//===- ARCInstrInfo.td - Target Description for ARC --------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the ARC instructions in TableGen format. // //===----------------------------------------------------------------------===// include "ARCInstrFormats.td" //===----------------------------------------------------------------------===// // Operand Pattern Stuff. //===----------------------------------------------------------------------===// // Operand for printing out a condition code. let PrintMethod = "printCCOperand" in def CCOp : PredicateOperand; // The "u6" operand of a RRU6-type instruction let PrintMethod = "printU6" in { def u6 : Operand, ImmLeaf(Imm); }]>; def wide_u6 : Operand, ImmLeaf(Imm); }]>; } // --------------------------------------------------------------------------- // Selection DAG Nodes. // --------------------------------------------------------------------------- // Selection DAG types. def SDT_ARCcmptst : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>; def SDT_ARCcmov : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>]>; def SDT_ARCmov : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>]>; def SDT_ARCbrcc : SDTypeProfile<0, 4, []>; def SDT_ARCBranchLink : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; def SDT_ARCCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; def SDT_ARCCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; // Global Address. def ARCGAWrapper : SDNode<"ARCISD::GAWRAPPER", SDT_ARCmov, []>; // Comparison def ARCcmp : SDNode<"ARCISD::CMP", SDT_ARCcmptst, [SDNPOutGlue]>; // Conditional mov def ARCcmov : SDNode<"ARCISD::CMOV", SDT_ARCcmov, [SDNPInGlue]>; // Conditional Branch def ARCbrcc : SDNode<"ARCISD::BRcc", SDT_ARCbrcc, [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>; // Direct Call def ARCBranchLink : SDNode<"ARCISD::BL",SDT_ARCBranchLink, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; // Indirect Call def ARCJumpLink : SDNode<"ARCISD::JL",SDT_ARCBranchLink, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; // Call return def ret : SDNode<"ARCISD::RET", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; // Call sequencing nodes. // These are target-independent nodes, but have target-specific formats. def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARCCallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_ARCCallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; //===----------------------------------------------------------------------===// // Instruction predicates //===----------------------------------------------------------------------===// def HasNorm : Predicate<"Subtarget->hasNorm()">; //===----------------------------------------------------------------------===// // Instruction Pattern Stuff //===----------------------------------------------------------------------===// def imm32 : ImmLeaf; // Addressing modes def FrameADDR_ri : ComplexPattern; def AddrModeS9 : ComplexPattern; def AddrModeImm : ComplexPattern; def AddrModeFar : ComplexPattern; //===----------------------------------------------------------------------===// // Instruction Class Templates //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Pseudo Instructions //===----------------------------------------------------------------------===// let Defs = [SP], Uses = [SP] in { def ADJCALLSTACKDOWN : PseudoInstARC<(outs), (ins i32imm:$amt, i32imm:$amt2), "# ADJCALLSTACKDOWN $amt, $amt2", [(callseq_start timm:$amt, timm:$amt2)]>; def ADJCALLSTACKUP : PseudoInstARC<(outs), (ins i32imm:$amt1, i32imm:$amt2), "# ADJCALLSTACKUP $amt1", [(callseq_end timm:$amt1, timm:$amt2)]>; } def GETFI : PseudoInstARC<(outs GPR32:$dst), (ins MEMii:$addr), "pldfi $dst, $addr", [(set GPR32:$dst, FrameADDR_ri:$addr)]>; def ST_FAR : PseudoInstARC<(outs), (ins GPR32:$dst, MEMrlimm:$addr), "ST_FAR $dst, $addr", [(store GPR32:$dst, AddrModeFar:$addr)]>; def STH_FAR : PseudoInstARC<(outs), (ins