//===-- ARMExpandPseudoInsts.cpp - Expand pseudo instructions -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains a pass that expands pseudo instructions into target // instructions to allow proper scheduling, if-conversion, and other late // optimizations. This pass should be run after register allocation but before // the post-regalloc scheduling pass. // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMBaseInstrInfo.h" #include "ARMBaseRegisterInfo.h" #include "ARMConstantPoolValue.h" #include "ARMMachineFunctionInfo.h" #include "ARMSubtarget.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "llvm/CodeGen/LivePhysRegs.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Support/Debug.h" using namespace llvm; #define DEBUG_TYPE "arm-pseudo" static cl::opt VerifyARMPseudo("verify-arm-pseudo-expand", cl::Hidden, cl::desc("Verify machine code after expanding ARM pseudos")); #define ARM_EXPAND_PSEUDO_NAME "ARM pseudo instruction expansion pass" namespace { class ARMExpandPseudo : public MachineFunctionPass { public: static char ID; ARMExpandPseudo() : MachineFunctionPass(ID) {} const ARMBaseInstrInfo *TII; const TargetRegisterInfo *TRI; const ARMSubtarget *STI; ARMFunctionInfo *AFI; bool runOnMachineFunction(MachineFunction &Fn) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } StringRef getPassName() const override { return ARM_EXPAND_PSEUDO_NAME; } private: void TransferImpOps(MachineInstr &OldMI, MachineInstrBuilder &UseMI, MachineInstrBuilder &DefMI); bool ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, MachineBasicBlock::iterator &NextMBBI); bool ExpandMBB(MachineBasicBlock &MBB); void ExpandVLD(MachineBasicBlock::iterator &MBBI); void ExpandVST(MachineBasicBlock::iterator &MBBI); void ExpandLaneOp(MachineBasicBlock::iterator &MBBI); void ExpandVTBL(MachineBasicBlock::iterator &MBBI, unsigned Opc, bool IsExt); void ExpandMQQPRLoadStore(MachineBasicBlock::iterator &MBBI); void ExpandMOV32BitImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI); void CMSEClearGPRegs(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, const SmallVectorImpl &ClearRegs, unsigned ClobberReg); MachineBasicBlock &CMSEClearFPRegs(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI); MachineBasicBlock &CMSEClearFPRegsV8(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const BitVector &ClearRegs); MachineBasicBlock &CMSEClearFPRegsV81(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const BitVector &ClearRegs); void CMSESaveClearFPRegs(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc &DL, const LivePhysRegs &LiveRegs, SmallVectorImpl &AvailableRegs); void CMSESaveClearFPRegsV8(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc &DL, const LivePhysRegs &LiveRegs, SmallVectorImpl &ScratchRegs); void CMSESaveClearFPRegsV81(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc &DL, const LivePhysRegs &LiveRegs); void CMSERestoreFPRegs(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc &DL, SmallVectorImpl &AvailableRegs); void CMSERestoreFPRegsV8(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc &DL, SmallVectorImpl &AvailableRegs); void CMSERestoreFPRegsV81(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc &DL, SmallVectorImpl &AvailableRegs); bool ExpandCMP_SWAP(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned LdrexOp, unsigned StrexOp, unsigned UxtOp, MachineBasicBlock::iterator &NextMBBI); bool ExpandCMP_SWAP_64(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, MachineBasicBlock::iterator &NextMBBI); }; char ARMExpandPseudo::ID = 0; } INITIALIZE_PASS(ARMExpandPseudo, DEBUG_TYPE, ARM_EXPAND_PSEUDO_NAME, false, false) /// TransferImpOps - Transfer implicit operands on the pseudo instruction to /// the instructions created from the expansion. void ARMExpandPseudo::TransferImpOps(MachineInstr &OldMI, MachineInstrBuilder &UseMI, MachineInstrBuilder &DefMI) { const MCInstrDesc &Desc = OldMI.getDesc(); for (const MachineOperand &MO : llvm::drop_begin(OldMI.operands(), Desc.getNumOperands())) { assert(MO.isReg() && MO.getReg()); if (MO.isUse()) UseMI.add(MO); else DefMI.add(MO); } } namespace { // Constants for register spacing in NEON load/store instructions. // For quad-register load-lane and store-lane pseudo instructors, the // spacing is initially assumed to be EvenDblSpc, and that is changed to // OddDblSpc depending on the lane number operand. enum NEONRegSpacing { SingleSpc, SingleLowSpc , // Single spacing, low registers, three and four vectors. SingleHighQSpc, // Single spacing, high registers, four vectors. SingleHighTSpc, // Single spacing, high registers, three vectors. EvenDblSpc, OddDblSpc }; // Entries for NEON load/store information table. The table is sorted by // PseudoOpc for fast binary-search lookups. struct NEONLdStTableEntry { uint16_t PseudoOpc; uint16_t RealOpc; bool IsLoad; bool isUpdating; bool hasWritebackOperand; uint8_t RegSpacing; // One of type NEONRegSpacing uint8_t NumRegs; // D registers loaded or stored uint8_t RegElts; // elements per D register; used for lane ops // FIXME: Temporary flag to denote whether the real instruction takes // a single register (like the encoding) or all of the registers in // the list (like the asm syntax and the isel DAG). When all definitions // are converted to take only the single encoded register, this will // go away. bool copyAllListRegs; // Comparison methods for binary search of the table. bool operator<(const NEONLdStTableEntry &TE) const { return PseudoOpc < TE.PseudoOpc; } friend bool operator<(const NEONLdStTableEntry &TE, unsigned PseudoOpc) { return TE.PseudoOpc < PseudoOpc; } friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned PseudoOpc, const NEONLdStTableEntry &TE) { return PseudoOpc < TE.PseudoOpc; } }; } static const NEONLdStTableEntry NEONLdStTable[] = { { ARM::VLD1LNq16Pseudo, ARM::VLD1LNd16, true, false, false, EvenDblSpc, 1, 4 ,true}, { ARM::VLD1LNq16Pseudo_UPD, ARM::VLD1LNd16_UPD, true, true, true, EvenDblSpc, 1, 4 ,true}, { ARM::VLD1LNq32Pseudo, ARM::VLD1LNd32, true, false, false, EvenDblSpc, 1, 2 ,true}, { ARM::VLD1LNq32Pseudo_UPD, ARM::VLD1LNd32_UPD, true, true, true, EvenDblSpc, 1, 2 ,true}, { ARM::VLD1LNq8Pseudo, ARM::VLD1LNd8, true, false, false, EvenDblSpc, 1, 8 ,true}, { ARM::VLD1LNq8Pseudo_UPD, ARM::VLD1LNd8_UPD, true, true, true, EvenDblSpc, 1, 8 ,true}, { ARM::VLD1d16QPseudo, ARM::VLD1d16Q, true, false, false, SingleSpc, 4, 4 ,false}, { ARM::VLD1d16QPseudoWB_fixed, ARM::VLD1d16Qwb_fixed, true, true, false, SingleSpc, 4, 4 ,false}, { ARM::VLD1d16QPseudoWB_register, ARM::VLD1d16Qwb_register, true, true, true, SingleSpc, 4, 4 ,false}, { ARM::VLD1d16TPseudo, ARM::VLD1d16T, true, false, false, SingleSpc, 3, 4 ,false}, { ARM::VLD1d16TPseudoWB_fixed, ARM::VLD1d16Twb_fixed, true, true, false, SingleSpc, 3, 4 ,false}, { ARM::VLD1d16TPseudoWB_register, ARM::VLD1d16Twb_register, true, true, true, SingleSpc, 3, 4 ,false}, { ARM::VLD1d32QPseudo, ARM::VLD1d32Q, true, false, false, SingleSpc, 4, 2 ,false}, { ARM::VLD1d32QPseudoWB_fixed, ARM::VLD1d32Qwb_fixed, true, true, false, SingleSpc, 4, 2 ,false}, { ARM::VLD1d32QPseudoWB_register, ARM::VLD1d32Qwb_register, true, true, true, SingleSpc, 4, 2 ,false}, { ARM::VLD1d32TPseudo, ARM::VLD1d32T, true, false, false, SingleSpc, 3, 2 ,false}, { ARM::VLD1d32TPseudoWB_fixed, ARM::VLD1d32Twb_fixed, true, true, false, SingleSpc, 3, 2 ,false}, { ARM::VLD1d32TPseudoWB_register, ARM::VLD1d32Twb_register, true, true, true, SingleSpc, 3, 2 ,false}, { ARM::VLD1d64QPseudo, ARM::VLD1d64Q, true, false, false, SingleSpc, 4, 1 ,false}, { ARM::VLD1d64QPseudoWB_fixed, ARM::VLD1d64Qwb_fixed, true, true, false, SingleSpc, 4, 1 ,false}, { ARM::VLD1d64QPseudoWB_register, ARM::VLD1d64Qwb_register, true, true, true, SingleSpc, 4, 1 ,false}, { ARM::VLD1d64TPseudo, ARM::VLD1d64T, true, false, false, SingleSpc, 3, 1 ,false}, { ARM::VLD1d64TPseudoWB_fixed, ARM::VLD1d64Twb_fixed, true, true, false, SingleSpc, 3, 1 ,false}, { ARM::VLD1d64TPseudoWB_register, ARM::VLD1d64Twb_register, true, true, true, SingleSpc, 3, 1 ,false}, { ARM::VLD1d8QPseudo, ARM::VLD1d8Q, true, false, false, SingleSpc, 4, 8 ,false}, { ARM::VLD1d8QPseudoWB_fixed, ARM::VLD1d8Qwb_fixed, true, true, false, SingleSpc, 4, 8 ,false}, { ARM::VLD1d8QPseudoWB_register, ARM::VLD1d8Qwb_register, true, true, true, SingleSpc, 4, 8 ,false}, { ARM::VLD1d8TPseudo, ARM::VLD1d8T, true, false, false, SingleSpc, 3, 8 ,false}, { ARM::VLD1d8TPseudoWB_fixed, ARM::VLD1d8Twb_fixed, true, true, false, SingleSpc, 3, 8 ,false}, { ARM::VLD1d8TPseudoWB_register, ARM::VLD1d8Twb_register, true, true, true, SingleSpc, 3, 8 ,false}, { ARM::VLD1q16HighQPseudo, ARM::VLD1d16Q, true, false, false, SingleHighQSpc, 4, 4 ,false}, { ARM::VLD1q16HighQPseudo_UPD, ARM::VLD1d16Qwb_fixed, true, true, true, SingleHighQSpc, 4, 4 ,false}, { ARM::VLD1q16HighTPseudo, ARM::VLD1d16T, true, false, false, SingleHighTSpc, 3, 4 ,false}, { ARM::VLD1q16HighTPseudo_UPD, ARM::VLD1d16Twb_fixed, true, true, true, SingleHighTSpc, 3, 4 ,false}, { ARM::VLD1q16LowQPseudo_UPD, ARM::VLD1d16Qwb_fixed, true, true, true, SingleLowSpc, 4, 4 ,false}, { ARM::VLD1q16LowTPseudo_UPD, ARM::VLD1d16Twb_fixed, true, true, true, SingleLowSpc, 3, 4 ,false}, { ARM::VLD1q32HighQPseudo, ARM::VLD1d32Q, true, false, false, SingleHighQSpc, 4, 2 ,false}, { ARM::VLD1q32HighQPseudo_UPD, ARM::VLD1d32Qwb_fixed, true, true, true, SingleHighQSpc, 4, 2 ,false}, { ARM::VLD1q32HighTPseudo, ARM::VLD1d32T, true, false, false, SingleHighTSpc, 3, 2 ,false}, { ARM::VLD1q32HighTPseudo_UPD, ARM::VLD1d32Twb_fixed, true, true, true, SingleHighTSpc, 3, 2 ,false}, { ARM::VLD1q32LowQPseudo_UPD, ARM::VLD1d32Qwb_fixed, true, true, true, SingleLowSpc, 4, 2 ,false}, { ARM::VLD1q32LowTPseudo_UPD, ARM::VLD1d32Twb_fixed, true, true, true, SingleLowSpc, 3, 2 ,false}, { ARM::VLD1q64HighQPseudo, ARM::VLD1d64Q, true, false, false, SingleHighQSpc, 4, 1 ,false}, { ARM::VLD1q64HighQPseudo_UPD, ARM::VLD1d64Qwb_fixed, true, true, true, SingleHighQSpc, 4, 1 ,false}, { ARM::VLD1q64HighTPseudo, ARM::VLD1d64T, true, false, false, SingleHighTSpc, 3, 1 ,false}, { ARM::VLD1q64HighTPseudo_UPD, ARM::VLD1d64Twb_fixed, true, true, true, SingleHighTSpc, 3, 1 ,false}, { ARM::VLD1q64LowQPseudo_UPD, ARM::VLD1d64Qwb_fixed, true, true, true, SingleLowSpc, 4, 1 ,false}, { ARM::VLD1q64LowTPseudo_UPD, ARM::VLD1d64Twb_fixed, true, true, true, SingleLowSpc, 3, 1 ,false}, { ARM::VLD1q8HighQPseudo, ARM::VLD1d8Q, true, false, false, SingleHighQSpc, 4, 8 ,false}, { ARM::VLD1q8HighQPseudo_UPD, ARM::VLD1d8Qwb_fixed, true, true, true, SingleHighQSpc, 4, 8 ,false}, { ARM::VLD1q8HighTPseudo, ARM::VLD1d8T, true, false, false, SingleHighTSpc, 3, 8 ,false}, { ARM::VLD1q8HighTPseudo_UPD, ARM::VLD1d8Twb_fixed, true, true, true, SingleHighTSpc, 3, 8 ,false}, { ARM::VLD1q8LowQPseudo_UPD, ARM::VLD1d8Qwb_fixed, true, true, true, SingleLowSpc, 4, 8 ,false}, { ARM::VLD1q8LowTPseudo_UPD, ARM::VLD1d8Twb_fixed, true, true, true, SingleLowSpc, 3, 8 ,false}, { ARM::VLD2DUPq16EvenPseudo, ARM::VLD2DUPd16x2, true, false, false, EvenDblSpc, 2, 4 ,false}, { ARM::VLD2DUPq16OddPseudo, ARM::VLD2DUPd16x2, true, false, false, OddDblSpc, 2, 4 ,false}, { ARM::VLD2DUPq16OddPseudoWB_fixed, ARM::VLD2DUPd16x2wb_fixed, true, true, false, OddDblSpc, 2, 4 ,false}, { ARM::VLD2DUPq16OddPseudoWB_register, ARM::VLD2DUPd16x2wb_register, true, true, true, OddDblSpc, 2, 4 ,false}, { ARM::VLD2DUPq32EvenPseudo, ARM::VLD2DUPd32x2, true, false, false, EvenDblSpc, 2, 2 ,false}, { ARM::VLD2DUPq32OddPseudo, ARM::VLD2DUPd32x2, true, false, false, OddDblSpc, 2, 2 ,false}, { ARM::VLD2DUPq32OddPseudoWB_fixed, ARM::VLD2DUPd32x2wb_fixed, true, true, false, OddDblSpc, 2, 2 ,false}, { ARM::VLD2DUPq32OddPseudoWB_register, ARM::VLD2DUPd32x2wb_register, true, true, true, OddDblSpc, 2, 2 ,false}, { ARM::VLD2DUPq8EvenPseudo, ARM::VLD2DUPd8x2, true, false, false, EvenDblSpc, 2, 8 ,false}, { ARM::VLD2DUPq8OddPseudo, ARM::VLD2DUPd8x2, true, false, false, OddDblSpc, 2, 8 ,false}, { ARM::VLD2DUPq8OddPseudoWB_fixed, ARM::VLD2DUPd8x2wb_fixed, true, true, false, OddDblSpc, 2, 8 ,false}, { ARM::VLD2DUPq8OddPseudoWB_register, ARM::VLD2DUPd8x2wb_register, true, true, true, OddDblSpc, 2, 8 ,false}, { ARM::VLD2LNd16Pseudo, ARM::VLD2LNd16, true, false, false, SingleSpc, 2, 4 ,true}, { ARM::VLD2LNd16Pseudo_UPD, ARM::VLD2LNd16_UPD, true, true, true, SingleSpc, 2, 4 ,true}, { ARM::VLD2LNd32Pseudo, ARM::VLD2LNd32, true, false, false, SingleSpc, 2, 2 ,true}, { ARM::VLD2LNd32Pseudo_UPD, ARM::VLD2LNd32_UPD, true, true, true, SingleSpc, 2, 2 ,true}, { ARM::VLD2LNd8Pseudo, ARM::VLD2LNd8, true, false, false, SingleSpc, 2, 8 ,true}, { ARM::VLD2LNd8Pseudo_UPD, ARM::VLD2LNd8_UPD, true, true, true, SingleSpc, 2, 8 ,true}, { ARM::VLD2LNq16Pseudo, ARM::VLD2LNq16, true, false, false, EvenDblSpc, 2, 4 ,true}, { ARM::VLD2LNq16Pseudo_UPD, ARM::VLD2LNq16_UPD, true, true, true, EvenDblSpc, 2, 4 ,true}, { ARM::VLD2LNq32Pseudo, ARM::VLD2LNq32, true, false, false, EvenDblSpc, 2, 2 ,true}, { ARM::VLD2LNq32Pseudo_UPD, ARM::VLD2LNq32_UPD, true, true, true, EvenDblSpc, 2, 2 ,true}, { ARM::VLD2q16Pseudo, ARM::VLD2q16, true, false, false, SingleSpc, 4, 4 ,false}, { ARM::VLD2q16PseudoWB_fixed, ARM::VLD2q16wb_fixed, true, true, false, SingleSpc, 4, 4 ,false}, { ARM::VLD2q16PseudoWB_register, ARM::VLD2q16wb_register, true, true, true, SingleSpc, 4, 4 ,false}, { ARM::VLD2q32Pseudo, ARM::VLD2q32, true, false, false, SingleSpc, 4, 2 ,false}, { ARM::VLD2q32PseudoWB_fixed, ARM::VLD2q32wb_fixed, true, true, false, SingleSpc, 4, 2 ,false}, { ARM::VLD2q32PseudoWB_register, ARM::VLD2q32wb_register, true, true, true, SingleSpc, 4, 2 ,false}, { ARM::VLD2q8Pseudo, ARM::VLD2q8, true, false, false, SingleSpc, 4, 8 ,false}, { ARM::VLD2q8PseudoWB_fixed, ARM::VLD2q8wb_fixed, true, true, false, SingleSpc, 4, 8 ,false}, { ARM::VLD2q8PseudoWB_register, ARM::VLD2q8wb_register, true, true, true, SingleSpc, 4, 8 ,false}, { ARM::VLD3DUPd16Pseudo, ARM::VLD3DUPd16, true, false, false, SingleSpc, 3, 4,true}, { ARM::VLD3DUPd16Pseudo_UPD, ARM::VLD3DUPd16_UPD, true, true, true, SingleSpc, 3, 4,true}, { ARM::VLD3DUPd32Pseudo, ARM::VLD3DUPd32, true, false, false, SingleSpc, 3, 2,true}, { ARM::VLD3DUPd32Pseudo_UPD, ARM::VLD3DUPd32_UPD, true, true, true, SingleSpc, 3, 2,true}, { ARM::VLD3DUPd8Pseudo, ARM::VLD3DUPd8, true, false, false, SingleSpc, 3, 8,true}, { ARM::VLD3DUPd8Pseudo_UPD, ARM::VLD3DUPd8_UPD, true, true, true, SingleSpc, 3, 8,true}, { ARM::VLD3DUPq16EvenPseudo, ARM::VLD3DUPq16, true, false, false, EvenDblSpc, 3, 4 ,true}, { ARM::VLD3DUPq16OddPseudo, ARM::VLD3DUPq16, true, false, false, OddDblSpc, 3, 4 ,true}, { ARM::VLD3DUPq16OddPseudo_UPD, ARM::VLD3DUPq16_UPD, true, true, true, OddDblSpc, 3, 4 ,true}, { ARM::VLD3DUPq32EvenPseudo, ARM::VLD3DUPq32, true, false, false, EvenDblSpc, 3, 2 ,true}, { ARM::VLD3DUPq32OddPseudo, ARM::VLD3DUPq32, true, false, false, OddDblSpc, 3, 2 ,true}, { ARM::VLD3DUPq32OddPseudo_UPD, ARM::VLD3DUPq32_UPD, true, true, true, OddDblSpc, 3, 2 ,true}, { ARM::VLD3DUPq8EvenPseudo, ARM::VLD3DUPq8, true, false, false, EvenDblSpc, 3, 8 ,true}, { ARM::VLD3DUPq8OddPseudo, ARM::VLD3DUPq8, true, false, false, OddDblSpc, 3, 8 ,true}, { ARM::VLD3DUPq8OddPseudo_UPD, ARM::VLD3DUPq8_UPD, true, true, true, OddDblSpc, 3, 8 ,true}, { ARM::VLD3LNd16Pseudo, ARM::VLD3LNd16, true, false, false, SingleSpc, 3, 4 ,true}, { ARM::VLD3LNd16Pseudo_UPD, ARM::VLD3LNd16_UPD, true, true, true, SingleSpc, 3, 4 ,true}, { ARM::VLD3LNd32Pseudo, ARM::VLD3LNd32, true, false, false, SingleSpc, 3, 2 ,true}, { ARM::VLD3LNd32Pseudo_UPD, ARM::VLD3LNd32_UPD, true, true, true, SingleSpc, 3, 2 ,true}, { ARM::VLD3LNd8Pseudo, ARM::VLD3LNd8, true, false, false, SingleSpc, 3, 8 ,true}, { ARM::VLD3LNd8Pseudo_UPD, ARM::VLD3LNd8_UPD, true, true, true, SingleSpc, 3, 8 ,true}, { ARM::VLD3LNq16Pseudo, ARM::VLD3LNq16, true, false, false, EvenDblSpc, 3, 4 ,true}, { ARM::VLD3LNq16Pseudo_UPD, ARM::VLD3LNq16_UPD, true, true, true, EvenDblSpc, 3, 4 ,true}, { ARM::VLD3LNq32Pseudo, ARM::VLD3LNq32, true, false, false, EvenDblSpc, 3, 2 ,true}, { ARM::VLD3LNq32Pseudo_UPD, ARM::VLD3LNq32_UPD, true, true, true, EvenDblSpc, 3, 2 ,true}, { ARM::VLD3d16Pseudo, ARM::VLD3d16, true, false, false, SingleSpc, 3, 4 ,true}, { ARM::VLD3d16Pseudo_UPD, ARM::VLD3d16_UPD, true, true, true, SingleSpc, 3, 4 ,true}, { ARM::VLD3d32Pseudo, ARM::VLD3d32, true, false, false, SingleSpc, 3, 2 ,true}, { ARM::VLD3d32Pseudo_UPD, ARM::VLD3d32_UPD, true, true, true, SingleSpc, 3, 2 ,true}, { ARM::VLD3d8Pseudo, ARM::VLD3d8, true, false, false, SingleSpc, 3, 8 ,true}, { ARM::VLD3d8Pseudo_UPD, ARM::VLD3d8_UPD, true, true, true, SingleSpc, 3, 8 ,true}, { ARM::VLD3q16Pseudo_UPD, ARM::VLD3q16_UPD, true, true, true, EvenDblSpc, 3, 4 ,true}, { ARM::VLD3q16oddPseudo, ARM::VLD3q16, true, false, false, OddDblSpc, 3, 4 ,true}, { ARM::VLD3q16oddPseudo_UPD, ARM::VLD3q16_UPD, true, true, true, OddDblSpc, 3, 4 ,true}, { ARM::VLD3q32Pseudo_UPD, ARM::VLD3q32_UPD, true, true, true, EvenDblSpc, 3, 2 ,true}, { ARM::VLD3q32oddPseudo, ARM::VLD3q32, true, false, false, OddDblSpc, 3, 2 ,true}, { ARM::VLD3q32oddPseudo_UPD, ARM::VLD3q32_UPD, true, true, true, OddDblSpc, 3, 2 ,true}, { ARM::VLD3q8Pseudo_UPD, ARM::VLD3q8_UPD, true, true, true, EvenDblSpc, 3, 8 ,true}, { ARM::VLD3q8oddPseudo, ARM::VLD3q8, true, false, false, OddDblSpc, 3, 8 ,true}, { ARM::VLD3q8oddPseudo_UPD, ARM::VLD3q8_UPD, true, true, true, OddDblSpc, 3, 8 ,true}, { ARM::VLD4DUPd16Pseudo, ARM::VLD4DUPd16, true, false, false, SingleSpc, 4, 4,true}, { ARM::VLD4DUPd16Pseudo_UPD, ARM::VLD4DUPd16_UPD, true, true, true, SingleSpc, 4, 4,true}, { ARM::VLD4DUPd32Pseudo, ARM::VLD4DUPd32, true, false, false, SingleSpc, 4, 2,true}, { ARM::VLD4DUPd32Pseudo_UPD, ARM::VLD4DUPd32_UPD, true, true, true, SingleSpc, 4, 2,true}, { ARM::VLD4DUPd8Pseudo, ARM::VLD4DUPd8, true, false, false, SingleSpc, 4, 8,true}, { ARM::VLD4DUPd8Pseudo_UPD, ARM::VLD4DUPd8_UPD, true, true, true, SingleSpc, 4, 8,true}, { ARM::VLD4DUPq16EvenPseudo, ARM::VLD4DUPq16, true, false, false, EvenDblSpc, 4, 4 ,true}, { ARM::VLD4DUPq16OddPseudo, ARM::VLD4DUPq16, true, false, false, OddDblSpc, 4, 4 ,true}, { ARM::VLD4DUPq16OddPseudo_UPD, ARM::VLD4DUPq16_UPD, true, true, true, OddDblSpc, 4, 4 ,true}, { ARM::VLD4DUPq32EvenPseudo, ARM::VLD4DUPq32, true, false, false, EvenDblSpc, 4, 2 ,true}, { ARM::VLD4DUPq32OddPseudo, ARM::VLD4DUPq32, true, false, false, OddDblSpc, 4, 2 ,true}, { ARM::VLD4DUPq32OddPseudo_UPD, ARM::VLD4DUPq32_UPD, true, true, true, OddDblSpc, 4, 2 ,true}, { ARM::VLD4DUPq8EvenPseudo, ARM::VLD4DUPq8, true, false, false, EvenDblSpc, 4, 8 ,true}, { ARM::VLD4DUPq8OddPseudo, ARM::VLD4DUPq8, true, false, false, OddDblSpc, 4, 8 ,true}, { ARM::VLD4DUPq8OddPseudo_UPD, ARM::VLD4DUPq8_UPD, true, true, true, OddDblSpc, 4, 8 ,true}, { ARM::VLD4LNd16Pseudo, ARM::VLD4LNd16, true, false, false, SingleSpc, 4, 4 ,true}, { ARM::VLD4LNd16Pseudo_UPD, ARM::VLD4LNd16_UPD, true, true, true, SingleSpc, 4, 4 ,true}, { ARM::VLD4LNd32Pseudo, ARM::VLD4LNd32, true, false, false, SingleSpc, 4, 2 ,true}, { ARM::VLD4LNd32Pseudo_UPD, ARM::VLD4LNd32_UPD, true, true, true, SingleSpc, 4, 2 ,true}, { ARM::VLD4LNd8Pseudo, ARM::VLD4LNd8, true, false, false, SingleSpc, 4, 8 ,true}, { ARM::VLD4LNd8Pseudo_UPD, ARM::VLD4LNd8_UPD, true, true, true, SingleSpc, 4, 8 ,true}, { ARM::VLD4LNq16Pseudo, ARM::VLD4LNq16, true, false, false, EvenDblSpc, 4, 4 ,true}, { ARM::VLD4LNq16Pseudo_UPD, ARM::VLD4LNq16_UPD, true, true, true, EvenDblSpc, 4, 4 ,true}, { ARM::VLD4LNq32Pseudo, ARM::VLD4LNq32, true, false, false, EvenDblSpc, 4, 2 ,true}, { ARM::VLD4LNq32Pseudo_UPD, ARM::VLD4LNq32_UPD, true, true, true, EvenDblSpc, 4, 2 ,true}, { ARM::VLD4d16Pseudo, ARM::VLD4d16, true, false, false, SingleSpc, 4, 4 ,true}, { ARM::VLD4d16Pseudo_UPD, ARM::VLD4d16_UPD, true, true, true, SingleSpc, 4, 4 ,true}, { ARM::VLD4d32Pseudo, ARM::VLD4d32, true, false, false, SingleSpc, 4, 2 ,true}, { ARM::VLD4d32Pseudo_UPD, ARM::VLD4d32_UPD, true, true, true, SingleSpc, 4, 2 ,true}, { ARM::VLD4d8Pseudo, ARM::VLD4d8, true, false, false, SingleSpc, 4, 8 ,true}, { ARM::VLD4d8Pseudo_UPD, ARM::VLD4d8_UPD, true, true, true, SingleSpc, 4, 8 ,true}, { ARM::VLD4q16Pseudo_UPD, ARM::VLD4q16_UPD, true, true, true, EvenDblSpc, 4, 4 ,true}, { ARM::VLD4q16oddPseudo, ARM::VLD4q16, true, false, false, OddDblSpc, 4, 4 ,true}, { ARM::VLD4q16oddPseudo_UPD, ARM::VLD4q16_UPD, true, true, true, OddDblSpc, 4, 4 ,true}, { ARM::VLD4q32Pseudo_UPD, ARM::VLD4q32_UPD, true, true, true, EvenDblSpc, 4, 2 ,true}, { ARM::VLD4q32oddPseudo, ARM::VLD4q32, true, false, false, OddDblSpc, 4, 2 ,true}, { ARM::VLD4q32oddPseudo_UPD, ARM::VLD4q32_UPD, true, true, true, OddDblSpc, 4, 2 ,true}, { ARM::VLD4q8Pseudo_UPD, ARM::VLD4q8_UPD, true, true, true, EvenDblSpc, 4, 8 ,true}, { ARM::VLD4q8oddPseudo, ARM::VLD4q8, true, false, false, OddDblSpc, 4, 8 ,true}, { ARM::VLD4q8oddPseudo_UPD, ARM::VLD4q8_UPD, true, true, true, OddDblSpc, 4, 8 ,true}, { ARM::VST1LNq16Pseudo, ARM::VST1LNd16, false, false, false, EvenDblSpc, 1, 4 ,true}, { ARM::VST1LNq16Pseudo_UPD, ARM::VST1LNd16_UPD, false, true, true, EvenDblSpc, 1, 4 ,true}, { ARM::VST1LNq32Pseudo, ARM::VST1LNd32, false, false, false, EvenDblSpc, 1, 2 ,true}, { ARM::VST1LNq32Pseudo_UPD, ARM::VST1LNd32_UPD, false, true, true, EvenDblSpc, 1, 2 ,true}, { ARM::VST1LNq8Pseudo, ARM::VST1LNd8, false, false, false, EvenDblSpc, 1, 8 ,true}, { ARM::VST1LNq8Pseudo_UPD, ARM::VST1LNd8_UPD, false, true, true, EvenDblSpc, 1, 8 ,true}, { ARM::VST1d16QPseudo, ARM::VST1d16Q, false, false, false, SingleSpc, 4, 4 ,false}, { ARM::VST1d16QPseudoWB_fixed, ARM::VST1d16Qwb_fixed, false, true, false, SingleSpc, 4, 4 ,false}, { ARM::VST1d16QPseudoWB_register, ARM::VST1d16Qwb_register, false, true, true, SingleSpc, 4, 4 ,false}, { ARM::VST1d16TPseudo, ARM::VST1d16T, false, false, false, SingleSpc, 3, 4 ,false}, { ARM::VST1d16TPseudoWB_fixed, ARM::VST1d16Twb_fixed, false, true, false, SingleSpc, 3, 4 ,false}, { ARM::VST1d16TPseudoWB_register, ARM::VST1d16Twb_register, false, true, true, SingleSpc, 3, 4 ,false}, { ARM::VST1d32QPseudo, ARM::VST1d32Q, false, false, false, SingleSpc, 4, 2 ,false}, { ARM::VST1d32QPseudoWB_fixed, ARM::VST1d32Qwb_fixed, false, true, false, SingleSpc, 4, 2 ,false}, { ARM::VST1d32QPseudoWB_register, ARM::VST1d32Qwb_register, false, true, true, SingleSpc, 4, 2 ,false}, { ARM::VST1d32TPseudo, ARM::VST1d32T, false, false, false, SingleSpc, 3, 2 ,false}, { ARM::VST1d32TPseudoWB_fixed, ARM::VST1d32Twb_fixed, false, true, false, SingleSpc, 3, 2 ,false}, { ARM::VST1d32TPseudoWB_register, ARM::VST1d32Twb_register, false, true, true, SingleSpc, 3, 2 ,false}, { ARM::VST1d64QPseudo, ARM::VST1d64Q, false, false, false, SingleSpc, 4, 1 ,false}, { ARM::VST1d64QPseudoWB_fixed, ARM::VST1d64Qwb_fixed, false, true, false, SingleSpc, 4, 1 ,false}, { ARM::VST1d64QPseudoWB_register, ARM::VST1d64Qwb_register, false, true, true, SingleSpc, 4, 1 ,false}, { ARM::VST1d64TPseudo, ARM::VST1d64T, false, false, false, SingleSpc, 3, 1 ,false}, { ARM::VST1d64TPseudoWB_fixed, ARM::VST1d64Twb_fixed, false, true, false, SingleSpc, 3, 1 ,false}, { ARM::VST1d64TPseudoWB_register, ARM::VST1d64Twb_register, false, true, true, SingleSpc, 3, 1 ,false}, { ARM::VST1d8QPseudo, ARM::VST1d8Q, false, false, false, SingleSpc, 4, 8 ,false}, { ARM::VST1d8QPseudoWB_fixed, ARM::VST1d8Qwb_fixed, false, true, false, SingleSpc, 4, 8 ,false}, { ARM::VST1d8QPseudoWB_register, ARM::VST1d8Qwb_register, false, true, true, SingleSpc, 4, 8 ,false}, { ARM::VST1d8TPseudo, ARM::VST1d8T, false, false, false, SingleSpc, 3, 8 ,false}, { ARM::VST1d8TPseudoWB_fixed, ARM::VST1d8Twb_fixed, false, true, false, SingleSpc, 3, 8 ,false}, { ARM::VST1d8TPseudoWB_register, ARM::VST1d8Twb_register, false, true, true, SingleSpc, 3, 8 ,false}, { ARM::VST1q16HighQPseudo, ARM::VST1d16Q, false, false, false, SingleHighQSpc, 4, 4 ,false}, { ARM::VST1q16HighQPseudo_UPD, ARM::VST1d16Qwb_fixed, false, true, true, SingleHighQSpc, 4, 8 ,false}, { ARM::VST1q16HighTPseudo, ARM::VST1d16T, false, false, false, SingleHighTSpc, 3, 4 ,false}, { ARM::VST1q16HighTPseudo_UPD, ARM::VST1d16Twb_fixed, false, true, true, SingleHighTSpc, 3, 4 ,false}, { ARM::VST1q16LowQPseudo_UPD, ARM::VST1d16Qwb_fixed, false, true, true, SingleLowSpc, 4, 4 ,false}, { ARM::VST1q16LowTPseudo_UPD, ARM::VST1d16Twb_fixed, false, true, true, SingleLowSpc, 3, 4 ,false}, { ARM::VST1q32HighQPseudo, ARM::VST1d32Q, false, false, false, SingleHighQSpc, 4, 2 ,false}, { ARM::VST1q32HighQPseudo_UPD, ARM::VST1d32Qwb_fixed, false, true, true, SingleHighQSpc, 4, 8 ,false}, { ARM::VST1q32HighTPseudo, ARM::VST1d32T, false, false, false, SingleHighTSpc, 3, 2 ,false}, { ARM::VST1q32HighTPseudo_UPD, ARM::VST1d32Twb_fixed, false, true, true, SingleHighTSpc, 3, 2 ,false}, { ARM::VST1q32LowQPseudo_UPD, ARM::VST1d32Qwb_fixed, false, true, true, SingleLowSpc, 4, 2 ,false}, { ARM::VST1q32LowTPseudo_UPD, ARM::VST1d32Twb_fixed, false, true, true, SingleLowSpc, 3, 2 ,false}, { ARM::VST1q64HighQPseudo, ARM::VST1d64Q, false, false, false, SingleHighQSpc, 4, 1 ,false}, { ARM::VST1q64HighQPseudo_UPD, ARM::VST1d64Qwb_fixed, false, true, true, SingleHighQSpc, 4, 8 ,false}, { ARM::VST1q64HighTPseudo, ARM::VST1d64T, false, false, false, SingleHighTSpc, 3, 1 ,false}, { ARM::VST1q64HighTPseudo_UPD, ARM::VST1d64Twb_fixed, false, true, true, SingleHighTSpc, 3, 1 ,false}, { ARM::VST1q64LowQPseudo_UPD, ARM::VST1d64Qwb_fixed, false, true, true, SingleLowSpc, 4, 1 ,false}, { ARM::VST1q64LowTPseudo_UPD, ARM::VST1d64Twb_fixed, false, true, true, SingleLowSpc, 3, 1 ,false}, { ARM::VST1q8HighQPseudo, ARM::VST1d8Q, false, false, false, SingleHighQSpc, 4, 8 ,false}, { ARM::VST1q8HighQPseudo_UPD, ARM::VST1d8Qwb_fixed, false, true, true, SingleHighQSpc, 4, 8 ,false}, { ARM::VST1q8HighTPseudo, ARM::VST1d8T, false, false, false, SingleHighTSpc, 3, 8 ,false}, { ARM::VST1q8HighTPseudo_UPD, ARM::VST1d8Twb_fixed, false, true, true, SingleHighTSpc, 3, 8 ,false}, { ARM::VST1q8LowQPseudo_UPD, ARM::VST1d8Qwb_fixed, false, true, true, SingleLowSpc, 4, 8 ,false}, { ARM::VST1q8LowTPseudo_UPD, ARM::VST1d8Twb_fixed, false, true, true, SingleLowSpc, 3, 8 ,false}, { ARM::VST2LNd16Pseudo, ARM::VST2LNd16, false, false, false, SingleSpc, 2, 4 ,true}, { ARM::VST2LNd16Pseudo_UPD, ARM::VST2LNd16_UPD, false, true, true, SingleSpc, 2, 4 ,true}, { ARM::VST2LNd32Pseudo, ARM::VST2LNd32, false, false, false, SingleSpc, 2, 2 ,true}, { ARM::VST2LNd32Pseudo_UPD, ARM::VST2LNd32_UPD, false, true, true, SingleSpc, 2, 2 ,true}, { ARM::VST2LNd8Pseudo, ARM::VST2LNd8, false, false, false, SingleSpc, 2, 8 ,true}, { ARM::VST2LNd8Pseudo_UPD, ARM::VST2LNd8_UPD, false, true, true, SingleSpc, 2, 8 ,true}, { ARM::VST2LNq16Pseudo, ARM::VST2LNq16, false, false, false, EvenDblSpc, 2, 4,true}, { ARM::VST2LNq16Pseudo_UPD, ARM::VST2LNq16_UPD, false, true, true, EvenDblSpc, 2, 4,true}, { ARM::VST2LNq32Pseudo, ARM::VST2LNq32, false, false, false, EvenDblSpc, 2, 2,true}, { ARM::VST2LNq32Pseudo_UPD, ARM::VST2LNq32_UPD, false, true, true, EvenDblSpc, 2, 2,true}, { ARM::VST2q16Pseudo, ARM::VST2q16, false, false, false, SingleSpc, 4, 4 ,false}, { ARM::VST2q16PseudoWB_fixed, ARM::VST2q16wb_fixed, false, true, false, SingleSpc, 4, 4 ,false}, { ARM::VST2q16PseudoWB_register, ARM::VST2q16wb_register, false, true, true, SingleSpc, 4, 4 ,false}, { ARM::VST2q32Pseudo, ARM::VST2q32, false, false, false, SingleSpc, 4, 2 ,false}, { ARM::VST2q32PseudoWB_fixed, ARM::VST2q32wb_fixed, false, true, false, SingleSpc, 4, 2 ,false}, { ARM::VST2q32PseudoWB_register, ARM::VST2q32wb_register, false, true, true, SingleSpc, 4, 2 ,false}, { ARM::VST2q8Pseudo, ARM::VST2q8, false, false, false, SingleSpc, 4, 8 ,false}, { ARM::VST2q8PseudoWB_fixed, ARM::VST2q8wb_fixed, false, true, false, SingleSpc, 4, 8 ,false}, { ARM::VST2q8PseudoWB_register, ARM::VST2q8wb_register, false, true, true, SingleSpc, 4, 8 ,false}, { ARM::VST3LNd16Pseudo, ARM::VST3LNd16, false, false, false, SingleSpc, 3, 4 ,true}, { ARM::VST3LNd16Pseudo_UPD, ARM::VST3LNd16_UPD, false, true, true, SingleSpc, 3, 4 ,true}, { ARM::VST3LNd32Pseudo, ARM::VST3LNd32, false, false, false, SingleSpc, 3, 2 ,true}, { ARM::VST3LNd32Pseudo_UPD, ARM::VST3LNd32_UPD, false, true, true, SingleSpc, 3, 2 ,true}, { ARM::VST3LNd8Pseudo, ARM::VST3LNd8, false, false, false, SingleSpc, 3, 8 ,true}, { ARM::VST3LNd8Pseudo_UPD, ARM::VST3LNd8_UPD, false, true, true, SingleSpc, 3, 8 ,true}, { ARM::VST3LNq16Pseudo, ARM::VST3LNq16, false, false, false, EvenDblSpc, 3, 4,true}, { ARM::VST3LNq16Pseudo_UPD, ARM::VST3LNq16_UPD, false, true, true, EvenDblSpc, 3, 4,true}, { ARM::VST3LNq32Pseudo, ARM::VST3LNq32, false, false, false, EvenDblSpc, 3, 2,true}, { ARM::VST3LNq32Pseudo_UPD, ARM::VST3LNq32_UPD, false, true, true, EvenDblSpc, 3, 2,true}, { ARM::VST3d16Pseudo, ARM::VST3d16, false, false, false, SingleSpc, 3, 4 ,true}, { ARM::VST3d16Pseudo_UPD, ARM::VST3d16_UPD, false, true, true, SingleSpc, 3, 4 ,true}, { ARM::VST3d32Pseudo, ARM::VST3d32, false, false, false, SingleSpc, 3, 2 ,true}, { ARM::VST3d32Pseudo_UPD, ARM::VST3d32_UPD, false, true, true, SingleSpc, 3, 2 ,true}, { ARM::VST3d8Pseudo, ARM::VST3d8, false, false, false, SingleSpc, 