//===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the ARM implementation of TargetFrameLowering class. // //===----------------------------------------------------------------------===// // // This file contains the ARM implementation of TargetFrameLowering class. // // On ARM, stack frames are structured as follows: // // The stack grows downward. // // All of the individual frame areas on the frame below are optional, i.e. it's // possible to create a function so that the particular area isn't present // in the frame. // // At function entry, the "frame" looks as follows: // // | | Higher address // |-----------------------------------| // | | // | arguments passed on the stack | // | | // |-----------------------------------| <- sp // | | Lower address // // // After the prologue has run, the frame has the following general structure. // Technically the last frame area (VLAs) doesn't get created until in the // main function body, after the prologue is run. However, it's depicted here // for completeness. // // | | Higher address // |-----------------------------------| // | | // | arguments passed on the stack | // | | // |-----------------------------------| <- (sp at function entry) // | | // | varargs from registers | // | | // |-----------------------------------| // | | // | prev_lr | // | prev_fp | // | (a.k.a. "frame record") | // | | // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11) // | | // | callee-saved gpr registers | // | | // |-----------------------------------| // | | // | callee-saved fp/simd regs | // | | // |-----------------------------------| // |.empty.space.to.make.part.below....| // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at // |.the.standard.8-byte.alignment.....| compile time; if present) // |-----------------------------------| // | | // | local variables of fixed size | // | including spill slots | // |-----------------------------------| <- base pointer (not defined by ABI, // |.variable-sized.local.variables....| LLVM chooses r6) // |.(VLAs)............................| (size of this area is unknown at // |...................................| compile time) // |-----------------------------------| <- sp // | | Lower address // // // To access the data in a frame, at-compile time, a constant offset must be // computable from one of the pointers (fp, bp, sp) to access it. The size // of the areas with a dotted background cannot be computed at compile-time // if they are present, making it required to have all three of fp, bp and // sp to be set up to be able to access all contents in the frame areas, // assuming all of the frame areas are non-empty. // // For most functions, some of the frame areas are empty. For those functions, // it may not be necessary to set up fp or bp: // * A base pointer is definitely needed when there are both VLAs and local // variables with more-than-default alignment requirements. // * A frame pointer is definitely needed when there are local variables with // more-than-default alignment requirements. // // In some cases when a base pointer is not strictly needed, it is generated // anyway when offsets from the frame pointer to access local variables become // so large that the offset can't be encoded in the immediate fields of loads // or stores. // // The frame pointer might be chosen to be r7 or r11, depending on the target // architecture and operating system. See ARMSubtarget::getFramePointerReg for // details. // // Outgoing function arguments must be at the bottom of the stack frame when // calling another function. If we do not have variable-sized stack objects, we // can allocate a "reserved call frame" area at the bottom of the local // variable area, large enough for all outgoing calls. If we do have VLAs, then // the stack pointer must be decremented and incremented around each call to // make space for the arguments below the VLAs. // //===----------------------------------------------------------------------===// #include "ARMFrameLowering.h" #include "ARMBaseInstrInfo.h" #include "ARMBaseRegisterInfo.h" #include "ARMConstantPoolValue.h" #include "ARMMachineFunctionInfo.h" #include "ARMSubtarget.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "MCTargetDesc/ARMBaseInfo.h" #include "Utils/ARMBaseInfo.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include #include #include #include #include #include #include #define DEBUG_TYPE "arm-frame-lowering" using namespace llvm; static cl::opt SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), cl::desc("Align ARM NEON spills in prolog and epilog")); static MachineBasicBlock::iterator skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, unsigned NumAlignedDPRCS2Regs); ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)), STI(sti) {} bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const { // iOS always has a FP for backtracking, force other targets to keep their FP // when doing FastISel. The emitted code is currently superior, and in cases // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. return MF.getSubtarget().useFastISel(); } /// Returns true if the target can safely skip saving callee-saved registers /// for noreturn nounwind functions. bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && !MF.getFunction().hasFnAttribute(Attribute::UWTable)); // Frame pointer and link register are not treated as normal CSR, thus we // can always skip CSR saves for nonreturning functions. return true; } /// hasFP - Return true if the specified function should have a dedicated frame /// pointer register. This is true if the function has variable sized allocas /// or if frame pointer elimination is disabled. bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); const MachineFrameInfo &MFI = MF.getFrameInfo(); // ABI-required frame pointer. if (MF.getTarget().Options.DisableFramePointerElim(MF)) return true; // Frame pointer required for use within this function. return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken()); } /// isFPReserved - Return true if the frame pointer register should be /// considered a reserved register on the scope of the specified function. bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const { return hasFP(MF) || MF.getSubtarget().createAAPCSFrameChain(); } /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is /// not required, we reserve argument space for call sites in the function /// immediately on entry to the current function. This eliminates the need for /// add/sub sp brackets around call sites. Returns true if the call frame is /// included as part of the stack frame. bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); unsigned CFSize = MFI.getMaxCallFrameSize(); // It's not always a good idea to include the call frame as part of the // stack frame. ARM (especially Thumb) has small immediate offset to // address the stack frame. So a large call frame can cause poor codegen // and may even makes it impossible to scavenge a register. if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 return false; return !MFI.hasVarSizedObjects(); } /// canSimplifyCallFramePseudos - If there is a reserved call frame, the /// call frame pseudos can be simplified. Unlike most targets, having a FP /// is not sufficient here since we still may reference some objects via SP /// even when FP is available in Thumb2 mode. bool ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); } // Returns how much of the incoming argument stack area we should clean up in an // epilogue. For the C calling convention this will be 0, for guaranteed tail // call conventions it can be positive (a normal return or a tail call to a // function that uses less stack space for arguments) or negative (for a tail // call to a function that needs more stack space than us for arguments). static int getArgumentStackToRestore(MachineFunction &MF, MachineBasicBlock &MBB) { MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); bool IsTailCallReturn = false; if (MBB.end() != MBBI) { unsigned RetOpcode = MBBI->getOpcode(); IsTailCallReturn = RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri; } ARMFunctionInfo *AFI = MF.getInfo(); int ArgumentPopSize = 0; if (IsTailCallReturn) { MachineOperand &StackAdjust = MBBI->getOperand(1); // For a tail-call in a callee-pops-arguments environment, some or all of // the stack may actually be in use for the call's arguments, this is // calculated during LowerCall and consumed here... ArgumentPopSize = StackAdjust.getImm(); } else { // ... otherwise the amount to pop is *all* of the argument space, // conveniently stored in the MachineFunctionInfo by // LowerFormalArguments. This will, of course, be zero for the C calling // convention. ArgumentPopSize = AFI->getArgumentStackToRestore(); } return ArgumentPopSize; } static bool needsWinCFI(const MachineFunction &MF) { const Function &F = MF.getFunction(); return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && F.needsUnwindTableEntry(); } // Given a load or a store instruction, generate an appropriate unwinding SEH // code on Windows. static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI, const TargetInstrInfo &TII, unsigned Flags) { unsigned Opc = MBBI->getOpcode(); MachineBasicBlock *MBB = MBBI->getParent(); MachineFunction &MF = *MBB->getParent(); DebugLoc DL = MBBI->getDebugLoc(); MachineInstrBuilder MIB; const ARMSubtarget &Subtarget = MF.getSubtarget(); const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); Flags |= MachineInstr::NoMerge; switch (Opc) { default: report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc)); break; case ARM::t2ADDri: // add.w r11, sp, #xx case ARM::t2ADDri12: // add.w r11, sp, #xx case ARM::t2MOVTi16: // movt r4, #xx case ARM::tBL: // bl __chkstk // These are harmless if used for just setting up a frame pointer, // but that frame pointer can't be relied upon for unwinding, unless // set up with SEH_SaveSP. MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) .addImm(/*Wide=*/1) .setMIFlags(Flags); break; case ARM::t2MOVi16: { // mov(w) r4, #xx bool Wide = MBBI->getOperand(1).getImm() >= 256; if (!Wide) { MachineInstrBuilder NewInstr = BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags()); NewInstr.add(MBBI->getOperand(0)); NewInstr.add(t1CondCodeOp(/*isDead=*/true)); for (MachineOperand &MO : llvm::drop_begin(MBBI->operands())) NewInstr.add(MO); MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); MBB->erase(MBBI); MBBI = NewMBBI; } MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags); break; } case ARM::tBLXr: // blx r12 (__chkstk) MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) .addImm(/*Wide=*/0) .setMIFlags(Flags); break; case ARM::t2MOVi32imm: // movw+movt // This pseudo instruction expands into two mov instructions. If the // second operand is a symbol reference, this will stay as two wide // instructions, movw+movt. If they're immediates, the first one can // end up as a narrow mov though. // As two SEH instructions are appended here, they won't get interleaved // between the two final movw/movt instructions, but it doesn't make any // practical difference. MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) .addImm(/*Wide=*/1) .setMIFlags(Flags); MBB->insertAfter(MBBI, MIB); MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) .addImm(/*Wide=*/1) .setMIFlags(Flags); break; case ARM::t2STR_PRE: if (MBBI->getOperand(0).getReg() == ARM::SP && MBBI->getOperand(2).getReg() == ARM::SP && MBBI->getOperand(3).getImm() == -4) { unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) .addImm(1ULL << Reg) .addImm(/*Wide=*/1) .setMIFlags(Flags); } else { report_fatal_error("No matching SEH Opcode for t2STR_PRE"); } break; case ARM::t2LDR_POST: if (MBBI->getOperand(1).getReg() == ARM::SP && MBBI->getOperand(2).getReg() == ARM::SP && MBBI->getOperand(3).getImm() == 4) { unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) .addImm(1ULL << Reg) .addImm(/*Wide=*/1) .setMIFlags(Flags); } else { report_fatal_error("No matching SEH Opcode for t2LDR_POST"); } break; case ARM::t2LDMIA_RET: case ARM::t2LDMIA_UPD: case ARM::t2STMDB_UPD: { unsigned Mask = 0; bool Wide = false; for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) { const MachineOperand &MO = MBBI->getOperand(i); if (!MO.isReg() || MO.isImplicit()) continue; unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); if (Reg == 15) Reg = 14; if (Reg >= 8 && Reg <= 13) Wide = true; else if (Opc == ARM::t2LDMIA_UPD && Reg == 14) Wide = true; Mask |= 1 << Reg; } if (!Wide) { unsigned NewOpc; switch (Opc) { case ARM::t2LDMIA_RET: NewOpc = ARM::tPOP_RET; break; case ARM::t2LDMIA_UPD: NewOpc = ARM::tPOP; break; case ARM::t2STMDB_UPD: NewOpc = ARM::tPUSH; break; default: llvm_unreachable(""); } MachineInstrBuilder NewInstr = BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags()); for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) NewInstr.add(MBBI->getOperand(i)); MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); MBB->erase(MBBI); MBBI = NewMBBI; } unsigned SEHOpc = (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs; MIB = BuildMI(MF, DL, TII.get(SEHOpc)) .addImm(Mask) .addImm(Wide ? 