//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to GAS-format ARM assembly language. // //===----------------------------------------------------------------------===// #include "ARMAsmPrinter.h" #include "ARM.h" #include "ARMConstantPoolValue.h" #include "ARMMachineFunctionInfo.h" #include "ARMTargetMachine.h" #include "ARMTargetObjectFile.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "MCTargetDesc/ARMInstPrinter.h" #include "MCTargetDesc/ARMMCExpr.h" #include "TargetInfo/ARMTargetInfo.h" #include "llvm/ADT/SmallString.h" #include "llvm/BinaryFormat/COFF.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfoImpls.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCELFStreamer.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstBuilder.h" #include "llvm/MC/MCObjectStreamer.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/ARMBuildAttributes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; #define DEBUG_TYPE "asm-printer" ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, std::unique_ptr Streamer) : AsmPrinter(TM, std::move(Streamer)), Subtarget(nullptr), AFI(nullptr), MCP(nullptr), InConstantPool(false), OptimizationGoals(-1) {} void ARMAsmPrinter::emitFunctionBodyEnd() { // Make sure to terminate any constant pools that were at the end // of the function. if (!InConstantPool) return; InConstantPool = false; OutStreamer->emitDataRegion(MCDR_DataRegionEnd); } void ARMAsmPrinter::emitFunctionEntryLabel() { if (AFI->isThumbFunction()) { OutStreamer->emitAssemblerFlag(MCAF_Code16); OutStreamer->emitThumbFunc(CurrentFnSym); } else { OutStreamer->emitAssemblerFlag(MCAF_Code32); } // Emit symbol for CMSE non-secure entry point if (AFI->isCmseNSEntryFunction()) { MCSymbol *S = OutContext.getOrCreateSymbol("__acle_se_" + CurrentFnSym->getName()); emitLinkage(&MF->getFunction(), S); OutStreamer->emitSymbolAttribute(S, MCSA_ELF_TypeFunction); OutStreamer->emitLabel(S); } AsmPrinter::emitFunctionEntryLabel(); } void ARMAsmPrinter::emitXXStructor(const DataLayout &DL, const Constant *CV) { uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); assert(Size && "C++ constructor pointer had zero size!"); const GlobalValue *GV = dyn_cast(CV->stripPointerCasts()); assert(GV && "C++ constructor pointer was not a GlobalValue!"); const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, ARMII::MO_NO_FLAG), (Subtarget->isTargetELF() ? MCSymbolRefExpr::VK_ARM_TARGET1 : MCSymbolRefExpr::VK_None), OutContext); OutStreamer->emitValue(E, Size); } void ARMAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { if (PromotedGlobals.count(GV)) // The global was promoted into a constant pool. It should not be emitted. return; AsmPrinter::emitGlobalVariable(GV); } /// runOnMachineFunction - This uses the emitInstruction() /// method to print assembly for each instruction. /// bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { AFI = MF.getInfo(); MCP = MF.getConstantPool(); Subtarget = &MF.getSubtarget(); SetupMachineFunction(MF); const Function &F = MF.getFunction(); const TargetMachine& TM = MF.getTarget(); // Collect all globals that had their storage promoted to a constant pool. // Functions are emitted before variables, so this accumulates promoted // globals from all functions in PromotedGlobals. for (const auto *GV : AFI->getGlobalsPromotedToConstantPool()) PromotedGlobals.insert(GV); // Calculate this function's optimization goal. unsigned OptimizationGoal; if (F.hasOptNone()) // For best debugging illusion, speed and small size sacrificed OptimizationGoal = 6; else if (F.hasMinSize()) // Aggressively for small size, speed and debug illusion sacrificed OptimizationGoal = 4; else if (F.hasOptSize()) // For small size, but speed and debugging illusion preserved OptimizationGoal = 3; else if (TM.getOptLevel() == CodeGenOptLevel::Aggressive) // Aggressively for speed, small size and debug illusion sacrificed OptimizationGoal = 2; else if (TM.getOptLevel() > CodeGenOptLevel::None) // For speed, but small size and good debug illusion preserved OptimizationGoal = 1; else // TM.getOptLevel() == CodeGenOptLevel::None // For good debugging, but speed and small size preserved OptimizationGoal = 5; // Combine a new optimization goal with existing ones. if (OptimizationGoals == -1) // uninitialized goals OptimizationGoals = OptimizationGoal; else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals OptimizationGoals = 0; if (Subtarget->isTargetCOFF()) { bool Internal = F.hasInternalLinkage(); COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC : COFF::IMAGE_SYM_CLASS_EXTERNAL; int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; OutStreamer->beginCOFFSymbolDef(CurrentFnSym); OutStreamer->emitCOFFSymbolStorageClass(Scl); OutStreamer->emitCOFFSymbolType(Type); OutStreamer->endCOFFSymbolDef(); } // Emit the rest of the function body. emitFunctionBody(); // Emit the XRay table for this function. emitXRayTable(); // If we need V4T thumb mode Register Indirect Jump pads, emit them. // These are created per function, rather than per TU, since it's // relatively easy to exceed the thumb branch range within a TU. if (! ThumbIndirectPads.empty()) { OutStreamer->emitAssemblerFlag(MCAF_Code16); emitAlignment(Align(2)); for (std::pair &TIP : ThumbIndirectPads) { OutStreamer->emitLabel(TIP.second); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) .addReg(TIP.first) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0)); } ThumbIndirectPads.clear(); } // We didn't modify anything. return false; } void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) { assert(MO.isGlobal() && "caller should check MO.isGlobal"); unsigned TF = MO.getTargetFlags(); if (TF & ARMII::MO_LO16) O << ":lower16:"; else if (TF & ARMII::MO_HI16) O << ":upper16:"; else if (TF & ARMII::MO_LO_0_7) O << ":lower0_7:"; else if (TF & ARMII::MO_LO_8_15) O << ":lower8_15:"; else if (TF & ARMII::MO_HI_0_7) O << ":upper0_7:"; else if (TF & ARMII::MO_HI_8_15) O << ":upper8_15:"; GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI); printOffset(MO.getOffset(), O); } void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) { const MachineOperand &MO = MI->getOperand(OpNum); switch (MO.getType()) { default: llvm_unreachable(""); case MachineOperand::MO_Register: { Register Reg = MO.getReg(); assert(Reg.isPhysical()); assert(!MO.getSubReg() && "Subregs should be eliminated!"); if(ARM::GPRPairRegClass.contains(Reg)) { const MachineFunction &MF = *MI->getParent()->getParent(); const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); Reg = TRI->getSubReg(Reg, ARM::gsub_0); } O << ARMInstPrinter::getRegisterName(Reg); break; } case MachineOperand::MO_Immediate: { O << '#'; unsigned TF = MO.getTargetFlags(); if (TF == ARMII::MO_LO16) O << ":lower16:"; else if (TF == ARMII::MO_HI16) O << ":upper16:"; else if (TF == ARMII::MO_LO_0_7) O << ":lower0_7:"; else if (TF == ARMII::MO_LO_8_15) O << ":lower8_15:"; else if (TF == ARMII::MO_HI_0_7) O << ":upper0_7:"; else if (TF == ARMII::MO_HI_8_15) O << ":upper8_15:"; O << MO.getImm(); break; } case MachineOperand::MO_MachineBasicBlock: MO.getMBB()->getSymbol()->print(O, MAI); return; case MachineOperand::MO_GlobalAddress: { PrintSymbolOperand(MO, O); break; } case MachineOperand::MO_ConstantPoolIndex: if (Subtarget->genExecuteOnly()) llvm_unreachable("execute-only should not generate constant pools"); GetCPISymbol(MO.getIndex())->print(O, MAI); break; } } MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as // indexes in MachineConstantPool, which isn't in sync with indexes used here. const DataLayout &DL = getDataLayout(); return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) + "_" + Twine(CPID)); } //===--------------------------------------------------------------------===// MCSymbol *ARMAsmPrinter:: GetARMJTIPICJumpTableLabel(unsigned uid) const { const DataLayout &DL = getDataLayout(); SmallString<60> Name; raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << uid; return OutContext.getOrCreateSymbol(Name); } bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, const char *ExtraCode, raw_ostream &O) { // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: // See if this is a generic print operand return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O); case 'P': // Print a VFP double precision register. case 'q': // Print a NEON quad precision register. printOperand(MI, OpNum, O); return false; case 'y': // Print a VFP single precision register as indexed double. if (MI->getOperand(OpNum).isReg()) { MCRegister Reg = MI->getOperand(OpNum).getReg().asMCReg(); const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); // Find the 'd' register that has this 's' register as a sub-register, // and