3, 8 ,true}, { ARM::VST3d8Pseudo_UPD, ARM::VST3d8_UPD, false, true, true, SingleSpc, 3, 8 ,true}, { ARM::VST3q16Pseudo_UPD, ARM::VST3q16_UPD, false, true, true, EvenDblSpc, 3, 4 ,true}, { ARM::VST3q16oddPseudo, ARM::VST3q16, false, false, false, OddDblSpc, 3, 4 ,true}, { ARM::VST3q16oddPseudo_UPD, ARM::VST3q16_UPD, false, true, true, OddDblSpc, 3, 4 ,true}, { ARM::VST3q32Pseudo_UPD, ARM::VST3q32_UPD, false, true, true, EvenDblSpc, 3, 2 ,true}, { ARM::VST3q32oddPseudo, ARM::VST3q32, false, false, false, OddDblSpc, 3, 2 ,true}, { ARM::VST3q32oddPseudo_UPD, ARM::VST3q32_UPD, false, true, true, OddDblSpc, 3, 2 ,true}, { ARM::VST3q8Pseudo_UPD, ARM::VST3q8_UPD, false, true, true, EvenDblSpc, 3, 8 ,true}, { ARM::VST3q8oddPseudo, ARM::VST3q8, false, false, false, OddDblSpc, 3, 8 ,true}, { ARM::VST3q8oddPseudo_UPD, ARM::VST3q8_UPD, false, true, true, OddDblSpc, 3, 8 ,true}, { ARM::VST4LNd16Pseudo, ARM::VST4LNd16, false, false, false, SingleSpc, 4, 4 ,true}, { ARM::VST4LNd16Pseudo_UPD, ARM::VST4LNd16_UPD, false, true, true, SingleSpc, 4, 4 ,true}, { ARM::VST4LNd32Pseudo, ARM::VST4LNd32, false, false, false, SingleSpc, 4, 2 ,true}, { ARM::VST4LNd32Pseudo_UPD, ARM::VST4LNd32_UPD, false, true, true, SingleSpc, 4, 2 ,true}, { ARM::VST4LNd8Pseudo, ARM::VST4LNd8, false, false, false, SingleSpc, 4, 8 ,true}, { ARM::VST4LNd8Pseudo_UPD, ARM::VST4LNd8_UPD, false, true, true, SingleSpc, 4, 8 ,true}, { ARM::VST4LNq16Pseudo, ARM::VST4LNq16, false, false, false, EvenDblSpc, 4, 4,true}, { ARM::VST4LNq16Pseudo_UPD, ARM::VST4LNq16_UPD, false, true, true, EvenDblSpc, 4, 4,true}, { ARM::VST4LNq32Pseudo, ARM::VST4LNq32, false, false, false, EvenDblSpc, 4, 2,true}, { ARM::VST4LNq32Pseudo_UPD, ARM::VST4LNq32_UPD, false, true, true, EvenDblSpc, 4, 2,true}, { ARM::VST4d16Pseudo, ARM::VST4d16, false, false, false, SingleSpc, 4, 4 ,true}, { ARM::VST4d16Pseudo_UPD, ARM::VST4d16_UPD, false, true, true, SingleSpc, 4, 4 ,true}, { ARM::VST4d32Pseudo, ARM::VST4d32, false, false, false, SingleSpc, 4, 2 ,true}, { ARM::VST4d32Pseudo_UPD, ARM::VST4d32_UPD, false, true, true, SingleSpc, 4, 2 ,true}, { ARM::VST4d8Pseudo, ARM::VST4d8, false, false, false, SingleSpc, 4, 8 ,true}, { ARM::VST4d8Pseudo_UPD, ARM::VST4d8_UPD, false, true, true, SingleSpc, 4, 8 ,true}, { ARM::VST4q16Pseudo_UPD, ARM::VST4q16_UPD, false, true, true, EvenDblSpc, 4, 4 ,true}, { ARM::VST4q16oddPseudo, ARM::VST4q16, false, false, false, OddDblSpc, 4, 4 ,true}, { ARM::VST4q16oddPseudo_UPD, ARM::VST4q16_UPD, false, true, true, OddDblSpc, 4, 4 ,true}, { ARM::VST4q32Pseudo_UPD, ARM::VST4q32_UPD, false, true, true, EvenDblSpc, 4, 2 ,true}, { ARM::VST4q32oddPseudo, ARM::VST4q32, false, false, false, OddDblSpc, 4, 2 ,true}, { ARM::VST4q32oddPseudo_UPD, ARM::VST4q32_UPD, false, true, true, OddDblSpc, 4, 2 ,true}, { ARM::VST4q8Pseudo_UPD, ARM::VST4q8_UPD, false, true, true, EvenDblSpc, 4, 8 ,true}, { ARM::VST4q8oddPseudo, ARM::VST4q8, false, false, false, OddDblSpc, 4, 8 ,true}, { ARM::VST4q8oddPseudo_UPD, ARM::VST4q8_UPD, false, true, true, OddDblSpc, 4, 8 ,true} }; /// LookupNEONLdSt - Search the NEONLdStTable for information about a NEON /// load or store pseudo instruction. static const NEONLdStTableEntry *LookupNEONLdSt(unsigned Opcode) { #ifndef NDEBUG // Make sure the table is sorted. static std::atomic TableChecked(false); if (!TableChecked.load(std::memory_order_relaxed)) { assert(llvm::is_sorted(NEONLdStTable) && "NEONLdStTable is not sorted!"); TableChecked.store(true, std::memory_order_relaxed); } #endif auto I = llvm::lower_bound(NEONLdStTable, Opcode); if (I != std::end(NEONLdStTable) && I->PseudoOpc == Opcode) return I; return nullptr; } /// GetDSubRegs - Get 4 D subregisters of a Q, QQ, or QQQQ register, /// corresponding to the specified register spacing. Not all of the results /// are necessarily valid, e.g., a Q register only has 2 D subregisters. static void GetDSubRegs(unsigned Reg, NEONRegSpacing RegSpc, const TargetRegisterInfo *TRI, unsigned &D0, unsigned &D1, unsigned &D2, unsigned &D3) { if (RegSpc == SingleSpc || RegSpc == SingleLowSpc) { D0 = TRI->getSubReg(Reg, ARM::dsub_0); D1 = TRI->getSubReg(Reg, ARM::dsub_1); D2 = TRI->getSubReg(Reg, ARM::dsub_2); D3 = TRI->getSubReg(Reg, ARM::dsub_3); } else if (RegSpc == SingleHighQSpc) { D0 = TRI->getSubReg(Reg, ARM::dsub_4); D1 = TRI->getSubReg(Reg, ARM::dsub_5); D2 = TRI->getSubReg(Reg, ARM::dsub_6); D3 = TRI->getSubReg(Reg, ARM::dsub_7); } else if (RegSpc == SingleHighTSpc) { D0 = TRI->getSubReg(Reg, ARM::dsub_3); D1 = TRI->getSubReg(Reg, ARM::dsub_4); D2 = TRI->getSubReg(Reg, ARM::dsub_5); D3 = TRI->getSubReg(Reg, ARM::dsub_6); } else if (RegSpc == EvenDblSpc) { D0 = TRI->getSubReg(Reg, ARM::dsub_0); D1 = TRI->getSubReg(Reg, ARM::dsub_2); D2 = TRI->getSubReg(Reg, ARM::dsub_4); D3 = TRI->getSubReg(Reg, ARM::dsub_6); } else { assert(RegSpc == OddDblSpc && "unknown register spacing"); D0 = TRI->getSubReg(Reg, ARM::dsub_1); D1 = TRI->getSubReg(Reg, ARM::dsub_3); D2 = TRI->getSubReg(Reg, ARM::dsub_5); D3 = TRI->getSubReg(Reg, ARM::dsub_7); } } /// ExpandVLD - Translate VLD pseudo instructions with Q, QQ or QQQQ register /// operands to real VLD instructions with D register operands. void ARMExpandPseudo::ExpandVLD(MachineBasicBlock::iterator &MBBI) { MachineInstr &MI = *MBBI; MachineBasicBlock &MBB = *MI.getParent(); LLVM_DEBUG(dbgs() << "Expanding: "; MI.dump()); const NEONLdStTableEntry *TableEntry = LookupNEONLdSt(MI.getOpcode()); assert(TableEntry && TableEntry->IsLoad && "NEONLdStTable lookup failed"); NEONRegSpacing RegSpc = (NEONRegSpacing)TableEntry->RegSpacing; unsigned NumRegs = TableEntry->NumRegs; MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(TableEntry->RealOpc)); unsigned OpIdx = 0; bool DstIsDead = MI.getOperand(OpIdx).isDead(); Register DstReg = MI.getOperand(OpIdx++).getReg(); bool IsVLD2DUP = TableEntry->RealOpc == ARM::VLD2DUPd8x2 || TableEntry->RealOpc == ARM::VLD2DUPd16x2 || TableEntry->RealOpc == ARM::VLD2DUPd32x2 || TableEntry->RealOpc == ARM::VLD2DUPd8x2wb_fixed || TableEntry->RealOpc == ARM::VLD2DUPd16x2wb_fixed || TableEntry->RealOpc == ARM::VLD2DUPd32x2wb_fixed || TableEntry->RealOpc == ARM::VLD2DUPd8x2wb_register || TableEntry->RealOpc == ARM::VLD2DUPd16x2wb_register || TableEntry->RealOpc == ARM::VLD2DUPd32x2wb_register; if (IsVLD2DUP) { unsigned SubRegIndex; if (RegSpc == EvenDblSpc) { SubRegIndex = ARM::dsub_0; } else { assert(RegSpc == OddDblSpc && "Unexpected spacing!"); SubRegIndex = ARM::dsub_1; } Register SubReg = TRI->getSubReg(DstReg, SubRegIndex); unsigned DstRegPair = TRI->getMatchingSuperReg(SubReg, ARM::dsub_0, &ARM::DPairSpcRegClass); MIB.addReg(DstRegPair, RegState::Define | getDeadRegState(DstIsDead)); } else { unsigned D0, D1, D2, D3; GetDSubRegs(DstReg, RegSpc, TRI, D0, D1, D2, D3); MIB.addReg(D0, RegState::Define | getDeadRegState(DstIsDead)); if (NumRegs > 1 && TableEntry->copyAllListRegs) MIB.addReg(D1, RegState::Define | getDeadRegState(DstIsDead)); if (NumRegs > 2 && TableEntry->copyAllListRegs) MIB.addReg(D2, RegState::Define | getDeadRegState(DstIsDead)); if (NumRegs > 3 && TableEntry->copyAllListRegs) MIB.addReg(D3, RegState::Define | getDeadRegState(DstIsDead)); } if (TableEntry->isUpdating) MIB.add(MI.getOperand(OpIdx++)); // Copy the addrmode6 operands. MIB.add(MI.getOperand(OpIdx++)); MIB.add(MI.getOperand(OpIdx++)); // Copy the am6offset operand. if (TableEntry->hasWritebackOperand) { // TODO: The writing-back pseudo instructions we translate here are all // defined to take am6offset nodes that are capable to represent both fixed // and register forms. Some real instructions, however, do not rely on // am6offset and have separate definitions for such forms. When this is the // case, fixed forms do not take any offset nodes, so here we skip them for // such instructions. Once all real and pseudo writing-back instructions are // rewritten without use of am6offset nodes, this code will go away. const MachineOperand &AM6Offset = MI.getOperand(OpIdx++); if (TableEntry->RealOpc == ARM::VLD1d8Qwb_fixed || TableEntry->RealOpc == ARM::VLD1d16Qwb_fixed || TableEntry->RealOpc == ARM::VLD1d32Qwb_fixed || TableEntry->RealOpc == ARM::VLD1d64Qwb_fixed || TableEntry->RealOpc == ARM::VLD1d8Twb_fixed || TableEntry->RealOpc == ARM::VLD1d16Twb_fixed || TableEntry->RealOpc == ARM::VLD1d32Twb_fixed || TableEntry->RealOpc == ARM::VLD1d64Twb_fixed || TableEntry->RealOpc == ARM::VLD2DUPd8x2wb_fixed || TableEntry->RealOpc == ARM::VLD2DUPd16x2wb_fixed || TableEntry->RealOpc == ARM::VLD2DUPd32x2wb_fixed) { assert(AM6Offset.getReg() == 0 && "A fixed writing-back pseudo instruction provides an offset " "register!"); } else { MIB.add(AM6Offset); } } // For an instruction writing double-spaced subregs, the pseudo instruction // has an extra operand that is a use of the super-register. Record the // operand index and skip over it. unsigned SrcOpIdx = 0; if (!IsVLD2DUP) { if (RegSpc == EvenDblSpc || RegSpc == OddDblSpc || RegSpc == SingleLowSpc || RegSpc == SingleHighQSpc || RegSpc == SingleHighTSpc) SrcOpIdx = OpIdx++; } // Copy the predicate operands. MIB.add(MI.getOperand(OpIdx++)); MIB.add(MI.getOperand(OpIdx++)); // Copy the super-register source operand used for double-spaced subregs over // to the new instruction as an implicit operand. if (SrcOpIdx != 0) { MachineOperand MO = MI.getOperand(SrcOpIdx); MO.setImplicit(true); MIB.add(MO); } // Add an implicit def for the super-register. MIB.addReg(DstReg, RegState::ImplicitDefine | getDeadRegState(DstIsDead)); TransferImpOps(MI, MIB, MIB); // Transfer memoperands. MIB.cloneMemRefs(MI); MI.eraseFromParent(); LLVM_DEBUG(dbgs() << "To: "; MIB.getInstr()->dump();); } /// ExpandVST - Translate VST pseudo instructions with Q, QQ or QQQQ register /// operands to real VST instructions with D register operands. void ARMExpandPseudo::ExpandVST(MachineBasicBlock::iterator &MBBI) { MachineInstr &MI = *MBBI; MachineBasicBlock &MBB = *MI.getParent(); LLVM_DEBUG(dbgs() << "Expanding: "; MI.dump()); const NEONLdStTableEntry *TableEntry = LookupNEONLdSt(MI.getOpcode()); assert(TableEntry && !TableEntry->IsLoad && "NEONLdStTable lookup failed"); NEONRegSpacing RegSpc = (NEONRegSpacing)TableEntry->RegSpacing; unsigned NumRegs = TableEntry->NumRegs; MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(TableEntry->RealOpc)); unsigned OpIdx = 0; if (TableEntry->isUpdating) MIB.add(MI.getOperand(OpIdx++)); // Copy the addrmode6 operands. MIB.add(MI.getOperand(OpIdx++)); MIB.add(MI.getOperand(OpIdx++)); if (TableEntry->hasWritebackOperand) { // TODO: The writing-back pseudo instructions we translate here are all // defined to take am6offset nodes that are capable to represent both fixed // and register forms. Some real instructions, however, do not rely on // am6offset and have separate definitions for such forms. When this is the // case, fixed forms do not take any offset nodes, so here we skip them for // such instructions. Once all real and pseudo writing-back instructions are // rewritten without use of am6offset nodes, this code will go away. const MachineOperand &AM6Offset = MI.getOperand(OpIdx++); if (TableEntry->RealOpc == ARM::VST1d8Qwb_fixed || TableEntry->RealOpc == ARM::VST1d16Qwb_fixed || TableEntry->RealOpc == ARM::VST1d32Qwb_fixed || TableEntry->RealOpc == ARM::VST1d64Qwb_fixed || TableEntry->RealOpc == ARM::VST1d8Twb_fixed || TableEntry->RealOpc == ARM::VST1d16Twb_fixed || TableEntry->RealOpc == ARM::VST1d32Twb_fixed || TableEntry->RealOpc == ARM::VST1d64Twb_fixed) { assert(AM6Offset.getReg() == 0 && "A fixed writing-back pseudo instruction provides an offset " "register!"); } else { MIB.add(AM6Offset); } } bool SrcIsKill = MI.getOperand(OpIdx).isKill(); bool SrcIsUndef = MI.getOperand(OpIdx).isUndef(); Register SrcReg = MI.getOperand(OpIdx++).getReg(); unsigned D0, D1, D2, D3; GetDSubRegs(SrcReg, RegSpc, TRI, D0, D1, D2, D3); MIB.addReg(D0, getUndefRegState(SrcIsUndef)); if (NumRegs > 1 && TableEntry->copyAllListRegs) MIB.addReg(D1, getUndefRegState(SrcIsUndef)); if (NumRegs > 2 && TableEntry->copyAllListRegs) MIB.addReg(D2, getUndefRegState(SrcIsUndef)); if (NumRegs > 3 && TableEntry->copyAllListRegs) MIB.addReg(D3, getUndefRegState(SrcIsUndef)); // Copy the predicate operands. MIB.add(MI.getOperand(OpIdx++)); MIB.add(MI.getOperand(OpIdx++)); if (SrcIsKill && !SrcIsUndef) // Add an implicit kill for the super-reg. MIB->addRegisterKilled(SrcReg, TRI, true); else if (!SrcIsUndef) MIB.addReg(SrcReg, RegState::Implicit); // Add implicit uses for src reg. TransferImpOps(MI, MIB, MIB); // Transfer memoperands. MIB.cloneMemRefs(MI); MI.eraseFromParent(); LLVM_DEBUG(dbgs() << "To: "; MIB.getInstr()->dump();); } /// ExpandLaneOp - Translate VLD*LN and VST*LN instructions with Q, QQ or QQQQ /// register operands to real instructions with D register operands. void ARMExpandPseudo::ExpandLaneOp(MachineBasicBlock::iterator &MBBI) { MachineInstr &MI = *MBBI; MachineBasicBlock &MBB = *MI.getParent(); LLVM_DEBUG(dbgs() << "Expanding: "; MI.dump()); const NEONLdStTableEntry *TableEntry = LookupNEONLdSt(MI.getOpcode()); assert(TableEntry && "NEONLdStTable lookup failed"); NEONRegSpacing RegSpc = (NEONRegSpacing)TableEntry->RegSpacing; unsigned NumRegs = TableEntry->NumRegs; unsigned RegElts = TableEntry->RegElts; MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(TableEntry->RealOpc)); unsigned OpIdx = 0; // The lane operand is always the 3rd from last operand, before the 2 // predicate operands. unsigned Lane = MI.getOperand(MI.getDesc().getNumOperands() - 3).getImm(); // Adjust the lane and spacing as needed for Q registers. assert(RegSpc != OddDblSpc && "unexpected register spacing for VLD/VST-lane"); if (RegSpc == EvenDblSpc && Lane >= RegElts) { RegSpc = OddDblSpc; Lane -= RegElts; } assert(Lane < RegElts && "out of range lane for VLD/VST-lane"); unsigned D0 = 0, D1 = 0, D2 = 0, D3 = 0; unsigned DstReg = 0; bool DstIsDead = false; if (TableEntry->IsLoad) { DstIsDead = MI.getOperand(OpIdx).isDead(); DstReg = MI.getOperand(OpIdx++).getReg(); GetDSubRegs(DstReg, RegSpc, TRI, D0, D1, D2, D3); MIB.addReg(D0, RegState::Define | getDeadRegState(DstIsDead)); if (NumRegs > 1) MIB.addReg(D1, RegState::Define | getDeadRegState(DstIsDead)); if (NumRegs > 2) MIB.addReg(D2, RegState::Define | getDeadRegState(DstIsDead)); if (NumRegs > 3) MIB.addReg(D3, RegState::Define | getDeadRegState(DstIsDead)); } if (TableEntry->isUpdating) MIB.add(MI.getOperand(OpIdx++)); // Copy the addrmode6 operands. MIB.add(MI.getOperand(OpIdx++)); MIB.add(MI.getOperand(OpIdx++)); // Copy