = 0b1; } } class MVE_VQSHLU_imm : MVE_shift_with_imm<"vqshlu", VTI_.Suffix, (outs MQPR:$Qd), (ins MQPR:$Qm, immType:$imm), "$Qd, $Qm, $imm", vpred_r, "", VTI_.Size> { bits<6> imm; let Inst{28} = 0b1; let Inst{25-24} = 0b11; let Inst{21-16} = imm; let Inst{10-8} = 0b110; let VTI = VTI_; let immediateType = immType; } let unpred_int = int_arm_mve_vqshlu_imm, pred_int = int_arm_mve_vqshlu_imm_predicated in { def MVE_VQSHLU_imms8 : MVE_VQSHLU_imm { let Inst{21-19} = 0b001; } def MVE_VQSHLU_imms16 : MVE_VQSHLU_imm { let Inst{21-20} = 0b01; } def MVE_VQSHLU_imms32 : MVE_VQSHLU_imm { let Inst{21} = 0b1; } } class MVE_VRSHR_imm : MVE_shift_with_imm<"vrshr", VTI_.Suffix, (outs MQPR:$Qd), (ins MQPR:$Qm, immType:$imm), "$Qd, $Qm, $imm", vpred_r, "", VTI_.Size> { bits<6> imm; let Inst{28} = VTI_.Unsigned; let Inst{25-24} = 0b11; let Inst{21-16} = imm; let Inst{10-8} = 0b010; let VTI = VTI_; let immediateType = immType; let unsignedFlag = (? (i32 VTI.Unsigned)); } let unpred_int = int_arm_mve_vrshr_imm, pred_int = int_arm_mve_vrshr_imm_predicated in { def MVE_VRSHR_imms8 : MVE_VRSHR_imm { let Inst{21-19} = 0b001; } def MVE_VRSHR_immu8 : MVE_VRSHR_imm { let Inst{21-19} = 0b001; } def MVE_VRSHR_imms16 : MVE_VRSHR_imm { let Inst{21-20} = 0b01; } def MVE_VRSHR_immu16 : MVE_VRSHR_imm { let Inst{21-20} = 0b01; } def MVE_VRSHR_imms32 : MVE_VRSHR_imm { let Inst{21} = 0b1; } def MVE_VRSHR_immu32 : MVE_VRSHR_imm { let Inst{21} = 0b1; } } multiclass MVE_shift_imm_patterns { def : Pat<(inst.VTI.Vec !con((inst.unpred_int (inst.VTI.Vec MQPR:$src), inst.immediateType:$imm), inst.unsignedFlag)), (inst.VTI.Vec (inst (inst.VTI.Vec MQPR:$src), inst.immediateType:$imm))>; def : Pat<(inst.VTI.Vec !con((inst.pred_int (inst.VTI.Vec MQPR:$src), inst.immediateType:$imm), inst.unsignedFlag, (? (inst.VTI.Pred VCCR:$mask), (inst.VTI.Vec MQPR:$inactive)))), (inst.VTI.Vec (inst (inst.VTI.Vec MQPR:$src), inst.immediateType:$imm, ARMVCCThen, (inst.VTI.Pred VCCR:$mask), zero_reg, (inst.VTI.Vec MQPR:$inactive)))>; } defm : MVE_shift_imm_patterns; defm : MVE_shift_imm_patterns; defm : MVE_shift_imm_patterns; defm : MVE_shift_imm_patterns; defm : MVE_shift_imm_patterns; defm : MVE_shift_imm_patterns; defm : MVE_shift_imm_patterns; defm : MVE_shift_imm_patterns; defm : MVE_shift_imm_patterns; defm : MVE_shift_imm_patterns; defm : MVE_shift_imm_patterns; defm : MVE_shift_imm_patterns; defm : MVE_shift_imm_patterns; defm : MVE_shift_imm_patterns; defm : MVE_shift_imm_patterns; class MVE_VSHR_imm vecsize> : MVE_shift_with_imm<"vshr", suffix, (outs MQPR:$Qd), !con((ins MQPR:$Qm), imm), "$Qd, $Qm, $imm", vpred_r, "", vecsize> { bits<6> imm; let Inst{25-24} = 0b11; let Inst{21-16} = imm; let Inst{10-8} = 0b000; } def MVE_VSHR_imms8 : MVE_VSHR_imm<"s8", (ins shr_imm8:$imm), 0b00> { let Inst{28} = 0b0; let Inst{21-19} = 0b001; } def MVE_VSHR_immu8 : MVE_VSHR_imm<"u8", (ins shr_imm8:$imm), 0b00> { let Inst{28} = 0b1; let Inst{21-19} = 0b001; } def MVE_VSHR_imms16 : MVE_VSHR_imm<"s16", (ins shr_imm16:$imm), 0b01> { let Inst{28} = 0b0; let Inst{21-20} = 0b01; } def MVE_VSHR_immu16 : MVE_VSHR_imm<"u16", (ins shr_imm16:$imm), 0b01> { let Inst{28} = 0b1; let Inst{21-20} = 0b01; } def MVE_VSHR_imms32 : MVE_VSHR_imm<"s32", (ins shr_imm32:$imm), 0b10> { let Inst{28} = 0b0; let Inst{21} = 0b1; } def MVE_VSHR_immu32 : MVE_VSHR_imm<"u32", (ins shr_imm32:$imm), 0b10> { let Inst{28} = 0b1; let Inst{21} = 0b1; } class MVE_VSHL_imm vecsize> : MVE_shift_with_imm<"vshl", suffix, (outs MQPR:$Qd), !con((ins MQPR:$Qm), imm), "$Qd, $Qm, $imm", vpred_r, "", vecsize> { bits<6> imm; let Inst{28} = 0b0; let Inst{25-24} = 0b11; let Inst{21-16} = imm; let Inst{10-8} = 0b101; } def MVE_VSHL_immi8 : MVE_VSHL_imm<"i8", (ins imm0_7:$imm), 0b00> { let Inst{21-19} = 0b001; } def MVE_VSHL_immi16 : MVE_VSHL_imm<"i16", (ins imm0_15:$imm), 0b01> { let Inst{21-20} = 0b01; } def MVE_VSHL_immi32 : MVE_VSHL_imm<"i32", (ins imm0_31:$imm), 0b10> { let Inst{21} = 0b1; } multiclass MVE_immediate_shift_patterns_inner< MVEVectorVTInfo VTI, Operand imm_operand_type, SDNode unpred_op, Intrinsic pred_int, Instruction inst, list unsignedFlag = []> { def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$src), imm_operand_type:$imm)), (VTI.Vec (inst (VTI.Vec MQPR:$src), imm_operand_type:$imm))>; def : Pat<(VTI.Vec !con((pred_int (VTI.Vec MQPR:$src), imm_operand_type:$imm), !dag(pred_int, unsignedFlag, ?), (pred_int (VTI.Pred VCCR:$mask), (VTI.Vec MQPR:$inactive)))), (VTI.Vec (inst (VTI.Vec MQPR:$src), imm_operand_type:$imm, ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg, (VTI.Vec MQPR:$inactive)))>; } multiclass MVE_immediate_shift_patterns { defm : MVE_immediate_shift_patterns_inner("MVE_VSHL_immi" # VTI.BitsSuffix)>; defm : MVE_immediate_shift_patterns_inner("MVE_VSHR_immu" # VTI.BitsSuffix), [1]>; defm : MVE_immediate_shift_patterns_inner("MVE_VSHR_imms" # VTI.BitsSuffix), [0]>; } let Predicates = [HasMVEInt] in { defm : MVE_immediate_shift_patterns; defm : MVE_immediate_shift_patterns; defm : MVE_immediate_shift_patterns; } // end of mve_shift instructions // start of MVE Floating Point instructions class MVE_float vecsize, list pattern=[]> : MVE_f { bits<4> Qm; let Inst{12} = 0b0; let Inst{6} = 0b1; let Inst{5} = Qm{3}; let Inst{3-1} = Qm{2-0}; let Inst{0} = 0b0; } class MVE_VRINT op, string suffix, bits<2> size, list pattern=[]> : MVE_float { bits<4> Qd; let Inst{28} = 0b1; let Inst{25-23} = 0b111; let Inst{22} = Qd{3}; let Inst{21-20} = 0b11; let Inst{19-18} = size; let Inst{17-16} = 0b10; let Inst{15-13} = Qd{2-0}; let Inst{11-10} = 0b01; let Inst{9-7} = op{2-0}; let Inst{4} = 0b0; let validForTailPredication = 1; } multiclass MVE_VRINT_m opcode, SDPatternOperator unpred_op> { def "": MVE_VRINT; defvar Inst = !cast(NAME); defvar pred_int = !cast("int_arm_mve_vrint"#suffix#"_predicated"); let Predicates = [HasMVEFloat] in { def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$val))), (VTI.Vec (Inst (VTI.Vec MQPR:$val)))>; def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$val), (VTI.Pred VCCR:$pred), (VTI.Vec MQPR:$inactive))), (VTI.Vec (Inst (VTI.Vec MQPR:$val), ARMVCCThen, (VTI.Pred VCCR:$pred), zero_reg, (VTI.Vec MQPR:$inactive)))>; } } multiclass MVE_VRINT_ops { defm N : MVE_VRINT_m; defm X : MVE_VRINT_m; defm A : MVE_VRINT_m; defm Z : MVE_VRINT_m; defm M : MVE_VRINT_m; defm P : MVE_VRINT_m; } defm MVE_VRINTf16 : MVE_VRINT_ops; defm MVE_VRINTf32 : MVE_VRINT_ops; class MVEFloatArithNeon vecsize, list pattern=[]> : MVE_float { let Inst{20} = size; let Inst{16} = 0b0; } class MVE_VMUL_fp size, list pattern=[]> : MVEFloatArithNeon { bits<4> Qd; bits<4> Qn; let Inst{28} = 0b1; let Inst{25-23} = 0b110; let Inst{22} = Qd{3}; let Inst{21} = 0b0; let Inst{19-17} = Qn{2-0}; let Inst{15-13} = Qd{2-0}; let Inst{12-8} = 0b01101; let Inst{7} = Qn{3}; let Inst{4} = 0b1; let validForTailPredication = 1; } multiclass MVE_VMULT_fp_m { def "" : MVE_VMUL_fp; defvar Inst = !cast(NAME); let Predicates = [HasMVEFloat] in { defm : MVE_TwoOpPattern(NAME), IdentityVec>; } } multiclass MVE_VMUL_fp_m : MVE_VMULT_fp_m<"vmul", VTI, fmul, int_arm_mve_mul_predicated, IdentityVec>; def ARMimmOneF: PatLeaf<(bitconvert (v4f32 (ARMvmovFPImm (i32 112))))>; // 1.0 float def ARMimmOneH: PatLeaf<(bitconvert (v8i16 (ARMvmovImm (i32 2620))))>; // 1.0 half defm MVE_VMULf32 : MVE_VMUL_fp_m; defm MVE_VMULf16 : MVE_VMUL_fp_m; class MVE_VCMLA size> : MVEFloatArithNeon<"vcmla", suffix, size{1}, (outs MQPR:$Qd), (ins MQPR:$Qd_src, MQPR:$Qn, MQPR:$Qm, complexrotateop:$rot), "$Qd, $Qn, $Qm, $rot", vpred_n, "$Qd = $Qd_src", size, []> { bits<4> Qd; bits<4> Qn; bits<2> rot; let Inst{28} = 0b1; let Inst{25} = 0b0; let Inst{24-23} = rot; let Inst{22} = Qd{3}; let Inst{21} = 0b1; let Inst{19-17} = Qn{2-0}; let Inst{15-13} = Qd{2-0}; let Inst{12-8} = 0b01000; let Inst{7} = Qn{3}; let Inst{4} = 0b0; } multiclass MVE_VCMLA_m { def "" : MVE_VCMLA; defvar Inst = !cast(NAME); let Predicates = [HasMVEFloat] in { def : Pat<(VTI.Vec (int_arm_mve_vcmlaq imm:$rot, (VTI.Vec MQPR:$Qd_src), (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qd_src), (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), imm:$rot))>; def : Pat<(VTI.Vec (int_arm_mve_vcmlaq_predicated imm:$rot, (VTI.Vec MQPR:$Qd_src), (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), (VTI.Pred VCCR:$mask))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qd_src), (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), imm:$rot, ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg))>; } } defm MVE_VCMLAf16 : MVE_VCMLA_m; defm MVE_VCMLAf32 : MVE_VCMLA_m; class MVE_VADDSUBFMA_fp size, bit bit_4, bit bit_8, bit bit_21, dag iops=(ins), vpred_ops vpred=vpred_r, string cstr="", list pattern=[]> : MVEFloatArithNeon { bits<4> Qd; bits<4> Qn; let Inst{28} = 0b0; let Inst{25-23} = 0b110; let Inst{22} = Qd{3}; let Inst{21} = bit_21; let Inst{19-17} = Qn{2-0}; let Inst{15-13} = Qd{2-0}; let Inst{11-9} = 0b110; let Inst{8} = bit_8; let Inst{7} = Qn{3}; let Inst{4} = bit_4; let validForTailPredication = 1; } multiclass MVE_VFMA_fp_multi { def "" : MVE_VADDSUBFMA_fp; defvar Inst = !cast(NAME); defvar pred_int = int_arm_mve_fma_predicated; defvar m1 = (VTI.Vec MQPR:$m1); defvar m2 = (VTI.Vec MQPR:$m2); defvar add = (VTI.Vec MQPR:$add); defvar pred = (VTI.Pred VCCR:$pred); let Predicates = [HasMVEFloat] in { if fms then { def : Pat<(VTI.Vec (fma (fneg m1), m2, add)), (Inst $add, $m1, $m2)>; def : Pat<(VTI.Vec (vselect (VTI.Pred VCCR:$pred), (VTI.Vec (fma (fneg m1), m2, add)), add)), (Inst $add, $m1, $m2, ARMVCCThen, $pred, zero_reg)>; def : Pat<(VTI.Vec (pred_int (fneg m1), m2, add, pred)), (Inst $add, $m1, $m2, ARMVCCThen, $pred, zero_reg)>; def : Pat<(VTI.Vec (pred_int m1, (fneg m2), add, pred)), (Inst $add, $m1, $m2, ARMVCCThen, $pred, zero_reg)>; } else { def : Pat<(VTI.Vec (fma m1, m2, add)), (Inst $add, $m1, $m2)>; def : Pat<(VTI.Vec (vselect (VTI.Pred VCCR:$pred), (VTI.Vec (fma m1, m2, add)), add)), (Inst $add, $m1, $m2, ARMVCCThen, $pred, zero_reg)>; def : Pat<(VTI.Vec (pred_int m1, m2, add, pred)), (Inst $add, $m1, $m2, ARMVCCThen, $pred, zero_reg)>; } } } defm MVE_VFMAf32 : MVE_VFMA_fp_multi<"vfma", 0, MVE_v4f32>; defm MVE_VFMAf16 : MVE_VFMA_fp_multi<"vfma", 0, MVE_v8f16>; defm MVE_VFMSf32 : MVE_VFMA_fp_multi<"vfms", 1, MVE_v4f32>; defm MVE_VFMSf16 : MVE_VFMA_fp_multi<"vfms", 1, MVE_v8f16>; multiclass MVE_VADDSUB_fp_m { def "" : MVE_VADDSUBFMA_fp { let validForTailPredication = 1; } defvar Inst = !cast(NAME); let Predicates = [HasMVEFloat] in { defm : MVE_TwoOpPattern(NAME), IdentityVec>; } } multiclass MVE_VADD_fp_m : MVE_VADDSUB_fp_m<"vadd", 0, VTI, fadd, int_arm_mve_add_predicated, IdentityVec>; multiclass MVE_VSUB_fp_m : MVE_VADDSUB_fp_m<"vsub", 1, VTI, fsub, int_arm_mve_sub_predicated, IdentityVec>; def ARMimmMinusZeroF: PatLeaf<(bitconvert (v4i32 (ARMvmovImm (i32 1664))))>; // -0.0 float def ARMimmMinusZeroH: PatLeaf<(bitconvert (v8i16 (ARMvmovImm (i32 2688))))>; // -0.0 half defm MVE_VADDf32 : MVE_VADD_fp_m; defm MVE_VADDf16 : MVE_VADD_fp_m; defm MVE_VSUBf32 : MVE_VSUB_fp_m; defm MVE_VSUBf16 : MVE_VSUB_fp_m; class MVE_VCADD size, string cstr=""> : MVEFloatArithNeon<"vcadd", suffix, size{1}, (outs MQPR:$Qd), (ins MQPR:$Qn, MQPR:$Qm, complexrotateopodd:$rot), "$Qd, $Qn, $Qm, $rot", vpred_r, cstr, size, []> { bits<4> Qd; bits<4> Qn; bit rot; let Inst{28} = 0b1; let Inst{25} = 0b0; let Inst{24} = rot; let Inst{23} = 0b1; let Inst{22} = Qd{3}; let Inst{21} = 0b0; let Inst{19-17} = Qn{2-0}; let Inst{15-13} = Qd{2-0}; let Inst{12-8} = 0b01000; let Inst{7} = Qn{3}; let Inst{4} = 0b0; } multiclass MVE_VCADD_m { def "" : MVE_VCADD; defvar Inst = !cast(NAME); let Predicates = [HasMVEFloat] in { def : Pat<(VTI.Vec (int_arm_mve_vcaddq (i32 1), imm:$rot, (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), imm:$rot))>; def : Pat<(VTI.Vec (int_arm_mve_vcaddq_predicated (i32 1), imm:$rot, (VTI.Vec MQPR:$inactive), (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), (VTI.Pred VCCR:$mask))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), imm:$rot, ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg, (VTI.Vec MQPR:$inactive)))>; } } defm MVE_VCADDf16 : MVE_VCADD_m; defm MVE_VCADDf32 : MVE_VCADD_m; class MVE_VABD_fp size> : MVE_float<"vabd", suffix, (outs MQPR:$Qd), (ins MQPR:$Qn, MQPR:$Qm), "$Qd, $Qn, $Qm", vpred_r, "", size> { bits<4> Qd; bits<4> Qn; let Inst{28} = 0b1; let Inst{25-23} = 0b110; let Inst{22} = Qd{3}; let Inst{21} = 0b1; let Inst{20} = size{0}; let Inst{19-17} = Qn{2-0}; let Inst{16} = 0b0; let Inst{15-13} = Qd{2-0}; let Inst{11-8} = 0b1101; let Inst{7} = Qn{3}; let Inst{4} = 0b0; let validForTailPredication = 1; } multiclass MVE_VABDT_fp_m { def "" : MVE_VABD_fp; defvar Inst = !cast(NAME); let Predicates = [HasMVEFloat] in { def : Pat<(VTI.Vec (unpred_int (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), (i32 0))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), (i32 0), (VTI.Pred VCCR:$mask), (VTI.Vec MQPR:$inactive))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg, (VTI.Vec MQPR:$inactive)))>; } } multiclass MVE_VABD_fp_m : MVE_VABDT_fp_m; defm MVE_VABDf32 : MVE_VABD_fp_m; defm MVE_VABDf16 : MVE_VABD_fp_m; let Predicates = [HasMVEFloat] in { def : Pat<(v8f16 (fabs (fsub (v8f16 MQPR:$Qm), (v8f16 MQPR:$Qn)))), (MVE_VABDf16 MQPR:$Qm, MQPR:$Qn)>; def : Pat<(v4f32 (fabs (fsub (v4f32 MQPR:$Qm), (v4f32 MQPR:$Qn)))), (MVE_VABDf32 MQPR:$Qm, MQPR:$Qn)>; } class MVE_VCVT_fix : MVE_float<"vcvt", suffix, (outs MQPR:$Qd), (ins MQPR:$Qm, imm_operand_type:$imm6), "$Qd, $Qm, $imm6", vpred_r, "", !if(fsi, 0b10, 0b01), []> { bits<4> Qd; bits<6> imm6; let Inst{28} = U; let Inst{25-23} = 0b111; let Inst{22} = Qd{3}; let Inst{21} = 0b1; let Inst{19-16} = imm6{3-0}; let Inst{15-13} = Qd{2-0}; let Inst{11-10} = 0b11; let Inst{9} = fsi; let Inst{8} = op; let Inst{7} = 0b0; let Inst{4} = 0b1; let DecoderMethod = "DecodeMVEVCVTt1fp"; let validForTailPredication = 1; } class MVE_VCVT_imm_asmop : AsmOperandClass { let PredicateMethod = "isImmediate<1," # Bits # ">"; let DiagnosticString = "MVE fixed-point immediate operand must be between 1 and " # Bits; let Name = "MVEVcvtImm" # Bits; let RenderMethod = "addImmOperands"; } class MVE_VCVT_imm: Operand { let ParserMatchClass = MVE_VCVT_imm_asmop; let EncoderMethod = "getNEONVcvtImm32OpValue"; let DecoderMethod = "DecodeVCVTImmOperand"; } class MVE_VCVT_fix_f32 : MVE_VCVT_fix> { let Inst{20} = imm6{4}; } class MVE_VCVT_fix_f16 : MVE_VCVT_fix> { let Inst{20} = 0b1; } multiclass MVE_VCVT_fix_patterns { let Predicates = [HasMVEFloat] in { def : Pat<(DestVTI.Vec (int_arm_mve_vcvt_fix (i32 U), (SrcVTI.Vec MQPR:$Qm), imm:$scale)), (DestVTI.Vec (Inst (SrcVTI.Vec MQPR:$Qm), imm:$scale))>; def : Pat<(DestVTI.Vec (int_arm_mve_vcvt_fix_predicated (i32 U), (DestVTI.Vec MQPR:$inactive), (SrcVTI.Vec MQPR:$Qm), imm:$scale, (DestVTI.Pred VCCR:$mask))), (DestVTI.Vec (Inst (SrcVTI.Vec MQPR:$Qm), imm:$scale, ARMVCCThen, (DestVTI.Pred VCCR:$mask), zero_reg, (DestVTI.Vec MQPR:$inactive)))>; } } multiclass MVE_VCVT_fix_f32_m { def "" : MVE_VCVT_fix_f32; defm : MVE_VCVT_fix_patterns(NAME), U, DestVTI, SrcVTI>; } multiclass MVE_VCVT_fix_f16_m { def "" : MVE_VCVT_fix_f16; defm : MVE_VCVT_fix_patterns(NAME), U, DestVTI, SrcVTI>; } defm MVE_VCVTf16s16_fix : MVE_VCVT_fix_f16_m<0b0, 0b0, MVE_v8f16, MVE_v8s16>; defm MVE_VCVTs16f16_fix : MVE_VCVT_fix_f16_m<0b0, 0b1, MVE_v8s16, MVE_v8f16>; defm MVE_VCVTf16u16_fix : MVE_VCVT_fix_f16_m<0b1, 0b0, MVE_v8f16, MVE_v8u16>; defm MVE_VCVTu16f16_fix : MVE_VCVT_fix_f16_m<0b1, 0b1, MVE_v8u16, MVE_v8f16>; defm MVE_VCVTf32s32_fix : MVE_VCVT_fix_f32_m<0b0, 0b0, MVE_v4f32, MVE_v4s32>; defm MVE_VCVTs32f32_fix : MVE_VCVT_fix_f32_m<0b0, 0b1, MVE_v4s32, MVE_v4f32>; defm MVE_VCVTf32u32_fix : MVE_VCVT_fix_f32_m<0b1, 0b0, MVE_v4f32, MVE_v4u32>; defm MVE_VCVTu32f32_fix : MVE_VCVT_fix_f32_m<0b1, 0b1, MVE_v4u32, MVE_v4f32>; class MVE_VCVT_fp_int_anpm size, bit op, string anpm, bits<2> rm, list pattern=[]> : MVE_float { bits<4> Qd; let Inst{28} = 0b1; let Inst{25-23} = 0b111; let Inst{22} = Qd{3}; let Inst{21-20} = 0b11; let Inst{19-18} = size; let Inst{17-16} = 0b11; let Inst{15-13} = Qd{2-0}; let Inst{12-10} = 0b000; let Inst{9-8} = rm; let Inst{7} = op; let Inst{4} = 0b0; let validForTailPredication = 1; } multiclass MVE_VCVT_fp_int_anpm_inner rm> { def "": MVE_VCVT_fp_int_anpm; defvar Inst = !cast(NAME); defvar IntrBaseName = "int_arm_mve_vcvt" # anpm; defvar UnpredIntr = !cast(IntrBaseName); defvar PredIntr = !cast(IntrBaseName # "_predicated"); let Predicates = [HasMVEFloat] in { def : Pat<(Int.Vec (UnpredIntr (i32 Int.Unsigned), (Flt.Vec MQPR:$in))), (Int.Vec (Inst (Flt.Vec MQPR:$in)))>; def : Pat<(Int.Vec (PredIntr (i32 Int.Unsigned), (Int.Vec MQPR:$inactive), (Flt.Vec MQPR:$in), (Flt.Pred VCCR:$pred))), (Int.Vec (Inst (Flt.Vec MQPR:$in), ARMVCCThen, (Flt.Pred VCCR:$pred), zero_reg, (Int.Vec MQPR:$inactive)))>; } } multiclass MVE_VCVT_fp_int_anpm_outer { defm a : MVE_VCVT_fp_int_anpm_inner; defm n : MVE_VCVT_fp_int_anpm_inner; defm p : MVE_VCVT_fp_int_anpm_inner; defm m : MVE_VCVT_fp_int_anpm_inner; } // This defines instructions such as MVE_VCVTu16f16a, with an explicit // rounding-mode suffix on the mnemonic. The