//===- ARCInstrFormats.td - ARC Instruction Formats --------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Instruction format superclass //===----------------------------------------------------------------------===// class Encoding64 { field bits<64> Inst; field bits<64> SoftFail = 0; } // Address operands class immU : Operand, PatLeaf<(imm), "\n return isUInt<"#BSz#">(N->getSExtValue());"> { } def immU6 : immU<6>; class immS : Operand, PatLeaf<(imm), "\n return isInt<"#BSz#">(N->getSExtValue());"> { let DecoderMethod = "DecodeSignedOperand<"#BSz#">"; } // e.g. s3 field may encode the signed integers values -1 .. 6 // using binary codes 111, 000, 001, 010, 011, 100, 101, and 110, respectively class immC : Operand, PatLeaf<(imm), "\n return isInt<"#BSz#">(N->getSExtValue());"> { let DecoderMethod = "DecodeFromCyclicRange<"#BSz#">"; } def MEMii : Operand { let MIOperandInfo = (ops i32imm, i32imm); } def MEMrs9 : Operand { let MIOperandInfo = (ops GPR32:$B, immS<9>:$S9); let PrintMethod = "printMemOperandRI"; let DecoderMethod = "DecodeMEMrs9"; } def MEMrlimm : Operand { let MIOperandInfo = (ops GPR32:$B, i32imm:$LImm); let PrintMethod = "printMemOperandRI"; let DecoderMethod = "DecodeMEMrlimm"; } def GPR32Reduced : Operand { let DecoderMethod = "DecodeGBR32ShortRegister"; } // Helper classes for load/store instructions class DataSizeMode mode, string instSfx, string asmSfx> { bits<2> Value = mode; string InstSuffix = instSfx; string AsmSuffix = asmSfx; } class ExtMode { bit Value = mode; string InstSuffix = instSfx; string AsmSuffix = asmSfx; } class AddrMode mode, string instSfx, string asmSfx> { bits<2> Value = mode; string InstSuffix = instSfx; string AsmSuffix = asmSfx; } class CacheMode { bit Value = mode; string InstSuffix = instSfx; string AsmSuffix = asmSfx; } def ByteSM : DataSizeMode<0b01, "B", "b">; def HalfSM : DataSizeMode<0b10, "H", "h">; def WordSM : DataSizeMode<0b00, "", "">; def NoEM : ExtMode<0, "", "">; def SignedEM : ExtMode<1, "_X", ".x">; def NoAM : AddrMode<0b00, "", "">; def PreIncAM : AddrMode<0b01, "_AW", ".aw">; def PostIncAM : AddrMode<0b10, "_AB", ".ab">; def NoCC : CacheMode<0b0, "", "">; def UncachedCC : CacheMode<0b1, "_DI", ".di">; class InstARC pattern> : Instruction, Encoding64 { let Namespace = "ARC"; dag OutOperandList = outs; dag InOperandList = ins; let AsmString = asmstr; let Pattern = pattern; let Size = sz; // Load/Store instruction properties DataSizeMode ZZ = WordSM; ExtMode X = NoEM; AddrMode AA = NoAM; CacheMode DI = NoCC; // Field used for relation models string BaseOpcode = ""; //TSFlags let TSFlags{1-0} = AA.Value; } // ARC pseudo instructions format class PseudoInstARC pattern> : InstARC<0, outs, ins, asmstr, pattern> { let isPseudo = 1; } //===----------------------------------------------------------------------===// // Instruction formats //===----------------------------------------------------------------------===// // All 32-bit ARC instructions