the am6offset operand. if (TableEntry->hasWritebackOperand) MIB.add(MI.getOperand(OpIdx++)); // Grab the super-register source. MachineOperand MO = MI.getOperand(OpIdx++); if (!TableEntry->IsLoad) GetDSubRegs(MO.getReg(), RegSpc, TRI, D0, D1, D2, D3); // Add the subregs as sources of the new instruction. unsigned SrcFlags = (getUndefRegState(MO.isUndef()) | getKillRegState(MO.isKill())); MIB.addReg(D0, SrcFlags); if (NumRegs > 1) MIB.addReg(D1, SrcFlags); if (NumRegs > 2) MIB.addReg(D2, SrcFlags); if (NumRegs > 3) MIB.addReg(D3, SrcFlags); // Add the lane number operand. MIB.addImm(Lane); OpIdx += 1; // Copy the predicate operands. MIB.add(MI.getOperand(OpIdx++)); MIB.add(MI.getOperand(OpIdx++)); // Copy the super-register source to be an implicit source. MO.setImplicit(true); MIB.add(MO); if (TableEntry->IsLoad) // Add an implicit def for the super-register. MIB.addReg(DstReg, RegState::ImplicitDefine | getDeadRegState(DstIsDead)); TransferImpOps(MI, MIB, MIB); // Transfer memoperands. MIB.cloneMemRefs(MI); MI.eraseFromParent(); } /// ExpandVTBL - Translate VTBL and VTBX pseudo instructions with Q or QQ /// register operands to real instructions with D register operands. void ARMExpandPseudo::ExpandVTBL(MachineBasicBlock::iterator &MBBI, unsigned Opc, bool IsExt) { MachineInstr &MI = *MBBI; MachineBasicBlock &MBB = *MI.getParent(); LLVM_DEBUG(dbgs() << "Expanding: "; MI.dump()); MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)); unsigned OpIdx = 0; // Transfer the destination register operand. MIB.add(MI.getOperand(OpIdx++)); if (IsExt) { MachineOperand VdSrc(MI.getOperand(OpIdx++)); MIB.add(VdSrc); } bool SrcIsKill = MI.getOperand(OpIdx).isKill(); Register SrcReg = MI.getOperand(OpIdx++).getReg(); unsigned D0, D1, D2, D3; GetDSubRegs(SrcReg, SingleSpc, TRI, D0, D1, D2, D3); MIB.addReg(D0); // Copy the other source register operand. MachineOperand VmSrc(MI.getOperand(OpIdx++)); MIB.add(VmSrc); // Copy the predicate operands. MIB.add(MI.getOperand(OpIdx++)); MIB.add(MI.getOperand(OpIdx++)); // Add an implicit kill and use for the super-reg. MIB.addReg(SrcReg, RegState::Implicit | getKillRegState(SrcIsKill)); TransferImpOps(MI, MIB, MIB); MI.eraseFromParent(); LLVM_DEBUG(dbgs() << "To: "; MIB.getInstr()->dump();); } void ARMExpandPseudo::ExpandMQQPRLoadStore(MachineBasicBlock::iterator &MBBI) { MachineInstr &MI = *MBBI; MachineBasicBlock &MBB = *MI.getParent(); unsigned NewOpc = MI.getOpcode() == ARM::MQQPRStore || MI.getOpcode() == ARM::MQQQQPRStore ? ARM::VSTMDIA : ARM::VLDMDIA; MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc)); unsigned Flags = getKillRegState(MI.getOperand(0).isKill()) | getDefRegState(MI.getOperand(0).isDef()); Register SrcReg = MI.getOperand(0).getReg(); // Copy the destination register. MIB.add(MI.getOperand(1)); MIB.add(predOps(ARMCC::AL)); MIB.addReg(TRI->getSubReg(SrcReg, ARM::dsub_0), Flags); MIB.addReg(TRI->getSubReg(SrcReg, ARM::dsub_1), Flags); MIB.addReg(TRI->getSubReg(SrcReg, ARM::dsub_2), Flags); MIB.addReg(TRI->getSubReg(SrcReg, ARM::dsub_3), Flags); if (MI.getOpcode() == ARM::MQQQQPRStore || MI.getOpcode() == ARM::MQQQQPRLoad) { MIB.addReg(TRI->getSubReg(SrcReg, ARM::dsub_4), Flags); MIB.addReg(TRI->getSubReg(SrcReg, ARM::dsub_5), Flags); MIB.addReg(TRI->getSubReg(SrcReg, ARM::dsub_6), Flags); MIB.addReg(TRI->getSubReg(SrcReg, ARM::dsub_7), Flags); } if (NewOpc == ARM::VSTMDIA) MIB.addReg(SrcReg, RegState::Implicit); TransferImpOps(MI, MIB, MIB); MIB.cloneMemRefs(MI); MI.eraseFromParent(); } static bool IsAnAddressOperand(const MachineOperand &MO) { // This check is overly conservative. Unless we are certain that the machine // operand is not a symbol reference, we return that it is a symbol reference. // This is important as the load pair may not be split up Windows. switch (MO.getType()) { case MachineOperand::MO_Register: case MachineOperand::MO_Immediate: case MachineOperand::MO_CImmediate: case MachineOperand::MO_FPImmediate: case MachineOperand::MO_ShuffleMask: return false; case MachineOperand::MO_MachineBasicBlock: return true; case MachineOperand::MO_FrameIndex: return false; case MachineOperand::MO_ConstantPoolIndex: case MachineOperand::MO_TargetIndex: case MachineOperand::MO_JumpTableIndex: case MachineOperand::MO_ExternalSymbol: case MachineOperand::MO_GlobalAddress: case MachineOperand::MO_BlockAddress: return true; case MachineOperand::MO_RegisterMask: case MachineOperand::MO_RegisterLiveOut: return false; case MachineOperand::MO_Metadata: case MachineOperand::MO_MCSymbol: return true; case MachineOperand::MO_CFIIndex: return false; case MachineOperand::MO_IntrinsicID: case MachineOperand::MO_Predicate: llvm_unreachable("should not exist post-isel"); } llvm_unreachable("unhandled machine operand type"); } static MachineOperand makeImplicit(const MachineOperand &MO) { MachineOperand NewMO = MO; NewMO.setImplicit(); return NewMO; } void ARMExpandPseudo::ExpandMOV32BitImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI) { MachineInstr &MI = *MBBI; unsigned Opcode = MI.getOpcode(); Register PredReg; ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg); Register DstReg = MI.getOperand(0).getReg(); bool DstIsDead = MI.getOperand(0).isDead(); bool isCC = Opcode == ARM::MOVCCi32imm || Opcode == ARM::t2MOVCCi32imm; const MachineOperand &MO = MI.getOperand(isCC ? 2 : 1); bool RequiresBundling = STI->isTargetWindows() && IsAnAddressOperand(MO); MachineInstrBuilder LO16, HI16; LLVM_DEBUG(dbgs() << "Expanding: "; MI.dump()); if (!STI->hasV6T2Ops() && (Opcode == ARM::MOVi32imm || Opcode == ARM::MOVCCi32imm)) { // FIXME Windows CE supports older ARM CPUs assert(!STI->isTargetWindows() && "Windows on ARM requires ARMv7+"); assert (MO.isImm() && "MOVi32imm w/ non-immediate source operand!"); unsigned ImmVal = (unsigned)MO.getImm(); unsigned SOImmValV1 = 0, SOImmValV2 = 0; if (ARM_AM::isSOImmTwoPartVal(ImmVal)) { // Expand into a movi + orr. LO16 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::MOVi), DstReg); HI16 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::ORRri)) .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead)) .addReg(DstReg); SOImmValV1 = ARM_AM::getSOImmTwoPartFirst(ImmVal); SOImmValV2 = ARM_AM::getSOImmTwoPartSecond(ImmVal); } else { // Expand into a mvn + sub. LO16 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::MVNi), DstReg); HI16 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::SUBri)) .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead)) .addReg(DstReg); SOImmValV1 = ARM_AM::getSOImmTwoPartFirst(-ImmVal); SOImmValV2 = ARM_AM::getSOImmTwoPartSecond(-ImmVal); SOImmValV1 = ~(-SOImmValV1); } unsigned MIFlags = MI.getFlags(); LO16 = LO16.addImm(SOImmValV1); HI16 = HI16.addImm(SOImmValV2); LO16.cloneMemRefs(MI); HI16.cloneMemRefs(MI); LO16.setMIFlags(MIFlags); HI16.setMIFlags(MIFlags); LO16.addImm(Pred).addReg(PredReg).add(condCodeOp()); HI16.addImm(Pred).addReg(PredReg).add(condCodeOp()); if (isCC) LO16.add(makeImplicit(MI.getOperand(1))); TransferImpOps(MI, LO16, HI16); MI.eraseFromParent(); return; } unsigned LO16Opc = 0; unsigned HI16Opc = 0; unsigned MIFlags = MI.getFlags(); if (Opcode == ARM::t2MOVi32imm || Opcode == ARM::t2MOVCCi32imm) { LO16Opc = ARM::t2MOVi16; HI16Opc = ARM::t2MOVTi16; } else { LO16Opc = ARM::MOVi16; HI16Opc = ARM::MOVTi16; } LO16 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(LO16Opc), DstReg); HI16 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(HI16Opc)) .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead)) .addReg(DstReg); LO16.setMIFlags(MIFlags); HI16.setMIFlags(MIFlags); switch (MO.getType()) { case MachineOperand::MO_Immediate: { unsigned Imm = MO.getImm(); unsigned Lo16 = Imm & 0xffff; unsigned Hi16 = (Imm >> 16) & 0xffff; LO16 = LO16.addImm(Lo16); HI16 = HI16.addImm(Hi16); break; } case MachineOperand::MO_ExternalSymbol: { const char *ES = MO.getSymbolName(); unsigned TF = MO.getTargetFlags(); LO16 = LO16.addExternalSymbol(ES, TF | ARMII::MO_LO16); HI16 = HI16.addExternalSymbol(ES, TF | ARMII::MO_HI16); break; } default: { const GlobalValue *GV = MO.getGlobal(); unsigned TF = MO.getTargetFlags(); LO16 = LO16.addGlobalAddress(GV, MO.getOffset(), TF | ARMII::MO_LO16); HI16 = HI16.addGlobalAddress(GV, MO.getOffset(), TF | ARMII::MO_HI16); break; } } LO16.cloneMemRefs(MI); HI16.cloneMemRefs(MI); LO16.addImm(Pred).addReg(PredReg); HI16.addImm(Pred).addReg(PredReg); if (RequiresBundling) finalizeBundle(MBB, LO16->getIterator(), MBBI->getIterator()); if (isCC) LO16.add(makeImplicit(MI.getOperand(1))); TransferImpOps(MI, LO16, HI16); MI.eraseFromParent(); LLVM_DEBUG(dbgs() << "To: "; LO16.getInstr()->dump();); LLVM_DEBUG(dbgs() << "And: "; HI16.getInstr()->dump();); } // The size of the area, accessed by that VLSTM/VLLDM // S0-S31 + FPSCR + 8 more bytes (VPR + pad, or just pad) static const int CMSE_FP_SAVE_SIZE = 136; static void determineGPRegsToClear(const MachineInstr &MI, const std::initializer_list &Regs, SmallVectorImpl &ClearRegs) { SmallVector OpRegs; for (const MachineOperand &Op : MI.operands()) { if (!Op.isReg() || !Op.isUse()) continue; OpRegs.push_back(Op.getReg()); } llvm::sort(OpRegs); std::set_difference(Regs.begin(), Regs.end(), OpRegs.begin(), OpRegs.end(), std::back_inserter(ClearRegs)); } void ARMExpandPseudo::CMSEClearGPRegs( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, const SmallVectorImpl &ClearRegs, unsigned ClobberReg) { if (STI->hasV8_1MMainlineOps()) { // Clear the registers using the CLRM instruction. MachineInstrBuilder CLRM = BuildMI(MBB, MBBI, DL, TII->get(ARM::t2CLRM)).add(predOps(ARMCC::AL)); for (unsigned R : ClearRegs) CLRM.addReg(R, RegState::Define); CLRM.addReg(ARM::APSR, RegState::Define); CLRM.addReg(ARM::CPSR, RegState::Define | RegState::Implicit); } else { // Clear the registers and flags by copying ClobberReg into them. // (Baseline can't do a high register clear in one instruction). for (unsigned Reg : ClearRegs) { if (Reg == ClobberReg) continue; BuildMI(MBB, MBBI, DL, TII->get(ARM::tMOVr), Reg) .addReg(ClobberReg) .add(predOps(ARMCC::AL)); } BuildMI(MBB, MBBI, DL, TII->get(ARM::t2MSR_M)) .addImm(STI->hasDSP() ? 0xc00 : 0x800) .addReg(ClobberReg) .add(predOps(ARMCC::AL)); } } // Find which FP registers need to be cleared. The parameter `ClearRegs` is // initialised with all elements set to true, and this function resets all the // bits, which correspond to register uses. Returns true if any floating point // register is defined, false otherwise. static bool determineFPRegsToClear(const MachineInstr &MI, BitVector &ClearRegs) { bool DefFP = false; for (const MachineOperand &Op : MI.operands()) { if (!Op.isReg()) continue; Register Reg = Op.getReg(); if (Op.isDef()) { if ((Reg >= ARM::Q0 && Reg <= ARM::Q7) || (Reg >= ARM::D0 && Reg <= ARM::D15) || (Reg >= ARM::S0 && Reg <= ARM::S31)) DefFP = true; continue; } if (Reg >= ARM::Q0 && Reg <= ARM::Q7) { int R = Reg - ARM::Q0; ClearRegs.reset(R * 4, (R + 1) * 4); } else if (Reg >= ARM::D0 && Reg <= ARM::D15) { int R = Reg - ARM::D0; ClearRegs.reset(R * 2, (R + 1) * 2); } else if (Reg >= ARM::S0 && Reg <= ARM::S31) { ClearRegs[Reg - ARM::S0] = false; } } return DefFP; } MachineBasicBlock & ARMExpandPseudo::CMSEClearFPRegs(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) { BitVector ClearRegs(16, true); (void)determineFPRegsToClear(*MBBI, ClearRegs); if (STI->hasV8_1MMainlineOps()) return CMSEClearFPRegsV81(MBB, MBBI, ClearRegs); else return CMSEClearFPRegsV8(MBB, MBBI, ClearRegs); } // Clear the FP registers for v8.0-M, by copying over the content // of LR. Uses R12 as a scratch register. MachineBasicBlock & ARMExpandPseudo::CMSEClearFPRegsV8(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const BitVector &ClearRegs) { if (!STI->hasFPRegs()) return MBB; auto &RetI = *MBBI; const DebugLoc &DL = RetI.getDebugLoc(); // If optimising for minimum size, clear FP registers unconditionally. // Otherwise, check the CONTROL.SFPA (Secure Floating-Point Active) bit and // don't clear them if they belong to the non-secure state. MachineBasicBlock *ClearBB, *DoneBB; if (STI->hasMinSize()) { ClearBB = DoneBB = &MBB; } else { MachineFunction *MF = MBB.getParent(); ClearBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); MF->insert(++MBB.getIterator(), ClearBB); MF->insert(++ClearBB->getIterator(), DoneBB); DoneBB->splice(DoneBB->end(), &MBB, MBBI, MBB.end()); DoneBB->transferSuccessors(&MBB); MBB.addSuccessor(ClearBB); MBB.addSuccessor(DoneBB); ClearBB->addSuccessor(DoneBB); // At the new basic blocks we need to have live-in the registers, used // for the return value as well as LR, used to clear registers. for (const MachineOperand &Op : RetI.operands()) { if (!Op.isReg()) continue; Register Reg = Op.getReg(); if (Reg == ARM::NoRegister || Reg == ARM::LR) continue; assert(Register::isPhysicalRegister(Reg) && "Unallocated register"); ClearBB->addLiveIn(Reg); DoneBB->addLiveIn(Reg); } ClearBB->addLiveIn(ARM::LR); DoneBB->addLiveIn(ARM::LR); // Read the CONTROL register. BuildMI(MBB, MBB.end(), DL, TII->get(ARM::t2MRS_M), ARM::R12) .addImm(20) .add(predOps(ARMCC::AL)); // Check bit 3 (SFPA). BuildMI(MBB, MBB.end(), DL, TII->get(ARM::t2TSTri)) .addReg(ARM::R12) .addImm(8) .add(predOps(ARMCC::AL)); // If SFPA is clear, jump over ClearBB to DoneBB. BuildMI(MBB, MBB.end(), DL, TII->get(ARM::tBcc)) .addMBB(DoneBB) .addImm(ARMCC::EQ) .addReg(ARM::CPSR, RegState::Kill); } // Emit the clearing sequence for (unsigned D = 0; D < 8; D++) { // Attempt to clear as double if (ClearRegs[D * 2 + 0] && ClearRegs[D * 2 + 1]) { unsigned Reg = ARM::D0 + D; BuildMI(ClearBB, DL, TII->get(ARM::VMOVDRR), Reg) .addReg(ARM::LR) .addReg(ARM::LR) .add(predOps(ARMCC::AL)); } else { // Clear first part as single if (ClearRegs[D * 2 + 0]) { unsigned Reg = ARM::S0 + D * 2; BuildMI(ClearBB, DL, TII->get(ARM::VMOVSR), Reg) .addReg(ARM::LR) .add(predOps(ARMCC::AL)); } // Clear second part as single if (ClearRegs[D * 2 + 1]) { unsigned Reg = ARM::S0 + D * 2 + 1; BuildMI(ClearBB, DL, TII->get(ARM::VMOVSR), Reg) .addReg(ARM::LR) .add(predOps(ARMCC::AL)); } } } // Clear FPSCR bits 0-4, 7, 28-31 // The other bits are program global according to the AAPCS BuildMI(ClearBB, DL, TII->get(ARM::VMRS), ARM::R12) .add(predOps(ARMCC::AL)); BuildMI(ClearBB, DL, TII->get(ARM::t2BICri), ARM::R12) .addReg(ARM::R12) .addImm(0x0000009F) .add(predOps(ARMCC::AL)) .add(condCodeOp()); BuildMI(ClearBB, DL, TII->get(ARM::t2BICri), ARM::R12) .addReg(ARM::R12) .addImm(0xF0000000) .add(predOps(ARMCC::AL)) .add(condCodeOp()); BuildMI(ClearBB, DL, TII->get(ARM::VMSR)) .addReg(ARM::R12) .add(predOps(ARMCC::AL)); return *DoneBB; } MachineBasicBlock & ARMExpandPseudo::CMSEClearFPRegsV81(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const BitVector &ClearRegs) { auto &RetI = *MBBI; // Emit a sequence of VSCCLRM instructions, one instruction for // each contiguous sequence of S-registers. int Start = -1, End = -1; for (int S = 0, E = ClearRegs.size(); S != E; ++S) { if (ClearRegs[S] && S == End + 1) { End = S; // extend range continue; } // Emit current range. if (Start < End) { MachineInstrBuilder VSCCLRM = BuildMI(MBB, MBBI, RetI.getDebugLoc(), TII->get(ARM::VSCCLRMS)) .add(predOps(ARMCC::AL)); while (++Start <= End) VSCCLRM.addReg(ARM::S0 + Start, RegState::Define); VSCCLRM.addReg(ARM::VPR, RegState::Define); } Start = End = S; } // Emit last range. if (Start < End) { MachineInstrBuilder VSCCLRM = BuildMI(MBB, MBBI, RetI.getDebugLoc(), TII->get(ARM::VSCCLRMS)) .add(predOps(ARMCC::AL)); while (++Start <= End) VSCCLRM.addReg(ARM::S0 + Start, RegState::Define); VSCCLRM.addReg(ARM::VPR, RegState::Define); } return MBB; } void ARMExpandPseudo::CMSESaveClearFPRegs( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc &DL, const LivePhysRegs &LiveRegs, SmallVectorImpl &ScratchRegs) { if (STI->hasV8_1MMainlineOps()) CMSESaveClearFPRegsV81(MBB, MBBI, DL, LiveRegs); else if (STI->hasV8MMainlineOps()) CMSESaveClearFPRegsV8(MBB, MBBI, DL, LiveRegs, ScratchRegs); } // Save and clear FP registers if present void ARMExpandPseudo::CMSESaveClearFPRegsV8( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc &DL, const LivePhysRegs &LiveRegs, SmallVectorImpl &ScratchRegs) { // Store an available register for FPSCR clearing assert(!ScratchRegs.empty()); unsigned SpareReg = ScratchRegs.front(); // save space on stack for VLSTM BuildMI(MBB, MBBI, DL, TII->get(ARM::tSUBspi), ARM::SP) .addReg(ARM::SP) .addImm(CMSE_FP_SAVE_SIZE >> 2) .add(predOps(ARMCC::AL)); // Use ScratchRegs to store the fp regs std::vector> ClearedFPRegs; std::vector NonclearedFPRegs; for (const MachineOperand &Op : MBBI->operands()) { if (Op.isReg() && Op.isUse()) { Register Reg = Op.getReg(); assert(!ARM::DPRRegClass.contains(Reg) || ARM::DPR_VFP2RegClass.contains(Reg)); assert(!ARM::QPRRegClass.contains(Reg)); if (ARM::DPR_VFP2RegClass.contains(Reg)) { if (ScratchRegs.size() >= 2) { unsigned SaveReg2 = ScratchRegs.pop_back_val(); unsigned SaveReg1 = ScratchRegs.pop_back_val(); ClearedFPRegs.emplace_back(Reg, SaveReg1, SaveReg2); // Save the fp register to the normal registers BuildMI(MBB, MBBI, DL, TII->get(ARM::VMOVRRD)) .addReg(SaveReg1, RegState::Define) .addReg(SaveReg2, RegState::Define) .addReg(Reg) .add(predOps(ARMCC::AL)); } else { NonclearedFPRegs.push_back(Reg); } } else if (ARM::SPRRegClass.contains(Reg)) { if (ScratchRegs.size() >= 1) { unsigned SaveReg = ScratchRegs.pop_back_val(); ClearedFPRegs.emplace_back(Reg, SaveReg, 0); // Save the fp register to the normal registers BuildMI(MBB, MBBI, DL, TII->get(ARM::VMOVRS), SaveReg) .addReg(Reg) .add(predOps(ARMCC::AL)); } else { NonclearedFPRegs.push_back(Reg); } } } } bool passesFPReg = (!NonclearedFPRegs.empty() || !ClearedFPRegs.empty()); if (passesFPReg) assert(STI->hasFPRegs() && "Subtarget needs fpregs"); // Lazy store all fp registers to the stack. // This executes as NOP in the absence of floating-point support. MachineInstrBuilder VLSTM = BuildMI(MBB, MBBI, DL, TII->get(ARM::VLSTM)) .addReg(ARM::SP) .add(predOps(ARMCC::AL)); for (auto R : {ARM::VPR, ARM::FPSCR, ARM::FPSCR_NZCV, ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3, ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7}) VLSTM.addReg(R, RegState::Implicit | (LiveRegs.contains(R) ? 0 : RegState::Undef)); // Restore all arguments for (const auto &Regs : ClearedFPRegs) { unsigned Reg, SaveReg1, SaveReg2; std::tie(Reg, SaveReg1, SaveReg2) = Regs; if (ARM::DPR_VFP2RegClass.contains(Reg)) BuildMI(MBB, MBBI, DL, TII->get(ARM::VMOVDRR), Reg) .addReg(SaveReg1) .addReg(SaveReg2) .add(predOps(ARMCC::AL)); else if (ARM::SPRRegClass.contains(Reg)) BuildMI(MBB, MBBI, DL, TII->get(ARM::VMOVSR), Reg) .addReg(SaveReg1) .add(predOps(ARMCC::AL)); } for (unsigned Reg : NonclearedFPRegs) { if (ARM::DPR_VFP2RegClass.contains(Reg)) { if (STI->isLittle()) { BuildMI(MBB, MBBI, DL, TII->get(ARM::VLDRD), Reg) .addReg(ARM::SP) .addImm((Reg - ARM::D0) * 2) .add(predOps(ARMCC::AL)); } else { // For big-endian targets we need to load the two subregisters of Reg // manually because VLDRD would load them in wrong order unsigned SReg0 = TRI->getSubReg(Reg, ARM::ssub_0); BuildMI(MBB, MBBI, DL, TII->get(ARM::VLDRS), SReg0) .addReg(ARM::SP) .addImm((Reg - ARM::D0) * 2) .add(predOps(ARMCC::AL)); BuildMI(MBB, MBBI, DL, TII->get(ARM::VLDRS), SReg0 + 1) .addReg(ARM::SP) .addImm((Reg - ARM::D0) * 2 + 1) .add(predOps(ARMCC::AL)); } } else if (ARM::SPRRegClass.contains(Reg)) { BuildMI(MBB, MBBI, DL, TII->get(ARM::VLDRS), Reg) .addReg(ARM::SP) .addImm(Reg - ARM::S0) .add(predOps(ARMCC::AL)); } } // restore FPSCR from stack and clear bits 0-4, 7, 28-31 // The other bits are program global according to the AAPCS if (passesFPReg) { BuildMI(MBB, MBBI, DL, TII->get(ARM::tLDRspi), SpareReg) .addReg(ARM::SP) .addImm(0x10) .add(predOps(ARMCC::AL)); BuildMI(MBB, MBBI, DL, TII->get(ARM::t2BICri), SpareReg) .addReg(SpareReg) .addImm(0x0000009F) .add(predOps(ARMCC::AL)) .add(condCodeOp()); BuildMI(MBB, MBBI, DL, TII->get(ARM::t2BICri), SpareReg) .addReg(SpareReg) .addImm(0xF0000000) .add(predOps(ARMCC::AL)) .add(condCodeOp()); BuildMI(MBB, MBBI, DL, TII->get(ARM::VMSR)) .addReg(SpareReg) .add(predOps(ARMCC::AL)); // The ldr must happen after a floating point instruction. To prevent the // post-ra scheduler to mess with the order, we create a bundle. finalizeBundle(MBB, VLSTM->getIterator(), MBBI->getIterator()); } } void ARMExpandPseudo::CMSESaveClearFPRegsV81(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc &DL, const LivePhysRegs &LiveRegs) { BitVector ClearRegs(32, true); bool DefFP = determineFPRegsToClear(*MBBI, ClearRegs); // If the instruction does not write to a FP register and no elements were // removed from the set, then no FP registers were used to pass // arguments/returns. if (!DefFP && ClearRegs.count() == ClearRegs.size()) { // save space on stack for VLSTM BuildMI(MBB, MBBI, DL, TII->get(ARM::tSUBspi), ARM::SP) .addReg(ARM::SP) .addImm(CMSE_FP_SAVE_SIZE >> 2) .add(predOps(ARMCC::AL)); // Lazy store all FP registers to the stack MachineInstrBuilder VLSTM = BuildMI(MBB, MBBI, DL, TII->get(ARM::VLSTM)) .addReg(ARM::SP) .add(predOps(ARMCC::AL)); for (auto R : {ARM::VPR, ARM::FPSCR, ARM::FPSCR_NZCV, ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3, ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7}) VLSTM.addReg(R, RegState::Implicit | (LiveRegs.contains(R) ? 0 : RegState::Undef)); } else { // Push all the callee-saved registers (s16-s31). MachineInstrBuilder VPUSH = BuildMI(MBB, MBBI, DL, TII->get(ARM::VSTMSDB_UPD), ARM::SP) .addReg(ARM::SP) .add(predOps(ARMCC::AL)); for (int Reg = ARM::S16; Reg <= ARM::S31; ++Reg) VPUSH.addReg(Reg); // Clear FP registers with a VSCCLRM. (void)CMSEClearFPRegsV81(MBB, MBBI, ClearRegs); // Save floating-point context. BuildMI(MBB, MBBI, DL, TII->get(ARM::VSTR_FPCXTS_pre), ARM::SP) .addReg(ARM::SP) .addImm(-8) .add(predOps(ARMCC::AL)); } } // Restore FP registers if present void ARMExpandPseudo::CMSERestoreFPRegs( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc &DL, SmallVectorImpl &AvailableRegs) { if (STI->hasV8_1MMainlineOps()) CMSERestoreFPRegsV81(MBB, MBBI, DL, AvailableRegs); else if (STI->hasV8MMainlineOps()) CMSERestoreFPRegsV8(MBB, MBBI, DL, AvailableRegs); } void ARMExpandPseudo::CMSERestoreFPRegsV8( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc &DL, SmallVectorImpl &AvailableRegs) { // Keep a scratch register for the mitigation sequence. unsigned ScratchReg = ARM::NoRegister; if (STI->fixCMSE_CVE_2021_35465()) ScratchReg = AvailableRegs.pop_back_val(); // Use AvailableRegs to store the fp regs std::vector> ClearedFPRegs; std::vector NonclearedFPRegs; for (const MachineOperand &Op : MBBI->operands()) { if (Op.isReg() && Op.isDef()) { Register Reg = Op.getReg(); assert(!ARM::DPRRegClass.contains(Reg) || ARM::DPR_VFP2RegClass.contains(Reg)); assert(!ARM::QPRRegClass.contains(Reg)); if (ARM::DPR_VFP2RegClass.contains(Reg)) { if (AvailableRegs.size() >= 2) { unsigned SaveReg2 = AvailableRegs.pop_back_val(); unsigned SaveReg1 = AvailableRegs.pop_back_val(); ClearedFPRegs.emplace_back(Reg, SaveReg1, SaveReg2); // Save the fp register to the normal registers BuildMI(MBB, MBBI, DL, TII->get(ARM::VMOVRRD)) .addReg(SaveReg1, RegState::Define) .addReg(SaveReg2, RegState::Define) .addReg(Reg) .add(predOps(ARMCC::AL)); } else { NonclearedFPRegs.push_back(Reg); } } else if (ARM::SPRRegClass.contains(Reg)) { if (AvailableRegs.size() >= 1) { unsigned SaveReg = AvailableRegs.pop_back_val(); ClearedFPRegs.emplace_back(Reg, SaveReg, 0); // Save the fp register to the normal registers BuildMI(MBB, MBBI, DL, TII->get(ARM::VMOVRS), SaveReg) .addReg(Reg) .add(predOps(ARMCC::AL)); } else { NonclearedFPRegs.push_back(Reg); } } } } bool returnsFPReg = (!NonclearedFPRegs.empty() || !ClearedFPRegs.empty()); if (returnsFPReg) assert(STI->hasFPRegs() && "Subtarget needs fpregs"); // Push FP regs that cannot be restored via normal registers on the stack for (unsigned Reg : NonclearedFPRegs) { if (ARM::DPR_VFP2RegClass.contains(Reg)) BuildMI(MBB, MBBI, DL, TII->get(ARM::VSTRD)) .addReg(Reg) .addReg(ARM::SP) .addImm((Reg - ARM::D0) * 2) .add(predOps(ARMCC::AL)); else if (ARM::SPRRegClass.contains(Reg)) BuildMI(MBB, MBBI, DL, TII->get(ARM::VSTRS)) .addReg(Reg) .addReg(ARM::SP) .addImm(Reg - ARM::S0) .add(predOps(ARMCC::AL)); } // Lazy load fp regs from stack. // This executes as NOP in the absence of floating-point support. MachineInstrBuilder VLLDM = BuildMI(MBB, MBBI, DL, TII->get(ARM::VLLDM)) .addReg(ARM::SP) .add(predOps(ARMCC::AL)); if (STI->fixCMSE_CVE_2021_35465()) { auto Bundler = MIBundleBuilder(MBB, VLLDM); // Read the CONTROL register. Bundler.append(BuildMI(*MBB.getParent(), DL, TII->get(ARM::t2MRS_M)) .addReg(ScratchReg, RegState::Define) .addImm(20) .add(predOps(ARMCC::AL))); // Check bit 3 (SFPA). Bundler.append(BuildMI(*MBB.getParent(), DL, TII->get(ARM::t2TSTri)) .addReg(ScratchReg) .addImm(8) .add(predOps(ARMCC::AL))); // Emit the IT block. Bundler.append(BuildMI(*MBB.getParent(), DL, TII->get(ARM::t2IT)) .addImm(ARMCC::NE) .addImm(8)); // If SFPA is clear jump over to VLLDM, otherwise execute an instruction // which has no functional effect apart from causing context creation: // vmovne s0, s0. In the absence of FPU we emit .inst.w 0xeeb00a40, // which is defined as NOP if not executed. if (STI->hasFPRegs()) Bundler.append(BuildMI(*MBB.getParent(), DL, TII->get(ARM::VMOVS)) .addReg(ARM::S0, RegState::Define) .addReg(ARM::S0, RegState::Undef) .add(predOps(ARMCC::NE))); else Bundler.append(BuildMI(*MBB.getParent(), DL, TII->get(ARM::INLINEASM)) .addExternalSymbol(".inst.w 0xeeb00a40") .addImm(InlineAsm::Extra_HasSideEffects)); finalizeBundle(MBB, Bundler.begin(), Bundler.end()); } // Restore all FP registers via normal registers for (const auto &Regs : ClearedFPRegs) { unsigned Reg, SaveReg1, SaveReg2; std::tie(Reg, SaveReg1, SaveReg2) = Regs; if (ARM::DPR_VFP2RegClass.contains(Reg)) BuildMI(MBB, MBBI, DL, TII->get(ARM::VMOVDRR), Reg) .addReg(SaveReg1) .addReg(SaveReg2) .add(predOps(ARMCC::AL)); else if (ARM::SPRRegClass.contains(Reg)) BuildMI(MBB, MBBI, DL, TII->get(ARM::VMOVSR), Reg) .addReg(SaveReg1) .add(predOps(ARMCC::AL)); } // Pop the stack space BuildMI(MBB, MBBI, DL, TII->get(ARM::tADDspi), ARM::SP) .addReg(ARM::SP) .addImm(CMSE_FP_SAVE_SIZE >> 2) .add(predOps(ARMCC::AL)); } static bool definesOrUsesFPReg(const MachineInstr &MI) { for (const MachineOperand &Op : MI.operands()) { if (!Op.isReg()) continue; Register Reg = Op.getReg(); if ((Reg >= ARM::Q0 && Reg <= ARM::Q7) || (Reg >= ARM::D0 && Reg <= ARM::D15) || (Reg >= ARM::S0 && Reg <= ARM::S31)) return true; } return false; } void ARMExpandPseudo::CMSERestoreFPRegsV81( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc &DL, SmallVectorImpl &AvailableRegs) { if (!definesOrUsesFPReg(*MBBI)) { if (STI->fixCMSE_CVE_2021_35465()) { BuildMI(MBB, MBBI, DL, TII->get(ARM::VSCCLRMS)) .add(predOps(ARMCC::AL)) .addReg(ARM::VPR, RegState::Define); } // Load FP registers from stack. BuildMI(MBB, MBBI, DL, TII->get(ARM::VLLDM)) .addReg(ARM::SP) .add(predOps(ARMCC::AL)); // Pop the stack space BuildMI(MBB, MBBI, DL, TII->get(ARM::tADDspi), ARM::SP) .addReg(ARM::SP) .addImm(CMSE_FP_SAVE_SIZE >> 2) .add(predOps(ARMCC::AL)); } else { // Restore the floating point context. BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(ARM::VLDR_FPCXTS_post), ARM::SP) .addReg(ARM::SP) .addImm(8) .add(predOps(ARMCC::AL)); // Pop all the callee-saved registers (s16-s31). MachineInstrBuilder VPOP = BuildMI(MBB, MBBI, DL, TII->get(ARM::VLDMSIA_UPD), ARM::SP) .addReg(ARM::SP) .add(predOps(ARMCC::AL)); for (int Reg = ARM::S16; Reg <= ARM::S31; ++Reg) VPOP.addReg(Reg, RegState::Define); } } /// Expand a CMP_SWAP pseudo-inst to an ldrex/strex loop as simply as /// possible. This only gets used at -O0 so we don't care about efficiency of /// the generated code. bool ARMExpandPseudo::ExpandCMP_SWAP(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned LdrexOp, unsigned StrexOp, unsigned UxtOp, MachineBasicBlock::iterator &NextMBBI) { bool IsThumb = STI->isThumb(); bool IsThumb1Only = STI->isThumb1Only(); MachineInstr &MI = *MBBI; DebugLoc DL = MI.getDebugLoc(); const MachineOperand &Dest = MI.getOperand(0); Register TempReg = MI.getOperand(1).getReg(); // Duplicating undef operands into 2 instructions does not guarantee the same // value on both; However undef should be replaced by xzr anyway. assert(!MI.getOperand(2).isUndef() && "cannot handle undef"); Register AddrReg = MI.getOperand(2).getReg(); Register DesiredReg = MI.getOperand(3).getReg(); Register NewReg = MI.getOperand(4).getReg(); if (IsThumb) { assert(STI->hasV8MBaselineOps() && "CMP_SWAP not expected to be custom expanded for Thumb1"); assert((UxtOp == 0 || UxtOp == ARM::tUXTB || UxtOp == ARM::tUXTH) && "ARMv8-M.baseline does not have t2UXTB/t2UXTH"); assert((UxtOp == 0 || ARM::tGPRRegClass.contains(DesiredReg)) && "DesiredReg used for UXT op must be tGPR"); } MachineFunction *MF = MBB.getParent(); auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); MF->insert(++MBB.getIterator(), LoadCmpBB); MF->insert(++LoadCmpBB->getIterator(), StoreBB); MF->insert(++StoreBB->getIterator(), DoneBB); if (UxtOp) { MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(UxtOp), DesiredReg) .addReg(DesiredReg, RegState::Kill); if (!IsThumb) MIB.addImm(0); MIB.add(predOps(ARMCC::AL)); } // .Lloadcmp: // ldrex rDest, [rAddr] // cmp rDest, rDesired // bne .Ldone MachineInstrBuilder MIB; MIB = BuildMI(LoadCmpBB, DL, TII->get(LdrexOp), Dest.getReg()); MIB.addReg(AddrReg); if (LdrexOp == ARM::t2LDREX) MIB.addImm(0); // a 32-bit Thumb ldrex (only) allows an offset. MIB.add(predOps(ARMCC::AL)); unsigned CMPrr = IsThumb ? ARM::tCMPhir : ARM::CMPrr; BuildMI(LoadCmpBB, DL, TII->get(CMPrr)) .addReg(Dest.getReg(), getKillRegState(Dest.isDead())) .addReg(DesiredReg) .add(predOps(ARMCC::AL)); unsigned Bcc = IsThumb ? ARM::tBcc : ARM::Bcc; BuildMI(LoadCmpBB, DL, TII->get(Bcc)) .addMBB(DoneBB) .addImm(ARMCC::NE) .addReg(ARM::CPSR, RegState::Kill); LoadCmpBB->addSuccessor(DoneBB); LoadCmpBB->addSuccessor(StoreBB); // .Lstore: // strex rTempReg, rNew, [rAddr] // cmp rTempReg, #0 // bne .Lloadcmp MIB = BuildMI(StoreBB, DL, TII->get(StrexOp), TempReg) .addReg(NewReg) .addReg(AddrReg); if (StrexOp == ARM::t2STREX) MIB.addImm(0); // a 32-bit Thumb strex (only) allows an offset. MIB.add(predOps(ARMCC::AL)); unsigned CMPri = IsThumb ? (IsThumb1Only ? ARM::tCMPi8 : ARM::t2CMPri) : ARM::CMPri; BuildMI(StoreBB, DL, TII->get(CMPri)) .addReg(TempReg, RegState::Kill) .addImm(0) .add(predOps(ARMCC::AL)); BuildMI(StoreBB, DL, TII->get(Bcc)) .addMBB(LoadCmpBB) .addImm(ARMCC::NE) .addReg(ARM::CPSR, RegState::Kill); StoreBB->addSuccessor(LoadCmpBB); StoreBB->addSuccessor(DoneBB); DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end()); DoneBB->transferSuccessors(&MBB); MBB.addSuccessor(LoadCmpBB); NextMBBI = MBB.end(); MI.eraseFromParent(); // Recompute livein lists. LivePhysRegs LiveRegs; computeAndAddLiveIns(LiveRegs, *DoneBB); computeAndAddLiveIns(LiveRegs, *StoreBB); computeAndAddLiveIns(LiveRegs, *LoadCmpBB); // Do an extra pass around the loop to get loop carried registers right. StoreBB->clearLiveIns(); computeAndAddLiveIns(LiveRegs, *StoreBB); LoadCmpBB->clearLiveIns(); computeAndAddLiveIns(LiveRegs, *LoadCmpBB); return true; } /// ARM's ldrexd/strexd take a consecutive register pair (represented as a /// single GPRPair register), Thumb's take two separate registers so we need to /// extract the subregs from the pair. static void addExclusiveRegPair(MachineInstrBuilder &MIB, MachineOperand &Reg, unsigned Flags, bool IsThumb, const TargetRegisterInfo *TRI) { if (IsThumb) { Register RegLo = TRI->getSubReg(Reg.getReg(), ARM::gsub_0); Register RegHi = TRI->getSubReg(Reg.getReg(), ARM::gsub_1); MIB.addReg(RegLo, Flags); MIB.addReg(RegHi, Flags); } else MIB.addReg(Reg.getReg(), Flags); } /// Expand a 64-bit CMP_SWAP to an ldrexd/strexd loop. bool ARMExpandPseudo::ExpandCMP_SWAP_64(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, MachineBasicBlock::iterator &NextMBBI) { bool IsThumb = STI->isThumb(); assert(!STI->isThumb1Only() && "CMP_SWAP_64 unsupported under Thumb1!"); MachineInstr &MI = *MBBI; DebugLoc DL = MI.getDebugLoc(); MachineOperand &Dest = MI.getOperand(0); Register TempReg = MI.getOperand(1).getReg(); // Duplicating undef operands into 2 instructions does not guarantee the same // value on both; However undef should be replaced by xzr anyway. assert(!MI.getOperand(2).isUndef() && "cannot handle undef"); Register AddrReg = MI.getOperand(2).getReg(); Register DesiredReg = MI.getOperand(3).getReg(); MachineOperand New = MI.getOperand(4); New.setIsKill(false); Register DestLo = TRI->getSubReg(Dest.getReg(), ARM::gsub_0); Register DestHi = TRI->getSubReg(Dest.getReg(), ARM::gsub_1); Register DesiredLo = TRI->getSubReg(DesiredReg, ARM::gsub_0); Register DesiredHi = TRI->getSubReg(DesiredReg, ARM::gsub_1); MachineFunction *MF = MBB.getParent(); auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); MF->insert(++MBB.getIterator(), LoadCmpBB); MF->insert(++LoadCmpBB->getIterator(), StoreBB); MF->insert(++StoreBB->getIterator(), DoneBB); // .Lloadcmp: // ldrexd rDestLo, rDestHi, [rAddr] // cmp rDestLo, rDesiredLo // sbcs dead rTempReg, rDestHi, rDesiredHi // bne .Ldone unsigned LDREXD = IsThumb ? ARM::t2LDREXD : ARM::LDREXD; MachineInstrBuilder MIB; MIB = BuildMI(LoadCmpBB, DL, TII->get(LDREXD)); addExclusiveRegPair(MIB, Dest, RegState::Define, IsThumb, TRI); MIB.addReg(AddrReg).add(predOps(ARMCC::AL)); unsigned CMPrr = IsThumb ? ARM::tCMPhir : ARM::CMPrr; BuildMI(LoadCmpBB, DL, TII->get(CMPrr)) .addReg(DestLo, getKillRegState(Dest.isDead())) .addReg(DesiredLo) .add(predOps(ARMCC::AL)); BuildMI(LoadCmpBB, DL, TII->get(CMPrr)) .addReg(DestHi, getKillRegState(Dest.isDead())) .addReg(DesiredHi) .addImm(ARMCC::EQ).addReg(ARM::CPSR, RegState::Kill); unsigned Bcc = IsThumb ? ARM::tBcc : ARM::Bcc; BuildMI(LoadCmpBB, DL, TII->get(Bcc)) .addMBB(DoneBB) .addImm(ARMCC::NE) .addReg(ARM::CPSR, RegState::Kill); LoadCmpBB->addSuccessor(DoneBB); LoadCmpBB->addSuccessor(StoreBB); // .Lstore: // strexd rTempReg, rNewLo, rNewHi, [rAddr] // cmp rTempReg, #0 // bne .Lloadcmp unsigned STREXD = IsThumb ? ARM::t2STREXD : ARM::STREXD; MIB = BuildMI(StoreBB, DL, TII->get(STREXD), TempReg); unsigned Flags = getKillRegState(New.isDead()); addExclusiveRegPair(MIB, New, Flags, IsThumb, TRI); MIB.addReg(AddrReg).add(predOps(ARMCC::AL)); unsigned CMPri = IsThumb ? ARM::t2CMPri : ARM::CMPri; BuildMI(StoreBB, DL, TII->get(CMPri)) .addReg(TempReg, RegState::Kill) .addImm(0) .add(predOps(ARMCC::AL)); BuildMI(StoreBB, DL, TII->get(Bcc)) .addMBB(LoadCmpBB) .addImm(ARMCC::NE) .addReg(ARM::CPSR, RegState::Kill); StoreBB->addSuccessor(LoadCmpBB); StoreBB->addSuccessor(DoneBB); DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end()); DoneBB->transferSuccessors(&MBB); MBB.addSuccessor(LoadCmpBB); NextMBBI = MBB.end(); MI.eraseFromParent(); // Recompute livein lists. LivePhysRegs LiveRegs; computeAndAddLiveIns(LiveRegs, *DoneBB); computeAndAddLiveIns(LiveRegs, *StoreBB); computeAndAddLiveIns(LiveRegs, *LoadCmpBB); // Do an extra pass around the loop to get loop carried registers right. StoreBB->clearLiveIns(); computeAndAddLiveIns(LiveRegs, *StoreBB); LoadCmpBB->clearLiveIns(); computeAndAddLiveIns(LiveRegs, *LoadCmpBB); return true; } static void CMSEPushCalleeSaves(const TargetInstrInfo &TII, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, int JumpReg, const LivePhysRegs &LiveRegs, bool Thumb1Only) { const DebugLoc &DL = MBBI->getDebugLoc(); if (Thumb1Only) { // push Lo and Hi regs separately MachineInstrBuilder PushMIB = BuildMI(MBB, MBBI, DL, TII.get(ARM::tPUSH)).add(predOps(ARMCC::AL)); for (int Reg = ARM::R4; Reg < ARM::R8; ++Reg) { PushMIB.addReg( Reg, Reg == JumpReg || LiveRegs.contains(Reg) ? 0 : RegState::Undef); } // Thumb1 can only tPUSH low regs, so we copy the high regs to the low // regs that we just saved and push the low regs again, taking care to // not clobber JumpReg. If JumpReg is one of the low registers, push first // the values of r9-r11, and then r8. That would leave them ordered in // memory, and allow us to later pop them with a single instructions. // FIXME: Could also use any of r0-r3 that are free (including in the // first PUSH above). for (int LoReg = ARM::R7, HiReg = ARM::R11; LoReg >= ARM::R4; --LoReg) { if (JumpReg == LoReg) continue; BuildMI(MBB, MBBI, DL, TII.get(ARM::tMOVr), LoReg) .addReg(HiReg, LiveRegs.contains(HiReg) ? 0 : RegState::Undef) .add(predOps(ARMCC::AL)); --HiReg; } MachineInstrBuilder PushMIB2 = BuildMI(MBB, MBBI, DL, TII.get(ARM::tPUSH)).add(predOps(ARMCC::AL)); for (int Reg = ARM::R4; Reg < ARM::R8; ++Reg) { if (Reg == JumpReg) continue; PushMIB2.addReg(Reg, RegState::Kill); } // If we couldn't use a low register for temporary storage (because it was // the JumpReg), use r4 or r5, whichever is not JumpReg. It has already been // saved. if (JumpReg >= ARM::R4 && JumpReg <= ARM::R7) { int LoReg = JumpReg == ARM::R4 ? ARM::R5 : ARM::R4; BuildMI(MBB, MBBI, DL, TII.get(ARM::tMOVr), LoReg) .addReg(ARM::R8, LiveRegs.contains(ARM::R8) ? 0 : RegState::Undef) .add(predOps(ARMCC::AL)); BuildMI(MBB, MBBI, DL, TII.get(ARM::tPUSH)) .add(predOps(ARMCC::AL)) .addReg(LoReg, RegState::Kill); } } else { // push Lo and Hi registers with a single instruction MachineInstrBuilder PushMIB = BuildMI(MBB, MBBI, DL, TII.get(ARM::t2STMDB_UPD), ARM::SP) .addReg(ARM::SP) .add(predOps(ARMCC::AL)); for (int Reg = ARM::R4; Reg < ARM::R12; ++Reg) { PushMIB.addReg( Reg, Reg == JumpReg || LiveRegs.contains(Reg) ? 0 : RegState::Undef); } } } static void CMSEPopCalleeSaves(const TargetInstrInfo &TII, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, int JumpReg, bool Thumb1Only) { const DebugLoc &DL = MBBI->getDebugLoc(); if (Thumb1Only) { MachineInstrBuilder PopMIB = BuildMI(MBB, MBBI, DL, TII.get(ARM::tPOP)).add(predOps(ARMCC::AL)); for (int R = 0; R < 4; ++R) { PopMIB.addReg(ARM::R4 + R, RegState::Define); BuildMI(MBB, MBBI, DL, TII.get(ARM::tMOVr), ARM::R8 + R) .addReg(ARM::R4 + R, RegState::Kill) .add(predOps(ARMCC::AL)); } MachineInstrBuilder PopMIB2 = BuildMI(MBB, MBBI, DL, TII.get(ARM::tPOP)).add(predOps(ARMCC::AL)); for (int R = 0; R < 4; ++R) PopMIB2.addReg(ARM::R4 + R, RegState::Define); } else { // pop Lo and Hi registers with a single instruction MachineInstrBuilder PopMIB = BuildMI(MBB, MBBI, DL, TII.get(ARM::t2LDMIA_UPD), ARM::SP) .addReg(ARM::SP) .add(predOps(ARMCC::AL)); for (int Reg = ARM::R4; Reg < ARM::R12; ++Reg) PopMIB.addReg(Reg, RegState::Define); } } bool ARMExpandPseudo::ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, MachineBasicBlock::iterator &NextMBBI) { MachineInstr &MI = *MBBI; unsigned Opcode = MI.getOpcode(); switch (Opcode) { default: return false; case ARM::VBSPd: case ARM::VBSPq: { Register DstReg = MI.getOperand(0).getReg(); if (DstReg == MI.getOperand(3).getReg()) { // Expand to VBIT unsigned NewOpc = Opcode == ARM::VBSPd ? ARM::VBITd : ARM::VBITq; BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc)) .add(MI.getOperand(0)) .add(MI.getOperand(3)) .add(MI.getOperand(2)) .add(MI.getOperand(1)) .addImm(MI.getOperand(4).getImm()) .add(MI.getOperand(5)); } else if (DstReg == MI.getOperand(2).getReg()) { // Expand to VBIF unsigned NewOpc = Opcode == ARM::VBSPd ? ARM::VBIFd : ARM::VBIFq; BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc)) .add(MI.getOperand(0)) .add(MI.getOperand(2)) .add(MI.getOperand(3)) .add(MI.getOperand(1)) .addImm(MI.getOperand(4).getImm()) .add(MI.getOperand(5)); } else { // Expand to VBSL unsigned NewOpc = Opcode == ARM::VBSPd ? ARM::VBSLd : ARM::VBSLq; if (DstReg == MI.getOperand(1).getReg()) { BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc)) .add(MI.getOperand(0)) .add(MI.getOperand(1)) .add(MI.getOperand(2)) .add(MI.getOperand(3)) .addImm(MI.getOperand(4).getImm()) .add(MI.getOperand(5)); } else { // Use move to satisfy constraints unsigned MoveOpc = Opcode == ARM::VBSPd ? ARM::VORRd : ARM::VORRq; BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(MoveOpc)) .addReg(DstReg, RegState::Define | getRenamableRegState(MI.getOperand(0).isRenamable())) .add(MI.getOperand(1)) .add(MI.getOperand(1)) .addImm(MI.getOperand(4).getImm()) .add(MI.getOperand(5)); BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc)) .add(MI.getOperand(0)) .addReg(DstReg, RegState::Kill | getRenamableRegState(MI.getOperand(0).isRenamable())) .add(MI.getOperand(2)) .add(MI.getOperand(3)) .addImm(MI.getOperand(4).getImm()) .add(MI.getOperand(5)); } } MI.eraseFromParent(); return true; } case ARM::TCRETURNdi: case ARM::TCRETURNri: { MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); if (MBBI->getOpcode() == ARM::SEH_EpilogEnd) MBBI--; if (MBBI->getOpcode() == ARM::SEH_Nop_Ret) MBBI--; assert(MBBI->isReturn() && "Can only insert epilog into returning blocks"); unsigned RetOpcode = MBBI->getOpcode(); DebugLoc dl = MBBI->getDebugLoc(); const ARMBaseInstrInfo &TII = *static_cast( MBB.getParent()->getSubtarget().getInstrInfo()); // Tail call return: adjust the stack pointer and jump to callee. MBBI = MBB.getLastNonDebugInstr(); if (MBBI->getOpcode() == ARM::SEH_EpilogEnd) MBBI--; if (MBBI->getOpcode() == ARM::SEH_Nop_Ret) MBBI--; MachineOperand &JumpTarget = MBBI->getOperand(0); // Jump to label or value in register. if (RetOpcode == ARM::TCRETURNdi) { MachineFunction *MF = MBB.getParent(); bool NeedsWinCFI = MF->getTarget().getMCAsmInfo()->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); unsigned TCOpcode = STI->isThumb() ? ((STI->isTargetMachO() || NeedsWinCFI) ? ARM::tTAILJMPd : ARM::tTAILJMPdND) : ARM::TAILJMPd; MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII.get(TCOpcode)); if (JumpTarget.isGlobal()) MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(), JumpTarget.getTargetFlags()); else { assert(JumpTarget.isSymbol()); MIB.addExternalSymbol(JumpTarget.getSymbolName(), JumpTarget.getTargetFlags()); } // Add the default predicate in Thumb mode. if (STI->isThumb()) MIB.add(predOps(ARMCC::AL)); } else if (RetOpcode == ARM::TCRETURNri) { unsigned Opcode = STI->isThumb() ? ARM::tTAILJMPr : (STI->hasV4TOps() ? ARM::TAILJMPr : ARM::TAILJMPr4); BuildMI(MBB, MBBI, dl, TII.get(Opcode)) .addReg(JumpTarget.getReg(), RegState::Kill); } auto NewMI = std::prev(MBBI); for (unsigned i = 2, e = MBBI->getNumOperands(); i != e; ++i) NewMI->addOperand(MBBI->getOperand(i)); // Update call site info and delete the pseudo instruction TCRETURN. if (MI.isCandidateForCallSiteEntry()) MI.getMF()->moveCallSiteInfo(&MI, &*NewMI); MBB.erase(MBBI); MBBI = NewMI; return true; } case ARM::tBXNS_RET: { // For v8.0-M.Main we need to authenticate LR before clearing FPRs, which // uses R12 as a scratch register. if (!STI->hasV8_1MMainlineOps() && AFI->shouldSignReturnAddress()) BuildMI(MBB, MBBI, DebugLoc(), TII->get(ARM::t2AUT)); MachineBasicBlock &AfterBB = CMSEClearFPRegs(MBB, MBBI); if (STI->hasV8_1MMainlineOps()) { // Restore the non-secure floating point context. BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(ARM::VLDR_FPCXTNS_post), ARM::SP) .addReg(ARM::SP) .addImm(4) .add(predOps(ARMCC::AL)); if (AFI->shouldSignReturnAddress()) BuildMI(AfterBB, AfterBB.end(), DebugLoc(), TII->get(ARM::t2AUT)); } // Clear all GPR that are not a use of the return instruction. assert(llvm::all_of(MBBI->operands(), [](const MachineOperand &Op) { return !Op.isReg() || Op.getReg() != ARM::R12; })); SmallVector ClearRegs; determineGPRegsToClear( *MBBI, {ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R12}, ClearRegs); CMSEClearGPRegs(AfterBB, AfterBB.end(), MBBI->getDebugLoc(), ClearRegs, ARM::LR); MachineInstrBuilder NewMI = BuildMI(AfterBB, AfterBB.end(), MBBI->getDebugLoc(), TII->get(ARM::tBXNS)) .addReg(ARM::LR) .add(predOps(ARMCC::AL)); for (const MachineOperand &Op : MI.operands()) NewMI->addOperand(Op); MI.eraseFromParent(); return true; } case ARM::tBLXNS_CALL: { DebugLoc DL = MBBI->getDebugLoc(); Register JumpReg = MBBI->getOperand(0).getReg(); // Figure out which registers are live at the point immediately before the // call. When we indiscriminately push a set of registers, the live // registers are added as ordinary use operands, whereas dead registers // are "undef". LivePhysRegs LiveRegs(*TRI); LiveRegs.addLiveOuts(MBB); for (const MachineInstr &MI : make_range(MBB.rbegin(), MBBI.getReverse())) LiveRegs.stepBackward(MI); LiveRegs.stepBackward(*MBBI); CMSEPushCalleeSaves(*TII, MBB, MBBI, JumpReg, LiveRegs, AFI->isThumb1OnlyFunction()); SmallVector ClearRegs; determineGPRegsToClear(*MBBI, {ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R4, ARM::R5, ARM::R6, ARM::R7, ARM::R8, ARM::R9, ARM::R10, ARM::R11, ARM::R12}, ClearRegs); auto OriginalClearRegs = ClearRegs; // Get the first cleared register as a scratch (to use later with tBIC). // We need to use the first so we can ensure it is a low register. unsigned ScratchReg = ClearRegs.front(); // Clear LSB of JumpReg if (AFI->isThumb2Function()) { BuildMI(MBB, MBBI, DL, TII->get(ARM::t2BICri), JumpReg) .addReg(JumpReg) .addImm(1) .add(predOps(ARMCC::AL)) .add(condCodeOp()); } else { // We need to use an extra register to cope with 8M Baseline, // since we have saved all of the registers we are ok to trash a non // argument register here. BuildMI(MBB, MBBI, DL, TII->get(ARM::tMOVi8), ScratchReg) .add(condCodeOp()) .addImm(1) .add(predOps(ARMCC::AL)); BuildMI(MBB, MBBI, DL, TII->get(ARM::tBIC), JumpReg) .addReg(ARM::CPSR, RegState::Define) .addReg(JumpReg) .addReg(ScratchReg) .add(predOps(ARMCC::AL)); } CMSESaveClearFPRegs(MBB, MBBI, DL, LiveRegs, ClearRegs); // save+clear FP regs with ClearRegs CMSEClearGPRegs(MBB, MBBI, DL, ClearRegs, JumpReg); const MachineInstrBuilder NewCall = BuildMI(MBB, MBBI, DL, TII->get(ARM::tBLXNSr)) .add(predOps(ARMCC::AL)) .addReg(JumpReg, RegState::Kill); for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) NewCall->addOperand(MO); if (MI.isCandidateForCallSiteEntry()) MI.getMF()->moveCallSiteInfo(&MI, NewCall.getInstr()); CMSERestoreFPRegs(MBB, MBBI, DL, OriginalClearRegs); // restore FP registers CMSEPopCalleeSaves(*TII, MBB, MBBI, JumpReg, AFI->isThumb1OnlyFunction()); MI.eraseFromParent(); return true; } case ARM::VMOVHcc: case ARM::VMOVScc: case ARM::VMOVDcc: { unsigned newOpc = Opcode != ARM::VMOVDcc ? ARM::VMOVS : ARM::VMOVD; BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(newOpc), MI.getOperand(1).getReg()) .add(MI.getOperand(2)) .addImm(MI.getOperand(3).getImm()) // 'pred' .add(MI.getOperand(4)) .add(makeImplicit(MI.getOperand(1))); MI.eraseFromParent(); return true; } case ARM::t2MOVCCr: case ARM::MOVCCr: { unsigned Opc = AFI->isThumbFunction() ? ARM::t2MOVr : ARM::MOVr; BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc), MI.getOperand(1).getReg()) .add(MI.getOperand(2)) .addImm(MI.getOperand(3).getImm()) // 'pred' .add(MI.getOperand(4)) .add(condCodeOp()) // 's' bit .add(makeImplicit(MI.getOperand(1))); MI.eraseFromParent(); return true; } case ARM::MOVCCsi: { BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::MOVsi), (MI.getOperand(1).getReg())) .add(MI.getOperand(2)) .addImm(MI.getOperand(3).getImm()) .addImm(MI.getOperand(4).getImm()) // 'pred' .add(MI.getOperand(5)) .add(condCodeOp()) // 's' bit .add(makeImplicit(MI.getOperand(1))); MI.eraseFromParent(); return true; } case ARM::MOVCCsr: { BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::MOVsr), (MI.getOperand(1).getReg())) .add(MI.getOperand(2)) .add(MI.getOperand(3)) .addImm(MI.getOperand(4).getImm()) .addImm(MI.getOperand(5).getImm()) // 'pred' .add(MI.getOperand(6)) .add(condCodeOp()) // 's' bit .add(makeImplicit(MI.getOperand(1))); MI.eraseFromParent(); return true; } case ARM::t2MOVCCi16: case ARM::MOVCCi16: { unsigned NewOpc = AFI->isThumbFunction() ? ARM::t2MOVi16 : ARM::MOVi16; BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc), MI.getOperand(1).getReg()) .addImm(MI.getOperand(2).getImm()) .addImm(MI.getOperand(3).getImm()) // 'pred' .add(MI.getOperand(4)) .add(makeImplicit(MI.getOperand(1))); MI.eraseFromParent(); return true; } case ARM::t2MOVCCi: case ARM::MOVCCi: { unsigned Opc = AFI->isThumbFunction() ? ARM::t2MOVi : ARM::MOVi; BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc), MI.getOperand(1).getReg()) .addImm(MI.getOperand(2).getImm()) .addImm(MI.getOperand(3).getImm()) // 'pred' .add(MI.getOperand(4)) .add(condCodeOp()) // 's' bit .add(makeImplicit(MI.getOperand(1))); MI.eraseFromParent(); return true; } case ARM::t2MVNCCi: case ARM::MVNCCi: { unsigned Opc = AFI->isThumbFunction() ? ARM::t2MVNi : ARM::MVNi; BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc), MI.getOperand(1).getReg()) .addImm(MI.getOperand(2).getImm()) .addImm(MI.getOperand(3).getImm()) // 'pred' .add(MI.getOperand(4)) .add(condCodeOp()) // 's' bit .add(makeImplicit(MI.getOperand(1))); MI.eraseFromParent(); return true; } case ARM::t2MOVCClsl: case ARM::t2MOVCClsr: case ARM::t2MOVCCasr: case ARM::t2MOVCCror: { unsigned NewOpc; switch (Opcode) { case ARM::t2MOVCClsl: NewOpc = ARM::t2LSLri; break; case ARM::t2MOVCClsr: NewOpc = ARM::t2LSRri; break; case ARM::t2MOVCCasr: NewOpc = ARM::t2ASRri; break; case ARM::t2MOVCCror: NewOpc = ARM::t2RORri; break; default: llvm_unreachable("unexpeced conditional move"); } BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc), MI.getOperand(1).getReg()) .add(MI.getOperand(2)) .addImm(MI.getOperand(3).getImm()) .addImm(MI.getOperand(4).getImm()) // 'pred' .add(MI.getOperand(5)) .add(condCodeOp()) // 's' bit .add(makeImplicit(MI.getOperand(1))); MI.eraseFromParent(); return true; } case ARM::Int_eh_sjlj_dispatchsetup: { MachineFunction &MF = *MI.getParent()->getParent(); const ARMBaseInstrInfo *AII = static_cast(TII); const ARMBaseRegisterInfo &RI = AII->getRegisterInfo(); // For functions using a base pointer, we rematerialize it (via the frame // pointer) here since eh.sjlj.setjmp and eh.sjlj.longjmp don't do it // for us. Otherwise, expand to nothing. if (RI.hasBasePointer(MF)) { int32_t NumBytes = AFI->getFramePtrSpillOffset(); Register FramePtr = RI.getFrameRegister(MF); assert(MF.getSubtarget().getFrameLowering()->hasFP(MF) && "base pointer without frame pointer?"); if (AFI->isThumb2Function()) { emitT2RegPlusImmediate(MBB, MBBI, MI.getDebugLoc(), ARM::R6, FramePtr, -NumBytes, ARMCC::AL, 0, *TII); } else if (AFI->isThumbFunction()) { emitThumbRegPlusImmediate(MBB, MBBI, MI.getDebugLoc(), ARM::R6, FramePtr, -NumBytes, *TII, RI); } else { emitARMRegPlusImmediate(MBB, MBBI, MI.getDebugLoc(), ARM::R6, FramePtr, -NumBytes, ARMCC::AL, 0, *TII); } // If there's dynamic realignment, adjust for it. if (RI.hasStackRealignment(MF)) { MachineFrameInfo &MFI = MF.getFrameInfo(); Align MaxAlign = MFI.getMaxAlign(); assert (!AFI->isThumb1OnlyFunction()); // Emit bic r6, r6, MaxAlign assert(MaxAlign <= Align(256) && "The BIC instruction cannot encode " "immediates larger than 256 with all lower " "bits set."); unsigned bicOpc = AFI->isThumbFunction() ? ARM::t2BICri : ARM::BICri; BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(bicOpc), ARM::R6) .addReg(ARM::R6, RegState::Kill) .addImm(MaxAlign.value() - 1) .add(predOps(ARMCC::AL)) .add(condCodeOp()); } } MI.eraseFromParent(); return true; } case ARM::MOVsrl_flag: case ARM::MOVsra_flag: { // These are just fancy MOVs instructions. BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::MOVsi), MI.getOperand(0).getReg()) .add(MI.getOperand(1)) .addImm(ARM_AM::getSORegOpc( (Opcode == ARM::MOVsrl_flag ? ARM_AM::lsr : ARM_AM::asr), 1)) .add(predOps(ARMCC::AL)) .addReg(ARM::CPSR, RegState::Define); MI.eraseFromParent(); return true; } case ARM::RRX: { // This encodes as "MOVs Rd, Rm, rrx MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::MOVsi), MI.getOperand(0).getReg()) .add(MI.getOperand(1)) .addImm(ARM_AM::getSORegOpc(ARM_AM::rrx, 0)) .add(predOps(ARMCC::AL)) .add(condCodeOp()); TransferImpOps(MI, MIB, MIB); MI.eraseFromParent(); return true; } case ARM::tTPsoft: case ARM::TPsoft: { const bool Thumb = Opcode == ARM::tTPsoft; MachineInstrBuilder MIB; MachineFunction *MF = MBB.getParent(); if (STI->genLongCalls()) { MachineConstantPool *MCP = MF->getConstantPool(); unsigned PCLabelID = AFI->createPICLabelUId(); MachineConstantPoolValue *CPV = ARMConstantPoolSymbol::Create(MF->getFunction().getContext(), "__aeabi_read_tp", PCLabelID, 0); Register Reg = MI.getOperand(0).getReg(); MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Thumb ? ARM::tLDRpci : ARM::LDRi12), Reg) .addConstantPoolIndex(MCP->getConstantPoolIndex(CPV, Align(4))); if (!Thumb) MIB.addImm(0); MIB.add(predOps(ARMCC::AL)); MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Thumb ? gettBLXrOpcode(*MF) : getBLXOpcode(*MF))); if (Thumb) MIB.add(predOps(ARMCC::AL)); MIB.addReg(Reg, RegState::Kill); } else { MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Thumb ? ARM::tBL : ARM::BL)); if (Thumb) MIB.add(predOps(ARMCC::AL)); MIB.addExternalSymbol("__aeabi_read_tp", 0); } MIB.cloneMemRefs(MI); TransferImpOps(MI, MIB, MIB); // Update the call site info. if (MI.isCandidateForCallSiteEntry()) MF->moveCallSiteInfo(&MI, &*MIB); MI.eraseFromParent(); return true; } case ARM::tLDRpci_pic: case ARM::t2LDRpci_pic: { unsigned NewLdOpc = (Opcode == ARM::tLDRpci_pic) ? ARM::tLDRpci : ARM::t2LDRpci; Register DstReg = MI.getOperand(0).getReg(); bool DstIsDead = MI.getOperand(0).isDead(); MachineInstrBuilder MIB1 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewLdOpc), DstReg) .add(MI.getOperand(1)) .add(predOps(ARMCC::AL)); MIB1.cloneMemRefs(MI); MachineInstrBuilder MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::tPICADD)) .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead)) .addReg(DstReg) .add(MI.getOperand(2)); TransferImpOps(MI, MIB1, MIB2); MI.eraseFromParent(); return true; } case ARM::LDRLIT_ga_abs: case ARM::LDRLIT_ga_pcrel: case ARM::LDRLIT_ga_pcrel_ldr: case ARM::tLDRLIT_ga_abs: case ARM::t2LDRLIT_ga_pcrel: case ARM::tLDRLIT_ga_pcrel: { Register DstReg = MI.getOperand(0).getReg(); bool DstIsDead = MI.getOperand(0).isDead(); const MachineOperand &MO1 = MI.getOperand(1); auto Flags = MO1.getTargetFlags(); const GlobalValue *GV = MO1.getGlobal(); bool IsARM = Opcode != ARM::tLDRLIT_ga_pcrel && Opcode != ARM::tLDRLIT_ga_abs && Opcode != ARM::t2LDRLIT_ga_pcrel; bool IsPIC = Opcode != ARM::LDRLIT_ga_abs && Opcode != ARM::tLDRLIT_ga_abs; unsigned LDRLITOpc = IsARM ? ARM::LDRi12 : ARM::tLDRpci; if (Opcode == ARM::t2LDRLIT_ga_pcrel) LDRLITOpc = ARM::t2LDRpci; unsigned PICAddOpc = IsARM ? (Opcode == ARM::LDRLIT_ga_pcrel_ldr ? ARM::PICLDR : ARM::PICADD) : ARM::tPICADD; // We need a new const-pool entry to load from. MachineConstantPool *MCP = MBB.getParent()->getConstantPool(); unsigned ARMPCLabelIndex = 0; MachineConstantPoolValue *CPV; if (IsPIC) { unsigned PCAdj = IsARM ? 8 : 4; auto Modifier = (Flags & ARMII::MO_GOT) ? ARMCP::GOT_PREL : ARMCP::no_modifier; ARMPCLabelIndex = AFI->createPICLabelUId(); CPV = ARMConstantPoolConstant::Create( GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj, Modifier, /*AddCurrentAddr*/ Modifier == ARMCP::GOT_PREL); } else CPV = ARMConstantPoolConstant::Create(GV, ARMCP::no_modifier); MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(LDRLITOpc), DstReg) .addConstantPoolIndex(MCP->getConstantPoolIndex(CPV, Align(4))); if (IsARM) MIB.addImm(0); MIB.add(predOps(ARMCC::AL)); if (IsPIC) { MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(PICAddOpc)) .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead)) .addReg(DstReg) .addImm(ARMPCLabelIndex); if (IsARM) MIB.add(predOps(ARMCC::AL)); } MI.eraseFromParent(); return true; } case ARM::MOV_ga_pcrel: case ARM::MOV_ga_pcrel_ldr: case ARM::t2MOV_ga_pcrel: { // Expand into movw + movw. Also "add pc" / ldr [pc] in PIC mode. unsigned LabelId = AFI->createPICLabelUId(); Register DstReg = MI.getOperand(0).getReg(); bool DstIsDead = MI.getOperand(0).isDead(); const MachineOperand &MO1 = MI.getOperand(1); const GlobalValue *GV = MO1.getGlobal(); unsigned TF = MO1.getTargetFlags(); bool isARM = Opcode != ARM::t2MOV_ga_pcrel; unsigned LO16Opc = isARM ? ARM::MOVi16_ga_pcrel : ARM::t2MOVi16_ga_pcrel; unsigned HI16Opc = isARM ? ARM::MOVTi16_ga_pcrel :ARM::t2MOVTi16_ga_pcrel; unsigned LO16TF = TF | ARMII::MO_LO16; unsigned HI16TF = TF | ARMII::MO_HI16; unsigned PICAddOpc = isARM ? (Opcode == ARM::MOV_ga_pcrel_ldr ? ARM::PICLDR : ARM::PICADD) : ARM::tPICADD; MachineInstrBuilder MIB1 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(LO16Opc), DstReg) .addGlobalAddress(GV, MO1.getOffset(), TF | LO16TF) .addImm(LabelId); BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(HI16Opc), DstReg) .addReg(DstReg) .addGlobalAddress(GV, MO1.getOffset(), TF | HI16TF) .addImm(LabelId); MachineInstrBuilder MIB3 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(PICAddOpc)) .