1 : 0) .setMIFlags(Flags); break; } case ARM::VSTMDDB_UPD: case ARM::VLDMDIA_UPD: { int First = -1, Last = 0; for (const MachineOperand &MO : llvm::drop_begin(MBBI->operands(), 4)) { unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); if (First == -1) First = Reg; Last = Reg; } MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs)) .addImm(First) .addImm(Last) .setMIFlags(Flags); break; } case ARM::tSUBspi: case ARM::tADDspi: MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) .addImm(MBBI->getOperand(2).getImm() * 4) .addImm(/*Wide=*/0) .setMIFlags(Flags); break; case ARM::t2SUBspImm: case ARM::t2SUBspImm12: case ARM::t2ADDspImm: case ARM::t2ADDspImm12: MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) .addImm(MBBI->getOperand(2).getImm()) .addImm(/*Wide=*/1) .setMIFlags(Flags); break; case ARM::tMOVr: if (MBBI->getOperand(1).getReg() == ARM::SP && (Flags & MachineInstr::FrameSetup)) { unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) .addImm(Reg) .setMIFlags(Flags); } else if (MBBI->getOperand(0).getReg() == ARM::SP && (Flags & MachineInstr::FrameDestroy)) { unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) .addImm(Reg) .setMIFlags(Flags); } else { report_fatal_error("No SEH Opcode for MOV"); } break; case ARM::tBX_RET: case ARM::TCRETURNri: MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) .addImm(/*Wide=*/0) .setMIFlags(Flags); break; case ARM::TCRETURNdi: MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) .addImm(/*Wide=*/1) .setMIFlags(Flags); break; } return MBB->insertAfter(MBBI, MIB); } static MachineBasicBlock::iterator initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) { if (MBBI == MBB.begin()) return MachineBasicBlock::iterator(); return std::prev(MBBI); } static void insertSEHRange(MachineBasicBlock &MBB, MachineBasicBlock::iterator Start, const MachineBasicBlock::iterator &End, const ARMBaseInstrInfo &TII, unsigned MIFlags) { if (Start.isValid()) Start = std::next(Start); else Start = MBB.begin(); for (auto MI = Start; MI != End;) { auto Next = std::next(MI); // Check if this instruction already has got a SEH opcode added. In that // case, don't do this generic mapping. if (Next != End && isSEHInstruction(*Next)) { MI = std::next(Next); while (MI != End && isSEHInstruction(*MI)) ++MI; continue; } insertSEH(MI, TII, MIFlags); MI = Next; } } static void emitRegPlusImmediate( bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { if (isARM) emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, Pred, PredReg, TII, MIFlags); else emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, Pred, PredReg, TII, MIFlags); } static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, const ARMBaseInstrInfo &TII, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, MIFlags, Pred, PredReg); } static int sizeOfSPAdjustment(const MachineInstr &MI) { int RegSize; switch (MI.getOpcode()) { case ARM::VSTMDDB_UPD: RegSize = 8; break; case ARM::STMDB_UPD: case ARM::t2STMDB_UPD: RegSize = 4; break; case ARM::t2STR_PRE: case ARM::STR_PRE_IMM: return 4; default: llvm_unreachable("Unknown push or pop like instruction"); } int count = 0; // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ // pred) so the list starts at 4. for (int i = MI.getNumOperands() - 1; i >= 4; --i) count += RegSize; return count; } static bool WindowsRequiresStackProbe(const MachineFunction &MF, size_t StackSizeInBytes) { const MachineFrameInfo &MFI = MF.getFrameInfo(); const Function &F = MF.getFunction(); unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; StackProbeSize = F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize); return (StackSizeInBytes >= StackProbeSize) && !F.hasFnAttribute("no-stack-arg-probe"); } namespace { struct StackAdjustingInsts { struct InstInfo { MachineBasicBlock::iterator I; unsigned SPAdjust; bool BeforeFPSet; }; SmallVector Insts; void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, bool BeforeFPSet = false) { InstInfo Info = {I, SPAdjust, BeforeFPSet}; Insts.push_back(Info); } void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { auto Info = llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); assert(Info != Insts.end() && "invalid sp adjusting instruction"); Info->SPAdjust += ExtraBytes; } void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, const ARMBaseInstrInfo &TII, bool HasFP) { MachineFunction &MF = *MBB.getParent(); unsigned CFAOffset = 0; for (auto &Info : Insts) { if (HasFP && !Info.BeforeFPSet) return; CFAOffset += Info.SPAdjust; unsigned CFIIndex = MF.addFrameInst( MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset)); BuildMI(MBB, std::next(Info.I), dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } } }; } // end anonymous namespace /// Emit an instruction sequence that will align the address in /// register Reg by zero-ing out the lower bits. For versions of the /// architecture that support Neon, this must be done in a single /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a /// single instruction. That function only gets called when optimizing /// spilling of D registers on a core with the Neon instruction set /// present. static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, const TargetInstrInfo &TII, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, const unsigned Reg, const Align Alignment, const bool MustBeSingleInstruction) { const ARMSubtarget &AST = MF.getSubtarget(); const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); const unsigned AlignMask = Alignment.value() - 1U; const unsigned NrBitsToZero = Log2(Alignment); assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); if (!AFI->isThumbFunction()) { // if the BFC instruction is available, use that to zero the lower // bits: // bfc Reg, #0, log2(Alignment) // otherwise use BIC, if the mask to zero the required number of bits // can be encoded in the bic immediate field // bic Reg, Reg, Alignment-1 // otherwise, emit // lsr Reg, Reg, log2(Alignment) // lsl Reg, Reg, log2(Alignment) if (CanUseBFC) { BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) .addReg(Reg, RegState::Kill) .addImm(~AlignMask) .add(predOps(ARMCC::AL)); } else if (AlignMask <= 255) { BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) .addReg(Reg, RegState::Kill) .addImm(AlignMask) .add(predOps(ARMCC::AL)) .add(condCodeOp()); } else { assert(!MustBeSingleInstruction && "Shouldn't call emitAligningInstructions demanding a single " "instruction to be emitted for large stack alignment for a target " "without BFC."); BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) .addReg(Reg, RegState::Kill) .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) .add(predOps(ARMCC::AL)) .add(condCodeOp()); BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) .addReg(Reg, RegState::Kill) .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) .add(predOps(ARMCC::AL)) .add(condCodeOp()); } } else { // Since this is only reached for Thumb-2 targets, the BFC instruction // should always be available. assert(CanUseBFC); BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) .addReg(Reg, RegState::Kill) .addImm(~AlignMask) .add(predOps(ARMCC::AL)); } } /// We need the offset of the frame pointer relative to other MachineFrameInfo /// offsets which are encoded relative to SP at function begin. /// See also emitPrologue() for how the FP is set up. /// Unfortunately we cannot determine this value in determineCalleeSaves() yet /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use /// this to produce a conservative estimate that we check in an assert() later. static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI, const MachineFunction &MF) { // For Thumb1, push.w isn't available, so the first push will always push // r7 and lr onto the stack first. if (AFI.isThumb1OnlyFunction()) return -AFI.getArgRegsSaveSize() - (2 * 4); // This is a conservative estimation: Assume the frame pointer being r7 and // pc("r15") up to r8 getting spilled before (= 8 registers). int MaxRegBytes = 8 * 4; if (STI.splitFramePointerPush(MF)) { // Here, r11 can be stored below all of r4-r15 (3 registers more than // above), plus d8-d15. MaxRegBytes = 11 * 4 + 8 * 8; } int FPCXTSaveSize = (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0; return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes; } void ARMFrameLowering::emitPrologue(MachineFunction &MF, MachineBasicBlock &MBB) const { MachineBasicBlock::iterator MBBI = MBB.begin(); MachineFrameInfo &MFI = MF.getFrameInfo(); ARMFunctionInfo *AFI = MF.getInfo(); MachineModuleInfo &MMI = MF.getMMI(); MCContext &Context = MMI.getContext(); const TargetMachine &TM = MF.getTarget(); const MCRegisterInfo *MRI = Context.getRegisterInfo(); const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); assert(!AFI->isThumb1OnlyFunction() && "This emitPrologue does not support Thumb1!"); bool isARM = !AFI->isThumbFunction(); Align Alignment = STI.getFrameLowering()->getStackAlign(); unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); unsigned NumBytes = MFI.getStackSize(); const std::vector &CSI = MFI.getCalleeSavedInfo(); int FPCXTSaveSize = 0; bool NeedsWinCFI = needsWinCFI(MF); // Debug location must be unknown since the first debug location is used // to determine the end of the prologue. DebugLoc dl; Register FramePtr = RegInfo->getFrameRegister(MF); // Determine the sizes of each callee-save spill areas and record which frame // belongs to which callee-save spill areas. unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; int FramePtrSpillFI = 0; int D8SpillFI = 0; // All calls are tail calls in GHC calling conv, and functions have no // prologue/epilogue. if (MF.getFunction().getCallingConv() == CallingConv::GHC) return; StackAdjustingInsts DefCFAOffsetCandidates; bool HasFP = hasFP(MF); if (!AFI->hasStackFrame() && (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { if (NumBytes != 0) { emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, MachineInstr::FrameSetup); DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true); } if (!NeedsWinCFI) DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); if (NeedsWinCFI && MBBI != MBB.begin()) { insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup); BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd)) .setMIFlag(MachineInstr::FrameSetup); MF.setHasWinCFI(true); } return; } // Determine spill area sizes. if (STI.splitFramePointerPush(MF)) { for (const CalleeSavedInfo &I : CSI) { Register Reg = I.getReg(); int FI = I.getFrameIdx(); switch (Reg) { case ARM::R11: case ARM::LR: if (Reg == FramePtr) FramePtrSpillFI = FI; GPRCS2Size += 4; break; case ARM::R0: case ARM::R1: case ARM::R2: case ARM::R3: case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7: case ARM::R8: case ARM::R9: case ARM::R10: case ARM::R12: GPRCS1Size += 4; break; case ARM::FPCXTNS: FPCXTSaveSize = 4; break; default: // This is a DPR. Exclude the aligned DPRCS2 spills. if (Reg == ARM::D8) D8SpillFI = FI; if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) DPRCSSize += 8; } } } else { for (const CalleeSavedInfo &I : CSI) { Register Reg = I.getReg(); int FI = I.getFrameIdx(); switch (Reg) { case ARM::R8: case ARM::R9: case ARM::R10: case ARM::R11: case ARM::R12: if (STI.splitFramePushPop(MF)) { GPRCS2Size += 4; break; } [[fallthrough]]; case ARM::R0: case ARM::R1: case ARM::R2: case ARM::R3: case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7: case ARM::LR: if (Reg == FramePtr) FramePtrSpillFI = FI; GPRCS1Size += 4; break; case ARM::FPCXTNS: FPCXTSaveSize = 4; break; default: // This is a DPR. Exclude the aligned DPRCS2 spills. if (Reg == ARM::D8) D8SpillFI = FI; if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) DPRCSSize += 8; } } } MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; // Move past the PAC computation. if (AFI->shouldSignReturnAddress()) LastPush = MBBI++; // Move past FPCXT area. if (FPCXTSaveSize > 0) { LastPush = MBBI++; DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true); } // Allocate the vararg register save area. if (ArgRegsSaveSize) { emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, MachineInstr::FrameSetup); LastPush = std::prev(MBBI); DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true); } // Move past area 1. if (GPRCS1Size > 0) { GPRCS1Push = LastPush = MBBI++; DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); } // Determine starting offsets of spill areas. unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize; unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size; unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4); unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize; if (!STI.splitFramePointerPush(MF)) { DPRGapSize += GPRCS2Size; } DPRGapSize %= DPRAlign.value(); unsigned DPRCSOffset; if (STI.splitFramePointerPush(MF)) { DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize; GPRCS2Offset = DPRCSOffset - GPRCS2Size; } else { DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; } int