have a 5-bit "major" opcode class designator // in bits 27-31. // // Some general naming conventions: // N - Delay Slot bit. ARC v2 branch instructions have an optional delay slot // which is encoded with this bit. When set, a delay slot exists. // cc - Condition code. // SX - Signed X-bit immediate. // UX - Unsigned X-bit immediate. // // [ABC] - 32-bit register operand. These are 6-bit fields. This encodes the // standard 32 general purpose registers, and allows use of additional // (extension) registers. This also encodes an instruction that uses // a 32-bit Long Immediate (LImm), using 0x3e==62 as the field value. // This makes 32-bit format instructions with Long Immediates // 64-bit instructions, with the Long Immediate in bits 32-63. // A - Inst[5-0] = A[5-0], when the format has A. A is always a register. // B - Inst[14-12] = B[5-3], Inst[26-24] = B[2-0], when the format has B. // B is always a register. // C - Inst[11-6] = C[5-0], when the format has C. C can either be a register, // or a 6-bit unsigned immediate (immU6), depending on the format. // F - Many instructions specify a flag bit. When set, the result of these // instructions will set the ZNCV flags of the STATUS32 register // (Zero/Negative/Carry/oVerflow). // Branch Instructions. class F32_BR major, dag outs, dag ins, bit b16, string asmstr, list pattern> : InstARC<4, outs, ins, asmstr, pattern> { bit N; let Inst{31-27} = major; let Inst{16} = b16; let Inst{5} = N; } class F32_BR_COND major, dag outs, dag ins, bit b16, string asmstr, list pattern> : F32_BR { bits<21> S21; // 2-byte aligned 21-bit byte-offset. bits<5> cc; let Inst{26-18} = S21{10-2}; let Inst{15-6} = S21{20-11}; let Inst{4-0} = cc; } class F32_BR_UCOND_FAR major, dag outs, dag ins, bit b16, string asmstr, list pattern> : F32_BR { bits<25> S25; // 2-byte aligned 25-bit byte-offset. let Inst{26-18} = S25{10-2}; let Inst{15-6} = S25{20-11}; let Inst{4} = 0; let Inst{3-0} = S25{24-21}; } class F32_BR0_COND pat> : F32_BR_COND<0b00000, outs, ins, 0, asmstr, pat> { let Inst{17} = S21{1}; } // Branch targets are 2-byte aligned, so S25[0] is implied 0. // |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0 | // |S25[10-1] | 1|S25[20-11] |N|0|S25[24-21]| class F32_BR0_UCOND_FAR pat> : F32_BR_UCOND_FAR<0b00000, outs, ins, 1, asmstr, pat> { let Inst{17} = S25{1}; } // BL targets (functions) are 4-byte aligned, so S25[1-0] = 0b00 // |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0 | // |S25[10-2] | 1| 0|S25[20-11] |N|0|S25[24-21]| class F32_BR1_BL_UCOND_FAR pat> : F32_BR_UCOND_FAR<0b00001, outs, ins, 0, asmstr, pat> { let Inst{17} = 1; } // BLcc targets have 21 bit range, and are 4-byte aligned. // |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0| // |S25[10-2] | 0| 0|S25[20-11] |N|0|cc | class F32_BR1_BL_COND pat> : F32_BR_COND<0b00001, outs, ins, 0, asmstr, pat> { let Inst{17} = 0; } // BRcc targets have limited 9-bit range. These are for compare and branch // in