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead)) .addReg(DstReg).addImm(LabelId); if (isARM) { MIB3.add(predOps(ARMCC::AL)); if (Opcode == ARM::MOV_ga_pcrel_ldr) MIB3.cloneMemRefs(MI); } TransferImpOps(MI, MIB1, MIB3); MI.eraseFromParent(); return true; } case ARM::MOVi32imm: case ARM::MOVCCi32imm: case ARM::t2MOVi32imm: case ARM::t2MOVCCi32imm: ExpandMOV32BitImm(MBB, MBBI); return true; case ARM::SUBS_PC_LR: { MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::SUBri), ARM::PC) .addReg(ARM::LR) .add(MI.getOperand(0)) .add(MI.getOperand(1)) .add(MI.getOperand(2)) .addReg(ARM::CPSR, RegState::Undef); TransferImpOps(MI, MIB, MIB); MI.eraseFromParent(); return true; } case ARM::VLDMQIA: { unsigned NewOpc = ARM::VLDMDIA; MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc)); unsigned OpIdx = 0; // Grab the Q register destination. bool DstIsDead = MI.getOperand(OpIdx).isDead(); Register DstReg = MI.getOperand(OpIdx++).getReg(); // Copy the source register. MIB.add(MI.getOperand(OpIdx++)); // Copy the predicate operands. MIB.add(MI.getOperand(OpIdx++)); MIB.add(MI.getOperand(OpIdx++)); // Add the destination operands (D subregs). Register D0 = TRI->getSubReg(DstReg, ARM::dsub_0); Register D1 = TRI->getSubReg(DstReg, ARM::dsub_1); MIB.addReg(D0, RegState::Define | getDeadRegState(DstIsDead)) .addReg(D1, RegState::Define | getDeadRegState(DstIsDead)); // Add an implicit def for the super-register. MIB.addReg(DstReg, RegState::ImplicitDefine | getDeadRegState(DstIsDead)); TransferImpOps(MI, MIB, MIB); MIB.cloneMemRefs(MI); MI.eraseFromParent(); return true; } case ARM::VSTMQIA: { unsigned NewOpc = ARM::VSTMDIA; MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc)); unsigned OpIdx = 0; // Grab the Q register source. bool SrcIsKill = MI.getOperand(OpIdx).isKill(); Register SrcReg = MI.getOperand(OpIdx++).getReg(); // Copy the destination register. MachineOperand Dst(MI.getOperand(OpIdx++)); MIB.add(Dst); // Copy the predicate operands. MIB.add(MI.getOperand(OpIdx++)); MIB.add(MI.getOperand(OpIdx++)); // Add the source operands (D subregs). Register D0 = TRI->getSubReg(SrcReg, ARM::dsub_0); Register D1 = TRI->getSubReg(SrcReg, ARM::dsub_1); MIB.addReg(D0, SrcIsKill ? RegState::Kill : 0) .addReg(D1, SrcIsKill ? RegState::Kill : 0); if (SrcIsKill) // Add an implicit kill for the Q register. MIB->addRegisterKilled(SrcReg, TRI, true); TransferImpOps(MI, MIB, MIB); MIB.cloneMemRefs(MI); MI.eraseFromParent(); return true; } case ARM::VLD2q8Pseudo: case ARM::VLD2q16Pseudo: case ARM::VLD2q32Pseudo: case ARM::VLD2q8PseudoWB_fixed: case ARM::VLD2q16PseudoWB_fixed: case ARM::VLD2q32PseudoWB_fixed: case ARM::VLD2q8PseudoWB_register: case ARM::VLD2q16PseudoWB_register: case ARM::VLD2q32PseudoWB_register: case ARM::VLD3d8Pseudo: case ARM::VLD3d16Pseudo: case ARM::VLD3d32Pseudo: case ARM::VLD1d8TPseudo: case ARM::VLD1d8TPseudoWB_fixed: case ARM::VLD1d8TPseudoWB_register: case ARM::VLD1d16TPseudo: case ARM::VLD1d16TPseudoWB_fixed: case ARM::VLD1d16TPseudoWB_register: case ARM::VLD1d32TPseudo: case ARM::VLD1d32TPseudoWB_fixed: case ARM::VLD1d32TPseudoWB_register: case ARM::VLD1d64TPseudo: case ARM::VLD1d64TPseudoWB_fixed: case ARM::VLD1d64TPseudoWB_register: case ARM::VLD3d8Pseudo_UPD: case ARM::VLD3d16Pseudo_UPD: case ARM::VLD3d32Pseudo_UPD: case ARM::VLD3q8Pseudo_UPD: case ARM::VLD3q16Pseudo_UPD: case ARM::VLD3q32Pseudo_UPD: case ARM::VLD3q8oddPseudo: case ARM::VLD3q16oddPseudo: case ARM::VLD3q32oddPseudo: case ARM::VLD3q8oddPseudo_UPD: case ARM::VLD3q16oddPseudo_UPD: case ARM::VLD3q32oddPseudo_UPD: case ARM::VLD4d8Pseudo: case ARM::VLD4d16Pseudo: case ARM::VLD4d32Pseudo: case ARM::VLD1d8QPseudo: case ARM::VLD1d8QPseudoWB_fixed: case ARM::VLD1d8QPseudoWB_register: case ARM::VLD1d16QPseudo: case ARM::VLD1d16QPseudoWB_fixed: case ARM::VLD1d16QPseudoWB_register: case ARM::VLD1d32QPseudo: case ARM::VLD1d32QPseudoWB_fixed: case ARM::VLD1d32QPseudoWB_register: case ARM::VLD1d64QPseudo: case ARM::VLD1d64QPseudoWB_fixed: case ARM::VLD1d64QPseudoWB_register: case ARM::VLD1q8HighQPseudo: case ARM::VLD1q8HighQPseudo_UPD: case ARM::VLD1q8LowQPseudo_UPD: case ARM::VLD1q8HighTPseudo: case ARM::VLD1q8HighTPseudo_UPD: case ARM::VLD1q8LowTPseudo_UPD: case ARM::VLD1q16HighQPseudo: case ARM::VLD1q16HighQPseudo_UPD: case ARM::VLD1q16LowQPseudo_UPD: case ARM::VLD1q16HighTPseudo: case ARM::VLD1q16HighTPseudo_UPD: case ARM::VLD1q16LowTPseudo_UPD: case ARM::VLD1q32HighQPseudo: case ARM::VLD1q32HighQPseudo_UPD: case ARM::VLD1q32LowQPseudo_UPD: case ARM::VLD1q32HighTPseudo: case ARM::VLD1q32HighTPseudo_UPD: case ARM::VLD1q32LowTPseudo_UPD: case ARM::VLD1q64HighQPseudo: case ARM::VLD1q64HighQPseudo_UPD: case ARM::VLD1q64LowQPseudo_UPD: case ARM::VLD1q64HighTPseudo: case ARM::VLD1q64HighTPseudo_UPD: case ARM::VLD1q64LowTPseudo_UPD: case ARM::VLD4d8Pseudo_UPD: case ARM::VLD4d16Pseudo_UPD: case ARM::VLD4d32Pseudo_UPD: case ARM::VLD4q8Pseudo_UPD: case ARM::VLD4q16Pseudo_UPD: case ARM::VLD4q32Pseudo_UPD: case ARM::VLD4q8oddPseudo: case ARM::VLD4q16oddPseudo: case ARM::VLD4q32oddPseudo: case ARM::VLD4q8oddPseudo_UPD: case ARM::VLD4q16oddPseudo_UPD: case ARM::VLD4q32oddPseudo_UPD: case ARM::VLD3DUPd8Pseudo: case ARM::VLD3DUPd16Pseudo: case ARM::VLD3DUPd32Pseudo: case ARM::VLD3DUPd8Pseudo_UPD: case ARM::VLD3DUPd16Pseudo_UPD: case ARM::VLD3DUPd32Pseudo_UPD: case ARM::VLD4DUPd8Pseudo: case ARM::VLD4DUPd16Pseudo: case ARM::VLD4DUPd32Pseudo: case ARM::VLD4DUPd8Pseudo_UPD: case ARM::VLD4DUPd16Pseudo_UPD: case ARM::VLD4DUPd32Pseudo_UPD: case ARM::VLD2DUPq8EvenPseudo: case ARM::VLD2DUPq8OddPseudo: case ARM::VLD2DUPq16EvenPseudo: case ARM::VLD2DUPq16OddPseudo: case ARM::VLD2DUPq32EvenPseudo: case ARM::VLD2DUPq32OddPseudo: case ARM::VLD2DUPq8OddPseudoWB_fixed: case ARM::VLD2DUPq8OddPseudoWB_register: case ARM::VLD2DUPq16OddPseudoWB_fixed: case ARM::VLD2DUPq16OddPseudoWB_register: case ARM::VLD2DUPq32OddPseudoWB_fixed: case ARM::VLD2DUPq32OddPseudoWB_register: case ARM::VLD3DUPq8EvenPseudo: case ARM::VLD3DUPq8OddPseudo: case ARM::VLD3DUPq16EvenPseudo: case ARM::VLD3DUPq16OddPseudo: case ARM::VLD3DUPq32EvenPseudo: case ARM::VLD3DUPq32OddPseudo: case ARM::VLD3DUPq8OddPseudo_UPD: case ARM::VLD3DUPq16OddPseudo_UPD: case ARM::VLD3DUPq32OddPseudo_UPD: case ARM::VLD4DUPq8EvenPseudo: case ARM::VLD4DUPq8OddPseudo: case ARM::VLD4DUPq16EvenPseudo: case ARM::VLD4DUPq16OddPseudo: case ARM::VLD4DUPq32EvenPseudo: case ARM::VLD4DUPq32OddPseudo: case ARM::VLD4DUPq8OddPseudo_UPD: case ARM::VLD4DUPq16OddPseudo_UPD: case ARM::VLD4DUPq32OddPseudo_UPD: ExpandVLD(MBBI); return true; case ARM::VST2q8Pseudo: case ARM::VST2q16Pseudo: case ARM::VST2q32Pseudo: case ARM::VST2q8PseudoWB_fixed: case ARM::VST2q16PseudoWB_fixed: case ARM::VST2q32PseudoWB_fixed: case ARM::VST2q8PseudoWB_register: case ARM::VST2q16PseudoWB_register: case ARM::VST2q32PseudoWB_register: case ARM::VST3d8Pseudo: case ARM::VST3d16Pseudo: case ARM::VST3d32Pseudo: case ARM::VST1d8TPseudo: case ARM::VST1d8TPseudoWB_fixed: case ARM::VST1d8TPseudoWB_register: case ARM::VST1d16TPseudo: case ARM::VST1d16TPseudoWB_fixed: case ARM::VST1d16TPseudoWB_register: case ARM::VST1d32TPseudo: case ARM::VST1d32TPseudoWB_fixed: case ARM::VST1d32TPseudoWB_register: case ARM::VST1d64TPseudo: case ARM::VST1d64TPseudoWB_fixed: case ARM::VST1d64TPseudoWB_register: case ARM::VST3d8Pseudo_UPD: case ARM::VST3d16Pseudo_UPD: case ARM::VST3d32Pseudo_UPD: case ARM::VST3q8Pseudo_UPD: case ARM::VST3q16Pseudo_UPD: case ARM::VST3q32Pseudo_UPD: case ARM::VST3q8oddPseudo: case ARM::VST3q16oddPseudo: case ARM::VST3q32oddPseudo: case ARM::VST3q8oddPseudo_UPD: case ARM::VST3q16oddPseudo_UPD: case ARM::VST3q32oddPseudo_UPD: case ARM::VST4d8Pseudo: case ARM::VST4d16Pseudo: case ARM::VST4d32Pseudo: case ARM::VST1d8QPseudo: case ARM::VST1d8QPseudoWB_fixed: case ARM::VST1d8QPseudoWB_register: case ARM::VST1d16QPseudo: case ARM::VST1d16QPseudoWB_fixed: case ARM::VST1d16QPseudoWB_register: case ARM::VST1d32QPseudo: case ARM::VST1d32QPseudoWB_fixed: case ARM::VST1d32QPseudoWB_register: case ARM::VST1d64QPseudo: case ARM::VST1d64QPseudoWB_fixed: case ARM::VST1d64QPseudoWB_register: case ARM::VST4d8Pseudo_UPD: case ARM::VST4d16Pseudo_UPD: case ARM::VST4d32Pseudo_UPD: case ARM::VST1q8HighQPseudo: case ARM::VST1q8LowQPseudo_UPD: case ARM::VST1q8HighTPseudo: case ARM::VST1q8LowTPseudo_UPD: case ARM::VST1q16HighQPseudo: case ARM::VST1q16LowQPseudo_UPD: case ARM::VST1q16HighTPseudo: case ARM::VST1q16LowTPseudo_UPD: case ARM::VST1q32HighQPseudo: case ARM::VST1q32LowQPseudo_UPD: case ARM::VST1q32HighTPseudo: case ARM::VST1q32LowTPseudo_UPD: case ARM::VST1q64HighQPseudo: case ARM::VST1q64LowQPseudo_UPD: case ARM::VST1q64HighTPseudo: case ARM::VST1q64LowTPseudo_UPD: case ARM::VST1q8HighTPseudo_UPD: case ARM::VST1q16HighTPseudo_UPD: case ARM::VST1q32HighTPseudo_UPD: case ARM::VST1q64HighTPseudo_UPD: case ARM::VST1q8HighQPseudo_UPD: case ARM::VST1q16HighQPseudo_UPD: case ARM::VST1q32HighQPseudo_UPD: case ARM::VST1q64HighQPseudo_UPD: case ARM::VST4q8Pseudo_UPD: case ARM::VST4q16Pseudo_UPD: case ARM::VST4q32Pseudo_UPD: case ARM::VST4q8oddPseudo: case ARM::VST4q16oddPseudo: case ARM::VST4q32oddPseudo: case ARM::VST4q8oddPseudo_UPD: case ARM::VST4q16oddPseudo_UPD: case ARM::VST4q32oddPseudo_UPD: ExpandVST(MBBI); return true; case ARM::VLD1LNq8Pseudo: case ARM::VLD1LNq16Pseudo: case ARM::VLD1LNq32Pseudo: case ARM::VLD1LNq8Pseudo_UPD: case ARM::VLD1LNq16Pseudo_UPD: case ARM::VLD1LNq32Pseudo_UPD: case ARM::VLD2LNd8Pseudo: case ARM::VLD2LNd16Pseudo: case ARM::VLD2LNd32Pseudo: case ARM::VLD2LNq16Pseudo: case ARM::VLD2LNq32Pseudo: case ARM::VLD2LNd8Pseudo_UPD: case ARM::VLD2LNd16Pseudo_UPD: case ARM::VLD2LNd32Pseudo_UPD: case ARM::VLD2LNq16Pseudo_UPD: case ARM::VLD2LNq32Pseudo_UPD: case ARM::VLD3LNd8Pseudo: case ARM::VLD3LNd16Pseudo: case ARM::VLD3LNd32Pseudo: case ARM::VLD3LNq16Pseudo: case ARM::VLD3LNq32Pseudo: case ARM::VLD3LNd8Pseudo_UPD: case ARM::VLD3LNd16Pseudo_UPD: case ARM::VLD3LNd32Pseudo_UPD: case ARM::VLD3LNq16Pseudo_UPD: case ARM::VLD3LNq32Pseudo_UPD: case ARM::VLD4LNd8Pseudo: case ARM::VLD4LNd16Pseudo: case ARM::VLD4LNd32Pseudo: case ARM::VLD4LNq16Pseudo: case ARM::VLD4LNq32Pseudo: case ARM::VLD4LNd8Pseudo_UPD: case ARM::VLD4LNd16Pseudo_UPD: case ARM::VLD4LNd32Pseudo_UPD: case ARM::VLD4LNq16Pseudo_UPD: case ARM::VLD4LNq32Pseudo_UPD: case ARM::VST1LNq8Pseudo: case ARM::VST1LNq16Pseudo: case ARM::VST1LNq32Pseudo: case ARM::VST1LNq8Pseudo_UPD: case ARM::VST1LNq16Pseudo_UPD: case ARM::VST1LNq32Pseudo_UPD: case ARM::VST2LNd8Pseudo: case ARM::VST2LNd16Pseudo: case ARM::VST2LNd32Pseudo: case ARM::VST2LNq16Pseudo: case ARM::VST2LNq32Pseudo: case ARM::VST2LNd8Pseudo_UPD: case ARM::VST2LNd16Pseudo_UPD: case ARM::VST2LNd32Pseudo_UPD: case ARM::VST2LNq16Pseudo_UPD: case ARM::VST2LNq32Pseudo_UPD: case ARM::VST3LNd8Pseudo: case ARM::VST3LNd16Pseudo: case ARM::VST3LNd32Pseudo: case ARM::VST3LNq16Pseudo: case ARM::VST3LNq32Pseudo: case ARM::VST3LNd8Pseudo_UPD: case ARM::VST3LNd16Pseudo_UPD: case ARM::VST3LNd32Pseudo_UPD: case ARM::VST3LNq16Pseudo_UPD: case ARM::VST3LNq32Pseudo_UPD: case ARM::VST4LNd8Pseudo: case ARM::VST4LNd16Pseudo: case ARM::VST4LNd32Pseudo: case ARM::VST4LNq16Pseudo: case ARM::VST4LNq32Pseudo: case ARM::VST4LNd8Pseudo_UPD: case ARM::VST4LNd16Pseudo_UPD: case ARM::VST4LNd32Pseudo_UPD: case ARM::VST4LNq16Pseudo_UPD: case ARM::VST4LNq32Pseudo_UPD: ExpandLaneOp(MBBI); return true; case ARM::VTBL3Pseudo: ExpandVTBL(MBBI, ARM::VTBL3, false); return true; case ARM::VTBL4Pseudo: ExpandVTBL(MBBI, ARM::VTBL4, false); return true; case ARM::VTBX3Pseudo: ExpandVTBL(MBBI, ARM::VTBX3, true); return true; case ARM::VTBX4Pseudo: ExpandVTBL(MBBI, ARM::VTBX4, true); return true; case ARM::MQQPRLoad: case ARM::MQQPRStore: case ARM::MQQQQPRLoad: case ARM::MQQQQPRStore: ExpandMQQPRLoadStore(MBBI); return true; case ARM::tCMP_SWAP_8: assert(STI->isThumb()); return ExpandCMP_SWAP(MBB, MBBI, ARM::t2LDREXB, ARM::t2STREXB, ARM::tUXTB, NextMBBI); case ARM::tCMP_SWAP_16: assert(STI->isThumb()); return ExpandCMP_SWAP(MBB, MBBI, ARM::t2LDREXH, ARM::t2STREXH, ARM::tUXTH, NextMBBI); case ARM::tCMP_SWAP_32: assert(STI->isThumb()); return ExpandCMP_SWAP(MBB, MBBI, ARM::t2LDREX, ARM::t2STREX, 0, NextMBBI); case ARM::CMP_SWAP_8: assert(!STI->isThumb()); return ExpandCMP_SWAP(MBB, MBBI, ARM::LDREXB, ARM::STREXB, ARM::UXTB, NextMBBI); case ARM::CMP_SWAP_16: assert(!STI->isThumb()); return ExpandCMP_SWAP(MBB, MBBI, ARM::LDREXH, ARM::STREXH, ARM::UXTH, NextMBBI); case ARM::CMP_SWAP_32: assert(!STI->isThumb()); return ExpandCMP_SWAP(MBB, MBBI, ARM::LDREX, ARM::STREX, 0, NextMBBI); case ARM::CMP_SWAP_64: return ExpandCMP_SWAP_64(MBB, MBBI, NextMBBI); case ARM::tBL_PUSHLR: case ARM::BL_PUSHLR: { const bool Thumb = Opcode == ARM::tBL_PUSHLR; Register Reg = MI.getOperand(0).getReg(); assert(Reg == ARM::LR && "expect LR register!"); MachineInstrBuilder MIB; if (Thumb) { // push {lr} BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::tPUSH)) .add(predOps(ARMCC::AL)) .addReg(Reg); // bl __gnu_mcount_nc MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::tBL)); } else { // stmdb sp!, {lr} BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::STMDB_UPD)) .addReg(ARM::SP, RegState::Define) .addReg(ARM::SP) .add(predOps(ARMCC::AL)) .addReg(Reg); // bl __gnu_mcount_nc MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::BL)); } MIB.cloneMemRefs(MI); for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) MIB.add(MO); MI.eraseFromParent(); return true; } case ARM::t2CALL_BTI: { MachineFunction &MF = *MI.getMF(); MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), TII->get(ARM::tBL)); MIB.cloneMemRefs(MI); for (unsigned i = 0; i < MI.getNumOperands(); ++i) MIB.add(MI.getOperand(i)); if (MI.isCandidateForCallSiteEntry()) MF.moveCallSiteInfo(&MI, MIB.getInstr()); MIBundleBuilder Bundler(MBB, MI); Bundler.append(MIB); Bundler.append(BuildMI(MF, MI.getDebugLoc(), TII->get(ARM::t2BTI))); finalizeBundle(MBB, Bundler.begin(), Bundler.end()); MI.eraseFromParent(); return true; } case ARM::LOADDUAL: case ARM::STOREDUAL: { Register PairReg = MI.getOperand(0).getReg(); MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opcode == ARM::LOADDUAL ? ARM::LDRD : ARM::STRD)) .addReg(TRI->getSubReg(PairReg, ARM::gsub_0), Opcode == ARM::LOADDUAL ? RegState::Define : 0) .addReg(TRI->getSubReg(PairReg, ARM::gsub_1), Opcode == ARM::LOADDUAL ? RegState::Define : 0); for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) MIB.add(MO); MIB.add(predOps(ARMCC::AL)); MIB.cloneMemRefs(MI); MI.eraseFromParent(); return true; } } } bool ARMExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) { bool Modified = false; MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); while (MBBI != E) { MachineBasicBlock::iterator NMBBI = std::next(MBBI); Modified |= ExpandMI(MBB, MBBI, NMBBI); MBBI = NMBBI; } return Modified; } bool ARMExpandPseudo::runOnMachineFunction(MachineFunction &MF) { STI = &MF.getSubtarget(); TII = STI->getInstrInfo(); TRI = STI->getRegisterInfo(); AFI = MF.getInfo(); LLVM_DEBUG(dbgs() << "********** ARM EXPAND PSEUDO INSTRUCTIONS **********\n" << "********** Function: " << MF.getName() << '\n'); bool Modified = false; for (MachineBasicBlock &MBB : MF) Modified |= ExpandMBB(MBB); if (VerifyARMPseudo) MF.verify(this, "After expanding ARM pseudo instructions."); LLVM_DEBUG(dbgs() << "***************************************************\n"); return Modified; } /// createARMExpandPseudoPass - returns an instance of the pseudo instruction /// expansion pass. FunctionPass *llvm::createARMExpandPseudoPass() { return new ARMExpandPseudo(); }