FramePtrOffsetInPush = 0; if (HasFP) { int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset && "Max FP estimation is wrong"); FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize; AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + NumBytes); } AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); // Move past area 2. if (GPRCS2Size > 0 && !STI.splitFramePointerPush(MF)) { GPRCS2Push = LastPush = MBBI++; DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); } // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our // .cfi_offset operations will reflect that. if (DPRGapSize) { assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); if (LastPush != MBB.end() && tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); else { emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, MachineInstr::FrameSetup); DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); } } // Move past area 3. if (DPRCSSize > 0) { // Since vpush register list cannot have gaps, there may be multiple vpush // instructions in the prologue. while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); LastPush = MBBI++; } } // Move past the aligned DPRCS2 area. if (AFI->getNumAlignedDPRCS2Regs() > 0) { MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and // leaves the stack pointer pointing to the DPRCS2 area. // // Adjust NumBytes to represent the stack slots below the DPRCS2 area. NumBytes += MFI.getObjectOffset(D8SpillFI); } else NumBytes = DPRCSOffset; if (GPRCS2Size > 0 && STI.splitFramePointerPush(MF)) { GPRCS2Push = LastPush = MBBI++; DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); } bool NeedsWinCFIStackAlloc = NeedsWinCFI; if (STI.splitFramePointerPush(MF) && HasFP) NeedsWinCFIStackAlloc = false; if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { uint32_t NumWords = NumBytes >> 2; if (NumWords < 65536) { BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) .addImm(NumWords) .setMIFlags(MachineInstr::FrameSetup) .add(predOps(ARMCC::AL)); } else { // Split into two instructions here, instead of using t2MOVi32imm, // to allow inserting accurate SEH instructions (including accurate // instruction size for each of them). BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) .addImm(NumWords & 0xffff) .setMIFlags(MachineInstr::FrameSetup) .add(predOps(ARMCC::AL)); BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4) .addReg(ARM::R4) .addImm(NumWords >> 16) .setMIFlags(MachineInstr::FrameSetup) .add(predOps(ARMCC::AL)); } switch (TM.getCodeModel()) { case CodeModel::Tiny: llvm_unreachable("Tiny code model not available on ARM."); case CodeModel::Small: case CodeModel::Medium: case CodeModel::Kernel: BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) .add(predOps(ARMCC::AL)) .addExternalSymbol("__chkstk") .addReg(ARM::R4, RegState::Implicit) .setMIFlags(MachineInstr::FrameSetup); break; case CodeModel::Large: BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) .addExternalSymbol("__chkstk") .setMIFlags(MachineInstr::FrameSetup); BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) .add(predOps(ARMCC::AL)) .addReg(ARM::R12, RegState::Kill) .addReg(ARM::R4, RegState::Implicit) .setMIFlags(MachineInstr::FrameSetup); break; } MachineInstrBuilder Instr, SEH; Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) .addReg(ARM::SP, RegState::Kill) .addReg(ARM::R4, RegState::Kill) .setMIFlags(MachineInstr::FrameSetup) .add(predOps(ARMCC::AL)) .add(condCodeOp()); if (NeedsWinCFIStackAlloc) { SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc)) .addImm(NumBytes) .addImm(/*Wide=*/1) .setMIFlags(MachineInstr::FrameSetup); MBB.insertAfter(Instr, SEH); } NumBytes = 0; } if (NumBytes) { // Adjust SP after all the callee-save spills. if (AFI->getNumAlignedDPRCS2Regs() == 0 && tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); else { emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, MachineInstr::FrameSetup); DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); } if (HasFP && isARM) // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 // Note it's not safe to do this in Thumb2 mode because it would have // taken two instructions: // mov sp, r7 // sub sp, #24 // If an interrupt is taken between the two instructions, then sp is in // an inconsistent state (pointing to the middle of callee-saved area). // The interrupt handler can end up clobbering the registers. AFI->setShouldRestoreSPFromFP(true); } // Set FP to point to the stack slot that contains the previous FP. // For iOS, FP is R7, which has now been stored in spill area 1. // Otherwise, if this is not iOS, all the callee-saved registers go // into spill area 1, including the FP in R11. In either case, it // is in area one and the adjustment needs to take place just after // that push. // FIXME: The above is not necessary true when PACBTI is enabled. // AAPCS requires use of R11, and PACBTI gets in the way of regular pushes, // so FP ends up on area two. MachineBasicBlock::iterator AfterPush; if (HasFP) { AfterPush = std::next(GPRCS1Push); unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); int FPOffset = PushSize + FramePtrOffsetInPush; if (STI.splitFramePointerPush(MF)) { AfterPush = std::next(GPRCS2Push); emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, FramePtr, ARM::SP, 0, MachineInstr::FrameSetup); } else { emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, FramePtr, ARM::SP, FPOffset, MachineInstr::FrameSetup); } if (!NeedsWinCFI) { if (FramePtrOffsetInPush + PushSize != 0) { unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( nullptr, MRI->getDwarfRegNum(FramePtr, true), FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush)); BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } else { unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( nullptr, MRI->getDwarfRegNum(FramePtr, true))); BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } } } // Emit a SEH opcode indicating the prologue end. The rest of the prologue // instructions below don't need to be replayed to unwind the stack. if (NeedsWinCFI && MBBI != MBB.begin()) { MachineBasicBlock::iterator End = MBBI; if (HasFP && STI.splitFramePointerPush(MF)) End = AfterPush; insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup); BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd)) .setMIFlag(MachineInstr::FrameSetup); MF.setHasWinCFI(true); } // Now that the prologue's actual instructions are finalised, we can insert // the necessary DWARF cf instructions to describe the situation. Start by // recording where each register ended up: if (GPRCS1Size > 0 && !NeedsWinCFI) { MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); int CFIIndex; for (const auto &Entry : CSI) { Register Reg = Entry.getReg(); int FI = Entry.getFrameIdx(); switch (Reg) { case ARM::R8: case ARM::R9: case ARM::R10: case ARM::R11: case ARM::R12: if (STI.splitFramePushPop(MF)) break; [[fallthrough]]; case ARM::R0: case ARM::R1: case ARM::R2: case ARM::R3: case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7: case ARM::LR: CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); break; } } } if (GPRCS2Size > 0 && !NeedsWinCFI) { MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); for (const auto &Entry : CSI) { Register Reg = Entry.getReg(); int FI = Entry.getFrameIdx(); switch (Reg) { case ARM::R8: case ARM::R9: case ARM::R10: case ARM::R11: case ARM::R12: if (STI.splitFramePushPop(MF)) { unsigned DwarfReg = MRI->getDwarfRegNum( Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, true); unsigned Offset = MFI.getObjectOffset(FI); unsigned CFIIndex = MF.addFrameInst( MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } break; } } } if (DPRCSSize > 0 && !NeedsWinCFI) { // Since vpush register list cannot have gaps, there may be multiple vpush // instructions in the prologue. MachineBasicBlock::iterator Pos = std::next(LastPush); for (const auto &Entry : CSI) { Register Reg = Entry.getReg(); int FI = Entry.getFrameIdx(); if ((Reg >= ARM::D0 && Reg <= ARM::D31) && (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); unsigned Offset = MFI.getObjectOffset(FI); unsigned CFIIndex = MF.addFrameInst( MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } } } // Now we can emit descriptions of where the canonical frame address was // throughout the process. If we have a frame pointer, it takes over the job // half-way through, so only the first few .cfi_def_cfa_offset instructions // actually get emitted. if (!NeedsWinCFI) DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); if (STI.isTargetELF() && hasFP(MF)) MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - AFI->getFramePtrSpillOffset()); AFI->setFPCXTSaveAreaSize(FPCXTSaveSize); AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); AFI->setDPRCalleeSavedGapSize(DPRGapSize); AFI->setDPRCalleeSavedAreaSize(DPRCSSize); // If we need dynamic stack realignment, do it here. Be paranoid and make // sure if we also have VLAs, we have a base pointer for frame access. // If aligned NEON registers were spilled, the stack has already been // realigned. if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) { Align MaxAlign = MFI.getMaxAlign(); assert(!AFI->isThumb1OnlyFunction()); if (!AFI->isThumbFunction()) { emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, false); } else { // We cannot use sp as source/dest register here, thus we're using r4 to // perform the calculations. We're emitting the following sequence: // mov r4, sp // -- use emitAligningInstructions to produce best sequence to zero // -- out lower bits in r4 // mov sp, r4 // FIXME: It will be better just to find spare register here. BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) .addReg(ARM::SP, RegState::Kill) .add(predOps(ARMCC::AL)); emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, false); BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) .addReg(ARM::R4, RegState::Kill) .add(predOps(ARMCC::AL)); } AFI->setShouldRestoreSPFromFP(true); } // If we need a base pointer, set it up here. It's whatever the value // of the stack pointer is at this point. Any variable size objects // will be allocated after this, so we can still use the base pointer // to reference locals. // FIXME: Clarify FrameSetup flags here. if (RegInfo->hasBasePointer(MF)) { if (isARM) BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) .addReg(ARM::SP) .add(predOps(ARMCC::AL)) .add(condCodeOp()); else BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) .addReg(ARM::SP) .add(predOps(ARMCC::AL)); } // If the frame has variable sized objects then the epilogue must restore // the sp from fp. We can assume there's an FP here since hasFP already // checks for hasVarSizedObjects. if (MFI.hasVarSizedObjects()) AFI->setShouldRestoreSPFromFP(true); } void ARMFrameLowering::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { MachineFrameInfo &MFI = MF.getFrameInfo(); ARMFunctionInfo *AFI = MF.getInfo(); const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); const ARMBaseInstrInfo &TII = *static_cast(MF.getSubtarget().getInstrInfo()); assert(!AFI->isThumb1OnlyFunction() && "This emitEpilogue does not support Thumb1!"); bool isARM = !AFI->isThumbFunction(); // Amount of stack space we reserved next to incoming args for either // varargs registers or stack arguments in tail calls made by this function. unsigned ReservedArgStack = AFI->getArgRegsSaveSize(); // How much of the stack used by incoming arguments this function is expected // to restore in this particular epilogue. int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB); int NumBytes = (int)MFI.getStackSize(); Register FramePtr = RegInfo->getFrameRegister(MF); // All calls are tail calls in GHC calling conv, and functions have no // prologue/epilogue. if (MF.getFunction().getCallingConv() == CallingConv::GHC) return; // First put ourselves on the first (from top) terminator instructions. MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); MachineBasicBlock::iterator RangeStart; if (!AFI->hasStackFrame()) { if (MF.hasWinCFI()) { BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) .setMIFlag(MachineInstr::FrameDestroy); RangeStart = initMBBRange(MBB, MBBI); } if (NumBytes + IncomingArgStackToRestore != 0) emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes + IncomingArgStackToRestore, MachineInstr::FrameDestroy); } else { // Unwind MBBI to point to first LDR / VLDRD. if (MBBI != MBB.begin()) { do { --MBBI; } while (MBBI != MBB.begin() && MBBI->getFlag(MachineInstr::FrameDestroy)); if (!MBBI->getFlag(MachineInstr::FrameDestroy)) ++MBBI; } if (MF.hasWinCFI()) { BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) .setMIFlag(MachineInstr::FrameDestroy); RangeStart = initMBBRange(MBB, MBBI); } // Move SP to start of FP callee save spill area. NumBytes -= (ReservedArgStack + AFI->getFPCXTSaveAreaSize() + AFI->getGPRCalleeSavedArea1Size() + AFI->getGPRCalleeSavedArea2Size() + AFI->getDPRCalleeSavedGapSize() + AFI->getDPRCalleeSavedAreaSize()); // Reset SP based on frame pointer only if the stack frame extends beyond // frame pointer stack slot or target is ELF and the function has FP. if (AFI->shouldRestoreSPFromFP()) { NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; if (NumBytes) { if (isARM) emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, ARMCC::AL, 0, TII, MachineInstr::FrameDestroy); else { // It's not possible to restore SP from FP in a single instruction. // For iOS, this looks like: // mov sp, r7 // sub sp, #24 // This is bad, if an interrupt is taken after the mov, sp is in an // inconsistent state. // Use the first callee-saved register as a scratch register. assert(!MFI.getPristineRegs(MF).test(ARM::R4) && "No scratch register to restore SP from FP!"); emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, ARMCC::AL, 0, TII, MachineInstr::FrameDestroy); BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) .addReg(ARM::R4) .add(predOps(ARMCC::AL)) .setMIFlag(MachineInstr::FrameDestroy); } } else { // Thumb2 or ARM. if (isARM) BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) .addReg(FramePtr) .add(predOps(ARMCC::AL)) .add(condCodeOp()) .setMIFlag(MachineInstr::FrameDestroy); else BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) .addReg(FramePtr) .add(predOps(ARMCC::AL)) .setMIFlag(MachineInstr::FrameDestroy); } } else if (NumBytes && !