class below will define // the bare MVE_VCVTu16f16 (with implied rounding toward zero). defm MVE_VCVTs16f16 : MVE_VCVT_fp_int_anpm_outer; defm MVE_VCVTu16f16 : MVE_VCVT_fp_int_anpm_outer; defm MVE_VCVTs32f32 : MVE_VCVT_fp_int_anpm_outer; defm MVE_VCVTu32f32 : MVE_VCVT_fp_int_anpm_outer; class MVE_VCVT_fp_int size, bit toint, bit unsigned, list pattern=[]> : MVE_float<"vcvt", suffix, (outs MQPR:$Qd), (ins MQPR:$Qm), "$Qd, $Qm", vpred_r, "", size, pattern> { bits<4> Qd; let Inst{28} = 0b1; let Inst{25-23} = 0b111; let Inst{22} = Qd{3}; let Inst{21-20} = 0b11; let Inst{19-18} = size; let Inst{17-16} = 0b11; let Inst{15-13} = Qd{2-0}; let Inst{12-9} = 0b0011; let Inst{8} = toint; let Inst{7} = unsigned; let Inst{4} = 0b0; let validForTailPredication = 1; } multiclass MVE_VCVT_fp_int_m { defvar Unsigned = !or(!eq(Dest.SuffixLetter,"u"), !eq(Src.SuffixLetter,"u")); defvar ToInt = !eq(Src.SuffixLetter,"f"); def "" : MVE_VCVT_fp_int; defvar Inst = !cast(NAME); let Predicates = [HasMVEFloat] in { def : Pat<(Dest.Vec (unpred_op (Src.Vec MQPR:$src))), (Dest.Vec (Inst (Src.Vec MQPR:$src)))>; def : Pat<(Dest.Vec (int_arm_mve_vcvt_fp_int_predicated (Src.Vec MQPR:$src), (i32 Unsigned), (Src.Pred VCCR:$mask), (Dest.Vec MQPR:$inactive))), (Dest.Vec (Inst (Src.Vec MQPR:$src), ARMVCCThen, (Src.Pred VCCR:$mask), zero_reg, (Dest.Vec MQPR:$inactive)))>; } } // The unsuffixed VCVT for float->int implicitly rounds toward zero, // which I reflect here in the llvm instruction names defm MVE_VCVTs16f16z : MVE_VCVT_fp_int_m; defm MVE_VCVTu16f16z : MVE_VCVT_fp_int_m; defm MVE_VCVTs32f32z : MVE_VCVT_fp_int_m; defm MVE_VCVTu32f32z : MVE_VCVT_fp_int_m; // Whereas VCVT for int->float rounds to nearest defm MVE_VCVTf16s16n : MVE_VCVT_fp_int_m; defm MVE_VCVTf16u16n : MVE_VCVT_fp_int_m; defm MVE_VCVTf32s32n : MVE_VCVT_fp_int_m; defm MVE_VCVTf32u32n : MVE_VCVT_fp_int_m; let Predicates = [HasMVEFloat] in { def : Pat<(v4i32 (fp_to_sint_sat v4f32:$src, i32)), (MVE_VCVTs32f32z v4f32:$src)>; def : Pat<(v4i32 (fp_to_uint_sat v4f32:$src, i32)), (MVE_VCVTu32f32z v4f32:$src)>; def : Pat<(v8i16 (fp_to_sint_sat v8f16:$src, i16)), (MVE_VCVTs16f16z v8f16:$src)>; def : Pat<(v8i16 (fp_to_uint_sat v8f16:$src, i16)), (MVE_VCVTu16f16z v8f16:$src)>; } class MVE_VABSNEG_fp size, bit negate, list pattern=[]> : MVE_float { bits<4> Qd; let Inst{28} = 0b1; let Inst{25-23} = 0b111; let Inst{22} = Qd{3}; let Inst{21-20} = 0b11; let Inst{19-18} = size; let Inst{17-16} = 0b01; let Inst{15-13} = Qd{2-0}; let Inst{11-8} = 0b0111; let Inst{7} = negate; let Inst{4} = 0b0; let validForTailPredication = 1; } multiclass MVE_VABSNEG_fp_m { def "" : MVE_VABSNEG_fp; defvar Inst = !cast(NAME); let Predicates = [HasMVEInt] in { def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$v))), (VTI.Vec (Inst $v))>; def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$v), (VTI.Pred VCCR:$mask), (VTI.Vec MQPR:$inactive))), (VTI.Vec (Inst $v, ARMVCCThen, $mask, zero_reg, $inactive))>; } } defm MVE_VABSf16 : MVE_VABSNEG_fp_m<"vabs", fabs, int_arm_mve_abs_predicated, MVE_v8f16, 0>; defm MVE_VABSf32 : MVE_VABSNEG_fp_m<"vabs", fabs, int_arm_mve_abs_predicated, MVE_v4f32, 0>; defm MVE_VNEGf16 : MVE_VABSNEG_fp_m<"vneg", fneg, int_arm_mve_neg_predicated, MVE_v8f16, 1>; defm MVE_VNEGf32 : MVE_VABSNEG_fp_m<"vneg", fneg, int_arm_mve_neg_predicated, MVE_v4f32, 1>; class MVE_VMAXMINNMA size, bit bit_12, list pattern=[]> : MVE_f<(outs MQPR:$Qd), (ins MQPR:$Qd_src, MQPR:$Qm), NoItinerary, iname, suffix, "$Qd, $Qm", vpred_n, "$Qd = $Qd_src", size, pattern> { bits<4> Qd; bits<4> Qm; let Inst{28} = size{0}; let Inst{25-23} = 0b100; let Inst{22} = Qd{3}; let Inst{21-16} = 0b111111; let Inst{15-13} = Qd{2-0}; let Inst{12} = bit_12; let Inst{11-6} = 0b111010; let Inst{5} = Qm{3}; let Inst{4} = 0b0; let Inst{3-1} = Qm{2-0}; let Inst{0} = 0b1; let isCommutable = 1; let validForTailPredication = 1; } multiclass MVE_VMAXMINNMA_m { def "" : MVE_VMAXMINNMA; defvar Inst = !cast(NAME); let Predicates = [HasMVEInt] in { // Unpredicated v(max|min)nma def : Pat<(VTI.Vec (unpred_op (fabs (VTI.Vec MQPR:$Qd)), (fabs (VTI.Vec MQPR:$Qm)))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qd), (VTI.Vec MQPR:$Qm)))>; // Predicated v(max|min)nma def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$Qd), (VTI.Vec MQPR:$Qm), (VTI.Pred VCCR:$mask))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qd), (VTI.Vec MQPR:$Qm), ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg))>; } } multiclass MVE_VMAXNMA : MVE_VMAXMINNMA_m<"vmaxnma", VTI, fmaxnum, int_arm_mve_vmaxnma_predicated, bit_12>; defm MVE_VMAXNMAf32 : MVE_VMAXNMA; defm MVE_VMAXNMAf16 : MVE_VMAXNMA; multiclass MVE_VMINNMA : MVE_VMAXMINNMA_m<"vminnma", VTI, fminnum, int_arm_mve_vminnma_predicated, bit_12>; defm MVE_VMINNMAf32 : MVE_VMINNMA; defm MVE_VMINNMAf16 : MVE_VMINNMA; // end of MVE Floating Point instructions // start of MVE compares class MVE_VCMPqq bits_21_20, VCMPPredicateOperand predtype, bits<2> vecsize, list pattern=[]> : MVE_p<(outs VCCR:$P0), (ins MQPR:$Qn, MQPR:$Qm, predtype:$fc), NoItinerary, "vcmp", suffix, "$fc, $Qn, $Qm", vpred_n, "", vecsize, pattern> { // Base class for comparing two vector registers bits<3> fc; bits<4> Qn; bits<4> Qm; let Inst{28} = bit_28; let Inst{25-22} = 0b1000; let Inst{21-20} = bits_21_20; let Inst{19-17} = Qn{2-0}; let Inst{16-13} = 0b1000; let Inst{12} = fc{2}; let Inst{11-8} = 0b1111; let Inst{7} = fc{0}; let Inst{6} = 0b0; let Inst{5} = Qm{3}; let Inst{4} = 0b0; let Inst{3-1} = Qm{2-0}; let Inst{0} = fc{1}; let Constraints = ""; // We need a custom decoder method for these instructions because of // the output VCCR operand, which isn't encoded in the instruction // bits anywhere (there is only one choice for it) but has to be // included in the MC operands so that codegen will be able to track // its data flow between instructions, spill/reload it when // necessary, etc. There seems to be no way to get the Tablegen // decoder to emit an operand that isn't affected by any instruction // bit. let DecoderMethod = "DecodeMVEVCMP"; let validForTailPredication = 1; } class MVE_VCMPqqf : MVE_VCMPqq { let Predicates = [HasMVEFloat]; } class MVE_VCMPqqi size> : MVE_VCMPqq { let Inst{12} = 0b0; let Inst{0} = 0b0; } class MVE_VCMPqqu size> : MVE_VCMPqq { let Inst{12} = 0b0; let Inst{0} = 0b1; } class MVE_VCMPqqs size> : MVE_VCMPqq { let Inst{12} = 0b1; } def MVE_VCMPf32 : MVE_VCMPqqf<"f32", 0b0>; def MVE_VCMPf16 : MVE_VCMPqqf<"f16", 0b1>; def MVE_VCMPi8 : MVE_VCMPqqi<"i8", 0b00>; def MVE_VCMPi16 : MVE_VCMPqqi<"i16", 0b01>; def MVE_VCMPi32 : MVE_VCMPqqi<"i32", 0b10>; def MVE_VCMPu8 : MVE_VCMPqqu<"u8", 0b00>; def MVE_VCMPu16 : MVE_VCMPqqu<"u16", 0b01>; def MVE_VCMPu32 : MVE_VCMPqqu<"u32", 0b10>; def MVE_VCMPs8 : MVE_VCMPqqs<"s8", 0b00>; def MVE_VCMPs16 : MVE_VCMPqqs<"s16", 0b01>; def MVE_VCMPs32 : MVE_VCMPqqs<"s32", 0b10>; class MVE_VCMPqr bits_21_20, VCMPPredicateOperand predtype, bits<2> vecsize, list pattern=[]> : MVE_p<(outs VCCR:$P0), (ins MQPR:$Qn, GPRwithZR:$Rm, predtype:$fc), NoItinerary, "vcmp", suffix, "$fc, $Qn, $Rm", vpred_n, "", vecsize, pattern> { // Base class for comparing a vector register with a scalar bits<3> fc; bits<4> Qn; bits<4> Rm; let Inst{28} = bit_28; let Inst{25-22} = 0b1000; let Inst{21-20} = bits_21_20; let Inst{19-17} = Qn{2-0}; let Inst{16-13} = 0b1000; let Inst{12} = fc{2}; let Inst{11-8} = 0b1111; let Inst{7} = fc{0}; let Inst{6} = 0b1; let Inst{5} = fc{1}; let Inst{4} = 0b0; let Inst{3-0} = Rm{3-0}; let Constraints = ""; // Custom decoder method, for the same reason as MVE_VCMPqq let DecoderMethod = "DecodeMVEVCMP"; let validForTailPredication = 1; } class MVE_VCMPqrf : MVE_VCMPqr { let Predicates = [HasMVEFloat]; } class MVE_VCMPqri size> : MVE_VCMPqr { let Inst{12} = 0b0; let Inst{5} = 0b0; } class MVE_VCMPqru size> : MVE_VCMPqr { let Inst{12} = 0b0; let Inst{5} = 0b1; } class MVE_VCMPqrs size> : MVE_VCMPqr { let Inst{12} = 0b1; } def MVE_VCMPf32r : MVE_VCMPqrf<"f32", 0b0>; def MVE_VCMPf16r : MVE_VCMPqrf<"f16", 0b1>; def MVE_VCMPi8r : MVE_VCMPqri<"i8", 0b00>; def MVE_VCMPi16r : MVE_VCMPqri<"i16", 0b01>; def MVE_VCMPi32r : MVE_VCMPqri<"i32", 0b10>; def MVE_VCMPu8r : MVE_VCMPqru<"u8", 0b00>; def MVE_VCMPu16r : MVE_VCMPqru<"u16", 0b01>; def MVE_VCMPu32r : MVE_VCMPqru<"u32", 0b10>; def MVE_VCMPs8r : MVE_VCMPqrs<"s8", 0b00>; def MVE_VCMPs16r : MVE_VCMPqrs<"s16", 0b01>; def MVE_VCMPs32r : MVE_VCMPqrs<"s32", 0b10>; multiclass unpred_vcmp_z { def i8 : Pat<(v16i1 (ARMvcmpz (v16i8 MQPR:$v1), fc)), (v16i1 (!cast("MVE_VCMP"#suffix#"8r") (v16i8 MQPR:$v1), ZR, fc))>; def i16 : Pat<(v8i1 (ARMvcmpz (v8i16 MQPR:$v1), fc)), (v8i1 (!cast("MVE_VCMP"#suffix#"16r") (v8i16 MQPR:$v1), ZR, fc))>; def i32 : Pat<(v4i1 (ARMvcmpz (v4i32 MQPR:$v1), fc)), (v4i1 (!cast("MVE_VCMP"#suffix#"32r") (v4i32 MQPR:$v1), ZR, fc))>; def : Pat<(v16i1 (and (v16i1 VCCR:$p1), (v16i1 (ARMvcmpz (v16i8 MQPR:$v1), fc)))), (v16i1 (!cast("MVE_VCMP"#suffix#"8r") (v16i8 MQPR:$v1), ZR, fc, ARMVCCThen, VCCR:$p1, zero_reg))>; def : Pat<(v8i1 (and (v8i1 VCCR:$p1), (v8i1 (ARMvcmpz (v8i16 MQPR:$v1), fc)))), (v8i1 (!cast("MVE_VCMP"#suffix#"16r") (v8i16 MQPR:$v1), ZR, fc, ARMVCCThen, VCCR:$p1, zero_reg))>; def : Pat<(v4i1 (and (v4i1 VCCR:$p1), (v4i1 (ARMvcmpz (v4i32 MQPR:$v1), fc)))), (v4i1 (!cast("MVE_VCMP"#suffix#"32r") (v4i32 MQPR:$v1), ZR, fc, ARMVCCThen, VCCR:$p1, zero_reg))>; } multiclass unpred_vcmp_r { def i8 : Pat<(v16i1 (ARMvcmp (v16i8 MQPR:$v1), (v16i8 MQPR:$v2), fc)), (v16i1 (!cast("MVE_VCMP"#suffix#"8") (v16i8 MQPR:$v1), (v16i8 MQPR:$v2), fc))>; def i16 : Pat<(v8i1 (ARMvcmp (v8i16 MQPR:$v1), (v8i16 MQPR:$v2), fc)), (v8i1 (!cast("MVE_VCMP"#suffix#"16") (v8i16 MQPR:$v1), (v8i16 MQPR:$v2), fc))>; def i32 : Pat<(v4i1 (ARMvcmp (v4i32 MQPR:$v1), (v4i32 MQPR:$v2), fc)), (v4i1 (!cast("MVE_VCMP"#suffix#"32") (v4i32 MQPR:$v1), (v4i32 MQPR:$v2), fc))>; def i8r : Pat<(v16i1 (ARMvcmp (v16i8 MQPR:$v1), (v16i8 (ARMvdup rGPR:$v2)), fc)), (v16i1 (!cast("MVE_VCMP"#suffix#"8r") (v16i8 MQPR:$v1), (i32 rGPR:$v2), fc))>; def i16r : Pat<(v8i1 (ARMvcmp (v8i16 MQPR:$v1), (v8i16 (ARMvdup rGPR:$v2)), fc)), (v8i1 (!cast("MVE_VCMP"#suffix#"16r") (v8i16 MQPR:$v1), (i32 rGPR:$v2), fc))>; def i32r : Pat<(v4i1 (ARMvcmp (v4i32 MQPR:$v1), (v4i32 (ARMvdup rGPR:$v2)), fc)), (v4i1 (!cast("MVE_VCMP"#suffix#"32r") (v4i32 MQPR:$v1), (i32 rGPR:$v2), fc))>; def : Pat<(v16i1 (and (v16i1 VCCR:$p1), (v16i1 (ARMvcmp (v16i8 MQPR:$v1), (v16i8 MQPR:$v2), fc)))), (v16i1 (!cast("MVE_VCMP"#suffix#"8") (v16i8 MQPR:$v1), (v16i8 MQPR:$v2), fc, ARMVCCThen, VCCR:$p1, zero_reg))>; def : Pat<(v8i1 (and (v8i1 VCCR:$p1), (v8i1 (ARMvcmp (v8i16 MQPR:$v1), (v8i16 MQPR:$v2), fc)))), (v8i1 (!cast("MVE_VCMP"#suffix#"16") (v8i16 MQPR:$v1), (v8i16 MQPR:$v2), fc, ARMVCCThen, VCCR:$p1, zero_reg))>; def : Pat<(v4i1 (and (v4i1 VCCR:$p1), (v4i1 (ARMvcmp (v4i32 MQPR:$v1), (v4i32 MQPR:$v2), fc)))), (v4i1 (!cast("MVE_VCMP"#suffix#"32") (v4i32 MQPR:$v1), (v4i32 MQPR:$v2), fc, ARMVCCThen, VCCR:$p1, zero_reg))>; def : Pat<(v16i1 (and (v16i1 VCCR:$p1), (v16i1 (ARMvcmp (v16i8 MQPR:$v1), (v16i8 (ARMvdup rGPR:$v2)), fc)))), (v16i1 (!cast("MVE_VCMP"#suffix#"8r") (v16i8 MQPR:$v1), (i32 rGPR:$v2), fc, ARMVCCThen, VCCR:$p1, zero_reg))>; def : Pat<(v8i1 (and (v8i1 VCCR:$p1), (v8i1 (ARMvcmp (v8i16 MQPR:$v1), (v8i16 (ARMvdup rGPR:$v2)), fc)))), (v8i1 (!cast("MVE_VCMP"#suffix#"16r") (v8i16 MQPR:$v1), (i32 rGPR:$v2), fc, ARMVCCThen, VCCR:$p1, zero_reg))>; def : Pat<(v4i1 (and (v4i1 VCCR:$p1), (v4i1 (ARMvcmp (v4i32 MQPR:$v1), (v4i32 (ARMvdup rGPR:$v2)), fc)))), (v4i1 (!cast("MVE_VCMP"#suffix#"32r") (v4i32 MQPR:$v1), (i32 rGPR:$v2), fc, ARMVCCThen, VCCR:$p1, zero_reg))>; } multiclass unpred_vcmpf_z { def f16 : Pat<(v8i1 (ARMvcmpz (v8f16 MQPR:$v1), fc)), (v8i1 (MVE_VCMPf16r (v8f16 MQPR:$v1), ZR, fc))>; def f32 : Pat<(v4i1 (ARMvcmpz (v4f32 MQPR:$v1), fc)), (v4i1 (MVE_VCMPf32r (v4f32 MQPR:$v1), ZR, fc))>; def : Pat<(v8i1 (and (v8i1 VCCR:$p1), (v8i1 (ARMvcmpz (v8f16 MQPR:$v1), fc)))), (v8i1 (MVE_VCMPf16r (v8f16 MQPR:$v1), ZR, fc, ARMVCCThen, VCCR:$p1, zero_reg))>; def : Pat<(v4i1 (and (v4i1 VCCR:$p1), (v4i1 (ARMvcmpz (v4f32 MQPR:$v1), fc)))), (v4i1 (MVE_VCMPf32r (v4f32 MQPR:$v1), ZR, fc, ARMVCCThen, VCCR:$p1, zero_reg))>; } multiclass unpred_vcmpf_r { def : Pat<(v8i1 (ARMvcmp (v8f16 MQPR:$v1), (v8f16 MQPR:$v2), fc)), (v8i1 (MVE_VCMPf16 (v8f16 MQPR:$v1), (v8f16 MQPR:$v2), fc))>; def : Pat<(v4i1 (ARMvcmp (v4f32 MQPR:$v1), (v4f32 MQPR:$v2), fc)), (v4i1 (MVE_VCMPf32 (v4f32 MQPR:$v1), (v4f32 MQPR:$v2), fc))>; def : Pat<(v8i1 (ARMvcmp (v8f16 MQPR:$v1), (v8f16 (ARMvdup rGPR:$v2)), fc)), (v8i1 (MVE_VCMPf16r (v8f16 MQPR:$v1), (i32 rGPR:$v2), fc))>; def : Pat<(v4i1 (ARMvcmp (v4f32 MQPR:$v1), (v4f32 (ARMvdup rGPR:$v2)), fc)), (v4i1 (MVE_VCMPf32r (v4f32 MQPR:$v1), (i32 rGPR:$v2), fc))>; def : Pat<(v8i1 (and (v8i1 VCCR:$p1), (v8i1 (ARMvcmp (v8f16 MQPR:$v1), (v8f16 MQPR:$v2), fc)))), (v8i1 (MVE_VCMPf16 (v8f16 MQPR:$v1), (v8f16 MQPR:$v2), fc, ARMVCCThen, VCCR:$p1, zero_reg))>; def : Pat<(v4i1 (and (v4i1 VCCR:$p1), (v4i1 (ARMvcmp (v4f32 MQPR:$v1), (v4f32 MQPR:$v2), fc)))), (v4i1 (MVE_VCMPf32 (v4f32 MQPR:$v1), (v4f32 MQPR:$v2), fc, ARMVCCThen, VCCR:$p1, zero_reg))>; def : Pat<(v8i1 (and (v8i1 VCCR:$p1), (v8i1 (ARMvcmp (v8f16 MQPR:$v1), (v8f16 (ARMvdup rGPR:$v2)), fc)))), (v8i1 (MVE_VCMPf16r (v8f16 MQPR:$v1), (i32 rGPR:$v2), fc, ARMVCCThen, VCCR:$p1, zero_reg))>; def : Pat<(v4i1 (and (v4i1 VCCR:$p1), (v4i1 (ARMvcmp (v4f32 MQPR:$v1), (v4f32 (ARMvdup rGPR:$v2)), fc)))), (v4i1 (MVE_VCMPf32r (v4f32 MQPR:$v1), (i32 rGPR:$v2), fc, ARMVCCThen, VCCR:$p1, zero_reg))>; } let Predicates = [HasMVEInt] in { defm MVE_VCEQZ : unpred_vcmp_z<"i", ARMCCeq>; defm MVE_VCNEZ : unpred_vcmp_z<"i", ARMCCne>; defm MVE_VCGEZ : unpred_vcmp_z<"s", ARMCCge>; defm MVE_VCLTZ : unpred_vcmp_z<"s", ARMCClt>; defm MVE_VCGTZ : unpred_vcmp_z<"s", ARMCCgt>; defm MVE_VCLEZ : unpred_vcmp_z<"s", ARMCCle>; defm MVE_VCGTUZ : unpred_vcmp_z<"u", ARMCChi>; defm MVE_VCGEUZ : unpred_vcmp_z<"u", ARMCChs>; defm MVE_VCEQ : unpred_vcmp_r<"i", ARMCCeq>; defm MVE_VCNE : unpred_vcmp_r<"i", ARMCCne>; defm MVE_VCGE : unpred_vcmp_r<"s", ARMCCge>; defm MVE_VCLT : unpred_vcmp_r<"s", ARMCClt>; defm MVE_VCGT : unpred_vcmp_r<"s", ARMCCgt>; defm MVE_VCLE : unpred_vcmp_r<"s", ARMCCle>; defm MVE_VCGTU : unpred_vcmp_r<"u", ARMCChi>; defm MVE_VCGEU : unpred_vcmp_r<"u", ARMCChs>; } let Predicates = [HasMVEFloat] in { defm MVE_VFCEQZ : unpred_vcmpf_z; defm MVE_VFCNEZ : unpred_vcmpf_z; defm MVE_VFCGEZ : unpred_vcmpf_z; defm MVE_VFCLTZ : unpred_vcmpf_z; defm MVE_VFCGTZ : unpred_vcmpf_z; defm MVE_VFCLEZ : unpred_vcmpf_z; defm MVE_VFCEQ : unpred_vcmpf_r; defm MVE_VFCNE : unpred_vcmpf_r; defm MVE_VFCGE : unpred_vcmpf_r; defm MVE_VFCLT : unpred_vcmpf_r; defm MVE_VFCGT : unpred_vcmpf_r; defm MVE_VFCLE : unpred_vcmpf_r; } // Extra "worst case" and/or/xor patterns, going into and out of GRP multiclass two_predops { def v16i1 : Pat<(v16i1 (opnode (v16i1 VCCR:$p1), (v16i1 VCCR:$p2))), (v16i1 (COPY_TO_REGCLASS (insn (i32 (COPY_TO_REGCLASS (v16i1 VCCR:$p1), rGPR)), (i32 (COPY_TO_REGCLASS (v16i1 VCCR:$p2), rGPR))), VCCR))>; def v8i1 : Pat<(v8i1 (opnode (v8i1 VCCR:$p1), (v8i1 VCCR:$p2))), (v8i1 (COPY_TO_REGCLASS (insn (i32 (COPY_TO_REGCLASS (v8i1 VCCR:$p1), rGPR)), (i32 (COPY_TO_REGCLASS (v8i1 VCCR:$p2), rGPR))), VCCR))>; def v4i1 : Pat<(v4i1 (opnode (v4i1 VCCR:$p1), (v4i1 VCCR:$p2))), (v4i1 (COPY_TO_REGCLASS (insn (i32 (COPY_TO_REGCLASS (v4i1 VCCR:$p1), rGPR)), (i32 (COPY_TO_REGCLASS (v4i1 VCCR:$p2), rGPR))), VCCR))>; def v2i1 : Pat<(v2i1 (opnode (v2i1 VCCR:$p1), (v2i1 VCCR:$p2))), (v2i1 (COPY_TO_REGCLASS (insn (i32 (COPY_TO_REGCLASS (v2i1 VCCR:$p1), rGPR)), (i32 (COPY_TO_REGCLASS (v2i1 VCCR:$p2), rGPR))), VCCR))>; } let Predicates = [HasMVEInt] in { defm POR : two_predops; defm PAND : two_predops; defm PEOR : two_predops; } // Occasionally we need to cast between a i32 and a boolean vector, for // example when moving between rGPR and VPR.P0 as part of predicate vector // shuffles. We also sometimes need to cast between different predicate // vector types (v4i1<>v8i1, etc.) also as part of lowering vector shuffles. def predicate_cast : SDNode<"ARMISD::PREDICATE_CAST", SDTUnaryOp>; def load_align4 : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() >= 4; }]>; let Predicates = [HasMVEInt] in { foreach VT = [ v2i1, v4i1, v8i1, v16i1 ] in { def : Pat<(i32 (predicate_cast (VT VCCR:$src))), (i32 (COPY_TO_REGCLASS (VT VCCR:$src), VCCR))>; def : Pat<(VT (predicate_cast (i32 VCCR:$src))), (VT (COPY_TO_REGCLASS (i32 VCCR:$src), VCCR))>; foreach VT2 = [ v2i1, v4i1, v8i1, v16i1 ] in def : Pat<(VT (predicate_cast (VT2 VCCR:$src))), (VT (COPY_TO_REGCLASS (VT2 VCCR:$src), VCCR))>; } // If we happen to be casting from a load we can convert that straight // into a predicate load, so long as the load is of the correct type. foreach VT = [ v2i1, v4i1, v8i1, v16i1 ] in { def : Pat<(VT (predicate_cast (i32 (load_align4 taddrmode_imm7<2>:$addr)))), (VT (VLDR_P0_off taddrmode_imm7<2>:$addr))>; } // Here we match the specific SDNode type 'ARMVectorRegCastImpl' // rather than the more general 'ARMVectorRegCast' which would also // match some bitconverts. If we use the latter in cases where the // input and output types are the same, the bitconvert