determine the lane number. for (MCPhysReg SR : TRI->superregs(Reg)) { if (!ARM::DPRRegClass.contains(SR)) continue; bool Lane0 = TRI->getSubReg(SR, ARM::ssub_0) == Reg; O << ARMInstPrinter::getRegisterName(SR) << (Lane0 ? "[0]" : "[1]"); return false; } } return true; case 'B': // Bitwise inverse of integer or symbol without a preceding #. if (!MI->getOperand(OpNum).isImm()) return true; O << ~(MI->getOperand(OpNum).getImm()); return false; case 'L': // The low 16 bits of an immediate constant. if (!MI->getOperand(OpNum).isImm()) return true; O << (MI->getOperand(OpNum).getImm() & 0xffff); return false; case 'M': { // A register range suitable for LDM/STM. if (!MI->getOperand(OpNum).isReg()) return true; const MachineOperand &MO = MI->getOperand(OpNum); Register RegBegin = MO.getReg(); // This takes advantage of the 2 operand-ness of ldm/stm and that we've // already got the operands in registers that are operands to the // inline asm statement. O << "{"; if (ARM::GPRPairRegClass.contains(RegBegin)) { const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); Register Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); O << ARMInstPrinter::getRegisterName(Reg0) << ", "; RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); } O << ARMInstPrinter::getRegisterName(RegBegin); // FIXME: The register allocator not only may not have given us the // registers in sequence, but may not be in ascending registers. This // will require changes in the register allocator that'll need to be // propagated down here if the operands change. unsigned RegOps = OpNum + 1; while (MI->getOperand(RegOps).isReg()) { O << ", " << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); RegOps++; } O << "}"; return false; } case 'R': // The most significant register of a pair. case 'Q': { // The least significant register of a pair. if (OpNum == 0) return true; const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); if (!FlagsOP.isImm()) return true; InlineAsm::Flag F(FlagsOP.getImm()); // This operand may not be the one that actually provides the register. If // it's tied to a previous one then we should refer instead to that one // for registers and their classes. unsigned TiedIdx; if (F.isUseOperandTiedToDef(TiedIdx)) { for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { unsigned OpFlags = MI->getOperand(OpNum).getImm(); const InlineAsm::Flag F(OpFlags); OpNum += F.getNumOperandRegisters() + 1; } F = InlineAsm::Flag(MI->getOperand(OpNum).getImm()); // Later code expects OpNum to be pointing at the register rather than // the flags. OpNum += 1; } const unsigned NumVals = F.getNumOperandRegisters(); unsigned RC; bool FirstHalf; const ARMBaseTargetMachine &ATM = static_cast(TM); // 'Q' should correspond to the low order register and 'R' to the high // order register. Whether this corresponds to the upper or lower half // depends on the endianess mode. if (ExtraCode[0] == 'Q') FirstHalf = ATM.isLittleEndian(); else // ExtraCode[0] == 'R'. FirstHalf = !ATM.isLittleEndian(); const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); if (F.hasRegClassConstraint(RC) && ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) { if (NumVals != 1) return true; const MachineOperand &MO = MI->getOperand(OpNum); if (!MO.isReg()) return true; const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); Register Reg = TRI->getSubReg(MO.getReg(), FirstHalf ? ARM::gsub_0 : ARM::gsub_1); O << ARMInstPrinter::getRegisterName(Reg); return false; } if (NumVals != 2) return true; unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; if (RegOp >= MI->getNumOperands()) return true; const MachineOperand &MO = MI->getOperand(RegOp); if (!MO.isReg()) return true; Register Reg = MO.getReg(); O << ARMInstPrinter::getRegisterName(Reg); return false; } case 'e': // The low doubleword register of a NEON quad register. case 'f': { // The high doubleword register of a NEON quad register. if (!MI->getOperand(OpNum).isReg()) return true; Register Reg = MI->getOperand(OpNum).getReg(); if (!ARM::QPRRegClass.contains(Reg)) return true; const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); Register SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1); O << ARMInstPrinter::getRegisterName(SubReg); return false; } // This modifier is not yet supported. case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. return true; case 'H': { // The highest-numbered register of a pair. const MachineOperand &MO = MI->getOperand(OpNum); if (!MO.isReg()) return true; const MachineFunction &MF = *MI->getParent()->getParent(); const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); Register Reg = MO.getReg(); if(!ARM::GPRPairRegClass.contains(Reg)) return false; Reg = TRI->getSubReg(Reg, ARM::gsub_1); O << ARMInstPrinter::getRegisterName(Reg); return false; } } } printOperand(MI, OpNum, O); return false; } bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum, const char *ExtraCode, raw_ostream &O) { // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { case 'A': // A memory operand for a VLD1/VST1 instruction. default: return true; // Unknown modifier. case 'm': // The base register of a memory operand. if (!MI->getOperand(OpNum).isReg()) return true; O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); return false; } } const MachineOperand &MO = MI->getOperand(OpNum); assert(MO.isReg() && "unexpected inline asm memory operand"); O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; return false; } static bool isThumb(const MCSubtargetInfo& STI) { return STI.hasFeature(ARM::ModeThumb); } void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, const MCSubtargetInfo *EndInfo) const { // If either end mode is unknown (EndInfo == NULL) or different than // the start mode, then restore the start mode. const bool WasThumb = isThumb(StartInfo); if (!EndInfo || WasThumb != isThumb(*EndInfo)) { OutStreamer->emitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); } } void ARMAsmPrinter::emitStartOfAsmFile(Module &M) { const Triple &TT = TM.getTargetTriple(); // Use unified assembler syntax. OutStreamer->emitAssemblerFlag(MCAF_SyntaxUnified); // Emit ARM Build Attributes if (TT.isOSBinFormatELF()) emitAttributes(); // Use the triple's architecture and subarchitecture to determine // if we're thumb for the purposes of the top level code16 assembler // flag. if (!M.getModuleInlineAsm().empty() && TT.isThumb()) OutStreamer->emitAssemblerFlag(MCAF_Code16); } static void emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, MachineModuleInfoImpl::StubValueTy &MCSym) { // L_foo$stub: OutStreamer.emitLabel(StubLabel); // .indirect_symbol _foo OutStreamer.emitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); if (MCSym.getInt()) // External to current translation unit. OutStreamer.emitIntValue(0, 4/*size*/); else // Internal to current translation unit. // // When we place the LSDA into the TEXT section, the type info // pointers need to be indirect and pc-rel. We accomplish this by // using NLPs; however, sometimes the types are local to the file. // We need to fill in the value for the NLP in those cases. OutStreamer.emitValue( MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 4 /*size*/); } void ARMAsmPrinter::emitEndOfAsmFile(Module &M) { const Triple &TT = TM.getTargetTriple(); if (TT.isOSBinFormatMachO()) { // All darwin targets use mach-o. const TargetLoweringObjectFileMachO &TLOFMacho = static_cast(getObjFileLowering()); MachineModuleInfoMachO &MMIMacho = MMI->getObjFileInfo(); // Output non-lazy-pointers for external and common global variables. MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); if (!Stubs.empty()) { // Switch with ".non_lazy_symbol_pointer" directive. OutStreamer->switchSection(TLOFMacho.getNonLazySymbolPointerSection()); emitAlignment(Align(4)); for (auto &Stub : Stubs) emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); Stubs.clear(); OutStreamer->addBlankLine(); } Stubs = MMIMacho.GetThreadLocalGVStubList(); if (!Stubs.empty()) { // Switch with ".non_lazy_symbol_pointer" directive. OutStreamer->switchSection(TLOFMacho.getThreadLocalPointerSection()); emitAlignment(Align(4)); for (auto &Stub : Stubs) emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); Stubs.clear(); OutStreamer->addBlankLine(); } // Funny Darwin hack: This flag tells the linker that no global symbols // contain code that falls through to other global symbols (e.g. the obvious // implementation of multiple entry points). If this doesn't occur, the // linker can safely perform dead code stripping. Since LLVM never // generates code that does this, it is always safe to set. OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols); } // The