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes, MachineInstr::FrameDestroy); // Increment past our save areas. if (AFI->getGPRCalleeSavedArea2Size() && STI.splitFramePointerPush(MF)) MBBI++; if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { MBBI++; // Since vpop register list cannot have gaps, there may be multiple vpop // instructions in the epilogue. while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) MBBI++; } if (AFI->getDPRCalleeSavedGapSize()) { assert(AFI->getDPRCalleeSavedGapSize() == 4 && "unexpected DPR alignment gap"); emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(), MachineInstr::FrameDestroy); } if (AFI->getGPRCalleeSavedArea2Size() && !STI.splitFramePointerPush(MF)) MBBI++; if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; if (ReservedArgStack || IncomingArgStackToRestore) { assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 && "attempting to restore negative stack amount"); emitSPUpdate(isARM, MBB, MBBI, dl, TII, ReservedArgStack + IncomingArgStackToRestore, MachineInstr::FrameDestroy); } // Validate PAC, It should have been already popped into R12. For CMSE entry // function, the validation instruction is emitted during expansion of the // tBXNS_RET, since the validation must use the value of SP at function // entry, before saving, resp. after restoring, FPCXTNS. if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction()) BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT)); } if (MF.hasWinCFI()) { insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy); BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd)) .setMIFlag(MachineInstr::FrameDestroy); } } /// getFrameIndexReference - Provide a base+offset reference to an FI slot for /// debug info. It's the same as what we use for resolving the code-gen /// references for now. FIXME: This can go wrong when references are /// SP-relative and simple call frames aren't used. StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, Register &FrameReg) const { return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0)); } int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, int FI, Register &FrameReg, int SPAdj) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); const ARMBaseRegisterInfo *RegInfo = static_cast( MF.getSubtarget().getRegisterInfo()); const ARMFunctionInfo *AFI = MF.getInfo(); int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); int FPOffset = Offset - AFI->getFramePtrSpillOffset(); bool isFixed = MFI.isFixedObjectIndex(FI); FrameReg = ARM::SP; Offset += SPAdj; // SP can move around if there are allocas. We may also lose track of SP // when emergency spilling inside a non-reserved call frame setup. bool hasMovingSP = !hasReservedCallFrame(MF); // When dynamically realigning the stack, use the frame pointer for // parameters, and the stack/base pointer for locals. if (RegInfo->hasStackRealignment(MF)) { assert(hasFP(MF) && "dynamic stack realignment without a FP!"); if (isFixed) { FrameReg = RegInfo->getFrameRegister(MF); Offset = FPOffset; } else if (hasMovingSP) { assert(RegInfo->hasBasePointer(MF) && "VLAs and dynamic stack alignment, but missing base pointer!"); FrameReg = RegInfo->getBaseRegister(); Offset -= SPAdj; } return Offset; } // If there is a frame pointer, use it when we can. if (hasFP(MF) && AFI->hasStackFrame()) { // Use frame pointer to reference fixed objects. Use it for locals if // there are VLAs (and thus the SP isn't reliable as a base). if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { FrameReg = RegInfo->getFrameRegister(MF); return FPOffset; } else if (hasMovingSP) { assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); if (AFI->isThumb2Function()) { // Try to use the frame pointer if we can, else use the base pointer // since it's available. This is handy for the emergency spill slot, in // particular. if (FPOffset >= -255 && FPOffset < 0) { FrameReg = RegInfo->getFrameRegister(MF); return FPOffset; } } } else if (AFI->isThumbFunction()) { // Prefer SP to base pointer, if the offset is suitably aligned and in // range as the effective range of the immediate offset is bigger when // basing off SP. // Use add , sp, # // ldr , [sp, #] if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) return Offset; // In Thumb2 mode, the negative offset is very limited. Try to avoid // out of range references. ldr ,[, #-] if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { FrameReg = RegInfo->getFrameRegister(MF); return FPOffset; } } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { // Otherwise, use SP or FP, whichever is closer to the stack slot. FrameReg = RegInfo->getFrameRegister(MF); return FPOffset; } } // Use the base pointer if we have one. // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper? // That can happen if we forced a base pointer for a large call frame. if (RegInfo->hasBasePointer(MF)) { FrameReg = RegInfo->getBaseRegister(); Offset -= SPAdj; } return Offset; } void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, ArrayRef CSI, unsigned StmOpc, unsigned StrOpc, bool NoGap, bool (*Func)(unsigned, bool), unsigned NumAlignedDPRCS2Regs, unsigned MIFlags) const { MachineFunction &MF = *MBB.getParent(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); DebugLoc DL; using RegAndKill = std::pair; SmallVector Regs; unsigned i = CSI.size(); while (i != 0) { unsigned LastReg = 0; for (; i != 0; --i) { Register Reg = CSI[i-1].getReg(); if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; // D-registers in the aligned area DPRCS2 are NOT spilled here. if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) continue; const MachineRegisterInfo &MRI = MF.getRegInfo(); bool isLiveIn = MRI.isLiveIn(Reg); if (!isLiveIn && !MRI.isReserved(Reg)) MBB.addLiveIn(Reg); // If NoGap is true, push consecutive registers and then leave the rest // for other instructions. e.g. // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} if (NoGap && LastReg && LastReg != Reg-1) break; LastReg = Reg; // Do not set a kill flag on values that are also marked as live-in. This // happens with the @llvm-returnaddress intrinsic and with arguments // passed in callee saved registers. // Omitting the kill flags is conservatively correct even if the live-in // is not used after all. Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); } if (Regs.empty()) continue; llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); }); if (Regs.size() > 1 || StrOpc== 0) { MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) .addReg(ARM::SP) .setMIFlags(MIFlags) .add(predOps(ARMCC::AL)); for (unsigned i = 0, e = Regs.size(); i < e; ++i) MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); } else if (Regs.size() == 1) { BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) .addReg(Regs[0].first, getKillRegState(Regs[0].second)) .addReg(ARM::SP) .setMIFlags(MIFlags) .addImm(-4) .add(predOps(ARMCC::AL)); } Regs.clear(); // Put any subsequent vpush instructions before this one: they will refer to // higher register numbers so need to be pushed first in order to preserve // monotonicity. if (MI != MBB.begin()) --MI; } } void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, MutableArrayRef CSI, unsigned LdmOpc, unsigned LdrOpc, bool isVarArg, bool NoGap, bool (*Func)(unsigned, bool), unsigned NumAlignedDPRCS2Regs) const { MachineFunction &MF = *MBB.getParent(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); ARMFunctionInfo *AFI = MF.getInfo(); bool hasPAC = AFI->shouldSignReturnAddress(); DebugLoc DL; bool isTailCall = false; bool isInterrupt = false; bool isTrap = false; bool isCmseEntry = false; if (MBB.end() != MI) { DL = MI->getDebugLoc(); unsigned RetOpcode = MI->getOpcode(); isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); isInterrupt = RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; isTrap = RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || RetOpcode == ARM::tTRAP; isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET); } SmallVector Regs; unsigned i = CSI.size(); while (i != 0) { unsigned LastReg = 0; bool DeleteRet = false; for (; i != 0; --i) { CalleeSavedInfo &Info = CSI[i-1]; Register Reg = Info.getReg(); if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; // The aligned reloads from area DPRCS2 are not inserted here. if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) continue; if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 && STI.hasV5TOps() && MBB.succ_empty() && !hasPAC && !STI.splitFramePointerPush(MF)) { Reg = ARM::PC; // Fold the return instruction into the LDM. DeleteRet = true; LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; } // If NoGap is true, pop consecutive registers and then leave the rest // for other instructions. e.g. // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} if (NoGap && LastReg && LastReg != Reg-1) break; LastReg = Reg; Regs.push_back(Reg); } if (Regs.empty()) continue; llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); }); if (Regs.size() > 1 || LdrOpc == 0) { MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) .addReg(ARM::SP) .add(predOps(ARMCC::AL)) .setMIFlags(MachineInstr::FrameDestroy); for (unsigned i = 0, e = Regs.size(); i < e; ++i) MIB.addReg(Regs[i], getDefRegState(true)); if (DeleteRet) { if (MI != MBB.end()) { MIB.copyImplicitOps(*MI); MI->eraseFromParent(); } } MI = MIB; } else if (Regs.size() == 1) { // If we adjusted the reg to PC from LR above, switch it back here. We // only do that for LDM. if (Regs[0] == ARM::PC) Regs[0] = ARM::LR; MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) .addReg(ARM::SP, RegState::Define) .addReg(ARM::SP) .setMIFlags(MachineInstr::FrameDestroy); // ARM mode needs an extra reg0 here due to addrmode2. Will go away once // that refactoring is complete (eventually). if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { MIB.addReg(0); MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); } else MIB.addImm(4); MIB.add(predOps(ARMCC::AL)); } Regs.clear(); // Put any subsequent vpop instructions after this one: they will refer to // higher register numbers so need to be popped afterwards. if (MI != MBB.end()) ++MI; } } /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers /// starting from d8. Also insert stack realignment code and leave the stack /// pointer pointing to the d8 spill slot. static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned NumAlignedDPRCS2Regs, ArrayRef CSI, const TargetRegisterInfo *TRI) { MachineFunction &MF = *MBB.getParent(); ARMFunctionInfo *AFI = MF.getInfo(); DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); MachineFrameInfo &MFI = MF.getFrameInfo(); // Mark the D-register spill slots as properly aligned. Since MFI computes // stack slot layout backwards, this can actually mean that the d-reg stack // slot offsets can be wrong. The offset for d8 will always be correct. for (const CalleeSavedInfo &I : CSI) { unsigned DNum = I.getReg() - ARM::D8; if (DNum > NumAlignedDPRCS2Regs - 1) continue; int FI = I.getFrameIdx(); // The even-numbered registers will be 16-byte aligned, the odd-numbered // registers will be 8-byte aligned. MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16)); // The stack slot for D8 needs to be maximally aligned because this is // actually the point where we align the stack pointer. MachineFrameInfo // computes all offsets relative to the incoming stack pointer which is a // bit weird when realigning the stack. Any extra padding for this // over-alignment is not realized because the code inserted below adjusts // the stack pointer by numregs * 8 before aligning the stack pointer. if (DNum == 0) MFI.setObjectAlignment(FI, MFI.getMaxAlign()); } // Move the stack pointer to the d8 spill slot, and align it at the same // time. Leave