gets elided // and we end up generating a nonsense match of nothing. foreach VT = [ v16i8, v8i16, v8f16, v4i32, v4f32, v2i64, v2f64 ] in foreach VT2 = [ v16i8, v8i16, v8f16, v4i32, v4f32, v2i64, v2f64 ] in def : Pat<(VT (ARMVectorRegCastImpl (VT2 MQPR:$src))), (VT MQPR:$src)>; } // end of MVE compares // start of MVE_qDest_qSrc class MVE_qDest_qSrc vecsize, list pattern=[]> : MVE_p { bits<4> Qd; bits<4> Qm; let Inst{25-23} = 0b100; let Inst{22} = Qd{3}; let Inst{15-13} = Qd{2-0}; let Inst{11-9} = 0b111; let Inst{6} = 0b0; let Inst{5} = Qm{3}; let Inst{4} = 0b0; let Inst{3-1} = Qm{2-0}; } class MVE_VQxDMLxDH size, string cstr="", list pattern=[]> : MVE_qDest_qSrc { bits<4> Qn; let Inst{28} = subtract; let Inst{21-20} = size; let Inst{19-17} = Qn{2-0}; let Inst{16} = 0b0; let Inst{12} = exch; let Inst{8} = 0b0; let Inst{7} = Qn{3}; let Inst{0} = round; } multiclass MVE_VQxDMLxDH_p { def "": MVE_VQxDMLxDH; defvar Inst = !cast(NAME); defvar ConstParams = (? (i32 exch), (i32 round), (i32 subtract)); defvar unpred_intr = int_arm_mve_vqdmlad; defvar pred_intr = int_arm_mve_vqdmlad_predicated; def : Pat<(VTI.Vec !con((unpred_intr (VTI.Vec MQPR:$a), (VTI.Vec MQPR:$b), (VTI.Vec MQPR:$c)), ConstParams)), (VTI.Vec (Inst (VTI.Vec MQPR:$a), (VTI.Vec MQPR:$b), (VTI.Vec MQPR:$c)))>; def : Pat<(VTI.Vec !con((pred_intr (VTI.Vec MQPR:$a), (VTI.Vec MQPR:$b), (VTI.Vec MQPR:$c)), ConstParams, (? (VTI.Pred VCCR:$pred)))), (VTI.Vec (Inst (VTI.Vec MQPR:$a), (VTI.Vec MQPR:$b), (VTI.Vec MQPR:$c), ARMVCCThen, (VTI.Pred VCCR:$pred), zero_reg))>; } multiclass MVE_VQxDMLxDH_multi { defm s8 : MVE_VQxDMLxDH_p; defm s16 : MVE_VQxDMLxDH_p; defm s32 : MVE_VQxDMLxDH_p; } defm MVE_VQDMLADH : MVE_VQxDMLxDH_multi<"vqdmladh", 0b0, 0b0, 0b0>; defm MVE_VQDMLADHX : MVE_VQxDMLxDH_multi<"vqdmladhx", 0b1, 0b0, 0b0>; defm MVE_VQRDMLADH : MVE_VQxDMLxDH_multi<"vqrdmladh", 0b0, 0b1, 0b0>; defm MVE_VQRDMLADHX : MVE_VQxDMLxDH_multi<"vqrdmladhx", 0b1, 0b1, 0b0>; defm MVE_VQDMLSDH : MVE_VQxDMLxDH_multi<"vqdmlsdh", 0b0, 0b0, 0b1>; defm MVE_VQDMLSDHX : MVE_VQxDMLxDH_multi<"vqdmlsdhx", 0b1, 0b0, 0b1>; defm MVE_VQRDMLSDH : MVE_VQxDMLxDH_multi<"vqrdmlsdh", 0b0, 0b1, 0b1>; defm MVE_VQRDMLSDHX : MVE_VQxDMLxDH_multi<"vqrdmlsdhx", 0b1, 0b1, 0b1>; class MVE_VCMUL size, string cstr=""> : MVE_qDest_qSrc { bits<4> Qn; bits<2> rot; let Inst{28} = size{1}; let Inst{21-20} = 0b11; let Inst{19-17} = Qn{2-0}; let Inst{16} = 0b0; let Inst{12} = rot{1}; let Inst{8} = 0b0; let Inst{7} = Qn{3}; let Inst{0} = rot{0}; let Predicates = [HasMVEFloat]; } multiclass MVE_VCMUL_m { def "" : MVE_VCMUL; defvar Inst = !cast(NAME); let Predicates = [HasMVEFloat] in { def : Pat<(VTI.Vec (int_arm_mve_vcmulq imm:$rot, (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), imm:$rot))>; def : Pat<(VTI.Vec (int_arm_mve_vcmulq_predicated imm:$rot, (VTI.Vec MQPR:$inactive), (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), (VTI.Pred VCCR:$mask))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), imm:$rot, ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg, (VTI.Vec MQPR:$inactive)))>; } } defm MVE_VCMULf16 : MVE_VCMUL_m<"vcmul", MVE_v8f16>; defm MVE_VCMULf32 : MVE_VCMUL_m<"vcmul", MVE_v4f32, "@earlyclobber $Qd">; class MVE_VMULL bits_21_20, bit T, string cstr, bits<2> vecsize, list pattern=[]> : MVE_qDest_qSrc { bits<4> Qd; bits<4> Qn; bits<4> Qm; let Inst{28} = bit_28; let Inst{21-20} = bits_21_20; let Inst{19-17} = Qn{2-0}; let Inst{16} = 0b1; let Inst{12} = T; let Inst{8} = 0b0; let Inst{7} = Qn{3}; let Inst{0} = 0b0; let validForTailPredication = 1; let doubleWidthResult = 1; } multiclass MVE_VMULL_m vecsize, string cstr=""> { def "" : MVE_VMULL<"vmull" # !if(Top, "t", "b"), VTI.Suffix, VTI.Unsigned, VTI.Size, Top, cstr, vecsize>; defvar Inst = !cast(NAME); let Predicates = [HasMVEInt] in { defvar uflag = !if(!eq(VTI.SuffixLetter, "p"), (?), (? (i32 VTI.Unsigned))); // Unpredicated multiply def : Pat<(VTI.DblVec !con((unpred_op (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)), uflag, (? (i32 Top)))), (VTI.DblVec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; // Predicated multiply def : Pat<(VTI.DblVec !con((pred_int (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)), uflag, (? (i32 Top), (VTI.DblPred VCCR:$mask), (VTI.DblVec MQPR:$inactive)))), (VTI.DblVec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), ARMVCCThen, (VTI.DblPred VCCR:$mask), zero_reg, (VTI.DblVec MQPR:$inactive)))>; } } // For polynomial multiplies, the size bits take the unused value 0b11, and // the unsigned bit switches to encoding the size. defm MVE_VMULLBs8 : MVE_VMULL_m; defm MVE_VMULLTs8 : MVE_VMULL_m; defm MVE_VMULLBs16 : MVE_VMULL_m; defm MVE_VMULLTs16 : MVE_VMULL_m; defm MVE_VMULLBs32 : MVE_VMULL_m; defm MVE_VMULLTs32 : MVE_VMULL_m; defm MVE_VMULLBu8 : MVE_VMULL_m; defm MVE_VMULLTu8 : MVE_VMULL_m; defm MVE_VMULLBu16 : MVE_VMULL_m; defm MVE_VMULLTu16 : MVE_VMULL_m; defm MVE_VMULLBu32 : MVE_VMULL_m; defm MVE_VMULLTu32 : MVE_VMULL_m; defm MVE_VMULLBp8 : MVE_VMULL_m; defm MVE_VMULLTp8 : MVE_VMULL_m; defm MVE_VMULLBp16 : MVE_VMULL_m; defm MVE_VMULLTp16 : MVE_VMULL_m; let Predicates = [HasMVEInt] in { def : Pat<(v2i64 (ARMvmulls (v4i32 MQPR:$src1), (v4i32 MQPR:$src2))), (MVE_VMULLBs32 MQPR:$src1, MQPR:$src2)>; def : Pat<(v2i64 (ARMvmulls (v4i32 (ARMvrev64 (v4i32 MQPR:$src1))), (v4i32 (ARMvrev64 (v4i32 MQPR:$src2))))), (MVE_VMULLTs32 MQPR:$src1, MQPR:$src2)>; def : Pat<(mul (sext_inreg (v4i32 MQPR:$src1), v4i16), (sext_inreg (v4i32 MQPR:$src2), v4i16)), (MVE_VMULLBs16 MQPR:$src1, MQPR:$src2)>; def : Pat<(mul (sext_inreg (v4i32 (ARMVectorRegCast (ARMvrev32 (v8i16 MQPR:$src1)))), v4i16), (sext_inreg (v4i32 (ARMVectorRegCast (ARMvrev32 (v8i16 MQPR:$src2)))), v4i16)), (MVE_VMULLTs16 MQPR:$src1, MQPR:$src2)>; def : Pat<(mul (sext_inreg (v8i16 MQPR:$src1), v8i8), (sext_inreg (v8i16 MQPR:$src2), v8i8)), (MVE_VMULLBs8 MQPR:$src1, MQPR:$src2)>; def : Pat<(mul (sext_inreg (v8i16 (ARMVectorRegCast (ARMvrev16 (v16i8 MQPR:$src1)))), v8i8), (sext_inreg (v8i16 (ARMVectorRegCast (ARMvrev16 (v16i8 MQPR:$src2)))), v8i8)), (MVE_VMULLTs8 MQPR:$src1, MQPR:$src2)>; def : Pat<(v2i64 (ARMvmullu (v4i32 MQPR:$src1), (v4i32 MQPR:$src2))), (MVE_VMULLBu32 MQPR:$src1, MQPR:$src2)>; def : Pat<(v2i64 (ARMvmullu (v4i32 (ARMvrev64 (v4i32 MQPR:$src1))), (v4i32 (ARMvrev64 (v4i32 MQPR:$src2))))), (MVE_VMULLTu32 MQPR:$src1, MQPR:$src2)>; def : Pat<(mul (and (v4i32 MQPR:$src1), (v4i32 (ARMvmovImm (i32 0xCFF)))), (and (v4i32 MQPR:$src2), (v4i32 (ARMvmovImm (i32 0xCFF))))), (MVE_VMULLBu16 MQPR:$src1, MQPR:$src2)>; def : Pat<(mul (and (v4i32 (ARMVectorRegCast (ARMvrev32 (v8i16 MQPR:$src1)))), (v4i32 (ARMvmovImm (i32 0xCFF)))), (and (v4i32 (ARMVectorRegCast (ARMvrev32 (v8i16 MQPR:$src2)))), (v4i32 (ARMvmovImm (i32 0xCFF))))), (MVE_VMULLTu16 MQPR:$src1, MQPR:$src2)>; def : Pat<(mul (ARMvbicImm (v8i16 MQPR:$src1), (i32 0xAFF)), (ARMvbicImm (v8i16 MQPR:$src2), (i32 0xAFF))), (MVE_VMULLBu8 MQPR:$src1, MQPR:$src2)>; def : Pat<(mul (ARMvbicImm (v8i16 (ARMVectorRegCast (ARMvrev16 (v16i8 MQPR:$src1)))), (i32 0xAFF)), (ARMvbicImm (v8i16 (ARMVectorRegCast (ARMvrev16 (v16i8 MQPR:$src2)))), (i32 0xAFF))), (MVE_VMULLTu8 MQPR:$src1, MQPR:$src2)>; } class MVE_VxMULH size, bit round, list pattern=[]> : MVE_qDest_qSrc { bits<4> Qn; let Inst{28} = U; let Inst{21-20} = size; let Inst{19-17} = Qn{2-0}; let Inst{16} = 0b1; let Inst{12} = round; let Inst{8} = 0b0; let Inst{7} = Qn{3}; let Inst{0} = 0b1; let validForTailPredication = 1; } multiclass MVE_VxMULH_m { def "" : MVE_VxMULH; defvar Inst = !cast(NAME); let Predicates = [HasMVEInt] in { if !eq(round, 0b0) then { defvar mulh = !if(VTI.Unsigned, mulhu, mulhs); defm : MVE_TwoOpPattern(NAME)>; } else { // Predicated multiply returning high bits def : Pat<(VTI.Vec (PredInt (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), (i32 VTI.Unsigned), (VTI.Pred VCCR:$mask), (VTI.Vec MQPR:$inactive))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg, (VTI.Vec MQPR:$inactive)))>; } // Unpredicated intrinsic def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), (i32 VTI.Unsigned))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; } } multiclass MVE_VMULT : MVE_VxMULH_m; defm MVE_VMULHs8 : MVE_VMULT<"vmulh", MVE_v16s8, 0b0>; defm MVE_VMULHs16 : MVE_VMULT<"vmulh", MVE_v8s16, 0b0>; defm MVE_VMULHs32 : MVE_VMULT<"vmulh", MVE_v4s32, 0b0>; defm MVE_VMULHu8 : MVE_VMULT<"vmulh", MVE_v16u8, 0b0>; defm MVE_VMULHu16 : MVE_VMULT<"vmulh", MVE_v8u16, 0b0>; defm MVE_VMULHu32 : MVE_VMULT<"vmulh", MVE_v4u32, 0b0>; defm MVE_VRMULHs8 : MVE_VMULT<"vrmulh", MVE_v16s8, 0b1>; defm MVE_VRMULHs16 : MVE_VMULT<"vrmulh", MVE_v8s16, 0b1>; defm MVE_VRMULHs32 : MVE_VMULT<"vrmulh", MVE_v4s32, 0b1>; defm MVE_VRMULHu8 : MVE_VMULT<"vrmulh", MVE_v16u8, 0b1>; defm MVE_VRMULHu16 : MVE_VMULT<"vrmulh", MVE_v8u16, 0b1>; defm MVE_VRMULHu32 : MVE_VMULT<"vrmulh", MVE_v4u32, 0b1>; class MVE_VxMOVxN size, bit T, list pattern=[]> : MVE_qDest_qSrc { let Inst{28} = bit_28; let Inst{21-20} = 0b11; let Inst{19-18} = size; let Inst{17} = bit_17; let Inst{16} = 0b1; let Inst{12} = T; let Inst{8} = 0b0; let Inst{7} = !not(bit_17); let Inst{0} = 0b1; let validForTailPredication = 1; let retainsPreviousHalfElement = 1; } multiclass MVE_VxMOVxN_halves size> { def bh : MVE_VxMOVxN; def th : MVE_VxMOVxN; } defm MVE_VMOVNi16 : MVE_VxMOVxN_halves<"vmovn", "i16", 0b1, 0b0, 0b00>; defm MVE_VMOVNi32 : MVE_VxMOVxN_halves<"vmovn", "i32", 0b1, 0b0, 0b01>; defm MVE_VQMOVNs16 : MVE_VxMOVxN_halves<"vqmovn", "s16", 0b0, 0b1, 0b00>; defm MVE_VQMOVNs32 : MVE_VxMOVxN_halves<"vqmovn", "s32", 0b0, 0b1, 0b01>; defm MVE_VQMOVNu16 : MVE_VxMOVxN_halves<"vqmovn", "u16", 0b1, 0b1, 0b00>; defm MVE_VQMOVNu32 : MVE_VxMOVxN_halves<"vqmovn", "u32", 0b1, 0b1, 0b01>; defm MVE_VQMOVUNs16 : MVE_VxMOVxN_halves<"vqmovun", "s16", 0b0, 0b0, 0b00>; defm MVE_VQMOVUNs32 : MVE_VxMOVxN_halves<"vqmovun", "s32", 0b0, 0b0, 0b01>; def MVEvmovn : SDNode<"ARMISD::VMOVN", SDTARMVEXT>; multiclass MVE_VMOVN_p { // Match the most obvious MVEvmovn(a,b,t), which overwrites the odd or even // lanes of a (depending on t) with the even lanes of b. def : Pat<(VTI.Vec (MVEvmovn (VTI.Vec MQPR:$Qd_src), (VTI.Vec MQPR:$Qm), (i32 top))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qd_src), (VTI.Vec MQPR:$Qm)))>; if !not(top) then { // If we see MVEvmovn(a,ARMvrev(b),1), that wants to overwrite the odd // lanes of a with the odd lanes of b. In other words, the lanes we're // _keeping_ from a are the even ones. So we can flip it round and say that // this is the same as overwriting the even lanes of b with the even lanes // of a, i.e. it's a VMOVNB with the operands reversed. defvar vrev = !cast("ARMvrev" # InVTI.LaneBits); def : Pat<(VTI.Vec (MVEvmovn (VTI.Vec MQPR:$Qm), (VTI.Vec (vrev MQPR:$Qd_src)), (i32 1))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qd_src), (VTI.Vec MQPR:$Qm)))>; } // Match the IR intrinsic for a predicated VMOVN. This regards the Qm input // as having wider lanes that we're narrowing, instead of already-narrow // lanes that we're taking every other one of. def : Pat<(VTI.Vec (int_arm_mve_vmovn_predicated (VTI.Vec MQPR:$Qd_src), (InVTI.Vec MQPR:$Qm), (i32 top), (InVTI.Pred VCCR:$pred))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qd_src), (InVTI.Vec MQPR:$Qm), ARMVCCThen, (InVTI.Pred VCCR:$pred), zero_reg))>; } defm : MVE_VMOVN_p; defm : MVE_VMOVN_p; defm : MVE_VMOVN_p; defm : MVE_VMOVN_p; multiclass MVE_VQMOVN_p { def : Pat<(VTI.Vec (int_arm_mve_vqmovn (VTI.Vec MQPR:$Qd_src), (InVTI.Vec MQPR:$Qm), (i32 outU), (i32 inU), (i32 top))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qd_src), (InVTI.Vec MQPR:$Qm)))>; def : Pat<(VTI.Vec (int_arm_mve_vqmovn_predicated (VTI.Vec MQPR:$Qd_src), (InVTI.Vec MQPR:$Qm), (i32 outU), (i32 inU), (i32 top), (InVTI.Pred VCCR:$pred))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qd_src), (InVTI.Vec MQPR:$Qm), ARMVCCThen, (InVTI.Pred VCCR:$pred), zero_reg))>; } defm : MVE_VQMOVN_p; defm : MVE_VQMOVN_p; defm : MVE_VQMOVN_p; defm : MVE_VQMOVN_p; defm : MVE_VQMOVN_p; defm : MVE_VQMOVN_p; defm : MVE_VQMOVN_p; defm : MVE_VQMOVN_p; defm : MVE_VQMOVN_p; defm : MVE_VQMOVN_p; defm : MVE_VQMOVN_p; defm : MVE_VQMOVN_p; def SDTARMVMOVNQ : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisVec<2>, SDTCisVT<3, i32>]>; def MVEvqmovns : SDNode<"ARMISD::VQMOVNs", SDTARMVMOVNQ>; def MVEvqmovnu : SDNode<"ARMISD::VQMOVNu", SDTARMVMOVNQ>; let Predicates = [HasMVEInt] in { def : Pat<(v8i16 (MVEvqmovns (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm), (i32 0))), (v8i16 (MVE_VQMOVNs32bh (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm)))>; def : Pat<(v8i16 (MVEvqmovns (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm), (i32 1))), (v8i16 (MVE_VQMOVNs32th (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm)))>; def : Pat<(v16i8 (MVEvqmovns (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm), (i32 0))), (v16i8 (MVE_VQMOVNs16bh (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm)))>; def : Pat<(v16i8 (MVEvqmovns (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm), (i32 1))), (v16i8 (MVE_VQMOVNs16th (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm)))>; def : Pat<(v8i16 (MVEvqmovnu (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm), (i32 0))), (v8i16 (MVE_VQMOVNu32bh (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm)))>; def : Pat<(v8i16 (MVEvqmovnu (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm), (i32 1))), (v8i16 (MVE_VQMOVNu32th (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm)))>; def : Pat<(v16i8 (MVEvqmovnu (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm), (i32 0))), (v16i8 (MVE_VQMOVNu16bh (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm)))>; def : Pat<(v16i8 (MVEvqmovnu (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm), (i32 1))), (v16i8 (MVE_VQMOVNu16th (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm)))>; def : Pat<(v8i16 (MVEvqmovns (v8i16 MQPR:$Qd_src), (v4i32 (ARMvshrsImm (v4i32 MQPR:$Qm), imm0_31:$imm)), (i32 0))), (v8i16 (MVE_VQSHRNbhs32 (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm), imm0_31:$imm))>; def : Pat<(v16i8 (MVEvqmovns (v16i8 MQPR:$Qd_src), (v8i16 (ARMvshrsImm (v8i16 MQPR:$Qm), imm0_15:$imm)), (i32 0))), (v16i8 (MVE_VQSHRNbhs16 (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm), imm0_15:$imm))>; def : Pat<(v8i16 (MVEvqmovns (v8i16 MQPR:$Qd_src), (v4i32 (ARMvshrsImm (v4i32 MQPR:$Qm), imm0_31:$imm)), (i32 1))), (v8i16 (MVE_VQSHRNths32 (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm), imm0_31:$imm))>; def : Pat<(v16i8 (MVEvqmovns (v16i8 MQPR:$Qd_src), (v8i16 (ARMvshrsImm (v8i16 MQPR:$Qm), imm0_15:$imm)), (i32 1))), (v16i8 (MVE_VQSHRNths16 (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm), imm0_15:$imm))>; def : Pat<(v8i16 (MVEvqmovnu (v8i16 MQPR:$Qd_src), (v4i32 (ARMvshruImm (v4i32 MQPR:$Qm), imm0_31:$imm)), (i32 0))), (v8i16 (MVE_VQSHRNbhu32 (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm), imm0_31:$imm))>; def : Pat<(v16i8 (MVEvqmovnu (v16i8 MQPR:$Qd_src), (v8i16 (ARMvshruImm (v8i16 MQPR:$Qm), imm0_15:$imm)), (i32 0))), (v16i8 (MVE_VQSHRNbhu16 (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm), imm0_15:$imm))>; def : Pat<(v8i16 (MVEvqmovnu (v8i16 MQPR:$Qd_src), (v4i32 (ARMvshruImm (v4i32 MQPR:$Qm), imm0_31:$imm)), (i32 1))), (v8i16 (MVE_VQSHRNthu32 (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm), imm0_31:$imm))>; def : Pat<(v16i8 (MVEvqmovnu (v16i8 MQPR:$Qd_src), (v8i16 (ARMvshruImm (v8i16 MQPR:$Qm), imm0_15:$imm)), (i32 1))), (v16i8 (MVE_VQSHRNthu16 (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm), imm0_15:$imm))>; } class MVE_VCVT_ff : MVE_qDest_qSrc { let Inst{28} = op; let Inst{21-16} = 0b111111; let Inst{12} = T; let Inst{8-7} = 0b00; let Inst{0} = 0b1; let Predicates = [HasMVEFloat]; let retainsPreviousHalfElement = 1; } def SDTARMVCVTL : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisVT<2, i32>]>; def MVEvcvtn : SDNode<"ARMISD::VCVTN", SDTARMVMOVNQ>; def MVEvcvtl : SDNode<"ARMISD::VCVTL", SDTARMVCVTL>; multiclass MVE_VCVT_f2h_m { def "": MVE_VCVT_ff; defvar Inst = !cast(NAME); let Predicates = [HasMVEFloat] in { def : Pat<(v8f16 (int_arm_mve_vcvt_narrow (v8f16 MQPR:$Qd_src), (v4f32 MQPR:$Qm), (i32 half))), (v8f16 (Inst (v8f16 MQPR:$Qd_src), (v4f32 MQPR:$Qm)))>; def : Pat<(v8f16 (int_arm_mve_vcvt_narrow_predicated (v8f16 MQPR:$Qd_src), (v4f32 MQPR:$Qm), (i32 half), (v4i1 VCCR:$mask))), (v8f16 (Inst (v8f16 MQPR:$Qd_src), (v4f32 MQPR:$Qm), ARMVCCThen, (v4i1 VCCR:$mask), zero_reg))>; def : Pat<(v8f16 (MVEvcvtn (v8f16 MQPR:$Qd_src), (v4f32 MQPR:$Qm), (i32 half))), (v8f16 (Inst (v8f16 MQPR:$Qd_src), (v4f32 MQPR:$Qm)))>; } } multiclass MVE_VCVT_h2f_m { def "": MVE_VCVT_ff; defvar Inst = !cast(NAME); let Predicates = [HasMVEFloat] in { def : Pat<(v4f32 (int_arm_mve_vcvt_widen (v8f16 MQPR:$Qm), (i32 half))), (v4f32 (Inst (v8f16 MQPR:$Qm)))>; def : Pat<(v4f32 (int_arm_mve_vcvt_widen_predicated (v4f32 MQPR:$inactive), (v8f16 MQPR:$Qm), (i32 half), (v4i1 VCCR:$mask))), (v4f32 (Inst (v8f16 MQPR:$Qm), ARMVCCThen, (v4i1 VCCR:$mask), zero_reg, (v4f32 MQPR:$inactive)))>; def : Pat<(v4f32 (MVEvcvtl (v8f16 MQPR:$Qm), (i32 half))), (v4f32 (Inst (v8f16 MQPR:$Qm)))>; } } defm