single instruction. Their targets are 2-byte aligned. They also use // a different (3-bit) set of condition codes. // |26|25|24|23|22|21|20|19|18|17|16|15 |14|13|12|11|10|9|8|7|6|5|4|3|2|1|0| // |B[2-0] |S9[7-1] | 1|S9[8]|B[5-3] |C |N|u|0|cc | class F32_BR1_BCC pattern> : InstARC<4, outs, ins, asmstr, pattern> { bits<3> cc; bits<6> B; bits<6> C; bit N; bits<9> S9; // 2-byte aligned 9-bit byte-offset. let Inst{31-27} = 0b00001; let Inst{26-24} = B{2-0}; let Inst{23-17} = S9{7-1}; let Inst{16} = 1; let Inst{15} = S9{8}; let Inst{14-12} = B{5-3}; let Inst{11-6} = C; let Inst{5} = N; let Inst{4} = IsU6; let Inst{3} = 0; let Inst{2-0} = cc; } // General operations instructions. // Single Operand Instructions. Inst[5-0] specifies the specific operation // for this format. // |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0| // |B[2-0] | 0| 0| 1| 0| 1| 1| 1| 1| F|B[5-3] |C |subop | class F32_SOP_RR major, bits<6> subop, bit F, dag outs, dag ins, string asmstr, list pattern> : InstARC<4, outs, ins, asmstr, pattern> { bits<6> C; bits<6> B; let Inst{31-27} = major; let Inst{26-24} = B{2-0}; let Inst{23-22} = 0b00; let Inst{21-16} = 0b101111; let Inst{15} = F; let Inst{14-12} = B{5-3}; let Inst{11-6} = C; let Inst{5-0} = subop; } // Single Operand Immediate Instructions. // 1-register, unsigned 6-bit immediate Single Operand instruction with // condition code. // |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0| // |B[2-0] | 1| 1| subop| F|B[5-3] |U6 |1|cc | class F32_SOP_CC_RU6 major, bits<6> subop, bit F, dag outs, dag ins, string asmstr, list pattern> : InstARC<4, outs, ins, asmstr, pattern> { bits<5> cc; bits<6> U6; bits<6> B; let Inst{31-27} = major; let Inst{26-24} = B{2-0}; let Inst{23-22} = 0b11; let Inst{21-16} = subop; let Inst{15} = F; let Inst{14-12} = B{5-3}; let Inst{11-6} = U6; let Inst{5} = 1; let Inst{4-0} = cc; let DecoderMethod = "DecodeCCRU6Instruction"; } // Dual Operand Instructions. Inst[21-16] specifies the specific operation // for this format. // 3-register Dual Operand instruction. // |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0| // |B[2-0] | 0| 0| subop| F|B[5-3] |C |A | class F32_DOP_RR major, bits<6> subop, bit F, dag outs, dag ins, string asmstr, list pattern> : InstARC<4, outs, ins, asmstr, pattern> { bits<6> C; bits<6> B; bits<6> A; let Inst{31-27} = major; let Inst{26-24} = B{2-0}; let Inst{23-22} = 0b00; let Inst{21-16} = subop; let Inst{15} = F; let Inst{14-12} = B{5-3}; let Inst{11-6} = C; let Inst{5-0} = A; } // Conditional Dual Operand instruction. This instruction uses B as the // first 2 operands (i.e, add.cc B, B, C). // |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0| // |B[2-0] | 1| 1| subop| F|B[5-3] |C |A | class F32_DOP_CC_RR major, bits<6> subop, bit F, dag outs, dag ins, string asmstr, list pattern> : InstARC<4, outs, ins, asmstr, pattern> { bits<5> cc; bits<6> C; bits<6> B; let Inst{31-27} = major; let Inst{26-24} = B{2-0}; let Inst{23-22} = 