the stack slot address in the scratch register r4. // // sub r4, sp, #numregs * 8 // bic r4, r4, #align - 1 // mov sp, r4 // bool isThumb = AFI->isThumbFunction(); assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); AFI->setShouldRestoreSPFromFP(true); // sub r4, sp, #numregs * 8 // The immediate is <= 64, so it doesn't need any special encoding. unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) .addReg(ARM::SP) .addImm(8 * NumAlignedDPRCS2Regs) .add(predOps(ARMCC::AL)) .add(condCodeOp()); Align MaxAlign = MF.getFrameInfo().getMaxAlign(); // We must set parameter MustBeSingleInstruction to true, since // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform // stack alignment. Luckily, this can always be done since all ARM // architecture versions that support Neon also support the BFC // instruction. emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); // mov sp, r4 // The stack pointer must be adjusted before spilling anything, otherwise // the stack slots could be clobbered by an interrupt handler. // Leave r4 live, it is used below. Opc = isThumb ? ARM::tMOVr : ARM::MOVr; MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) .addReg(ARM::R4) .add(predOps(ARMCC::AL)); if (!isThumb) MIB.add(condCodeOp()); // Now spill NumAlignedDPRCS2Regs registers starting from d8. // r4 holds the stack slot address. unsigned NextReg = ARM::D8; // 16-byte aligned vst1.64 with 4 d-regs and address writeback. // The writeback is only needed when emitting two vst1.64 instructions. if (NumAlignedDPRCS2Regs >= 6) { unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QQPRRegClass); MBB.addLiveIn(SupReg); BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) .addReg(ARM::R4, RegState::Kill) .addImm(16) .addReg(NextReg) .addReg(SupReg, RegState::ImplicitKill) .add(predOps(ARMCC::AL)); NextReg += 4; NumAlignedDPRCS2Regs -= 4; } // We won't modify r4 beyond this point. It currently points to the next // register to be spilled. unsigned R4BaseReg = NextReg; // 16-byte aligned vst1.64 with 4 d-regs, no writeback. if (NumAlignedDPRCS2Regs >= 4) { unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QQPRRegClass); MBB.addLiveIn(SupReg); BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) .addReg(ARM::R4) .addImm(16) .addReg(NextReg) .addReg(SupReg, RegState::ImplicitKill) .add(predOps(ARMCC::AL)); NextReg += 4; NumAlignedDPRCS2Regs -= 4; } // 16-byte aligned vst1.64 with 2 d-regs. if (NumAlignedDPRCS2Regs >= 2) { unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QPRRegClass); MBB.addLiveIn(SupReg); BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) .addReg(ARM::R4) .addImm(16) .addReg(SupReg) .add(predOps(ARMCC::AL)); NextReg += 2; NumAlignedDPRCS2Regs -= 2; } // Finally, use a vanilla vstr.64 for the odd last register. if (NumAlignedDPRCS2Regs) { MBB.addLiveIn(NextReg); // vstr.64 uses addrmode5 which has an offset scale of 4. BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) .addReg(NextReg) .addReg(ARM::R4) .addImm((NextReg - R4BaseReg) * 2) .add(predOps(ARMCC::AL)); } // The last spill instruction inserted should kill the scratch register r4. std::prev(MI)->addRegisterKilled(ARM::R4, TRI); } /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an /// iterator to the following instruction. static MachineBasicBlock::iterator skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, unsigned NumAlignedDPRCS2Regs) { // sub r4, sp, #numregs * 8 // bic r4, r4, #align - 1 // mov sp, r4 ++MI; ++MI; ++MI; assert(MI->mayStore() && "Expecting spill instruction"); // These switches all fall through. switch(NumAlignedDPRCS2Regs) { case 7: ++MI; assert(MI->mayStore() && "Expecting spill instruction"); [[fallthrough]]; default: ++MI; assert(MI->mayStore() && "Expecting spill instruction"); [[fallthrough]]; case 1: case 2: case 4: assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); ++MI; } return MI; } /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers /// starting from d8. These instructions are assumed to execute while the /// stack is still aligned, unlike the code inserted by emitPopInst. static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned NumAlignedDPRCS2Regs, ArrayRef CSI, const TargetRegisterInfo *TRI) { MachineFunction &MF = *MBB.getParent(); ARMFunctionInfo *AFI = MF.getInfo(); DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); // Find the frame index assigned to d8. int D8SpillFI = 0; for (const CalleeSavedInfo &I : CSI) if (I.getReg() == ARM::D8) { D8SpillFI = I.getFrameIdx(); break; } // Materialize the address of the d8 spill slot into the scratch register r4. // This can be fairly complicated if the stack frame is large, so just use // the normal frame index elimination mechanism to do it. This code runs as // the initial part of the epilog where the stack and base pointers haven't // been changed yet. bool isThumb = AFI->isThumbFunction(); assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) .addFrameIndex(D8SpillFI) .addImm(0) .add(predOps(ARMCC::AL)) .add(condCodeOp()); // Now restore NumAlignedDPRCS2Regs registers starting from d8. unsigned NextReg = ARM::D8; // 16-byte aligned vld1.64 with 4 d-regs and writeback. if (NumAlignedDPRCS2Regs >= 6) { unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QQPRRegClass); BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) .addReg(ARM::R4, RegState::Define) .addReg(ARM::R4, RegState::Kill) .addImm(16) .addReg(SupReg, RegState::ImplicitDefine) .add(predOps(ARMCC::AL)); NextReg += 4; NumAlignedDPRCS2Regs -= 4; } // We won't modify r4 beyond this point. It currently points to the next // register to be spilled. unsigned R4BaseReg = NextReg; // 16-byte aligned vld1.64 with 4 d-regs, no writeback. if (NumAlignedDPRCS2Regs >= 4) { unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QQPRRegClass); BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) .addReg(ARM::R4) .addImm(16) .addReg(SupReg, RegState::ImplicitDefine) .add(predOps(ARMCC::AL)); NextReg += 4; NumAlignedDPRCS2Regs -= 4; } // 16-byte aligned vld1.64 with 2 d-regs. if (NumAlignedDPRCS2Regs >= 2) { unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QPRRegClass); BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) .addReg(ARM::R4) .addImm(16) .add(predOps(ARMCC::AL)); NextReg += 2; NumAlignedDPRCS2Regs -= 2; } // Finally, use a vanilla vldr.64 for the remaining odd register. if (NumAlignedDPRCS2Regs) BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) .addReg(ARM::R4) .addImm(2 * (NextReg - R4BaseReg)) .add(predOps(ARMCC::AL)); // Last store kills r4. std::prev(MI)->addRegisterKilled(ARM::R4, TRI); } bool ARMFrameLowering::spillCalleeSavedRegisters( MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, ArrayRef CSI, const TargetRegisterInfo *TRI) const { if (CSI.empty()) return false; MachineFunction &MF = *MBB.getParent(); ARMFunctionInfo *AFI = MF.getInfo(); unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; unsigned PushOneOpc = AFI->isThumbFunction() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM; unsigned FltOpc = ARM::VSTMDDB_UPD; unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); // Compute PAC in R12. if (AFI->shouldSignReturnAddress()) { BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC)) .setMIFlags(MachineInstr::FrameSetup); } // Save the non-secure floating point context. if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) { return C.getReg() == ARM::FPCXTNS; })) { BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre), ARM::SP) .addReg(ARM::SP) .addImm(-4) .add(predOps(ARMCC::AL)); } if (STI.splitFramePointerPush(MF)) { emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isSplitFPArea1Register, 0, MachineInstr::FrameSetup); emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isSplitFPArea2Register, 0, MachineInstr::FrameSetup); } else { emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0, MachineInstr::FrameSetup); emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0, MachineInstr::FrameSetup); emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); } // The code above does not insert spill code for the aligned DPRCS2 registers. // The stack realignment code will be inserted between the push instructions // and these spills. if (NumAlignedDPRCS2Regs) emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); return true; } bool ARMFrameLowering::restoreCalleeSavedRegisters( MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, MutableArrayRef CSI, const TargetRegisterInfo *TRI) const { if (CSI.empty()) return false; MachineFunction &MF = *MBB.getParent(); ARMFunctionInfo *AFI = MF.getInfo(); bool isVarArg = AFI->getArgRegsSaveSize() > 0; unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 // registers. Do that here instead. if (NumAlignedDPRCS2Regs) emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; unsigned FltOpc = ARM::VLDMDIA_UPD; if (STI.splitFramePointerPush(MF)) { emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, &isSplitFPArea2Register, 0); emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, NumAlignedDPRCS2Regs); emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, &isSplitFPArea1Register, 0); } else { emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, NumAlignedDPRCS2Regs); emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, &isARMArea2Register, 0); emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, &isARMArea1Register, 0); } return true; } // FIXME: Make generic? static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF, const ARMBaseInstrInfo &TII) { unsigned FnSize = 0; for (auto &MBB : MF) { for (auto &MI : MBB) FnSize += TII.getInstSizeInBytes(MI); } if (MF.getJumpTableInfo()) for (auto &Table: MF.getJumpTableInfo()->getJumpTables()) FnSize += Table.MBBs.size() * 4; FnSize += MF.getConstantPool()->getConstants().size() * 4; return FnSize; } /// estimateRSStackSizeLimit - Look at each instruction that references stack /// frames and return the stack size limit beyond which some of these /// instructions will require a scratch register during their expansion later. // FIXME: Move to TII? static unsigned estimateRSStackSizeLimit(MachineFunction &MF, const TargetFrameLowering *TFI, bool &HasNonSPFrameIndex) { const ARMFunctionInfo *AFI = MF.getInfo(); const ARMBaseInstrInfo &TII = *static_cast(MF.getSubtarget().getInstrInfo()); const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); unsigned Limit = (1 << 12) - 1; for (auto &MBB : MF) { for (auto &MI : MBB) { if (MI.isDebugInstr()) continue; for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { if (!MI.getOperand(i).isFI()) continue; // When using ADDri to get the address of a stack object, 255 is the // largest offset guaranteed to fit in the immediate offset. if (MI.getOpcode() == ARM::ADDri) { Limit = std::min(Limit, (1U << 8) - 1); break; } // t2ADDri will not require an extra register, it can reuse the // destination. if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12) break; const MCInstrDesc &MCID = MI.getDesc(); const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF); if (RegClass && !RegClass->contains(ARM::SP)) HasNonSPFrameIndex = true; // Otherwise check the addressing mode. switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { case ARMII::AddrMode_i12: case ARMII::AddrMode2: // Default 12 bit limit. break; case ARMII::AddrMode3: case ARMII::AddrModeT2_i8neg: Limit = std::min(Limit, (1U << 8) - 1); break; case ARMII::AddrMode5FP16: Limit = std::min(Limit, ((1U << 8) - 1) * 2); break; case ARMII::AddrMode5: case ARMII::AddrModeT2_i8s4: case ARMII::AddrModeT2_ldrex: Limit = std::min(Limit, ((1U << 8) - 1) * 4); break; case ARMII::AddrModeT2_i12: // i12 supports only positive offset so these will be converted to // i8 opcodes. See llvm::rewriteT2FrameIndex. if (TFI->hasFP(MF) && AFI->hasStackFrame()) Limit = std::min(Limit, (1U << 8) - 1); break; case ARMII::AddrMode4: case ARMII::AddrMode6: // Addressing modes 4 & 6 (load/store) instructions can't encode an // immediate offset for stack references. return 0; case ARMII::AddrModeT2_i7: Limit = std::min(Limit, ((1U << 7) - 1) * 1); break; case ARMII::AddrModeT2_i7s2: Limit = std::min(Limit, ((1U << 7) - 1) * 2); break; case ARMII::AddrModeT2_i7s4: Limit = std::min(Limit, ((1U << 7) - 1) * 4); break; default: llvm_unreachable("Unhandled addressing mode in stack size limit calculation"); } break; // At most one FI per instruction } } } return Limit; } // In functions that realign the stack, it can be an advantage to spill the // callee-saved vector registers after realigning the stack. The vst1 and vld1 // instructions take alignment hints that can improve performance. static void checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { MF.getInfo()->setNumAlignedDPRCS2Regs(0); if (!SpillAlignedNEONRegs) return; // Naked functions don't spill callee-saved registers. if (MF.getFunction().hasFnAttribute(Attribute::Naked)) return; // We are planning to use NEON instructions vst1 / vld1. if (!MF.getSubtarget().hasNEON()) return; // Don't bother if the default stack alignment