GPR32:$dst, MEMrlimm:$addr), "STH_FAR $dst, $addr", [(truncstorei16 GPR32:$dst, AddrModeFar:$addr)]>; def STB_FAR : PseudoInstARC<(outs), (ins GPR32:$dst, MEMrlimm:$addr), "STB_FAR $dst, $addr", [(truncstorei8 GPR32:$dst, AddrModeFar:$addr)]>; // TODO: Add `Requires<[HasBitScan]>` predicate to these when available. let Defs = [STATUS32] in { def CTLZ : PseudoInstARC<(outs GPR32:$A), (ins GPR32:$B), "error.fls $A, $B", [(set GPR32:$A, (ctlz i32:$B))]>; def CTTZ : PseudoInstARC<(outs GPR32:$A), (ins GPR32:$B), "error.ffs $A, $B", [(set GPR32:$A, (cttz i32:$B))]>; } //===----------------------------------------------------------------------===// // Instruction Generation multiclasses. // Generate many variants of a single instruction with a single defining // multiclass. These classes do not contain Selection DAG patterns. //===----------------------------------------------------------------------===// // Generic 3 operand binary instructions (i.e., add r0, r1, r2). multiclass ArcBinaryInst major, bits<6> mincode, string opasm, bit Commutable> { // 3 register variant. def _rrr : F32_DOP_RR { let isCommutable = Commutable; } def _f_rrr : F32_DOP_RR { let Defs = [STATUS32]; } // 2 register with unsigned 6-bit immediate variant. def _rru6 : F32_DOP_RU6; def _f_rru6 : F32_DOP_RU6 { let Defs = [STATUS32]; } def _cc_rru6 : F32_DOP_CC_RRU6 { let Uses = [STATUS32]; let Constraints = "$A = $B"; } def _cc_f_rru6 : F32_DOP_CC_RRU6 { let Defs = [STATUS32]; let Uses = [STATUS32]; let Constraints = "$A = $B"; } // 2 register with 32-bit immediate variant. def _rrlimm : F32_DOP_RLIMM; def _f_rrlimm : F32_DOP_RLIMM { let Defs = [STATUS32]; } // 2 matched-register with signed 12-bit immediate variant (add r0, r0, -1). def _rrs12 : F32_DOP_RS12:$S12), !strconcat(opasm, "\t$B, $in, $S12"), []> { let Constraints = "$B = $in"; } def _f_rrs12 : F32_DOP_RS12:$S12), !strconcat(opasm, ".f\t$B, $in, $S12"), []> { let Constraints = "$B = $in"; let Defs = [STATUS32]; } } // Special multivariant GEN4 DOP format instruction that take 2 registers. // This is the class that is used for various comparison instructions. multiclass ArcSpecialDOPInst subop, string opasm, bit F> { def _rr : F32_DOP_RR<0b00100, subop, F, (outs), (ins GPR32:$B, GPR32:$C), !strconcat(opasm, "\t$B, $C"), []>; def _ru6 : F32_DOP_RU6<0b00100, subop, F, (outs), (ins GPR32:$B, i32imm:$U6), !strconcat(opasm, "\t$B, $U6"), []>; def _rlimm : F32_DOP_RLIMM<0b00100, subop, F, (outs), (ins GPR32:$B, i32imm:$LImm), !strconcat(opasm, "\t$B, $LImm"), []>; } // Generic 2-operand unary instructions. multiclass ArcUnaryInst major, bits<6> subop, string opasm> { def _rr : F32_SOP_RR; def _f_rr : F32_SOP_RR { let Defs = [STATUS32]; } } multiclass ArcBinaryGEN4Inst mincode, string opasm, bit Commutable = 0> : ArcBinaryInst<0b00100, mincode, opasm, Commutable>; multiclass ArcBinaryEXT5Inst mincode, string opasm> : ArcBinaryInst<0b00101, mincode, opasm, 0>; multiclass ArcUnaryGEN4Inst mincode, string opasm> : ArcUnaryInst<0b00100, mincode, opasm>; multiclass ArcUnaryEXT5Inst mincode, string opasm> : ArcUnaryInst<0b00101, mincode, opasm>; // Pattern generation for different instruction variants. multiclass MultiPat { def _rrr : Pat<(InFrag i32:$B, i32:$C), (RRR i32:$B, i32:$C)>; def _rru6 : Pat<(InFrag i32:$B, immU6:$U6), (RRU6 i32:$B, immU6:$U6)>; def _rrlimm : Pat<(InFrag i32:$B, imm32:$LImm), (RRLImm i32:$B, imm32:$LImm)>; } // NOTE: This could be specialized later with a custom `PrintMethod` for // displaying the aux register name. E.g. `[%count0]` instead of [33]. def AuxReg : Operand; def LR_rs12 : F32_SOP_RS12<0b00100, 0b101010, 0, (outs GPR32:$B), (ins AuxReg:$C), "lr\t$B, [$C]", []>; def LR_ru6 : F32_SOP_RU6<0b00100, 0b101010, 0, (outs GPR32:$B), (ins AuxReg:$C), "lr\t$B, [$C]", []>; def: Pat<(i32 readcyclecounter), (LR_rs12 0x21) >; // read timer // --------------------------------------------------------------------------- // Instruction definitions and