last attribute to be emitted is ABI_optimization_goals MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); ARMTargetStreamer &ATS = static_cast(TS); if (OptimizationGoals > 0 && (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI())) ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); OptimizationGoals = -1; ATS.finishAttributeSection(); } //===----------------------------------------------------------------------===// // Helper routines for emitStartOfAsmFile() and emitEndOfAsmFile() // FIXME: // The following seem like one-off assembler flags, but they actually need // to appear in the .ARM.attributes section in ELF. // Instead of subclassing the MCELFStreamer, we do the work here. // Returns true if all functions have the same function attribute value. // It also returns true when the module has no functions. static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, StringRef Value) { return !any_of(M, [&](const Function &F) { return F.getFnAttribute(Attr).getValueAsString() != Value; }); } // Returns true if all functions have the same denormal mode. // It also returns true when the module has no functions. static bool checkDenormalAttributeConsistency(const Module &M, StringRef Attr, DenormalMode Value) { return !any_of(M, [&](const Function &F) { StringRef AttrVal = F.getFnAttribute(Attr).getValueAsString(); return parseDenormalFPAttribute(AttrVal) != Value; }); } void ARMAsmPrinter::emitAttributes() { MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); ARMTargetStreamer &ATS = static_cast(TS); ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); ATS.switchVendor("aeabi"); // Compute ARM ELF Attributes based on the default subtarget that // we'd have constructed. The existing ARM behavior isn't LTO clean // anyhow. // FIXME: For ifunc related functions we could iterate over and look // for a feature string that doesn't match the default one. const Triple &TT = TM.getTargetTriple(); StringRef CPU = TM.getTargetCPU(); StringRef FS = TM.getTargetFeatureString(); std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); if (!FS.empty()) { if (!ArchFS.empty()) ArchFS = (Twine(ArchFS) + "," + FS).str(); else ArchFS = std::string(FS); } const ARMBaseTargetMachine &ATM = static_cast(TM); const ARMSubtarget STI(TT, std::string(CPU), ArchFS, ATM, ATM.isLittleEndian()); // Emit build attributes for the available hardware. ATS.emitTargetAttributes(STI); // RW data addressing. if (isPositionIndependent()) { ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, ARMBuildAttrs::AddressRWPCRel); } else if (STI.isRWPI()) { // RWPI specific attributes. ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, ARMBuildAttrs::AddressRWSBRel); } // RO data addressing. if (isPositionIndependent() || STI.isROPI()) { ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, ARMBuildAttrs::AddressROPCRel); } // GOT use. if (isPositionIndependent()) { ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, ARMBuildAttrs::AddressGOT); } else { ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, ARMBuildAttrs::AddressDirect); } // Set FP Denormals. if (checkDenormalAttributeConsistency(*MMI->getModule(), "denormal-fp-math", DenormalMode::getPreserveSign())) ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, ARMBuildAttrs::PreserveFPSign); else if (checkDenormalAttributeConsistency(*MMI->getModule(), "denormal-fp-math", DenormalMode::getPositiveZero())) ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, ARMBuildAttrs::PositiveZero); else if (!TM.Options.UnsafeFPMath) ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, ARMBuildAttrs::IEEEDenormals); else { if (!STI.hasVFP2Base()) { // When the target doesn't have an FPU (by design or // intention), the assumptions made on the software support // mirror that of the equivalent hardware support *if it // existed*. For v7 and better we indicate that denormals are // flushed preserving sign, and for V6 we indicate that // denormals are flushed to positive zero. if (STI.hasV7Ops()) ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, ARMBuildAttrs::PreserveFPSign); } else if (STI.hasVFP3Base()) { // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, // the sign bit of the zero matches the sign bit of the input or // result that is being flushed to zero. ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, ARMBuildAttrs::PreserveFPSign); } // For VFPv2 implementations it is implementation defined as // to whether denormals are flushed to positive zero or to // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically // LLVM has chosen to flush this to positive zero (most likely for // GCC compatibility), so that's the chosen value here (the // absence of its emission implies zero). } // Set FP exceptions and rounding if (checkFunctionsAttributeConsistency(*MMI->getModule(), "no-trapping-math", "true") || TM.Options.NoTrappingFPMath) ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Not_Allowed); else if (!TM.Options.UnsafeFPMath) { ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); // If the user has permitted this code to choose the IEEE 754 // rounding at run-time, emit the rounding attribute. if (TM.Options.HonorSignDependentRoundingFPMathOption) ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); } // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the // equivalent of GCC's -ffinite-math-only flag. if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, ARMBuildAttrs::Allowed); else ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, ARMBuildAttrs::AllowIEEE754); // FIXME: add more flags to ARMBuildAttributes.h // 8-bytes alignment stuff. ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); // Hard float. Use both S and D registers and conform to AAPCS-VFP. if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); // FIXME: To support emitting this build attribute as GCC does, the // -mfp16-format option and associated plumbing must be // supported. For now the __fp16 type is exposed by default, so this // attribute should be emitted with value 1. ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, ARMBuildAttrs::FP16FormatIEEE); if (const Module *SourceModule = MMI->getModule()) { // ABI_PCS_wchar_t to indicate wchar_t width // FIXME: There is no way to emit value 0 (wchar_t prohibited). if (auto WCharWidthValue = mdconst::extract_or_null( SourceModule->getModuleFlag("wchar_size"))) { int WCharWidth = WCharWidthValue->getZExtValue(); assert((WCharWidth == 2 || WCharWidth == 4) && "wchar_t width must be 2 or 4 bytes"); ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); } // ABI_enum_size to indicate enum width // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 // (all enums contain a value needing 32 bits to encode). if (auto EnumWidthValue = mdconst::extract_or_null( SourceModule->getModuleFlag("min_enum_size"))) { int EnumWidth = EnumWidthValue->getZExtValue(); assert((EnumWidth == 1 || EnumWidth == 4) && "Minimum enum width must be 1 or 4 bytes"); int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); } auto *PACValue = mdconst::extract_or_null( SourceModule->getModuleFlag("sign-return-address")); if (PACValue && PACValue->isOne()) { // If "+pacbti" is used as an architecture extension, // Tag_PAC_extension is emitted in // ARMTargetStreamer::emitTargetAttributes(). if (!STI.hasPACBTI()) { ATS.emitAttribute(ARMBuildAttrs::PAC_extension, ARMBuildAttrs::AllowPACInNOPSpace); } ATS.emitAttribute(ARMBuildAttrs::PACRET_use, ARMBuildAttrs::PACRETUsed); } auto *BTIValue = mdconst::extract_or_null( SourceModule->getModuleFlag("branch-target-enforcement")); if (BTIValue && BTIValue->isOne()) { // If "+pacbti" is used as an architecture extension, // Tag_BTI_extension is emitted in // ARMTargetStreamer::emitTargetAttributes(). if (!STI.hasPACBTI()) { ATS.emitAttribute(ARMBuildAttrs::BTI_extension, ARMBuildAttrs::AllowBTIInNOPSpace); } ATS.emitAttribute(ARMBuildAttrs::BTI_use, ARMBuildAttrs::BTIUsed); } } // We currently do not support using R9 as the TLS pointer. if (STI.isRWPI()) ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9IsSB); else if (STI.isR9Reserved()) ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9Reserved); else ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9IsGPR); } //===----------------------------------------------------------------------===// static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber, unsigned LabelId, MCContext &Ctx) { MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId)); return Label; } static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, unsigned LabelId, MCContext &Ctx) { MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); return Label; } static