is sufficiently high. if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8)) return; // Aligned spills require stack realignment. if (!static_cast( MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) return; // We always spill contiguous d-registers starting from d8. Count how many // needs spilling. The register allocator will almost always use the // callee-saved registers in order, but it can happen that there are holes in // the range. Registers above the hole will be spilled to the standard DPRCS // area. unsigned NumSpills = 0; for (; NumSpills < 8; ++NumSpills) if (!SavedRegs.test(ARM::D8 + NumSpills)) break; // Don't do this for just one d-register. It's not worth it. if (NumSpills < 2) return; // Spill the first NumSpills D-registers after realigning the stack. MF.getInfo()->setNumAlignedDPRCS2Regs(NumSpills); // A scratch register is required for the vst1 / vld1 instructions. SavedRegs.set(ARM::R4); } bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { // For CMSE entry functions, we want to save the FPCXT_NS immediately // upon function entry (resp. restore it immmediately before return) if (STI.hasV8_1MMainlineOps() && MF.getInfo()->isCmseNSEntryFunction()) return false; // We are disabling shrinkwrapping for now when PAC is enabled, as // shrinkwrapping can cause clobbering of r12 when the PAC code is // generated. A follow-up patch will fix this in a more performant manner. if (MF.getInfo()->shouldSignReturnAddress( true /* SpillsLR */)) return false; return true; } static bool requiresAAPCSFrameRecord(const MachineFunction &MF) { const auto &Subtarget = MF.getSubtarget(); return Subtarget.createAAPCSFrameChainLeaf() || (Subtarget.createAAPCSFrameChain() && MF.getFrameInfo().hasCalls()); } // Thumb1 may require a spill when storing to a frame index through FP (or any // access with execute-only), for cases where FP is a high register (R11). This // scans the function for cases where this may happen. static bool canSpillOnFrameIndexAccess(const MachineFunction &MF, const TargetFrameLowering &TFI) { const ARMFunctionInfo *AFI = MF.getInfo(); if (!AFI->isThumb1OnlyFunction()) return false; const ARMSubtarget &STI = MF.getSubtarget(); for (const auto &MBB : MF) for (const auto &MI : MBB) if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi || STI.genExecuteOnly()) for (const auto &Op : MI.operands()) if (Op.isFI()) { Register Reg; TFI.getFrameIndexReference(MF, Op.getIndex(), Reg); if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP) return true; } return false; } void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs, RegScavenger *RS) const { TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); // This tells PEI to spill the FP as if it is any other callee-save register // to take advantage the eliminateFrameIndex machinery. This also ensures it // is spilled in the order specified by getCalleeSavedRegs() to make it easier // to combine multiple loads / stores. bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF)); bool CS1Spilled = false; bool LRSpilled = false; unsigned NumGPRSpills = 0; unsigned NumFPRSpills = 0; SmallVector UnspilledCS1GPRs; SmallVector UnspilledCS2GPRs; const ARMBaseRegisterInfo *RegInfo = static_cast( MF.getSubtarget().getRegisterInfo()); const ARMBaseInstrInfo &TII = *static_cast(MF.getSubtarget().getInstrInfo()); ARMFunctionInfo *AFI = MF.getInfo(); MachineFrameInfo &MFI = MF.getFrameInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); (void)TRI; // Silence unused warning in non-assert builds. Register FramePtr = RegInfo->getFrameRegister(MF); // Spill R4 if Thumb2 function requires stack realignment - it will be used as // scratch register. Also spill R4 if Thumb2 function has varsized objects, // since it's not always possible to restore sp from fp in a single // instruction. // FIXME: It will be better just to find spare register here. if (AFI->isThumb2Function() && (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))) SavedRegs.set(ARM::R4); // If a stack probe will be emitted, spill R4 and LR, since they are // clobbered by the stack probe call. // This estimate should be a safe, conservative estimate. The actual // stack probe is enabled based on the size of the local objects; // this estimate also includes the varargs store size. if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { SavedRegs.set(ARM::R4); SavedRegs.set(ARM::LR); } if (AFI->isThumb1OnlyFunction()) { // Spill LR if Thumb1 function uses variable length argument lists. if (AFI->getArgRegsSaveSize() > 0) SavedRegs.set(ARM::LR); // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function // requires stack alignment. We don't know for sure what the stack size // will be, but for this, an estimate is good enough. If there anything // changes it, it'll be a spill, which implies we've used all the registers // and so R4 is already used, so not marking it here will be OK. // FIXME: It will be better just to find spare register here. if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) || MFI.estimateStackSize(MF) > 508) SavedRegs.set(ARM::R4); } // See if we can spill vector registers to aligned stack. checkNumAlignedDPRCS2Regs(MF, SavedRegs); // Spill the BasePtr if it's used. if (RegInfo->hasBasePointer(MF)) SavedRegs.set(RegInfo->getBaseRegister()); // On v8.1-M.Main CMSE entry functions save/restore FPCXT. if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction()) CanEliminateFrame = false; // When return address signing is enabled R12 is treated as callee-saved. if (AFI->shouldSignReturnAddress()) CanEliminateFrame = false; // Don't spill FP if the frame can be eliminated. This is determined // by scanning the callee-save registers to see if any is modified. const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); for (unsigned i = 0; CSRegs[i]; ++i) { unsigned Reg = CSRegs[i]; bool Spilled = false; if (SavedRegs.test(Reg)) { Spilled = true; CanEliminateFrame = false; } if (!ARM::GPRRegClass.contains(Reg)) { if (Spilled) { if (ARM::SPRRegClass.contains(Reg)) NumFPRSpills++; else if (ARM::DPRRegClass.contains(Reg)) NumFPRSpills += 2; else if (ARM::QPRRegClass.contains(Reg)) NumFPRSpills += 4; } continue; } if (Spilled) { NumGPRSpills++; if (!STI.splitFramePushPop(MF)) { if (Reg == ARM::LR) LRSpilled = true; CS1Spilled = true; continue; } // Keep track if LR and any of R4, R5, R6, and R7 is spilled. switch (Reg) { case ARM::LR: LRSpilled = true; [[fallthrough]]; case ARM::R0: case ARM::R1: case ARM::R2: case ARM::R3: case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7: CS1Spilled = true; break; default: break; } } else { if (!STI.splitFramePushPop(MF)) { UnspilledCS1GPRs.push_back(Reg); continue; } switch (Reg) { case ARM::R0: case ARM::R1: case ARM::R2: case ARM::R3: case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7: case ARM::LR: UnspilledCS1GPRs.push_back(Reg); break; default: UnspilledCS2GPRs.push_back(Reg); break; } } } bool ForceLRSpill = false; if (!LRSpilled && AFI->isThumb1OnlyFunction()) { unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII); // Force LR to be spilled if the Thumb function size is > 2048. This enables // use of BL to implement far jump. if (FnSize >= (1 << 11)) { CanEliminateFrame = false; ForceLRSpill = true; } } // If any of the stack slot references may be out of range of an immediate // offset, make sure a register (or a spill slot) is available for the // register scavenger. Note that if we're indexing off the frame pointer, the // effective stack size is 4 bytes larger since the FP points to the stack // slot of the previous FP. Also, if we have variable sized objects in the // function, stack slot references will often be negative, and some of // our instructions are positive-offset only, so conservatively consider // that case to want a spill slot (or register) as well. Similarly, if // the function adjusts the stack pointer during execution and the // adjustments aren't already part of our stack size estimate, our offset // calculations may be off, so be conservative. // FIXME: We could add logic to be more precise about negative offsets // and which instructions will need a scratch register for them. Is it // worth the effort and added fragility? unsigned EstimatedStackSize = MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); // Determine biggest (positive) SP offset in MachineFrameInfo. int MaxFixedOffset = 0; for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); } bool HasFP = hasFP(MF); if (HasFP) { if (AFI->hasStackFrame()) EstimatedStackSize += 4; } else { // If FP is not used, SP will be used to access arguments, so count the // size of arguments into the estimation. EstimatedStackSize += MaxFixedOffset; } EstimatedStackSize += 16; // For possible paddings. unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit; bool HasNonSPFrameIndex = false; if (AFI->isThumb1OnlyFunction()) { // For Thumb1, don't bother to iterate over the function. The only // instruction that requires an emergency spill slot is a store to a // frame index. // // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned // immediate. tSTRi, which is used for bp- and fp-relative accesses, has // a 5-bit unsigned immediate. // // We could try to check if the function actually contains a tSTRspi // that might need the spill slot, but it's not really important. // Functions with VLAs or extremely large call frames are rare, and // if a function is allocating more than 1KB of stack, an extra 4-byte // slot probably isn't relevant. // // A special case is the scenario where r11 is used as FP, where accesses // to a frame index will require its value to be moved into a low reg. // This is handled later on, once we are able to determine if we have any // fp-relative accesses. if (RegInfo->hasBasePointer(MF)) EstimatedRSStackSizeLimit = (1U << 5) * 4; else EstimatedRSStackSizeLimit = (1U << 8) * 4; EstimatedRSFixedSizeLimit = (1U << 5) * 4; } else { EstimatedRSStackSizeLimit = estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex); EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit; } // Final estimate of whether sp or bp-relative accesses might require // scavenging. bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit; // If the stack pointer moves and we don't have a base pointer, the // estimate logic doesn't work. The actual offsets might be larger when // we're constructing a call frame, or we might need to use negative // offsets from fp. bool HasMovingSP = MFI.hasVarSizedObjects() || (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP; // If we have a frame pointer, we assume arguments will be accessed // relative to the frame pointer. Check whether fp-relative accesses to // arguments require scavenging. // // We could do slightly better on Thumb1; in some cases, an sp-relative // offset would be legal even though an fp-relative offset is not. int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF); bool HasLargeArgumentList = HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit; bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP || HasLargeArgumentList || HasNonSPFrameIndex; LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit << "; EstimatedStack: " << EstimatedStackSize << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset << "; BigFrameOffsets: " << BigFrameOffsets << "\n"); if (BigFrameOffsets || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { AFI->setHasStackFrame(true); if (HasFP) { SavedRegs.set(FramePtr); // If the frame pointer is required by the ABI, also spill LR so that we // emit a complete frame record. if ((requiresAAPCSFrameRecord(MF) || MF.getTarget().Options.DisableFramePointerElim(MF)) && !LRSpilled) { SavedRegs.set(ARM::LR); LRSpilled = true; NumGPRSpills++; auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); if (LRPos != UnspilledCS1GPRs.end()) UnspilledCS1GPRs.erase(LRPos); } auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); if (FPPos != UnspilledCS1GPRs.end()) UnspilledCS1GPRs.erase(FPPos); NumGPRSpills++; if (FramePtr == ARM::R7) CS1Spilled = true; } // This is the number of extra spills inserted for callee-save GPRs which // would not otherwise be used by the function. When greater than zero it // guaranteees that it is possible to scavenge a register to hold the // address of a stack slot. On Thumb1, the register must be a valid operand // to tSTRi, i.e. r4-r7. For other subtargets, this is any GPR, i.e. r4-r11 // or lr. // // If we don't insert a spill, we instead allocate an emergency spill // slot, which can be used by scavenging to spill an arbitrary register. // // We currently don't try to figure out whether any specific instruction // requires scavening an additional register. unsigned NumExtraCSSpill = 0; if (AFI->isThumb1OnlyFunction()) { // For Thumb1-only targets, we need some low registers when we save and // restore the high registers (which aren't allocatable, but could be // used by inline assembly) because the push/pop instructions can not // access high registers. If necessary, we might need to