MVE_VCVTf16f32bh : MVE_VCVT_f2h_m<"vcvtb", 0b0>; defm MVE_VCVTf16f32th : MVE_VCVT_f2h_m<"vcvtt", 0b1>; defm MVE_VCVTf32f16bh : MVE_VCVT_h2f_m<"vcvtb", 0b0>; defm MVE_VCVTf32f16th : MVE_VCVT_h2f_m<"vcvtt", 0b1>; class MVE_VxCADD size, bit halve, string cstr=""> : MVE_qDest_qSrc { bits<4> Qn; bit rot; let Inst{28} = halve; let Inst{21-20} = size; let Inst{19-17} = Qn{2-0}; let Inst{16} = 0b0; let Inst{12} = rot; let Inst{8} = 0b1; let Inst{7} = Qn{3}; let Inst{0} = 0b0; } multiclass MVE_VxCADD_m { def "" : MVE_VxCADD; defvar Inst = !cast(NAME); let Predicates = [HasMVEInt] in { def : Pat<(VTI.Vec (int_arm_mve_vcaddq halve, imm:$rot, (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), imm:$rot))>; def : Pat<(VTI.Vec (int_arm_mve_vcaddq_predicated halve, imm:$rot, (VTI.Vec MQPR:$inactive), (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), (VTI.Pred VCCR:$mask))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), imm:$rot, ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg, (VTI.Vec MQPR:$inactive)))>; } } defm MVE_VCADDi8 : MVE_VxCADD_m<"vcadd", MVE_v16i8, 0b1>; defm MVE_VCADDi16 : MVE_VxCADD_m<"vcadd", MVE_v8i16, 0b1>; defm MVE_VCADDi32 : MVE_VxCADD_m<"vcadd", MVE_v4i32, 0b1, "@earlyclobber $Qd">; defm MVE_VHCADDs8 : MVE_VxCADD_m<"vhcadd", MVE_v16s8, 0b0>; defm MVE_VHCADDs16 : MVE_VxCADD_m<"vhcadd", MVE_v8s16, 0b0>; defm MVE_VHCADDs32 : MVE_VxCADD_m<"vhcadd", MVE_v4s32, 0b0, "@earlyclobber $Qd">; class MVE_VADCSBC pattern=[]> : MVE_qDest_qSrc { bits<4> Qn; let Inst{28} = subtract; let Inst{21-20} = 0b11; let Inst{19-17} = Qn{2-0}; let Inst{16} = 0b0; let Inst{12} = I; let Inst{8} = 0b1; let Inst{7} = Qn{3}; let Inst{0} = 0b0; // Custom decoder method in order to add the FPSCR operand(s), which // Tablegen won't do right let DecoderMethod = "DecodeMVEVADCInstruction"; } def MVE_VADC : MVE_VADCSBC<"vadc", 0b0, 0b0, (ins cl_FPSCR_NZCV:$carryin)>; def MVE_VADCI : MVE_VADCSBC<"vadci", 0b1, 0b0, (ins)>; def MVE_VSBC : MVE_VADCSBC<"vsbc", 0b0, 0b1, (ins cl_FPSCR_NZCV:$carryin)>; def MVE_VSBCI : MVE_VADCSBC<"vsbci", 0b1, 0b1, (ins)>; class MVE_VQDMULL pattern=[]> : MVE_qDest_qSrc { bits<4> Qn; let Inst{28} = size; let Inst{21-20} = 0b11; let Inst{19-17} = Qn{2-0}; let Inst{16} = 0b0; let Inst{12} = T; let Inst{8} = 0b1; let Inst{7} = Qn{3}; let Inst{0} = 0b1; let validForTailPredication = 1; let doubleWidthResult = 1; } multiclass MVE_VQDMULL_m { def "" : MVE_VQDMULL; defvar Inst = !cast(NAME); let Predicates = [HasMVEInt] in { // Unpredicated saturating multiply def : Pat<(VTI.DblVec (int_arm_mve_vqdmull (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), (i32 T))), (VTI.DblVec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; // Predicated saturating multiply def : Pat<(VTI.DblVec (int_arm_mve_vqdmull_predicated (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), (i32 T), (VTI.DblPred VCCR:$mask), (VTI.DblVec MQPR:$inactive))), (VTI.DblVec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), ARMVCCThen, (VTI.DblPred VCCR:$mask), zero_reg, (VTI.DblVec MQPR:$inactive)))>; } } multiclass MVE_VQDMULL_halves { defm bh : MVE_VQDMULL_m<"vqdmullb", VTI, size, 0b0, cstr>; defm th : MVE_VQDMULL_m<"vqdmullt", VTI, size, 0b1, cstr>; } defm MVE_VQDMULLs16 : MVE_VQDMULL_halves; defm MVE_VQDMULLs32 : MVE_VQDMULL_halves; // end of mve_qDest_qSrc // start of mve_qDest_rSrc class MVE_qr_base vecsize, list pattern=[]> : MVE_p { bits<4> Qd; bits<4> Qn; bits<4> Rm; let Inst{25-23} = 0b100; let Inst{22} = Qd{3}; let Inst{19-17} = Qn{2-0}; let Inst{15-13} = Qd{2-0}; let Inst{11-9} = 0b111; let Inst{7} = Qn{3}; let Inst{6} = 0b1; let Inst{4} = 0b0; let Inst{3-0} = Rm{3-0}; } class MVE_qDest_rSrc vecsize, list pattern=[]> : MVE_qr_base<(outs MQPR:$Qd), (ins MQPR:$Qn, rGPR:$Rm), iname, suffix, "$Qd, $Qn, $Rm", vpred_r, cstr, vecsize, pattern>; class MVE_qDestSrc_rSrc vecsize, list pattern=[]> : MVE_qr_base<(outs MQPR:$Qd), (ins MQPR:$Qd_src, MQPR:$Qn, rGPR:$Rm), iname, suffix, "$Qd, $Qn, $Rm", vpred_n, "$Qd = $Qd_src", vecsize, pattern>; class MVE_qDest_single_rSrc vecsize, list pattern=[]> : MVE_p<(outs MQPR:$Qd), (ins MQPR:$Qd_src, rGPR:$Rm), NoItinerary, iname, suffix, "$Qd, $Rm", vpred_n, "$Qd = $Qd_src", vecsize, pattern> { bits<4> Qd; bits<4> Rm; let Inst{22} = Qd{3}; let Inst{15-13} = Qd{2-0}; let Inst{3-0} = Rm{3-0}; } // Patterns for vector-scalar instructions with integer operands multiclass MVE_vec_scalar_int_pat_m { defvar UnpredSign = !if(unpred_has_sign, (? (i32 VTI.Unsigned)), (?)); defvar PredSign = !if(pred_has_sign, (? (i32 VTI.Unsigned)), (?)); let Predicates = [HasMVEInt] in { // Unpredicated version def : Pat<(VTI.Vec !con((unpred_op (VTI.Vec MQPR:$Qm), (VTI.Vec (ARMvdup rGPR:$val))), UnpredSign)), (VTI.Vec (inst (VTI.Vec MQPR:$Qm), (i32 rGPR:$val)))>; // Predicated version def : Pat<(VTI.Vec !con((pred_op (VTI.Vec MQPR:$Qm), (VTI.Vec (ARMvdup rGPR:$val))), PredSign, (pred_op (VTI.Pred VCCR:$mask), (VTI.Vec MQPR:$inactive)))), (VTI.Vec (inst (VTI.Vec MQPR:$Qm), (i32 rGPR:$val), ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg, (VTI.Vec MQPR:$inactive)))>; } } class MVE_VADDSUB_qr size, bit bit_5, bit bit_12, bit bit_16, bit bit_28> : MVE_qDest_rSrc { let Inst{28} = bit_28; let Inst{21-20} = size; let Inst{16} = bit_16; let Inst{12} = bit_12; let Inst{8} = 0b1; let Inst{5} = bit_5; let validForTailPredication = 1; } // Vector-scalar add/sub multiclass MVE_VADDSUB_qr_m { def "" : MVE_VADDSUB_qr; let Predicates = [HasMVEInt] in { defm : MVE_TwoOpPatternDup(NAME), ARMimmAllZerosV>; } } multiclass MVE_VADD_qr_m : MVE_VADDSUB_qr_m<"vadd", VTI, 0b0, add, int_arm_mve_add_predicated>; multiclass MVE_VSUB_qr_m : MVE_VADDSUB_qr_m<"vsub", VTI, 0b1, sub, int_arm_mve_sub_predicated>; defm MVE_VADD_qr_i8 : MVE_VADD_qr_m; defm MVE_VADD_qr_i16 : MVE_VADD_qr_m; defm MVE_VADD_qr_i32 : MVE_VADD_qr_m; defm MVE_VSUB_qr_i8 : MVE_VSUB_qr_m; defm MVE_VSUB_qr_i16 : MVE_VSUB_qr_m; defm MVE_VSUB_qr_i32 : MVE_VSUB_qr_m; // Vector-scalar saturating add/sub multiclass MVE_VQADDSUB_qr_m { def "" : MVE_VADDSUB_qr; let Predicates = [HasMVEInt] in { defm : MVE_TwoOpPatternDup(NAME)>; } } multiclass MVE_VQADD_qr_m : MVE_VQADDSUB_qr_m<"vqadd", VTI, 0b0, Op, int_arm_mve_qadd_predicated>; multiclass MVE_VQSUB_qr_m : MVE_VQADDSUB_qr_m<"vqsub", VTI, 0b1, Op, int_arm_mve_qsub_predicated>; defm MVE_VQADD_qr_s8 : MVE_VQADD_qr_m; defm MVE_VQADD_qr_s16 : MVE_VQADD_qr_m; defm MVE_VQADD_qr_s32 : MVE_VQADD_qr_m; defm MVE_VQADD_qr_u8 : MVE_VQADD_qr_m; defm MVE_VQADD_qr_u16 : MVE_VQADD_qr_m; defm MVE_VQADD_qr_u32 : MVE_VQADD_qr_m; defm MVE_VQSUB_qr_s8 : MVE_VQSUB_qr_m; defm MVE_VQSUB_qr_s16 : MVE_VQSUB_qr_m; defm MVE_VQSUB_qr_s32 : MVE_VQSUB_qr_m; defm MVE_VQSUB_qr_u8 : MVE_VQSUB_qr_m; defm MVE_VQSUB_qr_u16 : MVE_VQSUB_qr_m; defm MVE_VQSUB_qr_u32 : MVE_VQSUB_qr_m; class MVE_VQDMULL_qr pattern=[]> : MVE_qDest_rSrc { let Inst{28} = size; let Inst{21-20} = 0b11; let Inst{16} = 0b0; let Inst{12} = T; let Inst{8} = 0b1; let Inst{5} = 0b1; let validForTailPredication = 1; let doubleWidthResult = 1; } multiclass MVE_VQDMULL_qr_m { def "" : MVE_VQDMULL_qr; defvar Inst = !cast(NAME); let Predicates = [HasMVEInt] in { // Unpredicated saturating multiply def : Pat<(VTI.DblVec (int_arm_mve_vqdmull (VTI.Vec MQPR:$Qm), (VTI.Vec (ARMvdup rGPR:$val)), (i32 T))), (VTI.DblVec (Inst (VTI.Vec MQPR:$Qm), (i32 rGPR:$val)))>; // Predicated saturating multiply def : Pat<(VTI.DblVec (int_arm_mve_vqdmull_predicated (VTI.Vec MQPR:$Qm), (VTI.Vec (ARMvdup rGPR:$val)), (i32 T), (VTI.DblPred VCCR:$mask), (VTI.DblVec MQPR:$inactive))), (VTI.DblVec (Inst (VTI.Vec MQPR:$Qm), (i32 rGPR:$val), ARMVCCThen, (VTI.DblPred VCCR:$mask), zero_reg, (VTI.DblVec MQPR:$inactive)))>; } } multiclass MVE_VQDMULL_qr_halves { defm bh : MVE_VQDMULL_qr_m<"vqdmullb", VTI, size, 0b0, cstr>; defm th : MVE_VQDMULL_qr_m<"vqdmullt", VTI, size, 0b1, cstr>; } defm MVE_VQDMULL_qr_s16 : MVE_VQDMULL_qr_halves; defm MVE_VQDMULL_qr_s32 : MVE_VQDMULL_qr_halves; class MVE_VxADDSUB_qr size, bit subtract, bits<2> vecsize, list pattern=[]> : MVE_qDest_rSrc { let Inst{28} = bit_28; let Inst{21-20} = size; let Inst{16} = 0b0; let Inst{12} = subtract; let Inst{8} = 0b1; let Inst{5} = 0b0; let validForTailPredication = 1; } multiclass MVE_VHADDSUB_qr_m { def "" : MVE_VxADDSUB_qr; defm : MVE_TwoOpPatternDup(NAME)>; defm : MVE_vec_scalar_int_pat_m(NAME), VTI, unpred_int, pred_int, 1, 1>; defvar Inst = !cast(NAME); let Predicates = [HasMVEInt] in { def : Pat<(VTI.Vec (shift_op (add_op (VTI.Vec MQPR:$Qm), (VTI.Vec (ARMvdup rGPR:$Rn))), (i32 1))), (Inst MQPR:$Qm, rGPR:$Rn)>; } } multiclass MVE_VHADD_qr_m : MVE_VHADDSUB_qr_m<"vhadd", VTI, 0b0, Op, int_arm_mve_vhadd, int_arm_mve_hadd_predicated, add_op, shift_op>; multiclass MVE_VHSUB_qr_m : MVE_VHADDSUB_qr_m<"vhsub", VTI, 0b1, null_frag, int_arm_mve_vhsub, int_arm_mve_hsub_predicated, add_op, shift_op>; defm MVE_VHADD_qr_s8 : MVE_VHADD_qr_m; defm MVE_VHADD_qr_s16 : MVE_VHADD_qr_m; defm MVE_VHADD_qr_s32 : MVE_VHADD_qr_m; defm MVE_VHADD_qr_u8 : MVE_VHADD_qr_m; defm MVE_VHADD_qr_u16 : MVE_VHADD_qr_m; defm MVE_VHADD_qr_u32 : MVE_VHADD_qr_m; defm MVE_VHSUB_qr_s8 : MVE_VHSUB_qr_m; defm MVE_VHSUB_qr_s16 : MVE_VHSUB_qr_m; defm MVE_VHSUB_qr_s32 : MVE_VHSUB_qr_m; defm MVE_VHSUB_qr_u8 : MVE_VHSUB_qr_m; defm MVE_VHSUB_qr_u16 : MVE_VHSUB_qr_m; defm MVE_VHSUB_qr_u32 : MVE_VHSUB_qr_m; multiclass MVE_VADDSUB_qr_f { def "" : MVE_VxADDSUB_qr; defm : MVE_TwoOpPatternDup(NAME), IdentityVec>; } let Predicates = [HasMVEFloat] in { defm MVE_VADD_qr_f32 : MVE_VADDSUB_qr_f<"vadd", MVE_v4f32, 0b0, fadd, int_arm_mve_add_predicated, ARMimmMinusZeroF>; defm MVE_VADD_qr_f16 : MVE_VADDSUB_qr_f<"vadd", MVE_v8f16, 0b0, fadd, int_arm_mve_add_predicated, ARMimmMinusZeroH>; defm MVE_VSUB_qr_f32 : MVE_VADDSUB_qr_f<"vsub", MVE_v4f32, 0b1, fsub, int_arm_mve_sub_predicated, ARMimmAllZerosV>; defm MVE_VSUB_qr_f16 : MVE_VADDSUB_qr_f<"vsub", MVE_v8f16, 0b1, fsub, int_arm_mve_sub_predicated, ARMimmAllZerosV>; } class MVE_VxSHL_qr size, bit bit_7, bit bit_17, list pattern=[]> : MVE_qDest_single_rSrc { let Inst{28} = U; let Inst{25-23} = 0b100; let Inst{21-20} = 0b11; let Inst{19-18} = size; let Inst{17} = bit_17; let Inst{16} = 0b1; let Inst{12-8} = 0b11110; let Inst{7} = bit_7; let Inst{6-4} = 0b110; let validForTailPredication = 1; } multiclass MVE_VxSHL_qr_p { def "" : MVE_VxSHL_qr; defvar Inst = !cast(NAME); def : Pat<(VTI.Vec (int_arm_mve_vshl_scalar (VTI.Vec MQPR:$in), (i32 rGPR:$sh), (i32 q), (i32 r), (i32 VTI.Unsigned))), (VTI.Vec (Inst (VTI.Vec MQPR:$in), (i32 rGPR:$sh)))>; def : Pat<(VTI.Vec (int_arm_mve_vshl_scalar_predicated (VTI.Vec MQPR:$in), (i32 rGPR:$sh), (i32 q), (i32 r), (i32 VTI.Unsigned), (VTI.Pred VCCR:$mask))), (VTI.Vec (Inst (VTI.Vec MQPR:$in), (i32 rGPR:$sh), ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg))>; } multiclass MVE_VxSHL_qr_types { defm s8 : MVE_VxSHL_qr_p; defm s16 : MVE_VxSHL_qr_p; defm s32 : MVE_VxSHL_qr_p; defm u8 : MVE_VxSHL_qr_p; defm u16 : MVE_VxSHL_qr_p; defm u32 : MVE_VxSHL_qr_p; } defm MVE_VSHL_qr : MVE_VxSHL_qr_types<"vshl", 0b0, 0b0>; defm MVE_VRSHL_qr : MVE_VxSHL_qr_types<"vrshl", 0b0, 0b1>; defm MVE_VQSHL_qr : MVE_VxSHL_qr_types<"vqshl", 0b1, 0b0>; defm MVE_VQRSHL_qr : MVE_VxSHL_qr_types<"vqrshl", 0b1, 0b1>; let Predicates = [HasMVEInt] in { def : Pat<(v4i32 (ARMvshlu (v4i32 MQPR:$Qm), (v4i32 (ARMvdup rGPR:$Rm)))), (v4i32 (MVE_VSHL_qru32 (v4i32 MQPR:$Qm), rGPR:$Rm))>; def : Pat<(v8i16 (ARMvshlu (v8i16 MQPR:$Qm), (v8i16 (ARMvdup rGPR:$Rm)))), (v8i16 (MVE_VSHL_qru16 (v8i16 MQPR:$Qm), rGPR:$Rm))>; def : Pat<(v16i8 (ARMvshlu (v16i8 MQPR:$Qm), (v16i8 (ARMvdup rGPR:$Rm)))), (v16i8 (MVE_VSHL_qru8 (v16i8 MQPR:$Qm), rGPR:$Rm))>; def : Pat<(v4i32 (ARMvshls (v4i32 MQPR:$Qm), (v4i32 (ARMvdup rGPR:$Rm)))), (v4i32 (MVE_VSHL_qrs32 (v4i32 MQPR:$Qm), rGPR:$Rm))>; def : Pat<(v8i16 (ARMvshls (v8i16 MQPR:$Qm), (v8i16 (ARMvdup rGPR:$Rm)))), (v8i16 (MVE_VSHL_qrs16 (v8i16 MQPR:$Qm), rGPR:$Rm))>; def : Pat<(v16i8 (ARMvshls (v16i8 MQPR:$Qm), (v16i8 (ARMvdup rGPR:$Rm)))), (v16i8 (MVE_VSHL_qrs8 (v16i8 MQPR:$Qm), rGPR:$Rm))>; } class MVE_VBRSR size, list pattern=[]> : MVE_qDest_rSrc { let Inst{28} = 0b1; let Inst{21-20} = size; let Inst{16} = 0b1; let Inst{12} = 0b1; let Inst{8} = 0b0; let Inst{5} = 0b1; let validForTailPredication = 1; } def MVE_VBRSR8 : MVE_VBRSR<"vbrsr", "8", 0b00>; def MVE_VBRSR16 : MVE_VBRSR<"vbrsr", "16", 0b01>; def MVE_VBRSR32 : MVE_VBRSR<"vbrsr", "32", 0b10>; multiclass MVE_VBRSR_pat_m { // Unpredicated def : Pat<(VTI.Vec (int_arm_mve_vbrsr (VTI.Vec MQPR:$Qn), (i32 rGPR:$Rm))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qn), (i32 rGPR:$Rm)))>; // Predicated def : Pat<(VTI.Vec (int_arm_mve_vbrsr_predicated (VTI.Vec MQPR:$inactive), (VTI.Vec MQPR:$Qn), (i32 rGPR:$Rm), (VTI.Pred VCCR:$mask))), (VTI.Vec (Inst (VTI.Vec MQPR:$Qn), (i32 rGPR:$Rm), ARMVCCThen, (VTI.Pred VCCR:$mask), zero_reg, (VTI.Vec MQPR:$inactive)))>; } let Predicates = [HasMVEInt] in { def : Pat<(v16i8 ( bitreverse (v16i8 MQPR:$val1))), (v16i8 ( MVE_VBRSR8 (v16i8 MQPR:$val1), (t2MOVi (i32 8)) ))>; def : Pat<(v4i32 ( bitreverse (v4i32 MQPR:$val1))), (v4i32 ( MVE_VBRSR32 (v4i32 MQPR:$val1), (t2MOVi (i32 32)) ))>; def : Pat<(v8i16 ( bitreverse (v8i16 MQPR:$val1))), (v8i16 ( MVE_VBRSR16 (v8i16 MQPR:$val1), (t2MOVi (i32 16)) ))>; defm : MVE_VBRSR_pat_m; defm : MVE_VBRSR_pat_m; defm : MVE_VBRSR_pat_m; } let Predicates = [HasMVEFloat] in { defm : MVE_VBRSR_pat_m; defm : MVE_VBRSR_pat_m; } class MVE_VMUL_qr_int size> : MVE_qDest_rSrc { let Inst{28} = 0b0; let Inst{21-20} = size; let Inst{16} = 0b1; let Inst{12} = 0b1; let Inst{8} = 0b0; let Inst{5} = 0b1; let validForTailPredication = 1; } multiclass MVE_VMUL_qr_int_m { def "" : MVE_VMUL_qr_int<"vmul", VTI.Suffix, VTI.Size>; let Predicates = [HasMVEInt] in { defm : MVE_TwoOpPatternDup(NAME), ARMimmOneV>; } } defm MVE_VMUL_qr_i8 : MVE_VMUL_qr_int_m; defm MVE_VMUL_qr_i16 : MVE_VMUL_qr_int_m; defm MVE_VMUL_qr_i32 : MVE_VMUL_qr_int_m; class MVE_VxxMUL_qr size, bits<2> vecsize, list pattern=[]> : MVE_qDest_rSrc { let Inst{28} = bit_28; let Inst{21-20} = size; let Inst{16} = 0b1; let Inst{12} = 0b0; let Inst{8} = 0b0; let Inst{5} = 0b1; let validForTailPredication = 1; } multiclass MVE_VxxMUL_qr_m { def "" : MVE_VxxMUL_qr; let Predicates = [HasMVEInt] in { defm : MVE_TwoOpPatternDup(NAME)>; } defm : MVE_vec_scalar_int_pat_m(NAME), VTI, int_unpred, int_pred>; } multiclass MVE_VQDMULH_qr_m : MVE_VxxMUL_qr_m<"vqdmulh", VTI, 0b0, MVEvqdmulh, int_arm_mve_vqdmulh, int_arm_mve_qdmulh_predicated>; multiclass MVE_VQRDMULH_qr_m : MVE_VxxMUL_qr_m<"vqrdmulh", VTI, 0b1, null_frag, int_arm_mve_vqrdmulh, int_arm_mve_qrdmulh_predicated>; defm MVE_VQDMULH_qr_s8 : MVE_VQDMULH_qr_m; defm MVE_VQDMULH_qr_s16 : MVE_VQDMULH_qr_m; defm MVE_VQDMULH_qr_s32 : MVE_VQDMULH_qr_m; defm MVE_VQRDMULH_qr_s8 : MVE_VQRDMULH_qr_m; defm MVE_VQRDMULH_qr_s16 : MVE_VQRDMULH_qr_m; defm MVE_VQRDMULH_qr_s32 : MVE_VQRDMULH_qr_m; multiclass MVE_VxxMUL_qr_f_m { let validForTailPredication = 1 in def "" : MVE_VxxMUL_qr<"vmul", VTI.Suffix, VTI.Size{0}, 0b11, VTI.Size>; defm : MVE_TwoOpPatternDup(NAME), IdentityVec>; } let Predicates = [HasMVEFloat] in { defm MVE_VMUL_qr_f16 : MVE_VxxMUL_qr_f_m; defm MVE_VMUL_qr_f32 : MVE_VxxMUL_qr_f_m; } class MVE_VFMAMLA_qr bits_21_20, bit S, bits<2> vecsize, list pattern=[]> : MVE_qDestSrc_rSrc { let Inst{28} = bit_28; let Inst{21-20} = bits_21_20; let Inst{16} = 0b1; let Inst{12} = S; let Inst{8} = 0b0; let Inst{5} = 0b0; let validForTailPredication = 1; let hasSideEffects = 0; } multiclass MVE_VMLA_qr_multi { def "": MVE_VFMAMLA_qr; defvar Inst = !cast(NAME); defvar pred_int = !cast("int_arm_mve_" # iname # "_n_predicated"); defvar v1 = (VTI.Vec MQPR:$v1); defvar v2 = (VTI.Vec MQPR:$v2); defvar vs = (VTI.Vec (ARMvdup rGPR:$s)); defvar s = (i32 rGPR:$s); defvar pred = (VTI.Pred VCCR:$pred); // The signed and unsigned variants of this instruction have different // encodings, but they're functionally identical. For the sake of // determinism, we generate only the unsigned variant. if VTI.Unsigned then let Predicates = [HasMVEInt] in { if scalar_addend then { def : Pat<(VTI.Vec (add (mul v1, v2), vs)), (VTI.Vec (Inst v1, v2, s))>; } else { def : Pat<(VTI.Vec (add (mul v2, vs), v1)), (VTI.Vec (Inst v1, v2, s))>; } def : Pat<(VTI.Vec (pred_int v1, v2, s, pred)), (VTI.Vec (Inst v1, v2, s, ARMVCCThen, pred, zero_reg))>; } } defm MVE_VMLA_qr_s8 : MVE_VMLA_qr_multi<"vmla", MVE_v16s8, 0b0>; defm MVE_VMLA_qr_s16 : MVE_VMLA_qr_multi<"vmla", MVE_v8s16, 0b0>; defm MVE_VMLA_qr_s32 : MVE_VMLA_qr_multi<"vmla", MVE_v4s32, 0b0>; defm MVE_VMLA_qr_u8 : MVE_VMLA_qr_multi<"vmla", MVE_v16u8, 0b0>; defm MVE_VMLA_qr_u16 : MVE_VMLA_qr_multi<"vmla", MVE_v8u16, 0b0>; defm MVE_VMLA_qr_u32 : MVE_VMLA_qr_multi<"vmla", MVE_v4u32, 0b0>; defm MVE_VMLAS_qr_s8 : MVE_VMLA_qr_multi<"vmlas", MVE_v16s8, 0b1>; defm MVE_VMLAS_qr_s16 : MVE_VMLA_qr_multi<"vmlas", MVE_v8s16, 0b1>; defm MVE_VMLAS_qr_s32 : MVE_VMLA_qr_multi<"vmlas", MVE_v4s32, 0b1>; defm MVE_VMLAS_qr_u8 : MVE_VMLA_qr_multi<"vmlas", MVE_v16u8, 0b1>; defm MVE_VMLAS_qr_u16 : MVE_VMLA_qr_multi<"vmlas", MVE_v8u16, 0b1>; defm MVE_VMLAS_qr_u32 : MVE_VMLA_qr_multi<"vmlas", MVE_v4u32, 0b1>; multiclass MVE_VFMA_qr_multi { def "": MVE_VFMAMLA_qr; defvar Inst = !cast(NAME); defvar pred_int = int_arm_mve_fma_predicated; defvar v1 = (VTI.Vec MQPR:$v1); defvar v2 = (VTI.Vec MQPR:$v2); defvar vs = (VTI.Vec (ARMvdup (i32 rGPR:$s))); defvar is = (i32 rGPR:$s); defvar pred = (VTI.Pred VCCR:$pred); let Predicates = [HasMVEFloat] in { if scalar_addend then { def : Pat<(VTI.Vec (fma v1, v2, vs)), (VTI.Vec (Inst v1, v2, is))>; def : Pat<(VTI.Vec (vselect (VTI.Pred VCCR:$pred), (VTI.Vec (fma v1, v2, vs)), v1)), (VTI.Vec (Inst v1, v2, is, ARMVCCThen, $pred, zero_reg))>; def : Pat<(VTI.Vec (pred_int v1, v2, vs, pred)), (VTI.Vec (Inst v1, v2, is, ARMVCCThen, pred, zero_reg))>; } else { def : Pat<(VTI.Vec (fma v1, vs, v2)), (VTI.Vec (Inst v2, v1, is))>; def : Pat<(VTI.Vec (fma vs, v1, v2)), (VTI.Vec (Inst v2, v1, is))>; def : Pat<(VTI.Vec (vselect (VTI.Pred VCCR:$pred), (VTI.Vec (fma vs, v2, v1)), v1)), (VTI.Vec (Inst v1, v2, is, ARMVCCThen, $pred, zero_reg))>; def : Pat<(VTI.Vec (vselect (VTI.Pred VCCR:$pred), (VTI.Vec (fma v2, vs, v1)), v1)), (VTI.Vec (Inst v1, v2, is, ARMVCCThen, $pred, zero_reg))>; def : Pat<(VTI.Vec (pred_int v1, vs, v2, pred)), (VTI.Vec (Inst v2, v1, is, ARMVCCThen, pred, zero_reg))>; def : Pat<(VTI.Vec (pred_int vs, v1, v2, pred)), (VTI.Vec (Inst v2, v1, is, ARMVCCThen, pred, zero_reg))>; } } } let Predicates = [HasMVEFloat] in { defm MVE_VFMA_qr_f16 : MVE_VFMA_qr_multi<"vfma", MVE_v8f16, 0>; defm MVE_VFMA_qr_f32 : MVE_VFMA_qr_multi<"vfma", MVE_v4f32, 0>; defm MVE_VFMA_qr_Sf16 : MVE_VFMA_qr_multi<"vfmas", MVE_v8f16, 1>; defm MVE_VFMA_qr_Sf32 : MVE_VFMA_qr_multi<"vfmas", MVE_v4f32, 1>; } class MVE_VQDMLAH_qr size, bit bit_5, bit bit_12, list pattern=[]> : MVE_qDestSrc_rSrc { let Inst{28} = U; let Inst{21-20} = size; let Inst{16} = 0b0; let Inst{12} = bit_12; let Inst{8} = 0b0; let Inst{5} = bit_5; } multiclass MVE_VQDMLAH_qr_multi { def "": MVE_VQDMLAH_qr; defvar Inst = !cast(NAME); defvar unpred_int = !cast("int_arm_mve_" # iname); defvar pred_int = !cast("int_arm_mve_" # iname # "_predicated"); let Predicates = [HasMVEInt] in { def : Pat<(VTI.Vec (unpred_int (VTI.Vec MQPR:$v1), (VTI.Vec MQPR:$v2), (i32 rGPR:$s))), (VTI.Vec (Inst (VTI.Vec MQPR:$v1), (VTI.Vec MQPR:$v2), (i32 rGPR:$s)))>; def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$v1), (VTI.Vec MQPR:$v2), (i32 rGPR:$s), (VTI.Pred VCCR:$pred))), (VTI.Vec (Inst (VTI.Vec MQPR:$v1), (VTI.Vec MQPR:$v2), (i32 rGPR:$s), ARMVCCThen, (VTI.Pred VCCR:$pred), zero_reg))>; } } multiclass MVE_VQDMLAH_qr_types { defm s8 : MVE_VQDMLAH_qr_multi; defm s16 : MVE_VQDMLAH_qr_multi; defm s32 : MVE_VQDMLAH_qr_multi; } defm MVE_VQDMLAH_qr : MVE_VQDMLAH_qr_types<"vqdmlah", 0b1, 0b0>; defm MVE_VQRDMLAH_qr : MVE_VQDMLAH_qr_types<"vqrdmlah", 0b0, 0b0>; defm MVE_VQDMLASH_qr : MVE_VQDMLAH_qr_types<"vqdmlash", 0b1, 0b1>; defm MVE_VQRDMLASH_qr : MVE_VQDMLAH_qr_types<"vqrdmlash", 0b0, 0b1>; class MVE_VxDUP size, bit bit_12, ValueType VT, SDPatternOperator vxdup> : MVE_p<(outs MQPR:$Qd, tGPREven:$Rn), (ins tGPREven:$Rn_src, MVE_VIDUP_imm:$imm), NoItinerary, iname, suffix, "$Qd, $Rn, $imm", vpred_r, "$Rn = $Rn_src", size, [(set (VT MQPR:$Qd), (i32 tGPREven:$Rn), (vxdup (i32 tGPREven:$Rn_src), (i32 imm:$imm)))]> { bits<4> Qd; bits<4> Rn; bits<2> imm; let Inst{28} = 0b0; let Inst{25-23} = 0b100; let Inst{22} = Qd{3}; let Inst{21-20} = size; let Inst{19-17} = Rn{3-1}; let Inst{16} = 0b1; let Inst{15-13} = Qd{2-0}; let Inst{12} = bit_12; let Inst{11-8} = 0b1111; let Inst{7} = imm{1}; let Inst{6-1} = 0b110111; let Inst{0} = imm{0}; let validForTailPredication = 1; let hasSideEffects = 0; } def MVE_VIDUPu8 : MVE_VxDUP<"vidup", "u8", 0b00, 0b0, v16i8, ARMvidup>; def MVE_VIDUPu16 : MVE_VxDUP<"vidup", "u16", 0b01, 0b0, v8i16, ARMvidup>; def MVE_VIDUPu32 : MVE_VxDUP<"vidup", "u32", 0b10, 0b0, v4i32, ARMvidup>; def MVE_VDDUPu8 : MVE_VxDUP<"vddup", "u8", 0b00, 0b1, v16i8, null_frag>; def MVE_VDDUPu16 : MVE_VxDUP<"vddup", "u16", 0b01, 0b1, v8i16, null_frag>; def MVE_VDDUPu32 : MVE_VxDUP<"vddup", "u32", 0b10, 0b1, v4i32, null_frag>; class MVE_VxWDUP size, bit bit_12, list pattern=[]> : MVE_p<(outs MQPR:$Qd, tGPREven:$Rn), (ins tGPREven:$Rn_src, tGPROdd:$Rm, MVE_VIDUP_imm:$imm), NoItinerary, iname, suffix, "$Qd, $Rn, $Rm, $imm", vpred_r, "$Rn = $Rn_src", size, pattern> { bits<4> Qd; bits<4> Rm; bits<4> Rn; bits<2> imm; let Inst{28} = 0b0; let Inst{25-23} = 0b100; let Inst{22} = Qd{3}; let Inst{21-20} = size; let Inst{19-17} = Rn{3-1}; let Inst{16} = 0b1; let Inst{15-13} = Qd{2-0}; let Inst{12} = bit_12; let Inst{11-8} = 0b1111; let Inst{7} = imm{1}; let Inst{6-4} = 0b110; let Inst{3-1} = Rm{3-1}; let Inst{0} = imm{0}; let validForTailPredication = 1; let hasSideEffects = 0; } def MVE_VIWDUPu8 : MVE_VxWDUP<"viwdup", "u8", 0b00, 0b0>; def MVE_VIWDUPu16 : MVE_VxWDUP<"viwdup", "u16", 0b01, 0b0>; def MVE_VIWDUPu32 : MVE_VxWDUP<"viwdup", "u32", 0b10, 0b0>; def MVE_VDWDUPu8 : MVE_VxWDUP<"vdwdup", "u8", 0b00, 0b1>; def MVE_VDWDUPu16 : MVE_VxWDUP<"vdwdup", "u16", 0b01, 0b1>; def MVE_VDWDUPu32 : MVE_VxWDUP<"vdwdup", "u32", 0b10, 0b1>; let isReMaterializable = 1 in class MVE_VCTPInst size, list pattern=[]> : MVE_p<(outs VCCR:$P0), (ins rGPR:$Rn), NoItinerary, "vctp", suffix, "$Rn", vpred_n, "", size, pattern> { bits<4> Rn; let Inst{28-27} = 0b10; let Inst{26-22} = 0b00000; let Inst{21-20} = size; let Inst{19-16} = Rn{3-0}; let Inst{15-11} = 0b11101; let Inst{10-0} = 0b00000000001; let Unpredictable{10-0} = 0b11111111111; let Constraints = ""; let DecoderMethod = "DecodeMveVCTP"; let validForTailPredication = 1; } multiclass MVE_VCTP { def "": MVE_VCTPInst; defvar Inst = !cast(NAME); let Predicates = [HasMVEInt] in { def : Pat<(intr rGPR:$Rn), (VTI.Pred (Inst rGPR:$Rn))>; def : Pat<(and (intr rGPR:$Rn), (VTI.Pred VCCR:$mask)), (VTI.Pred (Inst rGPR:$Rn, ARMVCCThen, VCCR:$mask, zero_reg))>; } } defm MVE_VCTP8 : MVE_VCTP; defm MVE_VCTP16 : MVE_VCTP; defm MVE_VCTP32 : MVE_VCTP; defm MVE_VCTP64 : MVE_VCTP; // end of mve_qDest_rSrc // start of coproc mov class MVE_VMOV_64bit : MVE_VMOV_lane_base { bits<5> Rt; bits<5> Rt2; bits<4> Qd; bit idx; bit idx2; let Inst{31-23} = 0b111011000; let Inst{22} = Qd{3}; let Inst{21} = 0b0; let Inst{20} = to_qreg; let Inst{19-16} = Rt2{3-0}; let Inst{15-13} = Qd{2-0}; let Inst{12-5} = 0b01111000; let Inst{4} = idx2; let Inst{3-0} = Rt{3-0}; let VecSize = 0b10; let hasSideEffects = 0; } // The assembly syntax for these instructions mentions the vector // register name twice, e.g. // // vmov q2[2], q2[0], r0, r1 // vmov r0, r1, q2[2], q2[0] // // which needs a bit of juggling with MC operand handling. // // For the move _into_ a vector register, the MC operand list also has // to mention the register name twice: once as the output, and once as // an extra input to represent where the unchanged half of the output // register comes from (when this instruction is used in code // generation). So we arrange that the first mention of the vector reg // in the instruction is considered by the AsmMatcher to be the output // ($Qd), and the second one is the input ($QdSrc). Binding them // together with the existing 'tie' constraint is enough to enforce at // register allocation time that they have to be the same register. // // For the move _from_ a vector register, there's no way to get round // the fact that both instances of that register name have to be // inputs. They have to be the same register again, but this time, we // can't use a tie constraint, because that has to be between an // output and an input operand. So this time, we have to arrange that // the q-reg appears just once in the MC operand list, in spite of // being mentioned twice in the asm syntax - which needs a custom // AsmMatchConverter. def MVE_VMOV_q_rr : MVE_VMOV_64bit<(outs MQPR:$Qd), (ins MQPR:$QdSrc, rGPR:$Rt, rGPR:$Rt2), 0b1, "$Qd$idx, $QdSrc$idx2, $Rt, $Rt2", "$Qd = $QdSrc"> { let DecoderMethod = "DecodeMVEVMOVDRegtoQ"; } def MVE_VMOV_rr_q : MVE_VMOV_64bit<(outs rGPR:$Rt, rGPR:$Rt2), (ins MQPR:$Qd), 0b0, "$Rt, $Rt2, $Qd$idx, $Qd$idx2", ""> { let DecoderMethod = "DecodeMVEVMOVQtoDReg"; let AsmMatchConverter = "cvtMVEVMOVQtoDReg"; } let Predicates = [HasMVEInt] in { // Double lane moves. There are a number of patterns here. We know that the // insertelt's will be in descending order by index, and need to match the 5 // patterns that might contain 2-0 or 3-1 pairs. These are: // 3 2 1 0 -> vmovqrr 31; vmovqrr 20 // 3 2 1 -> vmovqrr 31; vmov 2 // 3 1 -> vmovqrr 31 // 2 1 0 -> vmovqrr 20; vmov 1 // 2 0 -> vmovqrr 20 // The other potential patterns will be handled by single lane inserts. def : Pat<(insertelt (insertelt (insertelt (insertelt (v4i32 MQPR:$src1), rGPR:$srcA, (i32 0)), rGPR:$srcB, (i32 1)), rGPR:$srcC, (i32 2)), rGPR:$srcD, (i32 3)), (MVE_VMOV_q_rr (MVE_VMOV_q_rr MQPR:$src1, rGPR:$srcA, rGPR:$srcC, (i32 2), (i32 0)), rGPR:$srcB, rGPR:$srcD, (i32 3), (i32 1))>; def : Pat<(insertelt (insertelt (insertelt (v4i32 MQPR:$src1), rGPR:$srcB, (i32 1)), rGPR:$srcC, (i32 2)), rGPR:$srcD, (i32 3)), (MVE_VMOV_q_rr (MVE_VMOV_to_lane_32 MQPR:$src1, rGPR:$srcC, (i32 2)), rGPR:$srcB, rGPR:$srcD, (i32 3), (i32 1))>; def : Pat<(insertelt (insertelt (v4i32 MQPR:$src1), rGPR:$srcA, (i32 1)), rGPR:$srcB, (i32 3)), (MVE_VMOV_q_rr MQPR:$src1, rGPR:$srcA, rGPR:$srcB, (i32 3), (i32 1))>; def : Pat<(insertelt (insertelt (insertelt (v4i32 MQPR:$src1), rGPR:$srcB, (i32 0)), rGPR:$srcC, (i32 1)), rGPR:$srcD, (i32 2)), (MVE_VMOV_q_rr (MVE_VMOV_to_lane_32 MQPR:$src1, rGPR:$srcC, (i32 1)), rGPR:$srcB, rGPR:$srcD, (i32 2), (i32 0))>; def : Pat<(insertelt (insertelt (v4i32 MQPR:$src1), rGPR:$srcA, (i32 0)), rGPR:$srcB, (i32 2)), (MVE_VMOV_q_rr MQPR:$src1, rGPR:$srcA, rGPR:$srcB, (i32 2), (i32 0))>; } // end of coproc mov // start of MVE interleaving load/store // Base class for the family of interleaving/deinterleaving // load/stores with names like VLD20.8 and VST43.32. class MVE_vldst24_base stage, bits<2> size, bit load, dag Oops, dag loadIops, dag wbIops, string iname, string ops, string cstr, list pattern=[]> : MVE_MI { bits<4> VQd; bits<4> Rn; let Inst{31-22} = 0b1111110010; let Inst{21} = writeback; let Inst{20} = load; let Inst{19-16} = Rn; let Inst{15-13} = VQd{2-0}; let Inst{12-9} = 0b1111; let Inst{8-7} = size; let Inst{6-5} = stage; let Inst{4-1} = 0b0000; let Inst{0} = fourregs; let mayLoad = load; let mayStore = !eq(load,0); let hasSideEffects = 0; let validForTailPredication = load; } // A parameter class used to encapsulate all the ways the writeback // variants of VLD20 and friends differ from the non-writeback ones. class MVE_vldst24_writeback { bit writeback = b; dag Oops = Oo; dag Iops = Io; string syntax = sy; string cstr = c; string id_suffix = n; } // Another parameter class that encapsulates the differences between VLD2x // and VLD4x. class MVE_vldst24_nvecs s, bit b, RegisterOperand vl> { int nvecs = n; list stages = s; bit bit0 = b; RegisterOperand VecList = vl; } // A third parameter class that distinguishes VLDnn.8 from .16 from .32. class MVE_vldst24_lanesize b> { int lanesize = i; bits<2> sizebits = b; } // A base class for each direction of transfer: one for load, one for // store. I can't make these a fourth independent parametric tuple // class, because they have to take the nvecs tuple class as a // parameter, in order to find the right VecList operand type. class MVE_vld24_base pat, bits<2> size, MVE_vldst24_writeback wb, string iname, list pattern=[]> : MVE_vldst24_base; class MVE_vst24_base pat, bits<2> size, MVE_vldst24_writeback wb, string iname, list pattern=[]> : MVE_vldst24_base; // Actually define all the interleaving loads and stores, by a series // of nested foreaches over number of vectors (VLD2/VLD4); stage // within one of those series (VLDx0/VLDx1/VLDx2/VLDx3); size of // vector lane; writeback or no writeback. foreach n = [MVE_vldst24_nvecs<2, [0,1], 0, VecList2Q>, MVE_vldst24_nvecs<4, [0,1,2,3], 1, VecList4Q>] in foreach stage = n.stages in foreach s = [MVE_vldst24_lanesize< 8, 0b00>, MVE_vldst24_lanesize<16, 0b01>, MVE_vldst24_lanesize<32, 0b10>] in foreach wb = [MVE_vldst24_writeback< 1, (outs rGPR:$wb), (ins t2_nosp_addr_offset_none:$Rn), "!", "$Rn.base = $wb", "_wb">, MVE_vldst24_writeback<0, (outs), (ins t2_addr_offset_none:$Rn)>] in { // For each case within all of those foreaches, define the actual // instructions. The def names are made by gluing together pieces // from all the parameter classes, and will end up being things like // MVE_VLD20_8 and MVE_VST43_16_wb. def "MVE_VLD" # n.nvecs # stage # "_" # s.lanesize # wb.id_suffix : MVE_vld24_base; def "MVE_VST" # n.nvecs # stage # "_" # s.lanesize # wb.id_suffix : MVE_vst24_base; } def SDTARMVST2 : SDTypeProfile<1, 5, [SDTCisPtrTy<0>, SDTCisPtrTy<1>, SDTCisVT<2, i32>, SDTCisVec<3>, SDTCisSameAs<3, 4>, SDTCisVT<5, i32>]>; def SDTARMVST4 : SDTypeProfile<1, 7, [SDTCisPtrTy<0>, SDTCisPtrTy<1>, SDTCisVT<2, i32>, SDTCisVec<3>, SDTCisSameAs<3, 4>, SDTCisSameAs<3, 5>, SDTCisSameAs<3, 6>, SDTCisVT<7, i32>]>; def MVEVST2UPD : SDNode<"ARMISD::VST2_UPD", SDTARMVST2, [SDNPHasChain, SDNPMemOperand]>; def MVEVST4UPD : SDNode<"ARMISD::VST4_UPD", SDTARMVST4, [SDNPHasChain, SDNPMemOperand]>; multiclass MVE_vst24_patterns { foreach stage = [0,1] in def : Pat<(int_arm_mve_vst2q i32:$addr, (VT MQPR:$v0), (VT MQPR:$v1), (i32 stage)), (!cast("MVE_VST2"#stage#"_"#lanesize) (REG_SEQUENCE MQQPR, VT:$v0, qsub_0, VT:$v1, qsub_1), t2_addr_offset_none:$addr)>; foreach stage = [0,1] in def : Pat<(i32 (MVEVST2UPD i32:$addr, (i32 32), (VT MQPR:$v0), (VT MQPR:$v1), (i32 stage))), (i32 (!cast("MVE_VST2"#stage#"_"#lanesize#_wb) (REG_SEQUENCE MQQPR, VT:$v0, qsub_0, VT:$v1, qsub_1), t2_addr_offset_none:$addr))>; foreach stage = [0,1,2,3] in def : Pat<(int_arm_mve_vst4q i32:$addr, (VT MQPR:$v0), (VT MQPR:$v1), (VT MQPR:$v2), (VT MQPR:$v3), (i32 stage)), (!cast("MVE_VST4"#stage#"_"#lanesize) (REG_SEQUENCE MQQQQPR, VT:$v0, qsub_0, VT:$v1, qsub_1, VT:$v2, qsub_2, VT:$v3, qsub_3), t2_addr_offset_none:$addr)>; foreach stage = [0,1,2,3] in def : Pat<(i32 (MVEVST4UPD i32:$addr, (i32 64), (VT MQPR:$v0), (VT MQPR:$v1), (VT MQPR:$v2), (VT MQPR:$v3), (i32 stage))), (i32 (!cast("MVE_VST4"#stage#"_"#lanesize#_wb) (REG_SEQUENCE MQQQQPR, VT:$v0, qsub_0, VT:$v1, qsub_1, VT:$v2, qsub_2, VT:$v3, qsub_3), t2_addr_offset_none:$addr))>; } defm : MVE_vst24_patterns<8, v16i8>; defm : MVE_vst24_patterns<16, v8i16>; defm : MVE_vst24_patterns<32, v4i32>; defm : MVE_vst24_patterns<16, v8f16>; defm : MVE_vst24_patterns<32, v4f32>; // end of MVE interleaving load/store // start of MVE predicable load/store // A parameter class for the direction of transfer. class MVE_ldst_direction { bit load = b; dag Oops = Oo; dag Iops = Io; string cstr = c; } def MVE_ld: MVE_ldst_direction<1, (outs MQPR:$Qd), (ins), ",@earlyclobber $Qd">; def MVE_st: MVE_ldst_direction<0, (outs), (ins MQPR:$Qd)>; // A parameter class for the size of memory access in a load. class MVE_memsz e, int s, AddrMode m, string mn, list types> { bits<2> encoding = e; // opcode bit(s) for encoding int shift = s; // shift applied to immediate load offset AddrMode AM = m; // For instruction aliases: define the complete list of type // suffixes at this size, and the canonical ones for loads and // stores. string MnemonicLetter = mn; int TypeBits = !shl(8, s); string CanonLoadSuffix = ".u" # TypeBits; string CanonStoreSuffix = "." # TypeBits; list suffixes = !foreach(letter, types, "." # letter # TypeBits); } // Instances of MVE_memsz. // // (memD doesn't need an AddrMode, because those are only for // contiguous loads, and memD is only used by gather/scatters.) def MVE_memB: MVE_memsz<0b00, 0, AddrModeT2_i7, "b", ["", "u", "s"]>; def MVE_memH: MVE_memsz<0b01, 1, AddrModeT2_i7s2, "h", ["", "u", "s", "f"]>; def MVE_memW: MVE_memsz<0b10, 2, AddrModeT2_i7s4, "w", ["", "u", "s", "f"]>; def MVE_memD: MVE_memsz<0b11, 3, ?, "d", ["", "u", "s", "f"]>; // This is the base class for all the MVE loads and stores other than // the interleaving ones. All the non-interleaving loads/stores share // the characteristic that they operate on just one vector register, // so they are VPT-predicable. // // The predication operand is vpred_n, for both loads and stores. For // store instructions, the reason is obvious: if there is no output // register, there can't be a need for an input parameter giving the // output register's previous value. Load instructions also don't need // that input parameter, because unlike MVE data processing // instructions, predicated loads are defined to set the inactive // lanes of the output register to zero, instead of preserving their // input values. class MVE_VLDRSTR_base vecsize, list pattern=[]> : MVE_p { bits<3> Qd; let Inst{28} = U; let Inst{25} = 0b0; let Inst{24} = P; let Inst{22} = 0b0; let Inst{21} = W; let Inst{20} = dir.load; let Inst{15-13} = Qd{2-0}; let Inst{12} = opc; let Inst{11-9} = 0b111; let mayLoad = dir.load; let mayStore = !eq(dir.load,0); let hasSideEffects = 0; let validForTailPredication = 1; } // Contiguous load and store instructions. These come in two main // categories: same-size loads/stores in which 128 bits of vector // register is transferred to or from 128 bits of memory in the most // obvious way, and widening