MCSymbolRefExpr::VariantKind getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { switch (Modifier) { case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None; case ARMCP::TLSGD: return MCSymbolRefExpr::VK_TLSGD; case ARMCP::TPOFF: return MCSymbolRefExpr::VK_TPOFF; case ARMCP::GOTTPOFF: return MCSymbolRefExpr::VK_GOTTPOFF; case ARMCP::SBREL: return MCSymbolRefExpr::VK_ARM_SBREL; case ARMCP::GOT_PREL: return MCSymbolRefExpr::VK_ARM_GOT_PREL; case ARMCP::SECREL: return MCSymbolRefExpr::VK_SECREL; } llvm_unreachable("Invalid ARMCPModifier!"); } MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, unsigned char TargetFlags) { if (Subtarget->isTargetMachO()) { bool IsIndirect = (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); if (!IsIndirect) return getSymbol(GV); // FIXME: Remove this when Darwin transition to @GOT like syntax. MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); MachineModuleInfoMachO &MMIMachO = MMI->getObjFileInfo(); MachineModuleInfoImpl::StubValueTy &StubSym = GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) : MMIMachO.getGVStubEntry(MCSym); if (!StubSym.getPointer()) StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), !GV->hasInternalLinkage()); return MCSym; } else if (Subtarget->isTargetCOFF()) { assert(Subtarget->isTargetWindows() && "Windows is the only supported COFF target"); bool IsIndirect = (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); if (!IsIndirect) return getSymbol(GV); SmallString<128> Name; if (TargetFlags & ARMII::MO_DLLIMPORT) Name = "__imp_"; else if (TargetFlags & ARMII::MO_COFFSTUB) Name = ".refptr."; getNameWithPrefix(Name, GV); MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); if (TargetFlags & ARMII::MO_COFFSTUB) { MachineModuleInfoCOFF &MMICOFF = MMI->getObjFileInfo(); MachineModuleInfoImpl::StubValueTy &StubSym = MMICOFF.getGVStubEntry(MCSym); if (!StubSym.getPointer()) StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); } return MCSym; } else if (Subtarget->isTargetELF()) { return getSymbolPreferLocal(*GV); } llvm_unreachable("unexpected target"); } void ARMAsmPrinter::emitMachineConstantPoolValue( MachineConstantPoolValue *MCPV) { const DataLayout &DL = getDataLayout(); int Size = DL.getTypeAllocSize(MCPV->getType()); ARMConstantPoolValue *ACPV = static_cast(MCPV); if (ACPV->isPromotedGlobal()) { // This constant pool entry is actually a global whose storage has been // promoted into the constant pool. This global may be referenced still // by debug information, and due to the way AsmPrinter is set up, the debug // info is immutable by the time we decide to promote globals to constant // pools. Because of this, we need to ensure we emit a symbol for the global // with private linkage (the default) so debug info can refer to it. // // However, if this global is promoted into several functions we must ensure // we don't try and emit duplicate symbols! auto *ACPC = cast(ACPV); for (const auto *GV : ACPC->promotedGlobals()) { if (!EmittedPromotedGlobalLabels.count(GV)) { MCSymbol *GVSym = getSymbol(GV); OutStreamer->emitLabel(GVSym); EmittedPromotedGlobalLabels.insert(GV); } } return emitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); } MCSymbol *MCSym; if (ACPV->isLSDA()) { MCSym = getMBBExceptionSym(MF->front()); } else if (ACPV->isBlockAddress()) { const BlockAddress *BA = cast(ACPV)->getBlockAddress(); MCSym = GetBlockAddressSymbol(BA); } else if (ACPV->isGlobalValue()) { const GlobalValue *GV = cast(ACPV)->getGV(); // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so // flag the global as MO_NONLAZY. unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; MCSym = GetARMGVSymbol(GV, TF); } else if (ACPV->isMachineBasicBlock()) { const MachineBasicBlock *MBB = cast(ACPV)->getMBB(); MCSym = MBB->getSymbol(); } else { assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); auto Sym = cast(ACPV)->getSymbol(); MCSym = GetExternalSymbolSymbol(Sym); } // Create an MCSymbol for the reference. const MCExpr *Expr = MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), OutContext); if (ACPV->getPCAdjustment()) { MCSymbol *PCLabel = getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), ACPV->getLabelId(), OutContext); const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); PCRelExpr = MCBinaryExpr::createAdd(PCRelExpr, MCConstantExpr::create(ACPV->getPCAdjustment(), OutContext), OutContext); if (ACPV->mustAddCurrentAddress()) { // We want "( - .)", but MC doesn't have a concept of the '.' // label, so just emit a local label end reference that instead. MCSymbol *DotSym = OutContext.createTempSymbol(); OutStreamer->emitLabel(DotSym); const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); } Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); } OutStreamer->emitValue(Expr, Size); } void ARMAsmPrinter::emitJumpTableAddrs(const MachineInstr *MI) { const MachineOperand &MO1 = MI->getOperand(1); unsigned JTI = MO1.getIndex(); // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for // ARM mode tables. emitAlignment(Align(4)); // Emit a label for the jump table. MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); OutStreamer->emitLabel(JTISymbol); // Mark the jump table as data-in-code. OutStreamer->emitDataRegion(MCDR_DataRegionJT32); // Emit each entry of the table. const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); const std::vector &JT = MJTI->getJumpTables(); const std::vector &JTBBs = JT[JTI].MBBs; for (MachineBasicBlock *MBB : JTBBs) { // Construct an MCExpr for the entry. We want a value of the form: // (BasicBlockAddr - TableBeginAddr) // // For example, a table with entries jumping to basic blocks BB0 and BB1 // would look like: // LJTI_0_0: // .word (LBB0 - LJTI_0_0) // .word (LBB1 - LJTI_0_0) const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); if (isPositionIndependent() || Subtarget->isROPI()) Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, OutContext), OutContext); // If we're generating a table of Thumb addresses in static relocation // model, we need to add one to keep interworking correctly. else if (AFI->isThumbFunction()) Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), OutContext); OutStreamer->emitValue(Expr, 4); } // Mark the end of jump table data-in-code region. OutStreamer->emitDataRegion(MCDR_DataRegionEnd); } void ARMAsmPrinter::emitJumpTableInsts(const MachineInstr *MI) { const MachineOperand &MO1 = MI->getOperand(1); unsigned JTI = MO1.getIndex(); // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for // ARM mode tables. emitAlignment(Align(4)); // Emit a label for the jump table. MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); OutStreamer->emitLabel(JTISymbol); // Emit each entry of the table. const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); const std::vector &JT = MJTI->getJumpTables(); const std::vector &JTBBs = JT[JTI].MBBs; for (MachineBasicBlock *MBB : JTBBs) { const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); // If this isn't a TBB or TBH, the entries are direct branch instructions. EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) .addExpr(MBBSymbolExpr) .addImm(ARMCC::AL) .addReg(0)); } } void ARMAsmPrinter::emitJumpTableTBInst(const MachineInstr *MI, unsigned OffsetWidth) { assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); const MachineOperand &MO1 = MI->getOperand(1); unsigned JTI = MO1.getIndex(); if (Subtarget->isThumb1Only()) emitAlignment(Align(4)); MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); OutStreamer->emitLabel(JTISymbol); // Emit each entry of the table. const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); const std::vector &JT = MJTI->getJumpTables(); const std::vector &JTBBs = JT[JTI].MBBs; // Mark the jump table as data-in-code. OutStreamer->emitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 : MCDR_DataRegionJT16); for (auto *MBB : JTBBs) { const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); // Otherwise it's an offset from the dispatch instruction. Construct an // MCExpr for the entry. We want a value of the form: // (BasicBlockAddr - TBBInstAddr + 4) / 2 // // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 // would look like: // LJTI_0_0: // .byte (LBB0 - (LCPI0_0 + 4)) / 2 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 // where LCPI0_0 is a label defined just before the TBB instruction using // this table. MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); const MCExpr *Expr = MCBinaryExpr::createAdd( MCSymbolRefExpr::create(TBInstPC, OutContext), MCConstantExpr::create(4, OutContext), OutContext); Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), OutContext); OutStreamer->emitValue(Expr, OffsetWidth); } // Mark the end of jump table data-in-code region. 