patterns for 3 operand binary instructions. // --------------------------------------------------------------------------- // Definitions for 3 operand binary instructions. defm ADD : ArcBinaryGEN4Inst<0b000000, "add",1>; defm SUB : ArcBinaryGEN4Inst<0b000010, "sub">; defm SUB1 : ArcBinaryGEN4Inst<0b010111, "sub1">; defm SUB2 : ArcBinaryGEN4Inst<0b011000, "sub2">; defm SUB3 : ArcBinaryGEN4Inst<0b011001, "sub3">; defm RSUB : ArcBinaryGEN4Inst<0b001110, "rsub">; defm OR : ArcBinaryGEN4Inst<0b000101, "or",1>; defm AND : ArcBinaryGEN4Inst<0b000100, "and",1>; defm XOR : ArcBinaryGEN4Inst<0b000111, "xor",1>; defm MAX : ArcBinaryGEN4Inst<0b001000, "max",1>; defm MIN : ArcBinaryGEN4Inst<0b001001, "min",1>; defm ASL : ArcBinaryEXT5Inst<0b000000, "asl">; defm LSR : ArcBinaryEXT5Inst<0b000001, "lsr">; defm ASR : ArcBinaryEXT5Inst<0b000010, "asr">; defm ROR : ArcBinaryEXT5Inst<0b000011, "ror">; defm MPY : ArcBinaryGEN4Inst<0b011010, "mpy",1>; defm MPYM : ArcBinaryGEN4Inst<0b011011, "mpym",1>; defm MPYMU : ArcBinaryGEN4Inst<0b011100, "mpymu",1>; defm SETEQ : ArcBinaryGEN4Inst<0b111000, "seteq",1>; let Uses=[STATUS32], isAsCheapAsAMove=0, isReMaterializable=0 in { defm ADC : ArcBinaryGEN4Inst<0b000001, "adc",1>; defm SBC : ArcBinaryGEN4Inst<0b000011, "sbc">; } // Patterns for 3 operand binary instructions. defm : MultiPat; defm : MultiPat; defm : MultiPat; defm : MultiPat; defm : MultiPat; defm : MultiPat; defm : MultiPat; defm : MultiPat; defm : MultiPat; defm : MultiPat; defm : MultiPat; defm : MultiPat; defm : MultiPat; defm : MultiPat; defm : MultiPat; defm : MultiPat; defm : MultiPat; defm : MultiPat; // --------------------------------------------------------------------------- // Unary Instruction definitions. // --------------------------------------------------------------------------- // General unary instruction definitions. defm SEXB : ArcUnaryGEN4Inst<0b000101, "sexb">; defm SEXH : ArcUnaryGEN4Inst<0b000110, "sexh">; // Extension unary instruction definitions. defm FFS : ArcUnaryEXT5Inst<0b010010, "ffs">; defm FLS : ArcUnaryEXT5Inst<0b010011, "fls">; let Predicates=[HasNorm] in { defm NORM : ArcUnaryEXT5Inst<0b000001,"norm">; defm NORMH : ArcUnaryEXT5Inst<0b001000,"normh">; } // General Unary Instruction fragments. def : Pat<(sext_inreg i32:$a, i8), (SEXB_rr i32:$a)>; def : Pat<(sext_inreg i32:$a, i16), (SEXH_rr i32:$a)>; // Comparison instruction definition let isCompare = 1, Defs = [STATUS32] in { defm CMP : ArcSpecialDOPInst<0b001100, "cmp", 1>; } def cmp : PatFrag<(ops node:$op1, node:$op2), (ARCcmp $op1, $op2)>; defm : MultiPat; // --------------------------------------------------------------------------- // MOV instruction and variants (conditional mov). // --------------------------------------------------------------------------- let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in { def MOV_rs12 : F32_DOP_RS12<0b00100, 0b001010, 0, (outs GPR32:$B), (ins immS<12>:$S12), "mov\t$B, $S12", [(set GPR32:$B, immS<12>:$S12)]>; } def MOV_rr : F32_DOP_RR<0b00100, 0b001010, 0, (outs GPR32:$B), (ins GPR32:$C), "mov\t$B, $C", []>; def MOV_rlimm : F32_DOP_RLIMM<0b00100, 0b001010, 0, (outs GPR32:$B), (ins i32imm:$LImm), "mov\t$B, $LImm", []>; def MOV_ru6 : F32_DOP_RU6<0b00100, 0b001010, 0, (outs GPR32:$B), (ins immU6:$U6), "mov\t$B, $U6", []>; def MOV_f_ru6 : F32_DOP_RU6<0b00100, 0b001010, 1, (outs GPR32:$B), (ins u6:$U6), "mov.f\t$B, $U6", []> { let isAsCheapAsAMove=1; let Defs = [STATUS32]; } def cmov : PatFrag<(ops node:$op1, node:$op2, node:$cc), (ARCcmov $op1, $op2, $cc)>; let Uses = [STATUS32], isAsCheapAsAMove = 1, isPredicable=1, isReMaterializable = 0, Constraints = "$B = $B2" in { def MOV_cc : F32_DOP_CC_RR<0b00100, 0b001010, 0, (outs GPR32:$B), (ins GPR32:$C, GPR32:$B2, cmovpred:$cc), "mov.$cc\t$B, $C", [(set GPR32:$B, (cmov i32:$C, i32:$B2, cmovpred:$cc))]>; def MOV_cc_ru6 : F32_DOP_CC_RU6<0b00100, 0b001010, 0, (outs GPR32:$B), (ins u6:$C, CCOp:$cc, GPR32:$B2), "mov.