0b11; let Inst{21-16} = subop; let Inst{15} = F; let Inst{14-12} = B{5-3}; let Inst{11-6} = C; let Inst{5} = 0; let Inst{4-0} = cc; } // 2-register, unsigned 6-bit immediate Dual Operand instruction. // |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0| // |B[2-0] | 0| 1| subop| F|B[5-3] |U6 |A | class F32_DOP_RU6 major, bits<6> subop, bit F, dag outs, dag ins, string asmstr, list pattern> : InstARC<4, outs, ins, asmstr, pattern> { bits<6> U6; bits<6> B; bits<6> A; let Inst{31-27} = major; let Inst{26-24} = B{2-0}; let Inst{23-22} = 0b01; let Inst{21-16} = subop; let Inst{15} = F; let Inst{14-12} = B{5-3}; let Inst{11-6} = U6; let Inst{5-0} = A; } // 2-register, unsigned 6-bit immediate Dual Operand instruction with // condition code. This instruction uses B as the first 2 operands // (i.e, add.cc B, B, u6). // |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0| // |B[2-0] | 1| 1| subop| F|B[5-3] |U6 |1|cc | class F32_DOP_CC_RRU6 major, bits<6> subop, bit F, dag outs, dag ins, string asmstr, list pattern> : InstARC<4, outs, ins, asmstr, pattern> { bits<5> cc; bits<6> U6; bits<6> B; bits<6> A; let Inst{31-27} = major; let Inst{26-24} = B{2-0}; let Inst{23-22} = 0b11; let Inst{21-16} = subop; let Inst{15} = F; let Inst{14-12} = B{5-3}; let Inst{11-6} = U6; let Inst{5} = 1; let Inst{4-0} = cc; } // 2-register, signed 12-bit immediate Dual Operand instruction. // This instruction uses B as the first 2 operands (i.e., add B, B, -128). // |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0| // |B[2-0] | 1| 0| subop| F|B[5-3] |S12[5-0] |S12[11-6] | class F32_DOP_RS12 major, bits<6> subop, bit F, dag outs, dag ins, string asmstr, list pattern> : InstARC<4, outs, ins, asmstr, pattern> { bits<6> B; bits<12> S12; let Inst{31-27} = major; let Inst{26-24} = B{2-0}; let Inst{23-22} = 0b10; let Inst{21-16} = subop; let Inst{15} = F; let Inst{14-12} = B{5-3}; let Inst{11-6} = S12{5-0}; let Inst{5-0} = S12{11-6}; } // 2-register, 32-bit immediate (LImm) Dual Operand instruction. // This instruction has the 32-bit immediate in bits 32-63, and // 62 in the C register operand slot, but is otherwise F32_DOP_RR. class F32_DOP_RLIMM major, bits<6> subop, bit F, dag outs, dag ins, string asmstr, list pattern> : InstARC<8, outs, ins, asmstr, pattern> { bits<6> B; bits<6> A; bits<32> LImm; let Inst{63-32} = LImm; let Inst{31-27} = major; let Inst{26-24} = B{2-0}; let Inst{23-22} = 0b00; let Inst{21-16} = subop; let Inst{15} = F; let Inst{14-12} = B{5-3}; let Inst{11-6} = 0b111110; let Inst{5-0} = A; } // Load and store instructions. // In addition to the previous naming conventions, load and store instructions // have: // di - Uncached bit. When set, loads/stores bypass the cache and access // memory directly. // aa - Incrementing mode. Loads and stores can write-back address pre- or // post- memory operation. // zz - Memory size (can be 8/16/32 bit load/store). // x - Sign-extending. When set, short loads can