32-bit offsets use // actual branch instructions here, so we don't mark those as a data-region // at all. OutStreamer->emitDataRegion(MCDR_DataRegionEnd); // Make sure the next instruction is 2-byte aligned. emitAlignment(Align(2)); } std::tuple ARMAsmPrinter::getCodeViewJumpTableInfo(int JTI, const MachineInstr *BranchInstr, const MCSymbol *BranchLabel) const { codeview::JumpTableEntrySize EntrySize; const MCSymbol *BaseLabel; uint64_t BaseOffset = 0; switch (BranchInstr->getOpcode()) { case ARM::BR_JTadd: case ARM::BR_JTr: case ARM::tBR_JTr: // Word relative to the jump table address. EntrySize = codeview::JumpTableEntrySize::UInt32; BaseLabel = GetARMJTIPICJumpTableLabel(JTI); break; case ARM::tTBH_JT: case ARM::t2TBH_JT: // half-word shifted left, relative to *after* the branch instruction. EntrySize = codeview::JumpTableEntrySize::UInt16ShiftLeft; BranchLabel = GetCPISymbol(BranchInstr->getOperand(3).getImm()); BaseLabel = BranchLabel; BaseOffset = 4; break; case ARM::tTBB_JT: case ARM::t2TBB_JT: // byte shifted left, relative to *after* the branch instruction. EntrySize = codeview::JumpTableEntrySize::UInt8ShiftLeft; BranchLabel = GetCPISymbol(BranchInstr->getOperand(3).getImm()); BaseLabel = BranchLabel; BaseOffset = 4; break; case ARM::t2BR_JT: // Direct jump. BaseLabel = nullptr; EntrySize = codeview::JumpTableEntrySize::Pointer; break; default: llvm_unreachable("Unknown jump table instruction"); } return std::make_tuple(BaseLabel, BaseOffset, BranchLabel, EntrySize); } void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { assert(MI->getFlag(MachineInstr::FrameSetup) && "Only instruction which are involved into frame setup code are allowed"); MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); ARMTargetStreamer &ATS = static_cast(TS); const MachineFunction &MF = *MI->getParent()->getParent(); const TargetRegisterInfo *TargetRegInfo = MF.getSubtarget().getRegisterInfo(); const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); Register FramePtr = TargetRegInfo->getFrameRegister(MF); unsigned Opc = MI->getOpcode(); unsigned SrcReg, DstReg; switch (Opc) { case ARM::tPUSH: // special case: tPUSH does not have src/dst regs. SrcReg = DstReg = ARM::SP; break; case ARM::tLDRpci: case ARM::t2MOVi16: case ARM::t2MOVTi16: case ARM::tMOVi8: case ARM::tADDi8: case ARM::tLSLri: // special cases: // 1) for Thumb1 code we sometimes materialize the constant via constpool // load. // 2) for Thumb1 execute only code we materialize the constant via the // following pattern: // movs r3, #:upper8_15: // lsls r3, #8 // adds r3, #:upper0_7: // lsls r3, #8 // adds r3, #:lower8_15: // lsls r3, #8 // adds r3, #:lower0_7: // So we need to special-case MOVS, ADDS and LSLS, and keep track of // where we are in the sequence with the simplest of state machines. // 3) for Thumb2 execute only code we materialize the constant via // immediate constants in 2 separate instructions (MOVW/MOVT). SrcReg = ~0U; DstReg = MI->getOperand(0).getReg(); break; default: SrcReg = MI->getOperand(1).getReg(); DstReg = MI->getOperand(0).getReg(); break; } // Try to figure out the unwinding opcode out of src / dst regs. if (MI->mayStore()) { // Register saves. assert(DstReg == ARM::SP && "Only stack pointer as a destination reg is supported"); SmallVector RegList; // Skip src & dst reg, and pred ops. unsigned StartOp = 2 + 2; // Use all the operands. unsigned NumOffset = 0; // Amount of SP adjustment folded into a push, before the // registers are stored (pad at higher addresses). unsigned PadBefore = 0; // Amount of SP adjustment folded into a push, after the // registers are stored (pad at lower addresses). unsigned PadAfter = 0; switch (Opc) { default: MI->print(errs()); llvm_unreachable("Unsupported opcode for unwinding information"); case ARM::tPUSH: // Special case here: no src & dst reg, but two extra imp ops. StartOp = 2; NumOffset = 2; [[fallthrough]]; case ARM::STMDB_UPD: case ARM::t2STMDB_UPD: case ARM::VSTMDDB_UPD: assert(SrcReg == ARM::SP && "Only stack pointer as a source reg is supported"); for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; i != NumOps; ++i) { const MachineOperand &MO = MI->getOperand(i); // Actually, there should never be any impdef stuff here. Skip it // temporary to workaround PR11902. if (MO.isImplicit()) continue; // Registers, pushed as a part of folding an SP update into the // push instruction are marked as undef and should not be // restored when unwinding, because the function can modify the // corresponding stack slots. if (MO.isUndef()) { assert(RegList.empty() && "Pad registers must come before restored ones"); unsigned Width = TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8; PadAfter += Width; continue; } // Check for registers that are remapped (for a Thumb1 prologue that // saves high registers). Register Reg = MO.getReg(); if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Reg)) Reg = RemappedReg; RegList.push_back(Reg); } break; case ARM::STR_PRE_IMM: case ARM::STR_PRE_REG: case ARM::t2STR_PRE: assert(MI->getOperand(2).getReg() == ARM::SP && "Only stack pointer as a source reg is supported"); if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(SrcReg)) SrcReg = RemappedReg; RegList.push_back(SrcReg); break; case ARM::t2STRD_PRE: assert(MI->getOperand(3).getReg() == ARM::SP && "Only stack pointer as a source reg is supported"); SrcReg = MI->getOperand(1).getReg(); if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(SrcReg)) SrcReg = RemappedReg; RegList.push_back(SrcReg); SrcReg = MI->getOperand(2).getReg(); if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(SrcReg)) SrcReg = RemappedReg; RegList.push_back(SrcReg); PadBefore = -MI->getOperand(4).getImm() - 8; break; } if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { if (PadBefore) ATS.emitPad(PadBefore); ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); // Account for the SP adjustment, folded into the push. if (PadAfter) ATS.emitPad(PadAfter); } } else { // Changes of stack / frame pointer. if (SrcReg == ARM::SP) { int64_t Offset = 0; switch (Opc) { default: MI->print(errs()); llvm_unreachable("Unsupported opcode for unwinding information"); case ARM::MOVr: case ARM::tMOVr: Offset = 0; break; case ARM::ADDri: case ARM::t2ADDri: case ARM::t2ADDri12: case ARM::t2ADDspImm: case ARM::t2ADDspImm12: Offset = -MI->getOperand(2).getImm(); break; case ARM::SUBri: case ARM::t2SUBri: case ARM::t2SUBri12: case ARM::t2SUBspImm: case ARM::t2SUBspImm12: Offset = MI->getOperand(2).getImm(); break; case ARM::tSUBspi: Offset = MI->getOperand(2).getImm()*4; break; case ARM::tADDspi: case ARM::tADDrSPi: Offset = -MI->getOperand(2).getImm()*4; break; case ARM::tADDhirr: Offset = -AFI->EHPrologueOffsetInRegs.lookup(MI->getOperand(2).getReg()); break; } if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { if (DstReg == FramePtr && FramePtr != ARM::SP) // Set-up of the frame pointer. Positive values correspond to "add" // instruction. ATS.emitSetFP(FramePtr, ARM::SP, -Offset); else if (DstReg == ARM::SP) { // Change of SP by an offset. Positive values correspond to "sub" // instruction. ATS.emitPad(Offset); } else { // Move of SP to a register. Positive values correspond to an "add" // instruction. ATS.emitMovSP(DstReg, -Offset); } } } else if (DstReg == ARM::SP) { MI->print(errs()); llvm_unreachable("Unsupported opcode for unwinding information"); } else { int64_t Offset = 0; switch (Opc) { case ARM::tMOVr: // If a Thumb1 function spills r8-r11, we copy the values to low // registers before pushing them. Record the copy so we can emit the // correct ".save" later. AFI->EHPrologueRemappedRegs[DstReg] = SrcReg; break; case ARM::tLDRpci: { // Grab the constpool index and check, whether it corresponds to // original or cloned constpool entry. unsigned CPI = MI->getOperand(1).getIndex(); const MachineConstantPool *MCP = MF.getConstantPool(); if (CPI >= MCP->getConstants().size()) CPI = AFI->getOriginalCPIdx(CPI); assert(CPI != -1U && "Invalid constpool index"); // Derive the actual offset. const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); Offset = cast(CPE.Val.ConstVal)->getSExtValue(); AFI->EHPrologueOffsetInRegs[DstReg] = Offset; break; } case ARM::t2MOVi16: Offset = MI->getOperand(1).getImm(); AFI->EHPrologueOffsetInRegs[DstReg] = Offset; break; case ARM::t2MOVTi16: Offset = MI->getOperand(2).getImm(); AFI->EHPrologueOffsetInRegs[DstReg] |= (Offset << 16); break; case ARM::tMOVi8: Offset = MI->getOperand(2).getImm(); AFI->EHPrologueOffsetInRegs[DstReg] = Offset; break; case ARM::tLSLri: assert(MI->getOperand(3).getImm() == 8 && "The shift amount is not equal to 