loads / narrowing stores, in which the // size of memory accessed is less than the size of a vector register, // so the load instructions sign- or zero-extend each memory value // into a wider vector lane, and the store instructions truncate // correspondingly. // // The instruction mnemonics for these two classes look reasonably // similar, but the actual encodings are different enough to need two // separate base classes. // Contiguous, same size class MVE_VLDRSTR_cs : MVE_VLDRSTR_base { bits<12> addr; let Inst{23} = addr{7}; let Inst{19-16} = addr{11-8}; let Inst{8-7} = memsz.encoding; let Inst{6-0} = addr{6-0}; let IM = im; } // Contiguous, widening/narrowing class MVE_VLDRSTR_cw size, dag oops, dag iops, string asm, string suffix, IndexMode im, string ops, string cstr> : MVE_VLDRSTR_base { bits<11> addr; let Inst{23} = addr{7}; let Inst{19} = memsz.encoding{0}; // enough to tell 16- from 32-bit let Inst{18-16} = addr{10-8}; let Inst{8-7} = size; let Inst{6-0} = addr{6-0}; let IM = im; } // Multiclass wrapper on each of the _cw and _cs base classes, to // generate three writeback modes (none, preindex, postindex). multiclass MVE_VLDRSTR_cw_m size> { let AM = memsz.AM in { def "" : MVE_VLDRSTR_cw< dir, memsz, U, 1, 0, size, dir.Oops, !con(dir.Iops, (ins taddrmode_imm7:$addr)), asm, suffix, IndexModeNone, "$Qd, $addr", "">; def _pre : MVE_VLDRSTR_cw< dir, memsz, U, 1, 1, size, !con((outs tGPR:$wb), dir.Oops), !con(dir.Iops, (ins taddrmode_imm7:$addr)), asm, suffix, IndexModePre, "$Qd, $addr!", "$addr.base = $wb"> { let DecoderMethod = "DecodeMVE_MEM_1_pre<"#memsz.shift#">"; } def _post : MVE_VLDRSTR_cw< dir, memsz, U, 0, 1, size, !con((outs tGPR:$wb), dir.Oops), !con(dir.Iops, (ins t_addr_offset_none:$Rn, t2am_imm7_offset:$addr)), asm, suffix, IndexModePost, "$Qd, $Rn$addr", "$Rn.base = $wb"> { bits<4> Rn; let Inst{18-16} = Rn{2-0}; } } } multiclass MVE_VLDRSTR_cs_m { let AM = memsz.AM in { def "" : MVE_VLDRSTR_cs< dir, memsz, 1, 0, dir.Oops, !con(dir.Iops, (ins t2addrmode_imm7:$addr)), asm, suffix, IndexModeNone, "$Qd, $addr", "">; def _pre : MVE_VLDRSTR_cs< dir, memsz, 1, 1, !con((outs rGPR:$wb), dir.Oops), !con(dir.Iops, (ins t2addrmode_imm7_pre:$addr)), asm, suffix, IndexModePre, "$Qd, $addr!", "$addr.base = $wb"> { let DecoderMethod = "DecodeMVE_MEM_2_pre<"#memsz.shift#">"; } def _post : MVE_VLDRSTR_cs< dir, memsz, 0, 1, !con((outs rGPR:$wb), dir.Oops), !con(dir.Iops, (ins t2_nosp_addr_offset_none:$Rn, t2am_imm7_offset:$addr)), asm, suffix, IndexModePost, "$Qd, $Rn$addr", "$Rn.base = $wb"> { bits<4> Rn; let Inst{19-16} = Rn{3-0}; } } } // Now actually declare all the contiguous load/stores, via those // multiclasses. The instruction ids coming out of this are the bare // names shown in the defm, with _pre or _post appended for writeback, // e.g. MVE_VLDRBS16, MVE_VSTRB16_pre, MVE_VSTRHU16_post. defm MVE_VLDRBS16: MVE_VLDRSTR_cw_m; defm MVE_VLDRBS32: MVE_VLDRSTR_cw_m; defm MVE_VLDRBU16: MVE_VLDRSTR_cw_m; defm MVE_VLDRBU32: MVE_VLDRSTR_cw_m; defm MVE_VLDRHS32: MVE_VLDRSTR_cw_m; defm MVE_VLDRHU32: MVE_VLDRSTR_cw_m; defm MVE_VLDRBU8: MVE_VLDRSTR_cs_m; defm MVE_VLDRHU16: MVE_VLDRSTR_cs_m; defm MVE_VLDRWU32: MVE_VLDRSTR_cs_m; defm MVE_VSTRB16: MVE_VLDRSTR_cw_m; defm MVE_VSTRB32: MVE_VLDRSTR_cw_m; defm MVE_VSTRH32: MVE_VLDRSTR_cw_m; defm MVE_VSTRBU8 : MVE_VLDRSTR_cs_m; defm MVE_VSTRHU16: MVE_VLDRSTR_cs_m; defm MVE_VSTRWU32: MVE_VLDRSTR_cs_m; // Gather loads / scatter stores whose address operand is of the form // [Rn,Qm], i.e. a single GPR as the common base address, plus a // vector of offset from it. ('Load/store this sequence of elements of // the same array.') // // Like the contiguous family, these loads and stores can widen the // loaded values / truncate the stored ones, or they can just // load/store the same size of memory and vector lane. But unlike the // contiguous family, there's no particular difference in encoding // between those two cases. // // This family also comes with the option to scale the offset values // in Qm by the size of the loaded memory (i.e. to treat them as array // indices), or not to scale them (to treat them as plain byte offsets // in memory, so that perhaps the loaded values are unaligned). The // scaled instructions' address operand in assembly looks like // [Rn,Qm,UXTW #2] or similar. // Base class. class MVE_VLDRSTR_rq size, bit os, string asm, string suffix, int shift> : MVE_VLDRSTR_base:$addr)), asm, suffix, "$Qd, $addr", dir.cstr, size> { bits<7> addr; let Inst{23} = 0b1; let Inst{19-16} = addr{6-3}; let Inst{8-7} = size; let Inst{6} = memsz.encoding{1}; let Inst{5} = 0; let Inst{4} = memsz.encoding{0}; let Inst{3-1} = addr{2-0}; let Inst{0} = os; } // Multiclass that defines the scaled and unscaled versions of an // instruction, when the memory size is wider than a byte. The scaled // version gets the default name like MVE_VLDRBU16_rq; the unscaled / // potentially unaligned version gets a "_u" suffix, e.g. // MVE_VLDRBU16_rq_u. multiclass MVE_VLDRSTR_rq_w size> { def _u : MVE_VLDRSTR_rq; def "" : MVE_VLDRSTR_rq; } // Subclass of MVE_VLDRSTR_rq with the same API as that multiclass, // for use when the memory size is one byte, so there's no 'scaled' // version of the instruction at all. (This is encoded as if it were // unscaled, but named in the default way with no _u suffix.) class MVE_VLDRSTR_rq_b size> : MVE_VLDRSTR_rq; // Multiclasses wrapping that to add ISel patterns for intrinsics. multiclass MVE_VLDR_rq_w VTIs> { defm "": MVE_VLDRSTR_rq_w; defvar Inst = !cast(NAME); defvar InstU = !cast(NAME # "_u"); foreach VTI = VTIs in foreach UnsignedFlag = !if(!eq(VTI.Size, memsz.encoding), [0,1], [VTI.Unsigned]) in { def : Pat<(VTI.Vec (int_arm_mve_vldr_gather_offset GPR:$base, (VTIs[0].Vec MQPR:$offsets), memsz.TypeBits, 0, UnsignedFlag)), (VTI.Vec (InstU GPR:$base, MQPR:$offsets))>; def : Pat<(VTI.Vec (int_arm_mve_vldr_gather_offset GPR:$base, (VTIs[0].Vec MQPR:$offsets), memsz.TypeBits, memsz.shift, UnsignedFlag)), (VTI.Vec (Inst GPR:$base, MQPR:$offsets))>; def : Pat<(VTI.Vec (int_arm_mve_vldr_gather_offset_predicated GPR:$base, (VTIs[0].Vec MQPR:$offsets), memsz.TypeBits, 0, UnsignedFlag, (VTI.Pred VCCR:$pred))), (VTI.Vec (InstU GPR:$base, MQPR:$offsets, ARMVCCThen, VCCR:$pred, zero_reg))>; def : Pat<(VTI.Vec (int_arm_mve_vldr_gather_offset_predicated GPR:$base, (VTIs[0].Vec MQPR:$offsets), memsz.TypeBits, memsz.shift, UnsignedFlag, (VTI.Pred VCCR:$pred))), (VTI.Vec (Inst GPR:$base, MQPR:$offsets, ARMVCCThen, VCCR:$pred, zero_reg))>; } } multiclass MVE_VLDR_rq_b VTIs> { def "": MVE_VLDRSTR_rq_b; defvar Inst = !cast(NAME); foreach VTI = VTIs in { def : Pat<(VTI.Vec (int_arm_mve_vldr_gather_offset GPR:$base, (VTIs[0].Vec MQPR:$offsets), 8, 0, VTI.Unsigned)), (VTI.Vec (Inst GPR:$base, MQPR:$offsets))>; def : Pat<(VTI.Vec (int_arm_mve_vldr_gather_offset_predicated GPR:$base, (VTIs[0].Vec MQPR:$offsets), 8, 0, VTI.Unsigned, (VTI.Pred VCCR:$pred))), (VTI.Vec (Inst GPR:$base, MQPR:$offsets, ARMVCCThen, VCCR:$pred, zero_reg))>; } } multiclass MVE_VSTR_rq_w VTIs> { defm "": MVE_VLDRSTR_rq_w; defvar Inst = !cast(NAME); defvar InstU = !cast(NAME # "_u"); foreach VTI = VTIs in { def : Pat<(int_arm_mve_vstr_scatter_offset GPR:$base, (VTIs[0].Vec MQPR:$offsets), (VTI.Vec MQPR:$data), memsz.TypeBits, 0), (InstU MQPR:$data, GPR:$base, MQPR:$offsets)>; def : Pat<(int_arm_mve_vstr_scatter_offset GPR:$base, (VTIs[0].Vec MQPR:$offsets), (VTI.Vec MQPR:$data), memsz.TypeBits, memsz.shift), (Inst MQPR:$data, GPR:$base, MQPR:$offsets)>; def : Pat<(int_arm_mve_vstr_scatter_offset_predicated GPR:$base, (VTIs[0].Vec MQPR:$offsets), (VTI.Vec MQPR:$data), memsz.TypeBits, 0, (VTI.Pred VCCR:$pred)), (InstU MQPR:$data, GPR:$base, MQPR:$offsets, ARMVCCThen, VCCR:$pred, zero_reg)>; def : Pat<(int_arm_mve_vstr_scatter_offset_predicated GPR:$base, (VTIs[0].Vec MQPR:$offsets), (VTI.Vec MQPR:$data), memsz.TypeBits, memsz.shift, (VTI.Pred VCCR:$pred)), (Inst MQPR:$data, GPR:$base, MQPR:$offsets, ARMVCCThen, VCCR:$pred, zero_reg)>; } } multiclass MVE_VSTR_rq_b VTIs> { def "": MVE_VLDRSTR_rq_b; defvar Inst = !cast(NAME); foreach VTI = VTIs in { def : Pat<(int_arm_mve_vstr_scatter_offset GPR:$base, (VTIs[0].Vec MQPR:$offsets), (VTI.Vec MQPR:$data), 8, 0), (Inst MQPR:$data, GPR:$base, MQPR:$offsets)>; def : Pat<(int_arm_mve_vstr_scatter_offset_predicated GPR:$base, (VTIs[0].Vec MQPR:$offsets), (VTI.Vec MQPR:$data), 8, 0, (VTI.Pred VCCR:$pred)), (Inst MQPR:$data, GPR:$base, MQPR:$offsets, ARMVCCThen, VCCR:$pred, zero_reg)>; } } // Actually define all the loads and stores in this family. defm MVE_VLDRBU8_rq : MVE_VLDR_rq_b<[MVE_v16u8,MVE_v16s8]>; defm MVE_VLDRBU16_rq: MVE_VLDR_rq_b<[MVE_v8u16]>; defm MVE_VLDRBS16_rq: MVE_VLDR_rq_b<[MVE_v8s16]>; defm MVE_VLDRBU32_rq: MVE_VLDR_rq_b<[MVE_v4u32]>; defm MVE_VLDRBS32_rq: MVE_VLDR_rq_b<[MVE_v4s32]>; defm MVE_VLDRHU16_rq: MVE_VLDR_rq_w; defm MVE_VLDRHU32_rq: MVE_VLDR_rq_w; defm MVE_VLDRHS32_rq: MVE_VLDR_rq_w; defm MVE_VLDRWU32_rq: MVE_VLDR_rq_w; defm MVE_VLDRDU64_rq: MVE_VLDR_rq_w; defm MVE_VSTRB8_rq : MVE_VSTR_rq_b<[MVE_v16i8]>; defm MVE_VSTRB16_rq : MVE_VSTR_rq_b<[MVE_v8i16]>; defm MVE_VSTRB32_rq : MVE_VSTR_rq_b<[MVE_v4i32]>; defm MVE_VSTRH16_rq : MVE_VSTR_rq_w; defm MVE_VSTRH32_rq : MVE_VSTR_rq_w; defm MVE_VSTRW32_rq : MVE_VSTR_rq_w; defm MVE_VSTRD64_rq : MVE_VSTR_rq_w; // Gather loads / scatter stores whose address operand is of the form // [Qm,#imm], i.e. a vector containing a full base address for each // loaded item, plus an immediate offset applied consistently to all // of them. ('Load/store the same field from this vector of pointers // to a structure type.') // // This family requires the vector lane size to be at least 32 bits // (so there's room for an address in each lane at all). It has no // widening/narrowing variants. But it does support preindex // writeback, in which the address vector is updated to hold the // addresses actually loaded from. // Base class. class MVE_VLDRSTR_qi : MVE_VLDRSTR_base:$addr)), asm, suffix, "$Qd, $addr" # wbAsm, cstr # dir.cstr, memsz.encoding> { bits<11> addr; let Inst{23} = addr{7}; let Inst{19-17} = addr{10-8}; let Inst{16} = 0; let Inst{8} = memsz.encoding{0}; // enough to distinguish 32- from 64-bit let Inst{7} = 0; let Inst{6-0} = addr{6-0}; } // Multiclass that generates the non-writeback and writeback variants. multiclass MVE_VLDRSTR_qi_m { def "" : MVE_VLDRSTR_qi; def _pre : MVE_VLDRSTR_qi { let DecoderMethod="DecodeMVE_MEM_3_pre<"#memsz.shift#">"; } } // Multiclasses wrapping that one, adding selection patterns for the // non-writeback loads and all the stores. (The writeback loads must // deliver multiple output values, so they have to be selected by C++ // code.) multiclass MVE_VLDR_qi DVTIs> { defm "" : MVE_VLDRSTR_qi_m; defvar Inst = !cast(NAME); foreach DVTI = DVTIs in { def : Pat<(DVTI.Vec (int_arm_mve_vldr_gather_base (AVTI.Vec MQPR:$addr), (i32 imm:$offset))), (DVTI.Vec (Inst (AVTI.Vec MQPR:$addr), (i32 imm:$offset)))>; def : Pat<(DVTI.Vec (int_arm_mve_vldr_gather_base_predicated (AVTI.Vec MQPR:$addr), (i32 imm:$offset), (AVTI.Pred VCCR:$pred))), (DVTI.Vec (Inst (AVTI.Vec MQPR:$addr), (i32 imm:$offset), ARMVCCThen, VCCR:$pred, zero_reg))>; } } multiclass MVE_VSTR_qi DVTIs> { defm "" : MVE_VLDRSTR_qi_m(memsz.TypeBits)>; defvar Inst = !cast(NAME); defvar InstPre = !cast(NAME # "_pre"); foreach DVTI = DVTIs in { def : Pat<(int_arm_mve_vstr_scatter_base (AVTI.Vec MQPR:$addr), (i32 imm:$offset), (DVTI.Vec MQPR:$data)), (Inst (DVTI.Vec MQPR:$data), (AVTI.Vec MQPR:$addr), (i32 imm:$offset))>; def : Pat<(int_arm_mve_vstr_scatter_base_predicated (AVTI.Vec MQPR:$addr), (i32 imm:$offset), (DVTI.Vec MQPR:$data), (AVTI.Pred VCCR:$pred)), (Inst (DVTI.Vec MQPR:$data), (AVTI.Vec MQPR:$addr), (i32 imm:$offset), ARMVCCThen, VCCR:$pred, zero_reg)>; def : Pat<(AVTI.Vec (int_arm_mve_vstr_scatter_base_wb (AVTI.Vec MQPR:$addr), (i32 imm:$offset), (DVTI.Vec MQPR:$data))), (AVTI.Vec (InstPre (DVTI.Vec MQPR:$data), (AVTI.Vec MQPR:$addr), (i32 imm:$offset)))>; def : Pat<(AVTI.Vec (int_arm_mve_vstr_scatter_base_wb_predicated (AVTI.Vec MQPR:$addr), (i32 imm:$offset), (DVTI.Vec MQPR:$data), (AVTI.Pred VCCR:$pred))), (AVTI.Vec (InstPre (DVTI.Vec MQPR:$data), (AVTI.Vec MQPR:$addr), (i32 imm:$offset), ARMVCCThen, VCCR:$pred, zero_reg))>; } } // Actual instruction definitions. defm MVE_VLDRWU32_qi: MVE_VLDR_qi; defm MVE_VLDRDU64_qi: MVE_VLDR_qi; defm MVE_VSTRW32_qi: MVE_VSTR_qi; defm MVE_VSTRD64_qi: MVE_VSTR_qi; // Define aliases for all the instructions where memory size and // vector lane size are the same. These are mnemonic aliases, so they // apply consistently across all of the above families - contiguous // loads, and both the rq and qi types of gather/scatter. // // Rationale: As long as you're loading (for example) 16-bit memory // values into 16-bit vector lanes, you can think of them as signed or // unsigned integers, fp16 or just raw 16-bit blobs and it makes no // difference. So we permit all of vldrh.16, vldrh.u16, vldrh.s16, // vldrh.f16 and treat them all as equivalent to the canonical // spelling (which happens to be .u16 for loads, and just .16 for // stores). foreach vpt_cond = ["", "t", "e"] in foreach memsz = [MVE_memB, MVE_memH, MVE_memW, MVE_memD] in foreach suffix = memsz.suffixes in { // Define an alias with every suffix in the list, except for the one // used by the real Instruction record (i.e. the one that all the // rest are aliases *for*). if !ne(suffix, memsz.CanonLoadSuffix) then { def : MnemonicAlias< "vldr" # memsz.MnemonicLetter # vpt_cond # suffix, "vldr" # memsz.MnemonicLetter # vpt_cond # memsz.CanonLoadSuffix>; } if !ne(suffix, memsz.CanonStoreSuffix) then { def : MnemonicAlias< "vstr" # memsz.MnemonicLetter # vpt_cond # suffix, "vstr" # memsz.MnemonicLetter # vpt_cond # memsz.CanonStoreSuffix>; } } // end of MVE predicable load/store class MVE_VPT size, dag iops, string asm, list pattern=[]> : MVE_MI<(outs ), iops, NoItinerary, !strconcat("vpt", "${Mk}", ".", suffix), asm, "", size, pattern> { bits<3> fc; bits<4> Mk; bits<3> Qn; let Inst{31-23} = 0b111111100; let Inst{22} = Mk{3}; let Inst{21-20} = size; let Inst{19-17} = Qn{2-0}; let Inst{16} = 0b1; let Inst{15-13} = Mk{2-0}; let Inst{12} = fc{2}; let Inst{11-8} = 0b1111; let Inst{7} = fc{0}; let Inst{4} = 0b0; let Defs = [VPR]; let validForTailPredication=1; } class MVE_VPTt1 size, dag iops> : MVE_VPT { bits<4> Qm; bits<4> Mk; let Inst{6} = 0b0; let Inst{5} = Qm{3}; let Inst{3-1} = Qm{2-0}; let Inst{0} = fc{1}; } class MVE_VPTt1i size> : MVE_VPTt1 { let Inst{12} = 0b0; let Inst{0} = 0b0; } def MVE_VPTv4i32 : MVE_VPTt1i<"i32", 0b10>; def MVE_VPTv8i16 : MVE_VPTt1i<"i16", 0b01>; def MVE_VPTv16i8 : MVE_VPTt1i<"i8", 0b00>; class MVE_VPTt1u size> : MVE_VPTt1 { let Inst{12} = 0b0; let Inst{0} = 0b1; } def MVE_VPTv4u32 : MVE_VPTt1u<"u32", 0b10>; def MVE_VPTv8u16 : MVE_VPTt1u<"u16", 0b01>; def MVE_VPTv16u8 : MVE_VPTt1u<"u8", 0b00>; class MVE_VPTt1s size> : MVE_VPTt1 { let Inst{12} = 0b1; } def MVE_VPTv4s32 : MVE_VPTt1s<"s32", 0b10>; def MVE_VPTv8s16 : MVE_VPTt1s<"s16", 0b01>; def MVE_VPTv16s8 : MVE_VPTt1s<"s8", 0b00>; class MVE_VPTt2 size, dag iops> : MVE_VPT { bits<4> Rm; bits<3> fc; bits<4> Mk; let Inst{6} = 0b1; let Inst{5} = fc{1}; let Inst{3-0} = Rm{3-0}; } class MVE_VPTt2i size> : MVE_VPTt2 { let Inst{12} = 0b0; let Inst{5} = 0b0; } def MVE_VPTv4i32r : MVE_VPTt2i<"i32", 0b10>; def MVE_VPTv8i16r : MVE_VPTt2i<"i16", 0b01>; def MVE_VPTv16i8r : MVE_VPTt2i<"i8", 0b00>; class MVE_VPTt2u size> : MVE_VPTt2 { let Inst{12} = 0b0; let Inst{5} = 0b1; } def MVE_VPTv4u32r : MVE_VPTt2u<"u32", 0b10>; def MVE_VPTv8u16r : MVE_VPTt2u<"u16", 0b01>; def MVE_VPTv16u8r : MVE_VPTt2u<"u8", 0b00>; class MVE_VPTt2s size> : MVE_VPTt2 { let Inst{12} = 0b1; } def MVE_VPTv4s32r : MVE_VPTt2s<"s32", 0b10>; def MVE_VPTv8s16r : MVE_VPTt2s<"s16", 0b01>; def MVE_VPTv16s8r : MVE_VPTt2s<"s8", 0b00>; class MVE_VPTf pattern=[]> : MVE_MI<(outs ), iops, NoItinerary, !strconcat("vpt", "${Mk}", ".", suffix), asm, "", !if(size, 0b01, 0b10), pattern> { bits<3> fc; bits<4> Mk; bits<3> Qn; let Inst{31-29} = 0b111; let Inst{28} = size; let Inst{27-23} = 0b11100; let Inst{22} = Mk{3}; let Inst{21-20} = 0b11; let Inst{19-17} = Qn{2-0}; let Inst{16} = 0b1; let Inst{15-13} = Mk{2-0}; let Inst{12} = fc{2}; let Inst{11-8} = 0b1111; let Inst{7} = fc{0}; let Inst{4} = 0b0; let Defs = [VPR]; let Predicates = [HasMVEFloat]; let validForTailPredication=1; } class MVE_VPTft1 : MVE_VPTf { bits<3> fc; bits<4> Qm; let Inst{6} = 0b0; let Inst{5} = Qm{3}; let Inst{3-1} = Qm{2-0}; let Inst{0} = fc{1}; } def MVE_VPTv4f32 : MVE_VPTft1<"f32", 0b0>; def MVE_VPTv8f16 : MVE_VPTft1<"f16", 0b1>; class MVE_VPTft2 : MVE_VPTf { bits<3> fc; bits<4> Rm; let Inst{6} = 0b1; let Inst{5} = fc{1}; let Inst{3-0} = Rm{3-0}; } def MVE_VPTv4f32r : MVE_VPTft2<"f32", 0b0>; def MVE_VPTv8f16r : MVE_VPTft2<"f16", 0b1>; def MVE_VPST : MVE_MI<(outs ), (ins vpt_mask:$Mk), NoItinerary, !strconcat("vpst", "${Mk}"), "", "", 0b00, []> { bits<4> Mk; let Inst{31-23} = 0b111111100; let Inst{22} = Mk{3}; let Inst{21-16} = 0b110001; let Inst{15-13} = Mk{2-0}; let Inst{12-0} = 0b0111101001101; let Unpredictable{12} = 0b1; let Unpredictable{7} = 