be sign-extended to 32-bits. // Loads and Stores support different memory addressing modes: // Base Register + Signed 9-bit Immediate: Both Load/Store. // LImm: Both Load/Store (Load/Store from a fixed 32-bit address). // Register + Register: Load Only. // Register + LImm: Load Only. // Register + S9 Load. (B + S9) // |26|25|24|23|22|21|20|19|18|17|16|15 |14|13|12|11|10|9|8|7|6|5|4|3|2|1|0| // |B[2-0] |S9[7-0] |S9[8]|B[5-3] |di|aa |zz |x|A | class F32_LD_RS9 aa, bit di, bits<2> zz, dag outs, dag ins, string asmstr, list pattern> : InstARC<4, outs, ins, asmstr, pattern> { bits<6> B; bits<6> A; bits<9> S9; let Inst{31-27} = 0b00010; let Inst{26-24} = B{2-0}; let Inst{23-16} = S9{7-0}; let Inst{15} = S9{8}; let Inst{14-12} = B{5-3}; let Inst{11} = di; let Inst{10-9} = aa; let Inst{8-7} = zz; let Inst{6} = x; let Inst{5-0} = A; let BaseOpcode = "ld_rs9"; } class F32_LD_ADDR aa, bit di, bits<2> zz, dag outs, dag ins, string asmstr, list pattern> : F32_LD_RS9 { bits<15> addr; let B = addr{14-9}; let S9 = addr{8-0}; let BaseOpcode = "ld_rs9"; } // LImm Load. The 32-bit immediate address is in Inst[63-32]. // |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0| // | 1| 1| 0| 0 | 1| 1| 1|di| 0|0|zz |x|A | class F32_LD_LIMM zz, dag outs, dag ins, string asmstr, list pattern> : InstARC<8, outs, ins, asmstr, pattern> { bits<6> LImmReg = 0b111110; bits<6> A; bits<32> LImm; let Inst{63-32} = LImm; let Inst{31-27} = 0b00010; let Inst{26-24} = LImmReg{2-0}; let Inst{23-15} = 0; let Inst{14-12} = LImmReg{5-3}; let Inst{11} = di; let Inst{10-9} = 0; let Inst{8-7} = zz; let Inst{6} = x; let Inst{5-0} = A; let DecoderMethod = "DecodeLdLImmInstruction"; let BaseOpcode = "ld_limm"; } // Register + LImm load. The 32-bit immediate address is in Inst[63-32]. // |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0| // |B[2-0] |aa | 1| 1| 0|zz | x|di|B[5-3] | 1| 1|1|1|1|0|A | class F32_LD_RLIMM aa, bit di, bits<2> zz, dag outs, dag ins, string asmstr, list pattern> : InstARC<8, outs, ins, asmstr, pattern> { bits<6> LImmReg = 0b111110; bits<32> LImm; bits<6> B; bits<6> A; bits<38> addr; let B = addr{37-32}; let LImm = addr{31-0}; let Inst{63-32} = LImm; let Inst{31-27} = 0b00100; let Inst{26-24} = B{2-0}; let Inst{23-22} = aa; let Inst{21-19} = 0b110; let Inst{18-17} = zz; let Inst{16} = x; let Inst{15} = di; let Inst{14-12} = B{5-3}; let Inst{11-6} = LImmReg; let Inst{5-0} = A; let DecoderMethod = "DecodeLdRLImmInstruction"; let BaseOpcode = "ld_rlimm"; } // Register + S9 Store. (B + S9) // |26|25|24|23|22|21|20|19|18|17|16|15 |14|13|12|11|10|9|8|7|6|5 |4|3|2|1|0| // |B[2-0] |S9[7-0] |S9[8]|B[5-3] |C |di|aa |zz |0| class F32_ST_RS9 aa, bit di, bits<2> zz, dag outs, dag ins, string asmstr, list pattern> : InstARC<4, outs, ins, asmstr, pattern> { bits<6> B; bits<6> C; bits<9> S9; let Inst{31-27} = 0b00011; let Inst{26-24} = B{2-0}; let Inst{23-16} = S9{7-0}; let Inst{15} = S9{8}; let Inst{14-12} = B{5-3}; let Inst{11-6} = C; let