8"); assert(MI->getOperand(2).getReg() == MI->getOperand(0).getReg() && "The source register is not equal to the destination register"); AFI->EHPrologueOffsetInRegs[DstReg] <<= 8; break; case ARM::tADDi8: assert(MI->getOperand(2).getReg() == MI->getOperand(0).getReg() && "The source register is not equal to the destination register"); Offset = MI->getOperand(3).getImm(); AFI->EHPrologueOffsetInRegs[DstReg] += Offset; break; case ARM::t2PAC: case ARM::t2PACBTI: AFI->EHPrologueRemappedRegs[ARM::R12] = ARM::RA_AUTH_CODE; break; default: MI->print(errs()); llvm_unreachable("Unsupported opcode for unwinding information"); } } } } // Simple pseudo-instructions have their lowering (with expansion to real // instructions) auto-generated. #include "ARMGenMCPseudoLowering.inc" void ARMAsmPrinter::emitInstruction(const MachineInstr *MI) { // TODOD FIXME: Enable feature predicate checks once all the test pass. // ARM_MC::verifyInstructionPredicates(MI->getOpcode(), // getSubtargetInfo().getFeatureBits()); const DataLayout &DL = getDataLayout(); MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); ARMTargetStreamer &ATS = static_cast(TS); // If we just ended a constant pool, mark it as such. if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { OutStreamer->emitDataRegion(MCDR_DataRegionEnd); InConstantPool = false; } // Emit unwinding stuff for frame-related instructions if (Subtarget->isTargetEHABICompatible() && MI->getFlag(MachineInstr::FrameSetup)) EmitUnwindingInstruction(MI); // Do any auto-generated pseudo lowerings. if (emitPseudoExpansionLowering(*OutStreamer, MI)) return; assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && "Pseudo flag setting opcode should be expanded early"); // Check for manual lowerings. unsigned Opc = MI->getOpcode(); switch (Opc) { case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); case ARM::LEApcrel: case ARM::tLEApcrel: case ARM::t2LEApcrel: { // FIXME: Need to also handle globals and externals MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == ARM::t2LEApcrel ? ARM::t2ADR : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR : ARM::ADR)) .addReg(MI->getOperand(0).getReg()) .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) // Add predicate operands. .addImm(MI->getOperand(2).getImm()) .addReg(MI->getOperand(3).getReg())); return; } case ARM::LEApcrelJT: case ARM::tLEApcrelJT: case ARM::t2LEApcrelJT: { MCSymbol *JTIPICSymbol = GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == ARM::t2LEApcrelJT ? ARM::t2ADR : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR : ARM::ADR)) .addReg(MI->getOperand(0).getReg()) .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) // Add predicate operands. .addImm(MI->getOperand(2).getImm()) .addReg(MI->getOperand(3).getReg())); return; } // Darwin call instructions are just normal call instructions with different // clobber semantics (they clobber R9). case ARM::BX_CALL: { EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) .addReg(ARM::LR) .addReg(ARM::PC) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0) // Add 's' bit operand (always reg0 for this) .addReg(0)); assert(Subtarget->hasV4TOps()); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) .addReg(MI->getOperand(0).getReg())); return; } case ARM::tBX_CALL: { if (Subtarget->hasV5TOps()) llvm_unreachable("Expected BLX to be selected for v5t+"); // On ARM v4t, when doing a call from thumb mode, we need to ensure // that the saved lr has its LSB set correctly (the arch doesn't // have blx). // So here we generate a bl to a small jump pad that does bx rN. // The jump pads are emitted after the function body. Register TReg = MI->getOperand(0).getReg(); MCSymbol *TRegSym = nullptr; for (std::pair &TIP : ThumbIndirectPads) { if (TIP.first == TReg) { TRegSym = TIP.second; break; } } if (!TRegSym) { TRegSym = OutContext.createTempSymbol(); ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); } // Create a link-saving branch to the Reg Indirect Jump Pad. EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) // Predicate comes first here. .addImm(ARMCC::AL).addReg(0) .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); return; } case ARM::BMOVPCRX_CALL: { EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) .addReg(ARM::LR) .addReg(ARM::PC) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0) // Add 's' bit operand (always reg0 for this) .addReg(0)); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) .addReg(ARM::PC) .addReg(MI->getOperand(0).getReg()) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0) // Add 's' bit operand (always reg0 for this) .addReg(0)); return; } case ARM::BMOVPCB_CALL: { EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) .addReg(ARM::LR) .addReg(ARM::PC) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0) // Add 's' bit operand (always reg0 for this) .addReg(0)); const MachineOperand &Op = MI->getOperand(0); const GlobalValue *GV = Op.getGlobal(); const unsigned TF = Op.getTargetFlags(); MCSymbol *GVSym = GetARMGVSymbol(GV, TF); const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) .addExpr(GVSymExpr) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0)); return; } case ARM::MOVi16_ga_pcrel: case ARM::t2MOVi16_ga_pcrel: { MCInst TmpInst; TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); unsigned TF = MI->getOperand(1).getTargetFlags(); const GlobalValue *GV = MI->getOperand(1).getGlobal(); MCSymbol *GVSym = GetARMGVSymbol(GV, TF); const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); MCSymbol *LabelSym = getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(2).getImm(), OutContext); const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; const MCExpr *PCRelExpr = ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, MCBinaryExpr::createAdd(LabelSymExpr, MCConstantExpr::create(PCAdj, OutContext), OutContext), OutContext), OutContext); TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); // Add predicate operands. TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::createReg(0)); // Add 's' bit operand (always reg0 for this) TmpInst.addOperand(MCOperand::createReg(0)); EmitToStreamer(*OutStreamer, TmpInst); return; } case ARM::MOVTi16_ga_pcrel: case ARM::t2MOVTi16_ga_pcrel: { MCInst TmpInst; TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel ? ARM::MOVTi16 : ARM::t2MOVTi16); TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); unsigned TF = MI->getOperand(2).getTargetFlags(); const GlobalValue *GV = MI->getOperand(2).getGlobal(); MCSymbol *GVSym = GetARMGVSymbol(GV, TF); const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); MCSymbol *LabelSym = getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(3).getImm(), OutContext); const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; const MCExpr *PCRelExpr = ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, MCBinaryExpr::createAdd(LabelSymExpr, MCConstantExpr::create(PCAdj, OutContext), OutContext), OutContext), OutContext); TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); // Add predicate operands. TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::createReg(0)); // Add 's' bit operand (always reg0 for this) TmpInst.addOperand(MCOperand::createReg(0)); EmitToStreamer(*OutStreamer, TmpInst); return; } case ARM::t2BFi: case ARM::t2BFic: case ARM::t2BFLi: case ARM::t2BFr: case ARM::t2BFLr: { // This is a Branch Future instruction. const MCExpr *BranchLabel = MCSymbolRefExpr::create( getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(0).getIndex(), OutContext), OutContext); auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel); if (MI->getOperand(1).isReg()) { // For BFr/BFLr MCInst.addReg(MI->getOperand(1).getReg()); } else { // For BFi/BFLi/BFic const MCExpr *BranchTarget; if (MI->getOperand(1).isMBB()) BranchTarget = MCSymbolRefExpr::create( MI->getOperand(1).getMBB()->getSymbol(), OutContext); else if (MI->getOperand(1).isGlobal()) { const GlobalValue *GV = MI->getOperand(1).getGlobal(); BranchTarget = MCSymbolRefExpr::create( GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext); } else if (MI->getOperand(1).isSymbol()) { BranchTarget = MCSymbolRefExpr::create( GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()), OutContext); } else llvm_unreachable("Unhandled operand kind in Branch Future instruction"); MCInst.addExpr(BranchTarget); } if (Opc == ARM::t2BFic) { const MCExpr *ElseLabel = MCSymbolRefExpr::create( getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(2).getIndex(), OutContext), OutContext); MCInst.addExpr(ElseLabel); MCInst.addImm(MI->getOperand(3).getImm()); } else { MCInst.addImm(MI->getOperand(2).getImm()) .addReg(MI->getOperand(3).getReg()); } EmitToStreamer(*OutStreamer, MCInst); return; } case