$cc\t$B, $C", []>; def MOV_cc_f_ru6 : F32_DOP_CC_RU6<0b00100, 0b001010, 1, (outs GPR32:$B), (ins u6:$C, CCOp:$cc, GPR32:$B2), "mov.$cc.f\t$B, $C", []> { let Defs = [STATUS32]; } } def : Pat<(ARCGAWrapper tglobaladdr:$addr), (MOV_rlimm tglobaladdr:$addr)>; def : Pat<(ARCGAWrapper tjumptable:$addr), (MOV_rlimm tjumptable:$addr)>; // --------------------------------------------------------------------------- // Control flow instructions (branch, return, calls, etc). // --------------------------------------------------------------------------- // Branch instructions let isBranch = 1, isTerminator = 1 in { // Unconditional branch. let isBarrier = 1 in def BR : F32_BR0_UCOND_FAR<(outs), (ins btargetS25:$S25), "b\t$S25", [(br bb:$S25)]>; let Uses=[STATUS32] in // Conditional branch. def Bcc : F32_BR0_COND<(outs), (ins btargetS21:$S21, ccond:$cc), "b$cc\t$S21", []>; // Compare and branch (limited range). def BRcc_rr : F32_BR1_BCC<(outs), (ins btargetS9:$S9, GPR32:$B, GPR32:$C, brccond:$cc), "br$cc\t$B, $C, $S9", 0, []>; def BRcc_ru6 : F32_BR1_BCC<(outs), (ins btargetS9:$S9, GPR32:$B, immU6:$C, brccond:$cc), "br$cc\t$B, $C, $S9", 1, []>; // Pseudo compare and branch. // After register allocation, this can expand into either a limited range // Compare and branch (BRcc), or into CMP + Bcc. // At worst, this expands into 2 4-byte instructions. def BRcc_rr_p : PseudoInstARC<(outs), (ins btarget:$T, GPR32:$B, GPR32:$C, ccond:$cc), "pbr$cc\t$B, $C, $T", [(ARCbrcc bb:$T, i32:$B, i32:$C, imm32:$cc)]> { let Size = 8; } def BRcc_ru6_p : PseudoInstARC<(outs), (ins btarget:$T, GPR32:$B, i32imm:$C, ccond:$cc), "pbr$cc\t$B, $C, $T", [(ARCbrcc bb:$T, i32:$B, immU6:$C, imm32:$cc)]> { let Size = 8; } } // let isBranch, isTerminator // Unconditional Jump. let isBranch = 1, isTerminator = 1, isBarrier = 1 in { // Indirect. let isIndirectBranch = 1 in def J : F32_DOP_RR<0b00100, 0b100000, 0, (outs), (ins GPR32:$C), "j\t[$C]", [(brind i32:$C)]>; // Direct. def J_LImm : F32_DOP_RLIMM<0b00100, 0b100000, 0, (outs), (ins i32imm:$LImm), "j\t$LImm", []>; } // Call instructions. let isCall = 1, isBarrier = 1, Defs = [BLINK], Uses = [SP] in { // Direct unconditional call. def BL : F32_BR1_BL_UCOND_FAR<(outs), (ins calltargetS25:$S25), "bl\t$S25", [(ARCBranchLink tglobaladdr:$S25)]>; // Indirect unconditional call. let isIndirectBranch = 1 in def JL : F32_DOP_RR<0b00100, 0b100010, 0, (outs), (ins GPR32:$C), "jl\t[$C]", [(ARCJumpLink i32:$C)]>; // Direct unconditional call. def JL_LImm : F32_DOP_RLIMM<0b00100, 0b100010, 0, (outs), (ins i32imm:$LImm), "jl\t$LImm", []>; } // let isCall, isBarrier, Defs, Uses // Pattern to generate BL instruction. def : Pat<(ARCBranchLink texternalsym:$dst), (BL texternalsym:$dst)>; // Return from call. let isReturn = 1, isTerminator = 1, isBarrier = 1 in // This is a specialized 2-byte instruction that doesn't generalize // to any larger 2-byte class, so go ahead and define it here. def J_S_BLINK : InstARC<2, (outs), (ins), "j_s\t[%blink]", [(ret)]> { let Inst{15-0} = 0b0111111011100000; } //---------------------------------------------------------------------------- // Compact stack-based operations. //---------------------------------------------------------------------------- // 2-byte push/pop blink instructions commonly used for prolog/epilog // generation. These 2 instructions are actually specialized 2-byte // format instructions that aren't generalized to a larger 2-byte // class, so we might as well have them here. let Uses = [BLINK], Defs = [SP] in def PUSH_S_BLINK : F16_SP_OPS_buconst<0b111, "push_s">; let Defs = [BLINK, SP] in def POP_S_BLINK : F16_SP_OPS_buconst<0b110, "pop_s">; def PUSH_S_r : F16_SP_OPS_uconst<0b110, (outs), (ins GPR32Reduced:$b3), "push_s">; def POP_S_r : F16_SP_OPS_uconst<0b111, (outs GPR32Reduced:$b3), (ins), "pop_s">; def SP_SUB_SP_S : F16_SP_OPS_bconst<0b001, "sub_s">; def SP_ADD_SP_S : F16_SP_OPS_bconst<0b000, "add_s">; def SP_ADD_S : F16_SP_OPS_u7_aligned<0b100, (outs GPR32Reduced:$b3), (ins immU<7>:$u7), "add_s\t$b3, %sp, $u7">; def SP_LD_S : F16_SP_LD<0b000, "ld_s">; def SP_LDB_S : F16_SP_LD<0b001, "ldb_s">; def SP_ST_S : F16_SP_ST<0b010, "st_s">; def SP_STB_S : F16_SP_ST<0b011, "stb_s">; def LEAVE_S : F16_SP_OPS<0b110, (outs), (ins immU<7>:$u7), "leave_s\t$u7"> { bits<7> u7; let fieldB = u7{6-4}; let fieldU{4-1} = u7{3-0}; let fieldU{0} = 0b0; } def ENTER_S : F16_SP_OPS<0b111, (outs), (ins immU<6>:$u6), "enter_s\t$u6"> { bits<6> u6; let fieldB{2} = 0; let fieldB{1-0} = u6{5-4}; let fieldU{4-1} = u6{3-0}; let fieldU{0} = 0b0; } //---------------------------------------------------------------------------- // Compact Move/Load instructions. //---------------------------------------------------------------------------- class COMPACT_MOV_S : F16_COMPACT<0b0, (outs GPR32:$g), (ins GPR32:$h), "mov_s\t$g, $h"> { let DecoderMethod = "DecodeMoveHRegInstruction"; } def COMPACT_MOV_S_limm : COMPACT_MOV_S { bits<32> LImm; let Inst{47-16} = LImm; bits<5> LImmReg = 0b11110; let Inst{7-5} = LImmReg{2-0}; let Inst{1-0} = LImmReg{4-3}; let Size = 6; } def COMPACT_MOV_S_hreg : COMPACT_MOV_S; def COMPACT_LD_S : F16_COMPACT<0b1, (outs GPR32:$r), (ins GPR32:$h, immU<5>:$u5), "ld_s\t$r, [$h, $u5]"> { bits<5> u5; bits<2> r; let Inst{10} = u5{4}; let Inst{9-8} = r; let Inst{4-3} = u5{3-2}; let u5{1-0} = 0b00; } //---------------------------------------------------------------------------- // Compact Load/Add/Sub. //---------------------------------------------------------------------------- def LD_S_AS_rrr : F16_LD_SUB<0b0, "ld_s.as\t$a, [$b, $c]">; def SUB_S_rrr : F16_LD_SUB<0b1, "sub_s\t$a, $b, $c">; def ADD_S_rru6 : F16_ADD; //---------------------------------------------------------------------------- // Compact Load/Store. //---------------------------------------------------------------------------- def LD_S_s11 : F16_LD_ST_s11<0b0, "ld_s\t%r1, [%gp, $s11]">; def ST_S_s11 : F16_LD_ST_s11<0b1, "st_s\t%r0, [%gp, $s11]">; def LDI_S_u7 : F16_LDI_u7; //---------------------------------------------------------------------------- // Indexed Jump or Execute. //---------------------------------------------------------------------------- def JLI_S : F16_JLI_EI<0, "jli_s">; def EI_S : F16_JLI_EI<1, "ei_s">; //---------------------------------------------------------------------------- // Load/Add Register-Register. //---------------------------------------------------------------------------- def LD_S_rrr : F16_LD_ADD_RR<0b00, "ld_s\t$a, [$b, $c]">; def LDB_S_rrr : F16_LD_ADD_RR<0b01, "ldb_s\t$a, [$b, $c]">; def LDH_S_rrr : F16_LD_ADD_RR<0b10, "ldh_s\t$a, [$b, $c]">; def ADD_S_rrr : F16_LD_ADD_RR<0b11, "add_s\t$a, $b, $c">; //---------------------------------------------------------------------------- // Load/Add GP-Relative. //---------------------------------------------------------------------------- def GP_LD_S : F16_GP_LD_ADD<0b00, (ins immS<11>:$s), "ld_s\t%r0, [%gp, $s]"> { bits<11> s; let Inst{8-0} = s{10-2}; let s{1-0} = 0b00; } def GP_LDB_S : F16_GP_LD_ADD<0b01, (ins immS<9>:$s), "ldb_s\t%r0, [%gp, $s]"> { bits<9> s; let Inst{8-0} = s{8-0}; } def GP_LDH_S : F16_GP_LD_ADD<0b10, (ins immS<10>:$s), "ldh_s\t%r0, [%gp, $s]"> { bits<10> s; let Inst{8-0} = s{9-1}; let s{0} = 0b0; } def GP_ADD_S : F16_GP_LD_ADD<0b11, (ins immS<11>:$s), "add_s\t%r0, %gp, $s"> { bits<11> s; let Inst{8-0} = s{10-2}; let s{1-0} = 0b00; } //---------------------------------------------------------------------------- // Load PCL-Relative. //---------------------------------------------------------------------------- def PCL_LD : InstARC<2, (outs GPR32:$b), (ins immU<10>:$u10), "ld_s\t$b, [%pcl, $u10]", []> { bits<3> b; bits<10> u10; let Inst{15-11} = 0b11010; let Inst{10-8} = b; let Inst{7-0} = u10{9-2}; let u10{1-0} = 0b00; } let isBranch = 1 in { //---------------------------------------------------------------------------- // Branch on Compare Register