Inst{5} = di; let Inst{4-3} = aa; let Inst{2-1} = zz; let Inst{0} = 0; let BaseOpcode = "st_rs9"; } class F32_ST_ADDR aa, bit di, bits<2> zz, dag outs, dag ins, string asmstr, list pattern> : F32_ST_RS9 { bits<15> addr; let B = addr{14-9}; let S9 = addr{8-0}; let BaseOpcode = "st_rs9"; } // LImm Store. // |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5 |4|3|2|1|0| // | 1| 1| 0| 0 | 1| 1| 1|C |di|0|0|zz |0| class F32_ST_LIMM zz, dag outs, dag ins, string asmstr, list pattern> : InstARC<8, outs, ins, asmstr, pattern> { bits<6> LImmReg = 0b111110; bits<6> C; bits<32> LImm; let Inst{63-32} = LImm; let Inst{31-27} = 0b00011; let Inst{26-24} = LImmReg{2-0}; let Inst{23-15} = 0; let Inst{14-12} = LImmReg{5-3}; let Inst{11-6} = C; let Inst{5} = di; let Inst{4-3} = 0; let Inst{2-1} = zz; let Inst{0} = 0; let DecoderMethod = "DecodeStLImmInstruction"; let BaseOpcode = "st_limm"; } // Compact Move/Load. // |10|9|8|7|6|5|4|3|2|1|0| // | |h | |i|H | class F16_COMPACT i, dag outs, dag ins, string asmstr> : InstARC<2, outs, ins, asmstr, []> { bits<5> h; let Inst{15-11} = 0b01000; let Inst{7-5} = h{2-0}; let Inst{2} = i; let Inst{1-0} = h{4-3}; } // Compact Load/Add/Sub. class F16_LD_ADD_SUB : InstARC<2, outs, ins, asmstr, []> { bits<3> b; let Inst{15-11} = 0b01001; let Inst{10-8} = b; } class F16_LD_SUB : F16_LD_ADD_SUB<(outs GPR32:$a), (ins GPR32:$b, GPR32:$c), asmstr> { bits<3> a; bits<3> c; let Inst{7-5} = c; let Inst{4} = i; let Inst{3} = 0; let Inst{2-0} = a; } class F16_ADD : F16_LD_ADD_SUB<(outs GPR32:$r), (ins GPR32:$b, immU<6>:$u6), "add_s\t$r, $b, $u6"> { bit r; bits<6> u6; let Inst{7} = r; let Inst{6-4} = u6{5-3}; let Inst{3} = 1; let Inst{2-0} = u6{2-0}; } // Compact Load/Store. class F16_LD_ST_1 : InstARC<2, outs, ins, asmstr, []> { let Inst{15-11} = 0b01010; } class F16_LD_ST_s11 : F16_LD_ST_1<(outs), (ins immS<11>:$s11), asmstr> { bits<11> s11; let Inst{10-5} = s11{10-5}; let Inst{4} = i; let Inst{3} = 0; let Inst{2-0} = s11{4-2}; let s11{1-0} = 0b00; } class F16_LDI_u7 : F16_LD_ST_1<(outs GPR32:$b), (ins immU<7>:$u7), "ldi_s\t$b, [$u7]"> { bits<3> b; bits<7> u7; let Inst{10-8} = b; let Inst{7-4} = u7{6-3}; let Inst{3} = 1; let Inst{2-0} = u7{2-0}; } // Indexed Jump or Execute. class F16_JLI_EI : InstARC<2, (outs), (ins immU<10>:$u10), !strconcat(asmstr, "\t$u10"), []> { bits<10> u10; let Inst{15-11} = 0b01011; let Inst{10} = i; let Inst{9-0} = u10; } // Load/Add Register-Register. class F16_LD_ADD_RR i, string asmstr> : InstARC<2, (outs GPR32:$a), (ins GPR32:$b, GPR32:$c), asmstr, []> { bits<3> a; bits<3> b; bits<3> c; let Inst{15-11} = 0b01100; let Inst{10-8} = b; let Inst{7-5} = c; let Inst{4-3} = i; let Inst{2-0} = a; } // Load/Add GP-Relative. class F16_GP_LD_ADD i, dag ins, string asmstr> : InstARC<2, (outs), ins, asmstr, []> { let Inst{15-11} = 0b11001; let Inst{10-9} = i; } // Add/Sub/Shift Register-Immediate. // |10|9|8|7|6|5|4|3|2|1|0| // |b |c |i |u | class F16_ADD_IMM i, string