ARM::t2BF_LabelPseudo: { // This is a pseudo op for a label used by a branch future instruction // Emit the label. OutStreamer->emitLabel(getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(0).getIndex(), OutContext)); return; } case ARM::tPICADD: { // This is a pseudo op for a label + instruction sequence, which looks like: // LPC0: // add r0, pc // This adds the address of LPC0 to r0. // Emit the label. OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(2).getImm(), OutContext)); // Form and emit the add. EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) .addReg(MI->getOperand(0).getReg()) .addReg(MI->getOperand(0).getReg()) .addReg(ARM::PC) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0)); return; } case ARM::PICADD: { // This is a pseudo op for a label + instruction sequence, which looks like: // LPC0: // add r0, pc, r0 // This adds the address of LPC0 to r0. // Emit the label. OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(2).getImm(), OutContext)); // Form and emit the add. EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) .addReg(MI->getOperand(0).getReg()) .addReg(ARM::PC) .addReg(MI->getOperand(1).getReg()) // Add predicate operands. .addImm(MI->getOperand(3).getImm()) .addReg(MI->getOperand(4).getReg()) // Add 's' bit operand (always reg0 for this) .addReg(0)); return; } case ARM::PICSTR: case ARM::PICSTRB: case ARM::PICSTRH: case ARM::PICLDR: case ARM::PICLDRB: case ARM::PICLDRH: case ARM::PICLDRSB: case ARM::PICLDRSH: { // This is a pseudo op for a label + instruction sequence, which looks like: // LPC0: // OP r0, [pc, r0] // The LCP0 label is referenced by a constant pool entry in order to get // a PC-relative address at the ldr instruction. // Emit the label. OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(2).getImm(), OutContext)); // Form and emit the load unsigned Opcode; switch (MI->getOpcode()) { default: llvm_unreachable("Unexpected opcode!"); case ARM::PICSTR: Opcode = ARM::STRrs; break; case ARM::PICSTRB: Opcode = ARM::STRBrs; break; case ARM::PICSTRH: Opcode = ARM::STRH; break; case ARM::PICLDR: Opcode = ARM::LDRrs; break; case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; case ARM::PICLDRH: Opcode = ARM::LDRH; break; case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; } EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) .addReg(MI->getOperand(0).getReg()) .addReg(ARM::PC) .addReg(MI->getOperand(1).getReg()) .addImm(0) // Add predicate operands. .addImm(MI->getOperand(3).getImm()) .addReg(MI->getOperand(4).getReg())); return; } case ARM::CONSTPOOL_ENTRY: { if (Subtarget->genExecuteOnly()) llvm_unreachable("execute-only should not generate constant pools"); /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool /// in the function. The first operand is the ID# for this instruction, the /// second is the index into the MachineConstantPool that this is, the third /// is the size in bytes of this constant pool entry. /// The required alignment is specified on the basic block holding this MI. unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); // If this is the first entry of the pool, mark it. if (!InConstantPool) { OutStreamer->emitDataRegion(MCDR_DataRegion); InConstantPool = true; } OutStreamer->emitLabel(GetCPISymbol(LabelId)); const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; if (MCPE.isMachineConstantPoolEntry()) emitMachineConstantPoolValue(MCPE.Val.MachineCPVal); else emitGlobalConstant(DL, MCPE.Val.ConstVal); return; } case ARM::JUMPTABLE_ADDRS: emitJumpTableAddrs(MI); return; case ARM::JUMPTABLE_INSTS: emitJumpTableInsts(MI); return; case ARM::JUMPTABLE_TBB: case ARM::JUMPTABLE_TBH: emitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); return; case ARM::t2BR_JT: { EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) .addReg(ARM::PC) .addReg(MI->getOperand(0).getReg()) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0)); return; } case ARM::t2TBB_JT: case ARM::t2TBH_JT: { unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; // Lower and emit the PC label, then the instruction itself. OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) .addReg(MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0)); return; } case ARM::tTBB_JT: case ARM::tTBH_JT: { bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; Register Base = MI->getOperand(0).getReg(); Register Idx = MI->getOperand(1).getReg(); assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); // Multiply up idx if necessary. if (!Is8Bit) EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) .addReg(Idx) .addReg(ARM::CPSR) .addReg(Idx) .addImm(1) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0)); if (Base == ARM::PC) { // TBB [base, idx] = // ADDS idx, idx, base // LDRB idx, [idx, #4] ; or LDRH if TBH // LSLS idx, #1 // ADDS pc, pc, idx // When using PC as the base, it's important that there is no padding // between the last ADDS and the start of the jump table. The jump table // is 4-byte aligned, so we ensure we're 4 byte aligned here too. // // FIXME: Ideally we could vary the LDRB index based on the padding // between the sequence and jump table, however that relies on MCExprs // for load indexes which are currently not supported. OutStreamer->emitCodeAlignment(Align(4), &getSubtargetInfo()); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) .addReg(Idx) .addReg(Idx) .addReg(Base) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0)); unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) .addReg(Idx) .addReg(Idx) .addImm(Is8Bit ? 4 : 2) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0)); } else { // TBB [base, idx] = // LDRB idx, [base, idx] ; or LDRH if TBH // LSLS idx, #1 // ADDS pc, pc, idx unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) .addReg(Idx) .addReg(Base) .addReg(Idx) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0)); } EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) .addReg(Idx) .addReg(ARM::CPSR) .addReg(Idx) .addImm(1) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0)); OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) .addReg(ARM::PC) .addReg(ARM::PC) .addReg(Idx) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0)); return; } case ARM::tBR_JTr: case ARM::BR_JTr: { // mov pc, target MCInst TmpInst; unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? ARM::MOVr : ARM::tMOVr; TmpInst.setOpcode(Opc); TmpInst.addOperand(MCOperand::createReg(ARM::PC)); TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); // Add predicate operands. TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::createReg(0)); // Add 's' bit operand (always reg0 for this) if (Opc == ARM::MOVr) TmpInst.addOperand(MCOperand::createReg(0)); EmitToStreamer(*OutStreamer, TmpInst); return; } case ARM::BR_JTm_i12: { // ldr pc, target MCInst TmpInst; TmpInst.setOpcode(ARM::LDRi12); TmpInst.addOperand(MCOperand::createReg(ARM::PC)); TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); // Add predicate operands. TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::createReg(0)); EmitToStreamer(*OutStreamer, TmpInst); return; } case ARM::BR_JTm_rs: { // ldr pc, target MCInst TmpInst; TmpInst.setOpcode(ARM::LDRrs); TmpInst.addOperand(MCOperand::createReg(ARM::PC)); TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); // Add predicate operands. TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::createReg(0)); EmitToStreamer(*OutStreamer, TmpInst); return; } case ARM::BR_JTadd: { // add pc, target, idx EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) .addReg(ARM::PC) .addReg(MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0) // Add 's' bit operand (always reg0 for this) .addReg(0)); return; } case ARM::SPACE: OutStreamer->emitZeros(MI->getOperand(1).getImm()); return; case ARM::TRAP: { // Non-Darwin binutils don't yet support the "trap" mnemonic. // FIXME: Remove this special case when they do. if (!Subtarget->isTargetMachO()) { uint32_t Val = 0xe7ffdefeUL; OutStreamer->AddComment("trap"); ATS.emitInst(Val); return; } break; } case ARM::TRAPNaCl: { uint32_t Val = 0xe7fedef0UL; OutStreamer->AddComment("trap"); ATS.emitInst(Val); return; } case ARM::tTRAP: { // Non-Darwin binutils don't yet support the "trap" mnemonic. // FIXME: Remove this special case when they do. if (!Subtarget->isTargetMachO()) { uint16_t Val = 0xdefe; OutStreamer->AddComment("trap"); ATS.emitInst(Val, 'n'); return; } break; } case ARM::t2Int_eh_sjlj_setjmp: case ARM::t2Int_eh_sjlj_setjmp_nofp: case ARM::tInt_eh_sjlj_setjmp: { // Two incoming args: GPR:$src, GPR:$val // mov $val, pc // adds $val, #7 // str $val, [$src, #4] // movs r0, #0 // b LSJLJEH // movs