0b1; let Unpredictable{5} = 0b1; let Uses = [VPR]; let validForTailPredication = 1; } def MVE_VPSEL : MVE_p<(outs MQPR:$Qd), (ins MQPR:$Qn, MQPR:$Qm), NoItinerary, "vpsel", "", "$Qd, $Qn, $Qm", vpred_n, "", 0b00, []> { bits<4> Qn; bits<4> Qd; bits<4> Qm; let Inst{28} = 0b1; let Inst{25-23} = 0b100; let Inst{22} = Qd{3}; let Inst{21-20} = 0b11; let Inst{19-17} = Qn{2-0}; let Inst{16} = 0b1; let Inst{15-13} = Qd{2-0}; let Inst{12-9} = 0b0111; let Inst{8} = 0b1; let Inst{7} = Qn{3}; let Inst{6} = 0b0; let Inst{5} = Qm{3}; let Inst{4} = 0b0; let Inst{3-1} = Qm{2-0}; let Inst{0} = 0b1; } foreach suffix = ["s8", "s16", "s32", "u8", "u16", "u32", "i8", "i16", "i32", "f16", "f32"] in def : MVEInstAlias<"vpsel${vp}." # suffix # "\t$Qd, $Qn, $Qm", (MVE_VPSEL MQPR:$Qd, MQPR:$Qn, MQPR:$Qm, vpred_n:$vp)>; let Predicates = [HasMVEInt] in { def : Pat<(v16i8 (vselect (v16i1 VCCR:$pred), (v16i8 MQPR:$v1), (v16i8 MQPR:$v2))), (v16i8 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v8i16 (vselect (v8i1 VCCR:$pred), (v8i16 MQPR:$v1), (v8i16 MQPR:$v2))), (v8i16 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v4i32 (vselect (v4i1 VCCR:$pred), (v4i32 MQPR:$v1), (v4i32 MQPR:$v2))), (v4i32 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v2i64 (vselect (v2i1 VCCR:$pred), (v2i64 MQPR:$v1), (v2i64 MQPR:$v2))), (v2i64 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v8f16 (vselect (v8i1 VCCR:$pred), (v8f16 MQPR:$v1), (v8f16 MQPR:$v2))), (v8f16 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v4f32 (vselect (v4i1 VCCR:$pred), (v4f32 MQPR:$v1), (v4f32 MQPR:$v2))), (v4f32 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v2f64 (vselect (v2i1 VCCR:$pred), (v2f64 MQPR:$v1), (v2f64 MQPR:$v2))), (v2f64 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v16i8 (vselect (v16i8 MQPR:$pred), (v16i8 MQPR:$v1), (v16i8 MQPR:$v2))), (v16i8 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, (MVE_VCMPi8 (v16i8 MQPR:$pred), (MVE_VMOVimmi8 0), ARMCCne), zero_reg))>; def : Pat<(v8i16 (vselect (v8i16 MQPR:$pred), (v8i16 MQPR:$v1), (v8i16 MQPR:$v2))), (v8i16 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, (MVE_VCMPi16 (v8i16 MQPR:$pred), (MVE_VMOVimmi16 0), ARMCCne), zero_reg))>; def : Pat<(v4i32 (vselect (v4i32 MQPR:$pred), (v4i32 MQPR:$v1), (v4i32 MQPR:$v2))), (v4i32 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, (MVE_VCMPi32 (v4i32 MQPR:$pred), (MVE_VMOVimmi32 0), ARMCCne), zero_reg))>; def : Pat<(v8f16 (vselect (v8i16 MQPR:$pred), (v8f16 MQPR:$v1), (v8f16 MQPR:$v2))), (v8f16 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, (MVE_VCMPi16 (v8i16 MQPR:$pred), (MVE_VMOVimmi16 0), ARMCCne), zero_reg))>; def : Pat<(v4f32 (vselect (v4i32 MQPR:$pred), (v4f32 MQPR:$v1), (v4f32 MQPR:$v2))), (v4f32 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, (MVE_VCMPi32 (v4i32 MQPR:$pred), (MVE_VMOVimmi32 0), ARMCCne), zero_reg))>; // Pred <-> Int def : Pat<(v16i8 (zext (v16i1 VCCR:$pred))), (v16i8 (MVE_VPSEL (MVE_VMOVimmi8 1), (MVE_VMOVimmi8 0), ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v8i16 (zext (v8i1 VCCR:$pred))), (v8i16 (MVE_VPSEL (MVE_VMOVimmi16 1), (MVE_VMOVimmi16 0), ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v4i32 (zext (v4i1 VCCR:$pred))), (v4i32 (MVE_VPSEL (MVE_VMOVimmi32 1), (MVE_VMOVimmi32 0), ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v2i64 (zext (v2i1 VCCR:$pred))), (v2i64 (MVE_VPSEL (MVE_VMOVimmi64 1), (MVE_VMOVimmi32 0), ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v16i8 (sext (v16i1 VCCR:$pred))), (v16i8 (MVE_VPSEL (MVE_VMOVimmi8 255), (MVE_VMOVimmi8 0), ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v8i16 (sext (v8i1 VCCR:$pred))), (v8i16 (MVE_VPSEL (MVE_VMOVimmi8 255), (MVE_VMOVimmi16 0), ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v4i32 (sext (v4i1 VCCR:$pred))), (v4i32 (MVE_VPSEL (MVE_VMOVimmi8 255), (MVE_VMOVimmi32 0), ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v2i64 (sext (v2i1 VCCR:$pred))), (v2i64 (MVE_VPSEL (MVE_VMOVimmi8 255), (MVE_VMOVimmi32 0), ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v16i8 (anyext (v16i1 VCCR:$pred))), (v16i8 (MVE_VPSEL (MVE_VMOVimmi8 1), (MVE_VMOVimmi8 0), ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v8i16 (anyext (v8i1 VCCR:$pred))), (v8i16 (MVE_VPSEL (MVE_VMOVimmi16 1), (MVE_VMOVimmi16 0), ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v4i32 (anyext (v4i1 VCCR:$pred))), (v4i32 (MVE_VPSEL (MVE_VMOVimmi32 1), (MVE_VMOVimmi32 0), ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v2i64 (anyext (v2i1 VCCR:$pred))), (v2i64 (MVE_VPSEL (MVE_VMOVimmi64 1), (MVE_VMOVimmi32 0), ARMVCCNone, VCCR:$pred, zero_reg))>; } let Predicates = [HasMVEFloat] in { // Pred <-> Float // 112 is 1.0 in float def : Pat<(v4f32 (uint_to_fp (v4i1 VCCR:$pred))), (v4f32 (MVE_VPSEL (v4f32 (MVE_VMOVimmf32 112)), (v4f32 (MVE_VMOVimmi32 0)), ARMVCCNone, VCCR:$pred, zero_reg))>; // 2620 in 1.0 in half def : Pat<(v8f16 (uint_to_fp (v8i1 VCCR:$pred))), (v8f16 (MVE_VPSEL (v8f16 (MVE_VMOVimmi16 2620)), (v8f16 (MVE_VMOVimmi16 0)), ARMVCCNone, VCCR:$pred, zero_reg))>; // 240 is -1.0 in float def : Pat<(v4f32 (sint_to_fp (v4i1 VCCR:$pred))), (v4f32 (MVE_VPSEL (v4f32 (MVE_VMOVimmf32 240)), (v4f32 (MVE_VMOVimmi32 0)), ARMVCCNone, VCCR:$pred, zero_reg))>; // 2748 is -1.0 in half def : Pat<(v8f16 (sint_to_fp (v8i1 VCCR:$pred))), (v8f16 (MVE_VPSEL (v8f16 (MVE_VMOVimmi16 2748)), (v8f16 (MVE_VMOVimmi16 0)), ARMVCCNone, VCCR:$pred, zero_reg))>; def : Pat<(v4i1 (fp_to_uint (v4f32 MQPR:$v1))), (v4i1 (MVE_VCMPf32r (v4f32 MQPR:$v1), ZR, ARMCCne))>; def : Pat<(v8i1 (fp_to_uint (v8f16 MQPR:$v1))), (v8i1 (MVE_VCMPf16r (v8f16 MQPR:$v1), ZR, ARMCCne))>; def : Pat<(v4i1 (fp_to_sint (v4f32 MQPR:$v1))), (v4i1 (MVE_VCMPf32r (v4f32 MQPR:$v1), ZR, ARMCCne))>; def : Pat<(v8i1 (fp_to_sint (v8f16 MQPR:$v1))), (v8i1 (MVE_VCMPf16r (v8f16 MQPR:$v1), ZR, ARMCCne))>; } def MVE_VPNOT : MVE_p<(outs VCCR:$P0), (ins VCCR:$P0_in), NoItinerary, "vpnot", "", "", vpred_n, "", 0b00, []> { let Inst{31-0} = 0b11111110001100010000111101001101; let Unpredictable{19-17} = 0b111; let Unpredictable{12} = 0b1; let Unpredictable{7} = 0b1; let Unpredictable{5} = 0b1; let Constraints = ""; let DecoderMethod = "DecodeMVEVPNOT"; } let Predicates = [HasMVEInt] in { def : Pat<(v2i1 (xor (v2i1 VCCR:$pred), (v2i1 (predicate_cast (i32 65535))))), (v2i1 (MVE_VPNOT (v2i1 VCCR:$pred)))>; def : Pat<(v4i1 (xor (v4i1 VCCR:$pred), (v4i1 (predicate_cast (i32 65535))))), (v4i1 (MVE_VPNOT (v4i1 VCCR:$pred)))>; def : Pat<(v8i1 (xor (v8i1 VCCR:$pred), (v8i1 (predicate_cast (i32 65535))))), (v8i1 (MVE_VPNOT (v8i1 VCCR:$pred)))>; def : Pat<(v16i1 (xor (v16i1 VCCR:$pred), (v16i1 (predicate_cast (i32 65535))))), (v16i1 (MVE_VPNOT (v16i1 VCCR:$pred)))>; } class MVE_loltp_start size> : t2LOL<(outs GPRlr:$LR), iops, asm, ops> { bits<4> Rn; let Predicates = [HasMVEInt]; let Inst{22} = 0b0; let Inst{21-20} = size; let Inst{19-16} = Rn{3-0}; let Inst{12} = 0b0; } class MVE_DLSTP size> : MVE_loltp_start<(ins rGPR:$Rn), asm, "$LR, $Rn", size> { let Inst{13} = 0b1; let Inst{11-1} = 0b00000000000; let Unpredictable{10-1} = 0b1111111111; } class MVE_WLSTP size> : MVE_loltp_start<(ins rGPR:$Rn, wlslabel_u11:$label), asm, "$LR, $Rn, $label", size> { bits<11> label; let Inst{13} = 0b0; let Inst{11} = label{0}; let Inst{10-1} = label{10-1}; let isBranch = 1; let isTerminator = 1; } def SDT_MVEMEMCPYLOOPNODE : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisPtrTy<1>, SDTCisVT<2, i32>]>; def MVE_MEMCPYLOOPNODE : SDNode<"ARMISD::MEMCPYLOOP", SDT_MVEMEMCPYLOOPNODE, [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>; let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Defs = [CPSR] in { def MVE_MEMCPYLOOPINST : PseudoInst<(outs), (ins rGPR:$dst, rGPR:$src, rGPR:$sz), NoItinerary, [(MVE_MEMCPYLOOPNODE rGPR:$dst, rGPR:$src, rGPR:$sz)]>; } def SDT_MVEMEMSETLOOPNODE : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisVT<1, v16i8>, SDTCisVT<2, i32>]>; def MVE_MEMSETLOOPNODE : SDNode<"ARMISD::MEMSETLOOP", SDT_MVEMEMSETLOOPNODE, [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>; let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Defs = [CPSR] in { def MVE_MEMSETLOOPINST : PseudoInst<(outs), (ins rGPR:$dst, MQPR:$src, rGPR:$sz), NoItinerary, [(MVE_MEMSETLOOPNODE rGPR:$dst, MQPR:$src, rGPR:$sz)]>; } def MVE_DLSTP_8 : MVE_DLSTP<"dlstp.8", 0b00>; def MVE_DLSTP_16 : MVE_DLSTP<"dlstp.16", 0b01>; def MVE_DLSTP_32 : MVE_DLSTP<"dlstp.32", 0b10>; def MVE_DLSTP_64 : MVE_DLSTP<"dlstp.64", 0b11>; def MVE_WLSTP_8 : MVE_WLSTP<"wlstp.8", 0b00>; def MVE_WLSTP_16 : MVE_WLSTP<"wlstp.16", 0b01>; def MVE_WLSTP_32 : MVE_WLSTP<"wlstp.32", 0b10>; def MVE_WLSTP_64 : MVE_WLSTP<"wlstp.64", 0b11>; class MVE_loltp_end : t2LOL { let Predicates = [HasMVEInt]; let Inst{22-21} = 0b00; let Inst{19-16} = 0b1111; let Inst{12} = 0b0; } def MVE_LETP : MVE_loltp_end<(outs GPRlr:$LRout), (ins GPRlr:$LRin, lelabel_u11:$label), "letp", "$LRin, $label"> { bits<11> label; let Inst{20} = 0b1; let Inst{13} = 0b0; let Inst{11} = label{0}; let Inst{10-1} = label{10-1}; let isBranch = 1; let isTerminator = 1; } def MVE_LCTP : MVE_loltp_end<(outs), (ins pred:$p), "lctp${p}", ""> { let Inst{20} = 0b0; let Inst{13} = 0b1; let Inst{11-1} = 0b00000000000; let Unpredictable{21-20} = 0b11; let Unpredictable{11-1} = 0b11111111111; } // Pseudo instructions for lowering MQQPR and MQQQQPR stack spills and reloads. // They are equivalent to VLDMDIA/VSTMDIA with a single reg, as opposed to multiple // dreg subregs. let Predicates = [HasMVEInt], AM = AddrMode4 in { let mayStore = 1, hasSideEffects = 0 in { def MQQPRStore : t2PseudoInst<(outs), (ins MQQPR:$val, GPRnopc:$ptr), 4, NoItinerary, []>; def MQQQQPRStore : t2PseudoInst<(outs), (ins MQQQQPR:$val, GPRnopc:$ptr), 4, NoItinerary, []>; } let mayLoad = 1, hasSideEffects = 0 in { def MQQPRLoad : t2PseudoInst<(outs MQQPR:$val), (ins GPRnopc:$ptr), 4, NoItinerary, []>; def MQQQQPRLoad : t2PseudoInst<(outs MQQQQPR:$val), (ins GPRnopc:$ptr), 4, NoItinerary, []>; } } // Pseudo for lowering MVE Q register COPYs. These will usually get converted // to a "MVE_VORR dst, src, src", but may behave differently in tail predicated // loops to ensure the whole register is copied, not a subset from a // tail-predicated MVE_VORR. In the event we cannot prove a MVE_VORR is valid, // it will become a pair of VMOVD instructions for each half of the Q register. let Predicates = [HasMVEInt], hasSideEffects = 0, isMoveReg = 1, D = MVEDomain in { def MQPRCopy : t2PseudoInst<(outs MQPR:$dst), (ins MQPR:$src), 8, NoItinerary, []>; } //===----------------------------------------------------------------------===// // Patterns //===----------------------------------------------------------------------===// // PatFrags for loads and stores. Often trying to keep semi-consistent names. def aligned32_pre_store : PatFrag<(ops node:$val, node:$ptr, node:$offset), (pre_store node:$val, node:$ptr, node:$offset), [{ return cast(N)->getAlignment() >= 4; }]>; def aligned32_post_store : PatFrag<(ops node:$val, node:$ptr, node:$offset), (post_store node:$val, node:$ptr, node:$offset), [{ return cast(N)->getAlignment() >= 4; }]>; def aligned16_pre_store : PatFrag<(ops node:$val, node:$ptr, node:$offset), (pre_store node:$val, node:$ptr, node:$offset), [{ return cast(N)->getAlignment() >= 2; }]>; def aligned16_post_store : PatFrag<(ops node:$val, node:$ptr, node:$offset), (post_store node:$val, node:$ptr, node:$offset), [{ return cast(N)->getAlignment() >= 2; }]>; def aligned_maskedloadvi8 : PatFrag<(ops node:$ptr, node:$pred, node:$passthru), (masked_ld node:$ptr, undef, node:$pred, node:$passthru), [{ auto *Ld = cast(N); return Ld->getMemoryVT().getScalarType() == MVT::i8; }]>; def aligned_sextmaskedloadvi8 : PatFrag<(ops node:$ptr, node:$pred, node:$passthru), (aligned_maskedloadvi8 node:$ptr, node:$pred, node:$passthru), [{ return cast(N)->getExtensionType() == ISD::SEXTLOAD; }]>; def aligned_zextmaskedloadvi8 : PatFrag<(ops node:$ptr, node:$pred, node:$passthru), (aligned_maskedloadvi8 node:$ptr, node:$pred, node:$passthru), [{ return cast(N)->getExtensionType() == ISD::ZEXTLOAD; }]>; def aligned_extmaskedloadvi8 : PatFrag<(ops node:$ptr, node:$pred, node:$passthru), (aligned_maskedloadvi8 node:$ptr, node:$pred, node:$passthru), [{ auto *Ld = cast(N); EVT ScalarVT = Ld->getMemoryVT().getScalarType(); return ScalarVT.isInteger() && Ld->getExtensionType() == ISD::EXTLOAD; }]>; def aligned_maskedloadvi16: PatFrag<(ops node:$ptr, node:$pred, node:$passthru), (masked_ld node:$ptr, undef, node:$pred, node:$passthru), [{ auto *Ld = cast(N); EVT ScalarVT = Ld->getMemoryVT().getScalarType(); return (ScalarVT == MVT::i16 || ScalarVT == MVT::f16) && Ld->getAlignment() >= 2; }]>; def aligned_sextmaskedloadvi16 : PatFrag<(ops node:$ptr, node:$pred, node:$passthru), (aligned_maskedloadvi16 node:$ptr, node:$pred, node:$passthru), [{ return cast(N)->getExtensionType() == ISD::SEXTLOAD; }]>; def aligned_zextmaskedloadvi16 : PatFrag<(ops node:$ptr, node:$pred, node:$passthru), (aligned_maskedloadvi16 node:$ptr, node:$pred, node:$passthru), [{ return cast(N)->getExtensionType() == ISD::ZEXTLOAD; }]>; def aligned_extmaskedloadvi16 : PatFrag<(ops node:$ptr, node:$pred, node:$passthru), (aligned_maskedloadvi16 node:$ptr, node:$pred, node:$passthru), [{ auto *Ld = cast(N); EVT ScalarVT = Ld->getMemoryVT().getScalarType(); return ScalarVT.isInteger() && Ld->getExtensionType() == ISD::EXTLOAD; }]>; def aligned_maskedloadvi32: PatFrag<(ops node:$ptr, node:$pred, node:$passthru), (masked_ld node:$ptr, undef, node:$pred, node:$passthru), [{ auto *Ld = cast(N); EVT ScalarVT = Ld->getMemoryVT().getScalarType(); return (ScalarVT == MVT::i32 || ScalarVT == MVT::f32) && Ld->getAlignment() >= 4; }]>; def aligned_maskedstvi8 : PatFrag<(ops node:$val, node:$ptr, node:$pred), (masked_st node:$val, node:$ptr, undef, node:$pred), [{ return cast(N)->getMemoryVT().getScalarType() == MVT::i8; }]>; def aligned_maskedstvi16 : PatFrag<(ops node:$val, node:$ptr, node:$pred), (masked_st node:$val, node:$ptr, undef, node:$pred), [{ auto *St = cast(N); EVT ScalarVT = St->getMemoryVT().getScalarType(); return (ScalarVT == MVT::i16 || ScalarVT == MVT::f16) && St->getAlignment() >= 2; }]>; def aligned_maskedstvi32 : PatFrag<(ops node:$val, node:$ptr, node:$pred), (masked_st node:$val, node:$ptr, undef, node:$pred), [{ auto *St = cast(N); EVT ScalarVT = St->getMemoryVT().getScalarType(); return (ScalarVT == MVT::i32 || ScalarVT == MVT::f32) && St->getAlignment() >= 4; }]>; def pre_maskedstore : PatFrag<(ops node:$val, node:$base, node:$offset, node:$mask), (masked_st node:$val, node:$base, node:$offset, node:$mask), [{ ISD::MemIndexedMode AM = cast(N)->getAddressingMode(); return AM == ISD::PRE_INC || AM == ISD::PRE_DEC; }]>; def post_maskedstore : PatFrag<(ops node:$val, node:$base, node:$offset, node:$mask), (masked_st node:$val, node:$base, node:$offset, node:$mask), [{ ISD::MemIndexedMode AM = cast(N)->getAddressingMode(); return AM == ISD::POST_INC || AM == ISD::POST_DEC; }]>; def aligned_pre_maskedstorevi8 : PatFrag<(ops node:$val, node:$ptr, node:$offset, node:$mask), (pre_maskedstore node:$val, node:$ptr, node:$offset, node:$mask), [{ return cast(N)->getMemoryVT().getScalarType() == MVT::i8; }]>; def aligned_post_maskedstorevi8 : PatFrag<(ops node:$val, node:$ptr, node:$offset, node:$mask), (post_maskedstore node:$val, node:$ptr, node:$offset, node:$mask), [{ return cast(N)->getMemoryVT().getScalarType() == MVT::i8; }]>; def aligned_pre_maskedstorevi16 : PatFrag<(ops node:$val, node:$ptr, node:$offset, node:$mask), (pre_maskedstore node:$val, node:$ptr, node:$offset, node:$mask), [{ auto *St = cast(N); EVT ScalarVT = St->getMemoryVT().getScalarType(); return (ScalarVT == MVT::i16 || ScalarVT == MVT::f16) && St->getAlignment() >= 2; }]>; def aligned_post_maskedstorevi16 : PatFrag<(ops node:$val, node:$ptr, node:$offset, node:$mask), (post_maskedstore node:$val, node:$ptr, node:$offset, node:$mask), [{ auto *St = cast(N); EVT ScalarVT = St->getMemoryVT().getScalarType(); return (ScalarVT == MVT::i16 || ScalarVT == MVT::f16) && St->getAlignment() >= 2; }]>; def aligned_pre_maskedstorevi32 : PatFrag<(ops node:$val, node:$ptr, node:$offset, node:$mask), (pre_maskedstore node:$val, node:$ptr, node:$offset, node:$mask), [{ auto *St = cast(N); EVT ScalarVT = St->getMemoryVT().getScalarType(); return (ScalarVT == MVT::i32 || ScalarVT == MVT::f32) && St->getAlignment() >= 4; }]>; def aligned_post_maskedstorevi32 : PatFrag<(ops node:$val, node:$ptr, node:$offset, node:$mask), (post_maskedstore node:$val, node:$ptr, node:$offset, node:$mask), [{ auto *St = cast(N); EVT ScalarVT = St->getMemoryVT().getScalarType(); return (ScalarVT == MVT::i32 || ScalarVT == MVT::f32) && St->getAlignment() >= 4; }]>; // PatFrags for "Aligned" extending / truncating def aligned_extloadvi8 : PatFrag<(ops node:$ptr), (extloadvi8 node:$ptr)>; def aligned_sextloadvi8 : PatFrag<(ops node:$ptr), (sextloadvi8 node:$ptr)>; def aligned_zextloadvi8 : PatFrag<(ops node:$ptr), (zextloadvi8 node:$ptr)>; def aligned_truncstvi8 : PatFrag<(ops node:$val, node:$ptr), (truncstorevi8 node:$val, node:$ptr)>; def