push more low // registers to ensure that there is at least one free that can be used // for the saving & restoring, and preferably we should ensure that as // many as are needed are available so that fewer push/pop instructions // are required. // Low registers which are not currently pushed, but could be (r4-r7). SmallVector AvailableRegs; // Unused argument registers (r0-r3) can be clobbered in the prologue for // free. int EntryRegDeficit = 0; for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { if (!MF.getRegInfo().isLiveIn(Reg)) { --EntryRegDeficit; LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << " is unused argument register, EntryRegDeficit = " << EntryRegDeficit << "\n"); } } // Unused return registers can be clobbered in the epilogue for free. int ExitRegDeficit = AFI->getReturnRegsCount() - 4; LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() << " return regs used, ExitRegDeficit = " << ExitRegDeficit << "\n"); int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); // r4-r6 can be used in the prologue if they are pushed by the first push // instruction. for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { if (SavedRegs.test(Reg)) { --RegDeficit; LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << " is saved low register, RegDeficit = " << RegDeficit << "\n"); } else { AvailableRegs.push_back(Reg); LLVM_DEBUG( dbgs() << printReg(Reg, TRI) << " is non-saved low register, adding to AvailableRegs\n"); } } // r7 can be used if it is not being used as the frame pointer. if (!HasFP || FramePtr != ARM::R7) { if (SavedRegs.test(ARM::R7)) { --RegDeficit; LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " << RegDeficit << "\n"); } else { AvailableRegs.push_back(ARM::R7); LLVM_DEBUG( dbgs() << "%r7 is non-saved low register, adding to AvailableRegs\n"); } } // Each of r8-r11 needs to be copied to a low register, then pushed. for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { if (SavedRegs.test(Reg)) { ++RegDeficit; LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << " is saved high register, RegDeficit = " << RegDeficit << "\n"); } } // LR can only be used by PUSH, not POP, and can't be used at all if the // llvm.returnaddress intrinsic is used. This is only worth doing if we // are more limited at function entry than exit. if ((EntryRegDeficit > ExitRegDeficit) && !(MF.getRegInfo().isLiveIn(ARM::LR) && MF.getFrameInfo().isReturnAddressTaken())) { if (SavedRegs.test(ARM::LR)) { --RegDeficit; LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " << RegDeficit << "\n"); } else { AvailableRegs.push_back(ARM::LR); LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); } } // If there are more high registers that need pushing than low registers // available, push some more low registers so that we can use fewer push // instructions. This might not reduce RegDeficit all the way to zero, // because we can only guarantee that r4-r6 are available, but r8-r11 may // need saving. LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { unsigned Reg = AvailableRegs.pop_back_val(); LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) << " to make up reg deficit\n"); SavedRegs.set(Reg); NumGPRSpills++; CS1Spilled = true; assert(!MRI.isReserved(Reg) && "Should not be reserved"); if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg)) NumExtraCSSpill++; UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); if (Reg == ARM::LR) LRSpilled = true; } LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit << "\n"); } // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to // restore LR in that case. bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. // Spill LR as well so we can fold BX_RET to the registers restore (LDM). if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { SavedRegs.set(ARM::LR); NumGPRSpills++; SmallVectorImpl::iterator LRPos; LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); if (LRPos != UnspilledCS1GPRs.end()) UnspilledCS1GPRs.erase(LRPos); ForceLRSpill = false; if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) && !AFI->isThumb1OnlyFunction()) NumExtraCSSpill++; } // If stack and double are 8-byte aligned and we are spilling an odd number // of GPRs, spill one extra callee save GPR so we won't have to pad between // the integer and double callee save areas. LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); const Align TargetAlign = getStackAlign(); if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) { if (CS1Spilled && !UnspilledCS1GPRs.empty()) { for (unsigned Reg : UnspilledCS1GPRs) { // Don't spill high register if the function is thumb. In the case of // Windows on ARM, accept R11 (frame pointer) if (!AFI->isThumbFunction() || (STI.isTargetWindows() && Reg == ARM::R11) || isARMLowRegister(Reg) || (Reg == ARM::LR && !ExpensiveLRRestore)) { SavedRegs.set(Reg); LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) << " to make up alignment\n"); if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) && !(Reg == ARM::LR && AFI->isThumb1OnlyFunction())) NumExtraCSSpill++; break; } } } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { unsigned Reg = UnspilledCS2GPRs.front(); SavedRegs.set(Reg); LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) << " to make up alignment\n"); if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) NumExtraCSSpill++; } } // Estimate if we might need to scavenge registers at some point in order // to materialize a stack offset. If so, either spill one additional // callee-saved register or reserve a special spill slot to facilitate // register scavenging. Thumb1 needs a spill slot for stack pointer // adjustments and for frame index accesses when FP is high register, // even when the frame itself is small. unsigned RegsNeeded = 0; if (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this)) { RegsNeeded++; // With thumb1 execute-only we may need an additional register for saving // and restoring the CPSR. if (AFI->isThumb1OnlyFunction() && STI.genExecuteOnly() && !STI.useMovt()) RegsNeeded++; } if (RegsNeeded > NumExtraCSSpill) { // If any non-reserved CS register isn't spilled, just spill one or two // extra. That should take care of it! unsigned NumExtras = TargetAlign.value() / 4; SmallVector Extras; while (NumExtras && !UnspilledCS1GPRs.empty()) { unsigned Reg = UnspilledCS1GPRs.pop_back_val(); if (!MRI.isReserved(Reg) && (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) { Extras.push_back(Reg); NumExtras--; } } // For non-Thumb1 functions, also check for hi-reg CS registers if (!AFI->isThumb1OnlyFunction()) { while (NumExtras && !UnspilledCS2GPRs.empty()) { unsigned Reg = UnspilledCS2GPRs.pop_back_val(); if (!MRI.isReserved(Reg)) { Extras.push_back(Reg); NumExtras--; } } } if (NumExtras == 0) { for (unsigned Reg : Extras) { SavedRegs.set(Reg); if (!MRI.isPhysRegUsed(Reg)) NumExtraCSSpill++; } } while ((RegsNeeded > NumExtraCSSpill) && RS) { // Reserve a slot closest to SP or frame pointer. LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n"); const TargetRegisterClass &RC = ARM::GPRRegClass; unsigned Size = TRI->getSpillSize(RC); Align Alignment = TRI->getSpillAlign(RC); RS->addScavengingFrameIndex( MFI.CreateStackObject(Size, Alignment, false)); --RegsNeeded; } } } if (ForceLRSpill) SavedRegs.set(ARM::LR); AFI->setLRIsSpilled(SavedRegs.test(ARM::LR)); } void ARMFrameLowering::updateLRRestored(MachineFunction &MF) { MachineFrameInfo &MFI = MF.getFrameInfo(); if (!MFI.isCalleeSavedInfoValid()) return; // Check if all terminators do not implicitly use LR. Then we can 'restore' LR // into PC so it is not live out of the return block: Clear the Restored bit // in that case. for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) { if (Info.getReg() != ARM::LR) continue; if (all_of(MF, [](const MachineBasicBlock &MBB) { return all_of(MBB.terminators(), [](const MachineInstr &Term) { return !Term.isReturn() || Term.getOpcode() == ARM::LDMIA_RET || Term.getOpcode() == ARM::t2LDMIA_RET || Term.getOpcode() == ARM::tPOP_RET; }); })) { Info.setRestored(false); break; } } } void ARMFrameLowering::processFunctionBeforeFrameFinalized( MachineFunction &MF, RegScavenger *RS) const { TargetFrameLowering::processFunctionBeforeFrameFinalized(MF, RS); updateLRRestored(MF); } void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF, BitVector &SavedRegs) const { TargetFrameLowering::getCalleeSaves(MF, SavedRegs); // If we have the "returned" parameter attribute which guarantees that we // return the value which was passed in r0 unmodified (e.g. C++ 'structors), // record that fact for IPRA. const ARMFunctionInfo *AFI = MF.getInfo(); if (AFI->getPreservesR0()) SavedRegs.set(ARM::R0); } bool ARMFrameLowering::assignCalleeSavedSpillSlots( MachineFunction &MF, const TargetRegisterInfo *TRI, std::vector &CSI) const { // For CMSE entry functions, handle floating-point context as if it was a // callee-saved register. if (STI.hasV8_1MMainlineOps() && MF.getInfo()->isCmseNSEntryFunction()) { CSI.emplace_back(ARM::FPCXTNS); CSI.back().setRestored(false); } // For functions, which sign their return address, upon function entry, the // return address PAC is computed in R12. Treat R12 as a callee-saved register // in this case. const auto &AFI = *MF.getInfo(); if (AFI.shouldSignReturnAddress()) { // The order of register must match the order we push them, because the // PEI assigns frame indices in that order. When compiling for return // address sign and authenication, we use split push, therefore the orders // we want are: // LR, R7, R6, R5, R4, , R11, R10, R9, R8, D15-D8 CSI.insert(find_if(CSI, [=](const auto &CS) { Register Reg = CS.getReg(); return Reg == ARM::R10 || Reg == ARM::R11 || Reg == ARM::R8 || Reg == ARM::R9 || ARM::DPRRegClass.contains(Reg); }), CalleeSavedInfo(ARM::R12)); } return false; } const TargetFrameLowering::SpillSlot * ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const { static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}}; NumEntries = std::size(FixedSpillOffsets); return FixedSpillOffsets; } MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { const ARMBaseInstrInfo &TII = *static_cast(MF.getSubtarget().getInstrInfo()); ARMFunctionInfo *AFI = MF.getInfo(); bool isARM = !AFI->isThumbFunction(); DebugLoc dl = I->getDebugLoc(); unsigned Opc = I->getOpcode(); bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode(); unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; assert(!AFI->isThumb1OnlyFunction() && "This eliminateCallFramePseudoInstr does not support Thumb1!"); int PIdx = I->findFirstPredOperandIdx(); ARMCC::CondCodes Pred = (PIdx == -1) ? ARMCC::AL : (ARMCC::CondCodes)I->getOperand(PIdx).getImm(); unsigned PredReg = TII.getFramePred(*I); if (!hasReservedCallFrame(MF)) { // Bail early if the callee is expected to do the adjustment. if (IsDestroy && CalleePopAmount != -1U) return MBB.erase(I); // If we have alloca, convert as follows: // ADJCALLSTACKDOWN -> sub, sp, sp, amount // ADJCALLSTACKUP -> add, sp, sp, amount unsigned Amount = TII.getFrameSize(*I); if (Amount != 0) { // We need to keep the stack aligned properly. To do this, we round the // amount of space needed for the outgoing arguments up to the next // alignment boundary. Amount = alignSPAdjust(Amount); if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, Pred, PredReg); } else { assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, Pred, PredReg); } } } else if (CalleePopAmount != -1U) { // If the calling convention demands that the callee pops arguments from the // stack, we want to add it back if we have a reserved call frame. emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount, MachineInstr::NoFlags, Pred, PredReg); } return MBB.erase(I); } /// Get the minimum constant for ARM that is greater than or equal to the /// argument. In ARM, constants can have any value that can be produced by /// rotating an 8-bit value to the right by an even number of bits within a /// 32-bit word. static uint32_t alignToARMConstant(uint32_t Value) { unsigned Shifted = 0; if (Value == 0) return 0; while (!