with Zero. //---------------------------------------------------------------------------- def BREQ_S : F16_BCC_REG<0b0, "breq_s">; def BRNE_S : F16_BCC_REG<0b1, "brne_s">; //---------------------------------------------------------------------------- // Branch Conditionally. //---------------------------------------------------------------------------- let isBarrier = 1 in def B_S : F16_BCC_s10<0b00, "b_s">; def BEQ_S : F16_BCC_s10<0b01, "beq_s">; def BNE_S : F16_BCC_s10<0b10, "bne_s">; def BGT_S : F16_BCC_s7<0b000, "bgt_s">; def BGE_S : F16_BCC_s7<0b001, "bge_s">; def BLT_S : F16_BCC_s7<0b010, "blt_s">; def BLE_S : F16_BCC_s7<0b011, "ble_s">; def BHI_S : F16_BCC_s7<0b100, "bhi_s">; def BHS_S : F16_BCC_s7<0b101, "bhs_s">; def BLO_S : F16_BCC_s7<0b110, "blo_s">; def BLS_S : F16_BCC_s7<0b111, "bls_s">; } // let isBranch def BL_S : InstARC<2, (outs), (ins btargetS13:$s13), "bl_s\t$s13", []> { let Inst{15-11} = 0b11111; bits<13> s13; let Inst{10-0} = s13{12-2}; let s13{1-0} = 0b00; let isCall = 1; let isBarrier = 1; } //---------------------------------------------------------------------------- // Add/Sub/Shift Register-Immediate. //---------------------------------------------------------------------------- def ADD_S_ru3 : F16_ADD_IMM<0b00,"add_s">; def SUB_S_ru3 : F16_ADD_IMM<0b01,"sub_s">; def ASL_S_ru3 : F16_ADD_IMM<0b10,"asl_s">; def ASR_S_ru3 : F16_ADD_IMM<0b11,"asr_s">; //---------------------------------------------------------------------------- // Shift/Subtract/Bit Immediate. //---------------------------------------------------------------------------- def ASL_S_ru5 : F16_SH_SUB_BIT_DST<0b000,"asl_s">; def LSR_S_ru5 : F16_SH_SUB_BIT_DST<0b001,"lsr_s">; def ASR_S_ru5 : F16_SH_SUB_BIT_DST<0b010,"asr_s">; def SUB_S_ru5 : F16_SH_SUB_BIT_DST<0b011,"sub_s">; def BSET_S_ru5 : F16_SH_SUB_BIT_DST<0b100,"bset_s">; def BCLR_S_ru5 : F16_SH_SUB_BIT_DST<0b101,"bclr_s">; def BMSK_S_ru5 : F16_SH_SUB_BIT_DST<0b110,"bmsk_s">; def BTST_S_ru5 : F16_SH_SUB_BIT<0b111, "btst_s\t$b, $u5">; //---------------------------------------------------------------------------- // Dual Register Operations. //---------------------------------------------------------------------------- def ADD_S_rlimm : F16_OP_HREG_LIMM<0b000, (outs GPR32:$b_s3), (ins i32imm:$LImm), !strconcat("add_s", "\t$b_s3, $b_s3, $LImm")>; def ADD_S_rr : F16_OP_HREG<0b000, (outs GPR32:$b_s3), (ins GPR32:$h), !strconcat("add_s", "\t$b_s3, $b_s3, $h")>; def ADD_S_rs3 : F16_OP_HREG<0b001, (outs GPR32:$h), (ins immC<3>:$b_s3), !strconcat("add_s", "\t$h, $h, $b_s3")>; def ADD_S_limms3 : F16_OP_HREG_LIMM<0b001, (outs), (ins immC<3>:$b_s3, i32imm:$LImm), !strconcat("add_s", "\t0, $LImm, $b_s3")>; def MOV_S_NE_rlimm : F16_OP_HREG_LIMM<0b111, (outs GPR32:$b_s3), (ins i32imm:$LImm), !strconcat("mov_s.ne", "\t$b_s3, $LImm")>; def MOV_S_NE_rr : F16_OP_HREG<0b111,(outs GPR32:$b_s3), (ins GPR32:$h), !strconcat("mov_s.ne", "\t$b_s3, $h")>; def MOV_S_rs3 : F16_OP_HREG<0b011, (outs GPR32:$h), (ins immC<3>:$b_s3), !strconcat("mov_s", "\t$h, $b_s3")>; def MOV_S_s3 : F16_OP_HREG30<0b011, (outs), (ins immC<3>:$b_s3), !strconcat("mov_s", "\t0, $b_s3")>; def CMP_S_rlimm : F16_OP_HREG_LIMM<0b100, (outs GPR32:$b_s3), (ins i32imm:$LImm), !strconcat("cmp_s", "\t$b_s3, $LImm")>; def CMP_S_rr : F16_OP_HREG<0b100, (outs GPR32:$b_s3), (ins GPR32:$h), !strconcat("cmp_s", "\t$b_s3, $h")>; def CMP_S_rs3 : F16_OP_HREG<0b101, (outs GPR32:$h), (ins immC<3>:$b_s3), !strconcat("cmp_s", "\t$h, $b_s3")>; def CMP_S_limms3 : F16_OP_HREG_LIMM<0b101, (outs), (ins immC<3>:$b_s3, i32imm:$LImm), !strconcat("cmp_s", "\t$LImm, $b_s3")>; //---------------------------------------------------------------------------- // Compact MOV/ADD/CMP Immediate instructions. //---------------------------------------------------------------------------- def MOV_S_u8 : F16_OP_IMM<0b11011, (outs GPR32:$b), (ins immU<8>:$u8), !strconcat("mov_s", "\t$b, $u8")> { bits<8> u8; let Inst{7-0} = u8; } def