r0, #1 // LSJLJEH: Register SrcReg = MI->getOperand(0).getReg(); Register ValReg = MI->getOperand(1).getReg(); MCSymbol *Label = OutContext.createTempSymbol("SJLJEH"); OutStreamer->AddComment("eh_setjmp begin"); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) .addReg(ValReg) .addReg(ARM::PC) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) .addReg(ValReg) // 's' bit operand .addReg(ARM::CPSR) .addReg(ValReg) .addImm(7) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) .addReg(ValReg) .addReg(SrcReg) // The offset immediate is #4. The operand value is scaled by 4 for the // tSTR instruction. .addImm(1) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) .addReg(ARM::R0) .addReg(ARM::CPSR) .addImm(0) // Predicate. .addImm(ARMCC::AL) .addReg(0)); const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) .addExpr(SymbolExpr) .addImm(ARMCC::AL) .addReg(0)); OutStreamer->AddComment("eh_setjmp end"); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) .addReg(ARM::R0) .addReg(ARM::CPSR) .addImm(1) // Predicate. .addImm(ARMCC::AL) .addReg(0)); OutStreamer->emitLabel(Label); return; } case ARM::Int_eh_sjlj_setjmp_nofp: case ARM::Int_eh_sjlj_setjmp: { // Two incoming args: GPR:$src, GPR:$val // add $val, pc, #8 // str $val, [$src, #+4] // mov r0, #0 // add pc, pc, #0 // mov r0, #1 Register SrcReg = MI->getOperand(0).getReg(); Register ValReg = MI->getOperand(1).getReg(); OutStreamer->AddComment("eh_setjmp begin"); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) .addReg(ValReg) .addReg(ARM::PC) .addImm(8) // Predicate. .addImm(ARMCC::AL) .addReg(0) // 's' bit operand (always reg0 for this). .addReg(0)); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) .addReg(ValReg) .addReg(SrcReg) .addImm(4) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) .addReg(ARM::R0) .addImm(0) // Predicate. .addImm(ARMCC::AL) .addReg(0) // 's' bit operand (always reg0 for this). .addReg(0)); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) .addReg(ARM::PC) .addReg(ARM::PC) .addImm(0) // Predicate. .addImm(ARMCC::AL) .addReg(0) // 's' bit operand (always reg0 for this). .addReg(0)); OutStreamer->AddComment("eh_setjmp end"); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) .addReg(ARM::R0) .addImm(1) // Predicate. .addImm(ARMCC::AL) .addReg(0) // 's' bit operand (always reg0 for this). .addReg(0)); return; } case ARM::Int_eh_sjlj_longjmp: { // ldr sp, [$src, #8] // ldr $scratch, [$src, #4] // ldr r7, [$src] // bx $scratch Register SrcReg = MI->getOperand(0).getReg(); Register ScratchReg = MI->getOperand(1).getReg(); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) .addReg(ARM::SP) .addReg(SrcReg) .addImm(8) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) .addReg(ScratchReg) .addReg(SrcReg) .addImm(4) // Predicate. .addImm(ARMCC::AL) .addReg(0)); const MachineFunction &MF = *MI->getParent()->getParent(); const ARMSubtarget &STI = MF.getSubtarget(); if (STI.isTargetDarwin() || STI.isTargetWindows()) { // These platforms always use the same frame register EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) .addReg(STI.getFramePointerReg()) .addReg(SrcReg) .addImm(0) // Predicate. .addImm(ARMCC::AL) .addReg(0)); } else { // If the calling code might use either R7 or R11 as // frame pointer register, restore it into both. EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) .addReg(ARM::R7) .addReg(SrcReg) .addImm(0) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) .addReg(ARM::R11) .addReg(SrcReg) .addImm(0) // Predicate. .addImm(ARMCC::AL) .addReg(0)); } assert(Subtarget->hasV4TOps()); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) .addReg(ScratchReg) // Predicate. .addImm(ARMCC::AL) .addReg(0)); return; } case ARM::tInt_eh_sjlj_longjmp: { // ldr $scratch, [$src, #8] // mov sp, $scratch // ldr $scratch, [$src, #4] // ldr r7, [$src] // bx $scratch Register SrcReg = MI->getOperand(0).getReg(); Register ScratchReg = MI->getOperand(1).getReg(); const MachineFunction &MF = *MI->getParent()->getParent(); const ARMSubtarget &STI = MF.getSubtarget(); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) .addReg(ScratchReg) .addReg(SrcReg) // The offset immediate is #8. The operand value is scaled by 4 for the // tLDR instruction. .addImm(2) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) .addReg(ARM::SP) .addReg(ScratchReg) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) .addReg(ScratchReg) .addReg(SrcReg) .addImm(1) // Predicate. .addImm(ARMCC::AL) .addReg(0)); if (STI.isTargetDarwin() || STI.isTargetWindows()) { // These platforms always use the same frame register EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) .addReg(STI.getFramePointerReg()) .addReg(SrcReg) .addImm(0) // Predicate. .addImm(ARMCC::AL) .addReg(0)); } else { // If the calling code might use either R7 or R11 as // frame pointer register, restore it into both. EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) .addReg(ARM::R7) .addReg(SrcReg) .addImm(0) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) .addReg(ARM::R11) .addReg(SrcReg) .addImm(0) // Predicate. .addImm(ARMCC::AL) .addReg(0)); } EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) .addReg(ScratchReg) // Predicate. .addImm(ARMCC::AL) .addReg(0)); return; } case ARM::tInt_WIN_eh_sjlj_longjmp: { // ldr.w r11, [$src, #0] // ldr.w sp, [$src, #8] // ldr.w pc, [$src, #4] Register SrcReg = MI->getOperand(0).getReg(); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) .addReg(ARM::R11) .addReg(SrcReg) .addImm(0) // Predicate .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) .addReg(ARM::SP) .addReg(SrcReg) .addImm(8) // Predicate .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) .addReg(ARM::PC) .addReg(SrcReg) .addImm(4) // Predicate .addImm(ARMCC::AL) .addReg(0)); return; } case ARM::PATCHABLE_FUNCTION_ENTER: LowerPATCHABLE_FUNCTION_ENTER(*MI); return; case ARM::PATCHABLE_FUNCTION_EXIT: LowerPATCHABLE_FUNCTION_EXIT(*MI); return; case ARM::PATCHABLE_TAIL_CALL: LowerPATCHABLE_TAIL_CALL(*MI); return; case ARM::SpeculationBarrierISBDSBEndBB: { // Print DSB SYS + ISB MCInst TmpInstDSB; TmpInstDSB.setOpcode(ARM::DSB); TmpInstDSB.addOperand(MCOperand::createImm(0xf)); EmitToStreamer(*OutStreamer, TmpInstDSB); MCInst TmpInstISB; TmpInstISB.setOpcode(ARM::ISB); TmpInstISB.addOperand(MCOperand::createImm(0xf)); EmitToStreamer(*OutStreamer, TmpInstISB); return; } case ARM::t2SpeculationBarrierISBDSBEndBB: { // Print DSB SYS + ISB MCInst TmpInstDSB; TmpInstDSB.setOpcode(ARM::t2DSB); TmpInstDSB.addOperand(MCOperand::createImm(0xf)); TmpInstDSB.addOperand(MCOperand::createImm(ARMCC::AL)); TmpInstDSB.addOperand(MCOperand::createReg(0)); EmitToStreamer(*OutStreamer, TmpInstDSB); MCInst TmpInstISB; TmpInstISB.setOpcode(ARM::t2ISB); TmpInstISB.addOperand(MCOperand::createImm(0xf)); TmpInstISB.addOperand(MCOperand::createImm(ARMCC::AL)); TmpInstISB.addOperand(MCOperand::createReg(0)); EmitToStreamer(*OutStreamer, TmpInstISB); return; } case ARM::SpeculationBarrierSBEndBB: { // Print SB MCInst TmpInstSB; TmpInstSB.setOpcode(ARM::SB); EmitToStreamer(*OutStreamer, TmpInstSB); return; } case ARM::t2SpeculationBarrierSBEndBB: { // Print SB MCInst TmpInstSB; TmpInstSB.setOpcode(ARM::t2SB); EmitToStreamer(*OutStreamer, TmpInstSB); return; } case ARM::SEH_StackAlloc: ATS.emitARMWinCFIAllocStack(MI->getOperand(0).getImm(), MI->getOperand(1).getImm()); return; case ARM::SEH_SaveRegs: case ARM::SEH_SaveRegs_Ret: ATS.emitARMWinCFISaveRegMask(MI->getOperand(0).getImm(), MI->getOperand(1).getImm()); return; case ARM::SEH_SaveSP: ATS.emitARMWinCFISaveSP(MI->getOperand(0).getImm()); return; case ARM::SEH_SaveFRegs: ATS.emitARMWinCFISaveFRegs(MI->getOperand(0).getImm(), MI->getOperand(1).getImm()); return; case ARM::SEH_SaveLR: ATS.emitARMWinCFISaveLR(MI->getOperand(0).getImm()); return; case ARM::SEH_Nop: case ARM::SEH_Nop_Ret: ATS.emitARMWinCFINop(MI->getOperand(0).getImm()); return; case ARM::SEH_PrologEnd: ATS.emitARMWinCFIPrologEnd(/*Fragment=*/false); return; case ARM::SEH_EpilogStart: ATS.emitARMWinCFIEpilogStart(ARMCC::AL); return; case ARM::SEH_EpilogEnd: ATS.emitARMWinCFIEpilogEnd(); return; } MCInst TmpInst; LowerARMMachineInstrToMCInst(MI, TmpInst, *this); EmitToStreamer(*OutStreamer, TmpInst); } //===----------------------------------------------------------------------===// // Target Registry Stuff //===----------------------------------------------------------------------===// // Force static initialization. extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmPrinter() { RegisterAsmPrinter X(getTheARMLETarget()); RegisterAsmPrinter Y(getTheARMBETarget()); RegisterAsmPrinter A(getTheThumbLETarget()); RegisterAsmPrinter B(getTheThumbBETarget()); }