(Value & 0xC0000000)) { Value = Value << 2; Shifted += 2; } bool Carry = (Value & 0x00FFFFFF); Value = ((Value & 0xFF000000) >> 24) + Carry; if (Value & 0x0000100) Value = Value & 0x000001FC; if (Shifted > 24) Value = Value >> (Shifted - 24); else Value = Value << (24 - Shifted); return Value; } // The stack limit in the TCB is set to this many bytes above the actual // stack limit. static const uint64_t kSplitStackAvailable = 256; // Adjust the function prologue to enable split stacks. This currently only // supports android and linux. // // The ABI of the segmented stack prologue is a little arbitrarily chosen, but // must be well defined in order to allow for consistent implementations of the // __morestack helper function. The ABI is also not a normal ABI in that it // doesn't follow the normal calling conventions because this allows the // prologue of each function to be optimized further. // // Currently, the ABI looks like (when calling __morestack) // // * r4 holds the minimum stack size requested for this function call // * r5 holds the stack size of the arguments to the function // * the beginning of the function is 3 instructions after the call to // __morestack // // Implementations of __morestack should use r4 to allocate a new stack, r5 to // place the arguments on to the new stack, and the 3-instruction knowledge to // jump directly to the body of the function when working on the new stack. // // An old (and possibly no longer compatible) implementation of __morestack for // ARM can be found at [1]. // // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S void ARMFrameLowering::adjustForSegmentedStacks( MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { unsigned Opcode; unsigned CFIIndex; const ARMSubtarget *ST = &MF.getSubtarget(); bool Thumb = ST->isThumb(); bool Thumb2 = ST->isThumb2(); // Sadly, this currently doesn't support varargs, platforms other than // android/linux. Note that thumb1/thumb2 are support for android/linux. if (MF.getFunction().isVarArg()) report_fatal_error("Segmented stacks do not support vararg functions."); if (!ST->isTargetAndroid() && !ST->isTargetLinux()) report_fatal_error("Segmented stacks not supported on this platform."); MachineFrameInfo &MFI = MF.getFrameInfo(); MachineModuleInfo &MMI = MF.getMMI(); MCContext &Context = MMI.getContext(); const MCRegisterInfo *MRI = Context.getRegisterInfo(); const ARMBaseInstrInfo &TII = *static_cast(MF.getSubtarget().getInstrInfo()); ARMFunctionInfo *ARMFI = MF.getInfo(); DebugLoc DL; if (!MFI.needsSplitStackProlog()) return; uint64_t StackSize = MFI.getStackSize(); // Use R4 and R5 as scratch registers. // We save R4 and R5 before use and restore them before leaving the function. unsigned ScratchReg0 = ARM::R4; unsigned ScratchReg1 = ARM::R5; unsigned MovOp = ST->useMovt() ? ARM::t2MOVi32imm : ARM::tMOVi32imm; uint64_t AlignedStackSize; MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); // Grab everything that reaches PrologueMBB to update there liveness as well. SmallPtrSet BeforePrologueRegion; SmallVector WalkList; WalkList.push_back(&PrologueMBB); do { MachineBasicBlock *CurMBB = WalkList.pop_back_val(); for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { if (BeforePrologueRegion.insert(PredBB).second) WalkList.push_back(PredBB); } } while (!WalkList.empty()); // The order in that list is important. // The blocks will all be inserted before PrologueMBB using that order. // Therefore the block that should appear first in the CFG should appear // first in the list. MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, PostStackMBB}; for (MachineBasicBlock *B : AddedBlocks) BeforePrologueRegion.insert(B); for (const auto &LI : PrologueMBB.liveins()) { for (MachineBasicBlock *PredBB : BeforePrologueRegion) PredBB->addLiveIn(LI); } // Remove the newly added blocks from the list, since we know // we do not have to do the following updates for them. for (MachineBasicBlock *B : AddedBlocks) { BeforePrologueRegion.erase(B); MF.insert(PrologueMBB.getIterator(), B); } for (MachineBasicBlock *MBB : BeforePrologueRegion) { // Make sure the LiveIns are still sorted and unique. MBB->sortUniqueLiveIns(); // Replace the edges to PrologueMBB by edges to the sequences // we are about to add, but only update for immediate predecessors. if (MBB->isSuccessor(&PrologueMBB)) MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); } // The required stack size that is aligned to ARM constant criterion. AlignedStackSize = alignToARMConstant(StackSize); // When the frame size is less than 256 we just compare the stack // boundary directly to the value of the stack pointer, per gcc. bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; // We will use two of the callee save registers as scratch registers so we // need to save those registers onto the stack. // We will use SR0 to hold stack limit and SR1 to hold the stack size // requested and arguments for __morestack(). // SR0: Scratch Register #0 // SR1: Scratch Register #1 // push {SR0, SR1} if (Thumb) { BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) .add(predOps(ARMCC::AL)) .addReg(ScratchReg0) .addReg(ScratchReg1); } else { BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) .addReg(ARM::SP, RegState::Define) .addReg(ARM::SP) .add(predOps(ARMCC::AL)) .addReg(ScratchReg0) .addReg(ScratchReg1); } // Emit the relevant DWARF information about the change in stack pointer as // well as where to find both r4 and r5 (the callee-save registers) if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8)); BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); } // mov SR1, sp if (Thumb) { BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) .addReg(ARM::SP) .add(predOps(ARMCC::AL)); } else if (CompareStackPointer) { BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) .addReg(ARM::SP) .add(predOps(ARMCC::AL)) .add(condCodeOp()); } // sub SR1, sp, #StackSize if (!CompareStackPointer && Thumb) { if (AlignedStackSize < 256) { BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) .add(condCodeOp()) .addReg(ScratchReg1) .addImm(AlignedStackSize) .add(predOps(ARMCC::AL)); } else { if (Thumb2 || ST->genExecuteOnly()) { BuildMI(McrMBB, DL, TII.get(MovOp), ScratchReg0) .addImm(AlignedStackSize); } else { auto MBBI = McrMBB->end(); auto RegInfo = STI.getRegisterInfo(); RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, AlignedStackSize); } BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1) .add(condCodeOp()) .addReg(ScratchReg1) .addReg(ScratchReg0) .add(predOps(ARMCC::AL)); } } else if (!CompareStackPointer) { if (AlignedStackSize < 256) { BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) .addReg(ARM::SP) .addImm(AlignedStackSize) .add(predOps(ARMCC::AL)) .add(condCodeOp()); } else { auto MBBI = McrMBB->end(); auto RegInfo = STI.getRegisterInfo(); RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, AlignedStackSize); BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1) .addReg(ARM::SP) .addReg(ScratchReg0) .add(predOps(ARMCC::AL)) .add(condCodeOp()); } } if (Thumb && ST->isThumb1Only()) { if (ST->genExecuteOnly()) { BuildMI(GetMBB, DL, TII.get(MovOp), ScratchReg0) .addExternalSymbol("__STACK_LIMIT"); } else { unsigned PCLabelId = ARMFI->createPICLabelUId(); ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); MachineConstantPool *MCP = MF.getConstantPool(); unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4)); // ldr SR0, [pc, offset(STACK_LIMIT)] BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) .addConstantPoolIndex(CPI) .add(predOps(ARMCC::AL)); } // ldr SR0, [SR0] BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) .addReg(ScratchReg0) .addImm(0) .add(predOps(ARMCC::AL)); } else { // Get TLS base address from the coprocessor // mrc p15, #0, SR0, c13, c0, #3 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC), ScratchReg0) .addImm(15) .addImm(0) .addImm(13) .addImm(0) .addImm(3) .add(predOps(ARMCC::AL)); // Use the last tls slot on android and a private field of the TCP on linux. assert(ST->isTargetAndroid() || ST->isTargetLinux()); unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; // Get the stack limit from the right offset // ldr SR0, [sr0, #4 * TlsOffset] BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12), ScratchReg0) .addReg(ScratchReg0) .addImm(4 * TlsOffset) .add(predOps(ARMCC::AL)); } // Compare stack limit with stack size requested. // cmp SR0, SR1 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; BuildMI(GetMBB, DL, TII.get(Opcode)) .addReg(ScratchReg0) .addReg(ScratchReg1) .add(predOps(ARMCC::AL)); // This jump is taken if StackLimit <= SP - stack required. Opcode = Thumb ? ARM::tBcc : ARM::Bcc; BuildMI(GetMBB, DL, TII.get(Opcode)) .addMBB(PostStackMBB) .addImm(ARMCC::LS) .addReg(ARM::CPSR); // Calling __morestack(StackSize, Size of stack arguments). // __morestack knows that the stack size requested is in SR0(r4) // and amount size of stack arguments is in SR1(r5). // Pass first argument for the __morestack by Scratch Register #0. // The amount size of stack required if (Thumb) { if (AlignedStackSize < 256) { BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) .add(condCodeOp()) .addImm(AlignedStackSize) .add(predOps(ARMCC::AL)); } else { if (Thumb2 || ST->genExecuteOnly()) { BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg0) .addImm(AlignedStackSize); } else { auto MBBI = AllocMBB->end(); auto RegInfo = STI.getRegisterInfo(); RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, AlignedStackSize); } } } else { if (AlignedStackSize < 256) { BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) .addImm(AlignedStackSize) .add(predOps(ARMCC::AL)) .add(condCodeOp()); } else { auto MBBI = AllocMBB->end(); auto RegInfo = STI.getRegisterInfo(); RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, AlignedStackSize); } } // Pass second argument for the __morestack by Scratch Register #1. // The amount size of stack consumed to save function arguments. if (Thumb) { if (ARMFI->getArgumentStackSize() < 256) { BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) .add(condCodeOp()) .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) .add(predOps(ARMCC::AL)); } else { if (Thumb2 || ST->genExecuteOnly()) { BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg1) .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())); } else { auto MBBI = AllocMBB->end(); auto RegInfo = STI.getRegisterInfo(); RegInfo->emitLoadConstPool( *AllocMBB, MBBI, DL, ScratchReg1, 0, alignToARMConstant(ARMFI->getArgumentStackSize())); } } } else { if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) { BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) .add(predOps(ARMCC::AL)) .add(condCodeOp()); } else { auto MBBI = AllocMBB->end(); auto RegInfo = STI.getRegisterInfo(); RegInfo->emitLoadConstPool( *AllocMBB, MBBI, DL, ScratchReg1, 0, alignToARMConstant(ARMFI->getArgumentStackSize())); } } // push {lr} - Save return address of this function. if (Thumb) { BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) .add(predOps(ARMCC::AL)) .addReg(ARM::LR); } else { BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) .addReg(ARM::SP, RegState::Define) .addReg(ARM::SP) .add(predOps(ARMCC::AL)) .addReg(ARM::LR); } // Emit the DWARF info about the change in stack as well as where to find the // previous link register if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12)); BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); } // Call __morestack(). if (Thumb) { BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) .add(predOps(ARMCC::AL)) .addExternalSymbol("__morestack"); } else { BuildMI(AllocMBB, DL, TII.get(ARM::BL)) .addExternalSymbol("__morestack"); } // pop {lr} - Restore return address of this original function. if (Thumb) { if (ST->isThumb1Only()) { BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) .add(predOps(ARMCC::AL)) .addReg(ScratchReg0); BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) .addReg(ScratchReg0) .add(predOps(ARMCC::AL)); } else { BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) .addReg(ARM::LR, RegState::Define) .addReg(ARM::SP, RegState::Define) .addReg(ARM::SP) .addImm(4) .add(predOps(ARMCC::AL)); } } else { BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) .addReg(ARM::SP, RegState::Define) .addReg(ARM::SP) .add(predOps(ARMCC::AL)) .addReg(ARM::LR); } // Restore SR0 and SR1 in case of __morestack() was called. // __morestack() will skip PostStackMBB block so we need to restore // scratch registers from here. // pop {SR0, SR1} if (Thumb) { BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) .add(predOps(ARMCC::AL)) .addReg(ScratchReg0) .addReg(ScratchReg1); } else { BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) .addReg(ARM::SP, RegState::Define) .addReg(ARM::SP) .add(predOps(ARMCC::AL)) .addReg(ScratchReg0) .addReg(ScratchReg1); } // Update the CFA offset now that we've popped if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); } // Return from this function. BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); // Restore SR0 and SR1 in case of __morestack() was not called. // pop {SR0, SR1} if (Thumb) { BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) .add(predOps(ARMCC::AL)) .addReg(ScratchReg0) .addReg(ScratchReg1); } else { BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) .addReg(ARM::SP, RegState::Define) .addReg(ARM::SP) .add(predOps(ARMCC::AL)) .addReg(ScratchReg0) .addReg(ScratchReg1); } // Update the CFA offset now that we've popped if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); // Tell debuggers that r4 and r5 are now the same as they were in the // previous function, that they're the "Same Value". CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); } // Organizing MBB lists PostStackMBB->addSuccessor(&PrologueMBB); AllocMBB->addSuccessor(PostStackMBB); GetMBB->addSuccessor(PostStackMBB); GetMBB->addSuccessor(AllocMBB); McrMBB->addSuccessor(GetMBB); PrevStackMBB->addSuccessor(McrMBB); #ifdef EXPENSIVE_CHECKS MF.verify(); #endif }