ADD_S_u7 : F16_OP_U7<0b0, !strconcat("add_s", "\t$b, $b, $u7")>; def CMP_S_u7 : F16_OP_U7<0b1, !strconcat("cmp_s", "\t$b, $u7")>; //---------------------------------------------------------------------------- // Compact Load/Store instructions with offset. //---------------------------------------------------------------------------- def LD_S_OFF : F16_LD_ST_WORD_OFF<0x10, (outs GPR32:$c), (ins GPR32:$b, immU<7>:$off), "ld_s">; def LDB_S_OFF : F16_LD_ST_BYTE_OFF<0x11, (outs GPR32:$c), (ins GPR32:$b, immU<5>:$off), "ldb_s">; class F16_LDH_OFF opc, string asmstr> : F16_LD_ST_HALF_OFF:$off), asmstr>; def LDH_S_OFF : F16_LDH_OFF<0x12, "ldh_s">; def LDH_S_X_OFF : F16_LDH_OFF<0x13, "ldh_s.x">; def ST_S_OFF : F16_LD_ST_WORD_OFF<0x14, (outs), (ins GPR32:$c, GPR32:$b, immU<7>:$off), "st_s">; def STB_S_OFF : F16_LD_ST_BYTE_OFF<0x15, (outs), (ins GPR32:$c, GPR32:$b, immU<5>:$off), "stb_s">; def STH_S_OFF : F16_LD_ST_HALF_OFF<0x16, (outs), (ins GPR32:$c, GPR32:$b, immU<6>:$off), "sth_s">; //---------------------------------------------------------------------------- // General compact instructions. //---------------------------------------------------------------------------- def GEN_SUB_S : F16_GEN_DOP<0x02, "sub_s">; def GEN_AND_S : F16_GEN_DOP<0x04, "and_s">; def GEN_OR_S : F16_GEN_DOP<0x05, "or_s">; def GEN_BIC_S : F16_GEN_DOP<0x06, "bic_s">; def GEN_XOR_S : F16_GEN_DOP<0x07, "xor_s">; def GEN_MPYW_S : F16_GEN_DOP<0x09, "mpyw_s">; def GEN_MPYUW_S : F16_GEN_DOP<0x0a, "mpyuw_s">; def GEN_TST_S : F16_GEN_DOP_NODST<0x0b, "tst_s">; def GEN_MPY_S : F16_GEN_DOP<0x0c, "mpy_s">; def GEN_SEXB_S : F16_GEN_DOP_SINGLESRC<0x0d, "sexb_s">; def GEN_SEXH_S : F16_GEN_DOP_SINGLESRC<0x0e, "sexh_s">; def GEN_EXTB_S : F16_GEN_DOP_SINGLESRC<0x0f, "extb_s">; def GEN_EXTH_S : F16_GEN_DOP_SINGLESRC<0x10, "exth_s">; def GEN_ABS_S : F16_GEN_DOP_SINGLESRC<0x11, "abs_s">; def GEN_NOT_S : F16_GEN_DOP_SINGLESRC<0x12, "not_s">; def GEN_NEG_S : F16_GEN_DOP_SINGLESRC<0x13, "neg_s">; def GEN_ADD1_S : F16_GEN_DOP<0x14, "add1_s">; def GEN_ADD2_S : F16_GEN_DOP<0x15, "add2_s">; def GEN_ADD3_S : F16_GEN_DOP<0x16, "add3_s">; def GEN_ASL_S : F16_GEN_DOP<0x18, "asl_s">; def GEN_LSR_S : F16_GEN_DOP<0x19, "lsr_s">; def GEN_ASR_S : F16_GEN_DOP<0x1a, "asr_s">; def GEN_AS1L_S : F16_GEN_DOP_SINGLESRC<0x1b, "asl_s">; def GEN_AS1R_S : F16_GEN_DOP_SINGLESRC<0x1c, "asr_s">; def GEN_LS1R_S : F16_GEN_DOP_SINGLESRC<0x1d, "lsr_s">; def GEN_TRAP_S : F16_GEN_DOP_BASE<0x1e, (outs), (ins immU6:$u6), "trap_s\t$u6"> { bits<6> u6; let b = u6{5-3}; let c = u6{2-0}; } def GEN_BRK_S : F16_GEN_DOP_BASE<0x1f, (outs), (ins), "brk_s"> { let b = 0b111; let c = 0b111; } let isBarrier = 1 in { let isBranch = 1 in { def GEN_J_S : F16_GEN_SOP<0x0, "j_s\t[$b]">; def GEN_J_S_D : F16_GEN_SOP<0x1, "j_s.d\t[$b]">; } // let isBranch let isCall = 1 in { def GEN_JL_S : F16_GEN_SOP<0x2, "jl_s\t[$b]">; def GEN_JL_S_D : F16_GEN_SOP<0x3, "jl_s.d\t[$b]">; } // let isCall } // let isBarrier def GEN_SUB_S_NE : F16_GEN_SOP<0x6, "sub_s.ne\t$b, $b, $b">; def GEN_NOP_S : F16_GEN_ZOP<0x0, "nop_s">; def GEN_UNIMP_S : F16_GEN_ZOP<0x1, "unimp_s">; def GEN_SWI_S : F16_GEN_ZOP<0x2, "swi_s">; let isReturn = 1, isTerminator = 1 in { def GEN_JEQ_S : F16_GEN_ZOP<0x4, "jeq_s\t[%blink]">; def GEN_JNE_S : F16_GEN_ZOP<0x5, "jne_s\t[%blink]">; let isBarrier = 1 in { //def GEN_J_S_BLINK : F16_GEN_ZOP<0x6, "j_s\t[%blink]">; def GEN_J_S_D_BLINK : F16_GEN_ZOP<0x7, "j_s.d\t[%blink]">; } // let isBarrier } // let isReturn, isTerminator //---------------------------------------------------------------------------- // Load/Store instructions. //---------------------------------------------------------------------------- // Filter class for load/store mappings class ArcLdStRel; // Load instruction variants: // Control bits: x, aa, di, zz // x - sign extend. // aa - incrementing mode. (N/A for LIMM). // di - uncached. // zz - data size. multiclass ArcLdInst { let mayLoad = 1, ZZ = zz, X = x, DI = di in { def _rs9: F32_LD_ADDR, ArcLdStRel; def _limm: F32_LD_LIMM, ArcLdStRel; def _rlimm: F32_LD_RLIMM, ArcLdStRel; foreach aa = [PreIncAM, PostIncAM] in { def aa.InstSuffix#_rs9: F32_LD_RS9:$S9), asmop#aa.AsmSuffix#"\t$A, [$B,$S9]", []>, ArcLdStRel { let Constraints = "$addrout = $B"; let AA = aa; } } } } foreach di = [NoCC, UncachedCC] in { defm LD#di.InstSuffix : ArcLdInst; foreach zz = [ByteSM, HalfSM] in { foreach x = [NoEM, SignedEM] in { defm LD#zz.InstSuffix#x.InstSuffix#di.InstSuffix : ArcLdInst; } } } // Load instruction patterns. // 32-bit loads. def : Pat<(load AddrModeS9:$addr), (LD_rs9 AddrModeS9:$addr)>; def : Pat<(load AddrModeImm:$addr), (LD_limm AddrModeImm:$addr)>; def : Pat<(load AddrModeFar:$addr), (LD_rs9 AddrModeFar:$addr)>; // 16-bit loads def : Pat<(zextloadi16 AddrModeS9:$addr), (LDH_rs9 AddrModeS9:$addr)>; def : Pat<(extloadi16 AddrModeS9:$addr), (LDH_rs9 AddrModeS9:$addr)>; def : Pat<(zextloadi16 AddrModeImm:$addr), (LDH_limm AddrModeImm:$addr)>; def : Pat<(extloadi16 AddrModeImm:$addr), (LDH_limm AddrModeImm:$addr)>; def : Pat<(zextloadi16 AddrModeFar:$addr), (LDH_rlimm AddrModeFar:$addr)>; def : Pat<(extloadi16 AddrModeFar:$addr), (LDH_rlimm AddrModeFar:$addr)>; def : Pat<(sextloadi16 AddrModeImm:$addr),(LDH_X_limm AddrModeImm:$addr)>; def : Pat<(sextloadi16 AddrModeFar:$addr),(LDH_X_rlimm AddrModeFar:$addr)>; def : Pat<(sextloadi16 AddrModeS9:$addr),(LDH_X_rs9 AddrModeS9:$addr)>; // 8-bit loads. def : Pat<(zextloadi8 AddrModeS9:$addr), (LDB_rs9 AddrModeS9:$addr)>; def : Pat<(extloadi8 AddrModeS9:$addr), (LDB_rs9 AddrModeS9:$addr)>; def : Pat<(zextloadi8 AddrModeImm:$addr), (LDB_limm AddrModeImm:$addr)>; def : Pat<(extloadi8 AddrModeImm:$addr), (LDB_limm AddrModeImm:$addr)>; def : Pat<(zextloadi8 AddrModeFar:$addr), (LDB_rlimm AddrModeFar:$addr)>; def : Pat<(extloadi8 AddrModeFar:$addr), (LDB_rlimm AddrModeFar:$addr)>; def : Pat<(zextloadi1 AddrModeS9:$addr), (LDB_rs9 AddrModeS9:$addr)>; def : Pat<(extloadi1 AddrModeS9:$addr), (LDB_rs9 AddrModeS9:$addr)>; def : Pat<(zextloadi1 AddrModeImm:$addr), (LDB_limm AddrModeImm:$addr)>; def : Pat<(extloadi1 AddrModeImm:$addr), (LDB_limm AddrModeImm:$addr)>; def : Pat<(zextloadi1 AddrModeFar:$addr), (LDB_rlimm AddrModeFar:$addr)>; def : Pat<(extloadi1 AddrModeFar:$addr), (LDB_rlimm AddrModeFar:$addr)>; def : Pat<(sextloadi8 AddrModeImm:$addr),(LDB_X_limm AddrModeImm:$addr)>; def : Pat<(sextloadi8 AddrModeFar:$addr),(LDB_X_rlimm AddrModeFar:$addr)>; def : Pat<(sextloadi8 AddrModeS9:$addr),(LDB_X_rs9 AddrModeS9:$addr)>; // Store instruction variants: // Control bits: aa, di, zz // aa - incrementing mode. (N/A for LIMM). // di - uncached. // zz - data size. multiclass ArcStInst { let mayStore = 1, ZZ = zz, DI = di in { def _rs9: F32_ST_ADDR, ArcLdStRel; def _limm: F32_ST_LIMM, ArcLdStRel; foreach aa = [PreIncAM, PostIncAM] in { def aa.InstSuffix#_rs9: F32_ST_RS9:$S9), asmop#aa.AsmSuffix#"\t$C, [$B,$S9]", []>, ArcLdStRel { let Constraints = "$addrout = $B"; let AA = aa; } } } } foreach di = [NoCC, UncachedCC] in { foreach zz = [ByteSM, HalfSM, WordSM] in { defm ST#zz.InstSuffix#di.InstSuffix : ArcStInst; } } // Store instruction patterns. // 32-bit stores def : Pat<(store i32:$C, AddrModeS9:$addr), (ST_rs9 i32:$C, AddrModeS9:$addr)>; def : Pat<(store i32:$C, AddrModeImm:$addr), (ST_limm i32:$C, AddrModeImm:$addr)>; // 16-bit stores def : Pat<(truncstorei16 i32:$C, AddrModeS9:$addr), (STH_rs9 i32:$C, AddrModeS9:$addr)>; def : Pat<(truncstorei16 i32:$C, AddrModeImm:$addr), (STH_limm i32:$C, AddrModeImm:$addr)>; // 8-bit stores def : Pat<(truncstorei8 i32:$C, AddrModeS9:$addr), (STB_rs9 i32:$C, AddrModeS9:$addr)>; def : Pat<(truncstorei8 i32:$C, AddrModeImm:$addr), (STB_limm i32:$C, AddrModeImm:$addr)>; def getPostIncOpcode : InstrMapping { let FilterClass = "ArcLdStRel"; let RowFields = [ "BaseOpcode", "ZZ", "DI", "X"]; let ColFields = [ "AA" ]; let KeyCol = [ "NoAM" ]; let ValueCols = [["PostIncAM"]]; }