aligned_post_truncstvi8 : PatFrag<(ops node:$val, node:$base, node:$offset), (post_truncstvi8 node:$val, node:$base, node:$offset)>; def aligned_pre_truncstvi8 : PatFrag<(ops node:$val, node:$base, node:$offset), (pre_truncstvi8 node:$val, node:$base, node:$offset)>; let MinAlignment = 2 in { def aligned_extloadvi16 : PatFrag<(ops node:$ptr), (extloadvi16 node:$ptr)>; def aligned_sextloadvi16 : PatFrag<(ops node:$ptr), (sextloadvi16 node:$ptr)>; def aligned_zextloadvi16 : PatFrag<(ops node:$ptr), (zextloadvi16 node:$ptr)>; def aligned_truncstvi16 : PatFrag<(ops node:$val, node:$ptr), (truncstorevi16 node:$val, node:$ptr)>; def aligned_post_truncstvi16 : PatFrag<(ops node:$val, node:$base, node:$offset), (post_truncstvi16 node:$val, node:$base, node:$offset)>; def aligned_pre_truncstvi16 : PatFrag<(ops node:$val, node:$base, node:$offset), (pre_truncstvi16 node:$val, node:$base, node:$offset)>; } def truncmaskedst : PatFrag<(ops node:$val, node:$base, node:$pred), (masked_st node:$val, node:$base, undef, node:$pred), [{ return cast(N)->isTruncatingStore(); }]>; def aligned_truncmaskedstvi8 : PatFrag<(ops node:$val, node:$base, node:$pred), (truncmaskedst node:$val, node:$base, node:$pred), [{ return cast(N)->getMemoryVT().getScalarType() == MVT::i8; }]>; def aligned_truncmaskedstvi16 : PatFrag<(ops node:$val, node:$base, node:$pred), (truncmaskedst node:$val, node:$base, node:$pred), [{ auto *St = cast(N); EVT ScalarVT = St->getMemoryVT().getScalarType(); return (ScalarVT == MVT::i16 || ScalarVT == MVT::f16) && St->getAlignment() >= 2; }]>; def pre_truncmaskedst : PatFrag<(ops node:$val, node:$base, node:$offset, node:$pred), (masked_st node:$val, node:$base, node:$offset, node:$pred), [{ ISD::MemIndexedMode AM = cast(N)->getAddressingMode(); return cast(N)->isTruncatingStore() && (AM == ISD::PRE_INC || AM == ISD::PRE_DEC); }]>; def aligned_pre_truncmaskedstvi8 : PatFrag<(ops node:$val, node:$base, node:$offset, node:$pred), (pre_truncmaskedst node:$val, node:$base, node:$offset, node:$pred), [{ return cast(N)->getMemoryVT().getScalarType() == MVT::i8; }]>; def aligned_pre_truncmaskedstvi16 : PatFrag<(ops node:$val, node:$base, node:$offset, node:$pred), (pre_truncmaskedst node:$val, node:$base, node:$offset, node:$pred), [{ auto *St = cast(N); EVT ScalarVT = St->getMemoryVT().getScalarType(); return (ScalarVT == MVT::i16 || ScalarVT == MVT::f16) && St->getAlignment() >= 2; }]>; def post_truncmaskedst : PatFrag<(ops node:$val, node:$base, node:$offset, node:$postd), (masked_st node:$val, node:$base, node:$offset, node:$postd), [{ ISD::MemIndexedMode AM = cast(N)->getAddressingMode(); return cast(N)->isTruncatingStore() && (AM == ISD::POST_INC || AM == ISD::POST_DEC); }]>; def aligned_post_truncmaskedstvi8 : PatFrag<(ops node:$val, node:$base, node:$offset, node:$postd), (post_truncmaskedst node:$val, node:$base, node:$offset, node:$postd), [{ return cast(N)->getMemoryVT().getScalarType() == MVT::i8; }]>; def aligned_post_truncmaskedstvi16 : PatFrag<(ops node:$val, node:$base, node:$offset, node:$postd), (post_truncmaskedst node:$val, node:$base, node:$offset, node:$postd), [{ auto *St = cast(N); EVT ScalarVT = St->getMemoryVT().getScalarType(); return (ScalarVT == MVT::i16 || ScalarVT == MVT::f16) && St->getAlignment() >= 2; }]>; // Load/store patterns class MVE_vector_store_typed : Pat<(StoreKind (Ty MQPR:$val), t2addrmode_imm7:$addr), (RegImmInst (Ty MQPR:$val), t2addrmode_imm7:$addr)>; class MVE_vector_maskedstore_typed : Pat<(StoreKind (Ty MQPR:$val), t2addrmode_imm7:$addr, VCCR:$pred), (RegImmInst (Ty MQPR:$val), t2addrmode_imm7:$addr, ARMVCCThen, VCCR:$pred, zero_reg)>; multiclass MVE_vector_store { def : MVE_vector_store_typed; def : MVE_vector_store_typed; def : MVE_vector_store_typed; def : MVE_vector_store_typed; def : MVE_vector_store_typed; def : MVE_vector_store_typed; def : MVE_vector_store_typed; } class MVE_vector_load_typed : Pat<(Ty (LoadKind t2addrmode_imm7:$addr)), (Ty (RegImmInst t2addrmode_imm7:$addr))>; class MVE_vector_maskedload_typed : Pat<(Ty (LoadKind t2addrmode_imm7:$addr, VCCR:$pred, (Ty (ARMvmovImm (i32 0))))), (Ty (RegImmInst t2addrmode_imm7:$addr, ARMVCCThen, VCCR:$pred, zero_reg))>; multiclass MVE_vector_load { def : MVE_vector_load_typed; def : MVE_vector_load_typed; def : MVE_vector_load_typed; def : MVE_vector_load_typed; def : MVE_vector_load_typed; def : MVE_vector_load_typed; def : MVE_vector_load_typed; } class MVE_vector_offset_store_typed : Pat<(StoreKind (Ty MQPR:$Rt), tGPR:$Rn, t2am_imm7_offset:$addr), (Opcode MQPR:$Rt, tGPR:$Rn, t2am_imm7_offset:$addr)>; class MVE_vector_offset_maskedstore_typed : Pat<(StoreKind (Ty MQPR:$Rt), tGPR:$Rn, t2am_imm7_offset:$addr, VCCR:$pred), (Opcode MQPR:$Rt, tGPR:$Rn, t2am_imm7_offset:$addr, ARMVCCThen, VCCR:$pred, zero_reg)>; multiclass MVE_vector_offset_store { def : MVE_vector_offset_store_typed; def : MVE_vector_offset_store_typed; def : MVE_vector_offset_store_typed; def : MVE_vector_offset_store_typed; def : MVE_vector_offset_store_typed; def : MVE_vector_offset_store_typed; def : MVE_vector_offset_store_typed; } let Predicates = [HasMVEInt, IsLE] in { // Stores defm : MVE_vector_store; defm : MVE_vector_store; defm : MVE_vector_store; // Loads defm : MVE_vector_load; defm : MVE_vector_load; defm : MVE_vector_load; // Pre/post inc stores defm : MVE_vector_offset_store; defm : MVE_vector_offset_store; defm : MVE_vector_offset_store; defm : MVE_vector_offset_store; defm : MVE_vector_offset_store; defm : MVE_vector_offset_store; } let Predicates = [HasMVEInt, IsBE] in { // Aligned Stores def : MVE_vector_store_typed; def : MVE_vector_store_typed; def : MVE_vector_store_typed; def : MVE_vector_store_typed; def : MVE_vector_store_typed; // Aligned Loads def : MVE_vector_load_typed; def : MVE_vector_load_typed; def : MVE_vector_load_typed; def : MVE_vector_load_typed; def : MVE_vector_load_typed; // Other unaligned loads/stores need to go though a VREV def : Pat<(v2f64 (load t2addrmode_imm7<0>:$addr)), (v2f64 (MVE_VREV64_8 (MVE_VLDRBU8 t2addrmode_imm7<0>:$addr)))>; def : Pat<(v2i64 (load t2addrmode_imm7<0>:$addr)), (v2i64 (MVE_VREV64_8 (MVE_VLDRBU8 t2addrmode_imm7<0>:$addr)))>; def : Pat<(v4i32 (load t2addrmode_imm7<0>:$addr)), (v4i32 (MVE_VREV32_8 (MVE_VLDRBU8 t2addrmode_imm7<0>:$addr)))>; def : Pat<(v4f32 (load t2addrmode_imm7<0>:$addr)), (v4f32 (MVE_VREV32_8 (MVE_VLDRBU8 t2addrmode_imm7<0>:$addr)))>; def : Pat<(v8i16 (load t2addrmode_imm7<0>:$addr)), (v8i16 (MVE_VREV16_8 (MVE_VLDRBU8 t2addrmode_imm7<0>:$addr)))>; def : Pat<(v8f16 (load t2addrmode_imm7<0>:$addr)), (v8f16 (MVE_VREV16_8 (MVE_VLDRBU8 t2addrmode_imm7<0>:$addr)))>; def : Pat<(store (v2f64 MQPR:$val), t2addrmode_imm7<0>:$addr), (MVE_VSTRBU8 (MVE_VREV64_8 MQPR:$val), t2addrmode_imm7<0>:$addr)>; def : Pat<(store (v2i64 MQPR:$val), t2addrmode_imm7<0>:$addr), (MVE_VSTRBU8 (MVE_VREV64_8 MQPR:$val), t2addrmode_imm7<0>:$addr)>; def : Pat<(store (v4i32 MQPR:$val), t2addrmode_imm7<0>:$addr), (MVE_VSTRBU8 (MVE_VREV32_8 MQPR:$val), t2addrmode_imm7<0>:$addr)>; def : Pat<(store (v4f32 MQPR:$val), t2addrmode_imm7<0>:$addr), (MVE_VSTRBU8 (MVE_VREV32_8 MQPR:$val), t2addrmode_imm7<0>:$addr)>; def : Pat<(store (v8i16 MQPR:$val), t2addrmode_imm7<0>:$addr), (MVE_VSTRBU8 (MVE_VREV16_8 MQPR:$val), t2addrmode_imm7<0>:$addr)>; def : Pat<(store (v8f16 MQPR:$val), t2addrmode_imm7<0>:$addr), (MVE_VSTRBU8 (MVE_VREV16_8 MQPR:$val), t2addrmode_imm7<0>:$addr)>; // Pre/Post inc stores def : MVE_vector_offset_store_typed; def : MVE_vector_offset_store_typed; def : MVE_vector_offset_store_typed; def : MVE_vector_offset_store_typed; def : MVE_vector_offset_store_typed; def : MVE_vector_offset_store_typed; def : MVE_vector_offset_store_typed; def : MVE_vector_offset_store_typed; def : MVE_vector_offset_store_typed; def : MVE_vector_offset_store_typed; } let Predicates = [HasMVEInt] in { // Aligned masked store, shared between LE and BE def : MVE_vector_maskedstore_typed; def : MVE_vector_maskedstore_typed; def : MVE_vector_maskedstore_typed; def : MVE_vector_maskedstore_typed; def : MVE_vector_maskedstore_typed; // Pre/Post inc masked stores def : MVE_vector_offset_maskedstore_typed; def : MVE_vector_offset_maskedstore_typed; def : MVE_vector_offset_maskedstore_typed; def : MVE_vector_offset_maskedstore_typed; def : MVE_vector_offset_maskedstore_typed; def : MVE_vector_offset_maskedstore_typed; def : MVE_vector_offset_maskedstore_typed; def : MVE_vector_offset_maskedstore_typed; def : MVE_vector_offset_maskedstore_typed; def : MVE_vector_offset_maskedstore_typed; // Aligned masked loads def : MVE_vector_maskedload_typed; def : MVE_vector_maskedload_typed; def : MVE_vector_maskedload_typed; def : MVE_vector_maskedload_typed; def : MVE_vector_maskedload_typed; } // Widening/Narrowing Loads/Stores multiclass MVEExtLoadStore { // Trunc stores def : Pat<(!cast("aligned_truncst"#Amble) (VT MQPR:$val), taddrmode_imm7:$addr), (!cast(StoreInst) MQPR:$val, taddrmode_imm7:$addr)>; def : Pat<(!cast("aligned_post_truncst"#Amble) (VT MQPR:$Rt), tGPR:$Rn, t2am_imm7_offset:$addr), (!cast(StoreInst#"_post") MQPR:$Rt, tGPR:$Rn, t2am_imm7_offset:$addr)>; def : Pat<(!cast("aligned_pre_truncst"#Amble) (VT MQPR:$Rt), tGPR:$Rn, t2am_imm7_offset:$addr), (!cast(StoreInst#"_pre") MQPR:$Rt, tGPR:$Rn, t2am_imm7_offset:$addr)>; // Masked trunc stores def : Pat<(!cast("aligned_truncmaskedst"#Amble) (VT MQPR:$val), taddrmode_imm7:$addr, VCCR:$pred), (!cast(StoreInst) MQPR:$val, taddrmode_imm7:$addr, ARMVCCThen, VCCR:$pred, zero_reg)>; def : Pat<(!cast("aligned_post_truncmaskedst"#Amble) (VT MQPR:$Rt), tGPR:$Rn, t2am_imm7_offset:$addr, VCCR:$pred), (!cast(StoreInst#"_post") MQPR:$Rt, tGPR:$Rn, t2am_imm7_offset:$addr, ARMVCCThen, VCCR:$pred, zero_reg)>; def : Pat<(!cast("aligned_pre_truncmaskedst"#Amble) (VT MQPR:$Rt), tGPR:$Rn, t2am_imm7_offset:$addr, VCCR:$pred), (!cast(StoreInst#"_pre") MQPR:$Rt, tGPR:$Rn, t2am_imm7_offset:$addr, ARMVCCThen, VCCR:$pred, zero_reg)>; // Ext loads def : Pat<(VT (!cast("aligned_extload"#Amble) taddrmode_imm7:$addr)), (VT (LoadUInst taddrmode_imm7:$addr))>; def : Pat<(VT (!cast("aligned_sextload"#Amble) taddrmode_imm7:$addr)), (VT (LoadSInst taddrmode_imm7:$addr))>; def : Pat<(VT (!cast("aligned_zextload"#Amble) taddrmode_imm7:$addr)), (VT (LoadUInst taddrmode_imm7:$addr))>; // Masked ext loads def : Pat<(VT (!cast("aligned_extmaskedload"#Amble) taddrmode_imm7:$addr, VCCR:$pred, (VT (ARMvmovImm (i32 0))))), (VT (LoadUInst taddrmode_imm7:$addr, ARMVCCThen, VCCR:$pred, zero_reg))>; def : Pat<(VT (!cast("aligned_sextmaskedload"#Amble) taddrmode_imm7:$addr, VCCR:$pred, (VT (ARMvmovImm (i32 0))))), (VT (LoadSInst taddrmode_imm7:$addr, ARMVCCThen, VCCR:$pred, zero_reg))>; def : Pat<(VT (!cast("aligned_zextmaskedload"#Amble) taddrmode_imm7:$addr, VCCR:$pred, (VT (ARMvmovImm (i32 0))))), (VT (LoadUInst taddrmode_imm7:$addr, ARMVCCThen, VCCR:$pred, zero_reg))>; } let Predicates = [HasMVEInt] in { defm : MVEExtLoadStore; defm : MVEExtLoadStore; defm : MVEExtLoadStore; } // Bit convert patterns let Predicates = [HasMVEInt] in { def : Pat<(v2f64 (bitconvert (v2i64 MQPR:$src))), (v2f64 MQPR:$src)>; def : Pat<(v2i64 (bitconvert (v2f64 MQPR:$src))), (v2i64 MQPR:$src)>; def : Pat<(v4i32 (bitconvert (v4f32 MQPR:$src))), (v4i32 MQPR:$src)>; def : Pat<(v4f32 (bitconvert (v4i32 MQPR:$src))), (v4f32 MQPR:$src)>; def : Pat<(v8i16 (bitconvert (v8f16 MQPR:$src))), (v8i16 MQPR:$src)>; def : Pat<(v8f16 (bitconvert (v8i16 MQPR:$src))), (v8f16 MQPR:$src)>; } let Predicates = [IsLE,HasMVEInt] in { def : Pat<(v2f64 (bitconvert (v4f32 MQPR:$src))), (v2f64 MQPR:$src)>; def : Pat<(v2f64 (bitconvert (v4i32 MQPR:$src))), (v2f64 MQPR:$src)>; def : Pat<(v2f64 (bitconvert (v8f16 MQPR:$src))), (v2f64 MQPR:$src)>; def : Pat<(v2f64 (bitconvert (v8i16 MQPR:$src))), (v2f64 MQPR:$src)>; def : Pat<(v2f64 (bitconvert (v16i8 MQPR:$src))), (v2f64 MQPR:$src)>; def : Pat<(v2i64 (bitconvert (v4f32 MQPR:$src))), (v2i64 MQPR:$src)>; def : Pat<(v2i64 (bitconvert (v4i32 MQPR:$src))), (v2i64 MQPR:$src)>; def : Pat<(v2i64 (bitconvert (v8f16 MQPR:$src))), (v2i64 MQPR:$src)>; def : Pat<(v2i64 (bitconvert (v8i16 MQPR:$src))), (v2i64 MQPR:$src)>; def : Pat<(v2i64 (bitconvert (v16i8 MQPR:$src))), (v2i64 MQPR:$src)>; def : Pat<(v4f32 (bitconvert (v2f64 MQPR:$src))), (v4f32 MQPR:$src)>; def : Pat<(v4f32 (bitconvert (v2i64 MQPR:$src))), (v4f32 MQPR:$src)>; def : Pat<(v4f32 (bitconvert (v8f16 MQPR:$src))), (v4f32 MQPR:$src)>; def : Pat<(v4f32 (bitconvert (v8i16 MQPR:$src))), (v4f32 MQPR:$src)>; def : Pat<(v4f32 (bitconvert (v16i8 MQPR:$src))), (v4f32 MQPR:$src)>; def : Pat<(v4i32 (bitconvert (v2f64 MQPR:$src))), (v4i32 MQPR:$src)>; def : Pat<(v4i32 (bitconvert (v2i64 MQPR:$src))), (v4i32 MQPR:$src)>; def : Pat<(v4i32 (bitconvert (v8f16 MQPR:$src))), (v4i32 MQPR:$src)>; def : Pat<(v4i32 (bitconvert (v8i16 MQPR:$src))), (v4i32 MQPR:$src)>; def : Pat<(v4i32 (bitconvert (v16i8 MQPR:$src))), (v4i32 MQPR:$src)>; def : Pat<(v8f16 (bitconvert (v2f64 MQPR:$src))), (v8f16 MQPR:$src)>; def : Pat<(v8f16 (bitconvert (v2i64 MQPR:$src))), (v8f16 MQPR:$src)>; def : Pat<(v8f16 (bitconvert (v4f32 MQPR:$src))), (v8f16 MQPR:$src)>; def : Pat<(v8f16 (bitconvert (v4i32 MQPR:$src))), (v8f16 MQPR:$src)>; def : Pat<(v8f16 (bitconvert (v16i8 MQPR:$src))), (v8f16 MQPR:$src)>; def : Pat<(v8i16 (bitconvert (v2f64 MQPR:$src))), (v8i16 MQPR:$src)>; def : Pat<(v8i16 (bitconvert (v2i64 MQPR:$src))), (v8i16 MQPR:$src)>; def : Pat<(v8i16 (bitconvert (v4f32 MQPR:$src))), (v8i16 MQPR:$src)>; def : Pat<(v8i16 (bitconvert (v4i32 MQPR:$src))), (v8i16 MQPR:$src)>; def : Pat<(v8i16 (bitconvert (v16i8 MQPR:$src))), (v8i16 MQPR:$src)>; def : Pat<(v16i8 (bitconvert (v2f64 MQPR:$src))), (v16i8 MQPR:$src)>; def : Pat<(v16i8 (bitconvert (v2i64 MQPR:$src))), (v16i8 MQPR:$src)>; def : Pat<(v16i8 (bitconvert (v4f32 MQPR:$src))), (v16i8 MQPR:$src)>; def : Pat<(v16i8 (bitconvert (v4i32 MQPR:$src))), (v16i8 MQPR:$src)>; def : Pat<(v16i8 (bitconvert (v8f16 MQPR:$src))), (v16i8 MQPR:$src)>; def : Pat<(v16i8 (bitconvert (v8i16 MQPR:$src))), (v16i8 MQPR:$src)>; } let Predicates = [IsBE,HasMVEInt] in { def : Pat<(v2f64 (bitconvert (v4f32 MQPR:$src))), (v2f64 (MVE_VREV64_32 MQPR:$src))>; def : Pat<(v2f64 (bitconvert (v4i32 MQPR:$src))), (v2f64 (MVE_VREV64_32 MQPR:$src))>; def : Pat<(v2f64 (bitconvert (v8f16 MQPR:$src))), (v2f64 (MVE_VREV64_16 MQPR:$src))>; def : Pat<(v2f64 (bitconvert (v8i16 MQPR:$src))), (v2f64 (MVE_VREV64_16 MQPR:$src))>; def : Pat<(v2f64 (bitconvert (v16i8 MQPR:$src))), (v2f64 (MVE_VREV64_8 MQPR:$src))>; def : Pat<(v2i64 (bitconvert (v4f32 MQPR:$src))), (v2i64 (MVE_VREV64_32 MQPR:$src))>; def : Pat<(v2i64 (bitconvert (v4i32 MQPR:$src))), (v2i64 (MVE_VREV64_32 MQPR:$src))>; def : Pat<(v2i64 (bitconvert (v8f16 MQPR:$src))), (v2i64 (MVE_VREV64_16 MQPR:$src))>; def : Pat<(v2i64 (bitconvert (v8i16 MQPR:$src))), (v2i64 (MVE_VREV64_16 MQPR:$src))>; def : Pat<(v2i64 (bitconvert (v16i8 MQPR:$src))), (v2i64 (MVE_VREV64_8 MQPR:$src))>; def : Pat<(v4f32 (bitconvert (v2f64 MQPR:$src))), (v4f32 (MVE_VREV64_32 MQPR:$src))>; def : Pat<(v4f32 (bitconvert (v2i64 MQPR:$src))), (v4f32 (MVE_VREV64_32 MQPR:$src))>; def : Pat<(v4f32 (bitconvert (v8f16 MQPR:$src))), (v4f32 (MVE_VREV32_16 MQPR:$src))>; def : Pat<(v4f32 (bitconvert (v8i16 MQPR:$src))), (v4f32 (MVE_VREV32_16 MQPR:$src))>; def : Pat<(v4f32 (bitconvert (v16i8 MQPR:$src))), (v4f32 (MVE_VREV32_8 MQPR:$src))>; def : Pat<(v4i32 (bitconvert (v2f64 MQPR:$src))), (v4i32 (MVE_VREV64_32 MQPR:$src))>; def : Pat<(v4i32 (bitconvert (v2i64 MQPR:$src))), (v4i32 (MVE_VREV64_32 MQPR:$src))>; def : Pat<(v4i32 (bitconvert (v8f16 MQPR:$src))), (v4i32 (MVE_VREV32_16 MQPR:$src))>; def : Pat<(v4i32 (bitconvert (v8i16 MQPR:$src))), (v4i32 (MVE_VREV32_16 MQPR:$src))>; def : Pat<(v4i32 (bitconvert (v16i8 MQPR:$src))), (v4i32 (MVE_VREV32_8 MQPR:$src))>; def : Pat<(v8f16 (bitconvert (v2f64 MQPR:$src))), (v8f16 (MVE_VREV64_16 MQPR:$src))>; def : Pat<(v8f16 (bitconvert (v2i64 MQPR:$src))), (v8f16 (MVE_VREV64_16 MQPR:$src))>; def : Pat<(v8f16 (bitconvert (v4f32 MQPR:$src))), (v8f16 (MVE_VREV32_16 MQPR:$src))>; def : Pat<(v8f16 (bitconvert (v4i32 MQPR:$src))), (v8f16 (MVE_VREV32_16 MQPR:$src))>; def : Pat<(v8f16 (bitconvert (v16i8 MQPR:$src))), (v8f16 (MVE_VREV16_8 MQPR:$src))>; def : Pat<(v8i16 (bitconvert (v2f64 MQPR:$src))), (v8i16 (MVE_VREV64_16 MQPR:$src))>; def : Pat<(v8i16 (bitconvert (v2i64 MQPR:$src))), (v8i16 (MVE_VREV64_16 MQPR:$src))>; def : Pat<(v8i16 (bitconvert (v4f32 MQPR:$src))), (v8i16 (MVE_VREV32_16 MQPR:$src))>; def : Pat<(v8i16 (bitconvert (v4i32 MQPR:$src))), (v8i16 (MVE_VREV32_16 MQPR:$src))>; def : Pat<(v8i16 (bitconvert (v16i8 MQPR:$src))), (v8i16 (MVE_VREV16_8 MQPR:$src))>; def : Pat<(v16i8 (bitconvert (v2f64 MQPR:$src))), (v16i8 (MVE_VREV64_8 MQPR:$src))>; def : Pat<(v16i8 (bitconvert (v2i64 MQPR:$src))), (v16i8 (MVE_VREV64_8 MQPR:$src))>; def : Pat<(v16i8 (bitconvert (v4f32 MQPR:$src))), (v16i8 (MVE_VREV32_8 MQPR:$src))>; def : Pat<(v16i8 (bitconvert (v4i32 MQPR:$src))), (v16i8 (MVE_VREV32_8 MQPR:$src))>; def : Pat<(v16i8 (bitconvert (v8f16 MQPR:$src))), (v16i8 (MVE_VREV16_8 MQPR:$src))>; def : Pat<(v16i8 (bitconvert (v8i16 MQPR:$src))), (v16i8 (MVE_VREV16_8 MQPR:$src))>; }