asmstr> : InstARC<2, (outs GPR32:$c), (ins GPR32:$b, immU<3>:$u3), !strconcat(asmstr, "\t$c, $b, $u3"), []> { bits<3> b; bits<3> c; bits<3> u3; let Inst{15-11} = 0b01101; let Inst{10-8} = b; let Inst{7-5} = c; let Inst{4-3} = i; let Inst{2-0} = u3; } // Dual Register Operations. // |10|9|8|7|6|5|4|3|2|1|0| // |b/s |h |i |H | class F16_OP_HREG i, dag outs, dag ins, string asmstr> : InstARC<2, outs, ins, asmstr, []> { bits<3> b_s3; bits<5> h; let Inst{15-11} = 0b01110; let Inst{10-8} = b_s3; let Inst{7-5} = h{2-0}; let Inst{4-2} = i; let Inst{1-0} = h{4-3}; } class F16_OP_HREG30 i, dag outs, dag ins, string asmstr> : F16_OP_HREG { bits<5> LImmReg = 0b11110; let Inst{7-5} = LImmReg{2-0}; let Inst{1-0} = LImmReg{4-3}; } class F16_OP_HREG_LIMM i, dag outs, dag ins, string asmstr> : F16_OP_HREG30 { bits<32> LImm; let Inst{47-16} = LImm; let Size = 6; } // General compact DOP format. class F16_GEN_DOP_BASE i, dag outs, dag ins, string asmstr> : InstARC<2, outs, ins, asmstr, []> { bits<3> b; bits<3> c; let Inst{15-11} = 0b01111; let Inst{10-8} = b; let Inst{7-5} = c; let Inst{4-0} = i; } class F16_GEN_DOP i, string asmstr> : F16_GEN_DOP_BASE; class F16_GEN_DOP_NODST i, string asmstr> : F16_GEN_DOP_BASE; class F16_GEN_DOP_SINGLESRC i, string asmstr> : F16_GEN_DOP_BASE; class F16_GEN_SOP_BASE i, dag outs, dag ins, string asmstr> : F16_GEN_DOP_BASE<0b00000, outs, ins, asmstr> { let c = i; } class F16_GEN_SOP i, string asmstr> : F16_GEN_SOP_BASE; class F16_GEN_ZOP i, string asmstr> : F16_GEN_SOP_BASE<0b111, (outs), (ins), asmstr> { let b = i; } // Compact Load/Store with Offset Format. class F16_LD_ST_OFF opc, dag outs, dag ins, string asmstr> : InstARC<2, outs, ins, !strconcat(asmstr, "\t$c, [$b, $off]"), []> { bits<3> b; bits<3> c; let Inst{15-11} = opc; let Inst{10-8} = b; let Inst{7-5} = c; } class F16_LD_ST_WORD_OFF opc, dag outs, dag ins, string asmstr> : F16_LD_ST_OFF { bits<7> off; let Inst{4-0} = off{6-2}; let off{1-0} = 0b00; } class F16_LD_ST_HALF_OFF opc, dag outs, dag ins, string asmstr> : F16_LD_ST_OFF { bits<6> off; let Inst{4-0} = off{5-1}; let off{0} = 0b0; } class F16_LD_ST_BYTE_OFF opc, dag outs, dag ins, string asmstr> : F16_LD_ST_OFF { bits<5> off; let Inst{4-0} = off; } // Shift/Subtract/Bit Immediate. // |10|9|8|7|6|5|4|3|2|1|0| // |b |i |u | class F16_SH_SUB_BIT i, string asmstr> : InstARC<2, (outs), (ins GPR32:$b, immU<5>:$u5), asmstr, []> { bits<3> b; bits<5> u5; let Inst{15-11} = 0b10111; let Inst{10-8} = b; let Inst{7-5} = i; let Inst{4-0} = u5; } class F16_SH_SUB_BIT_DST i, string asmstr> : F16_SH_SUB_BIT; // 16-bit stack-based operations. // |10|9|8|7|6|5|4|3|2|1|0| // |b |i |u | class F16_SP_OPS i, dag outs, dag ins, string asmstr> : InstARC<2, outs, ins, asmstr, []> { bits<3> fieldB; bits<5> fieldU; let Inst{15-11} = 0b11000; let Inst{10-8} = fieldB; let Inst{7-5} = i; let Inst{4-0} = fieldU; } class F16_SP_OPS_u7_aligned i, dag outs, dag ins, string asmstr> : F16_SP_OPS { bits<3> b3; bits<7> u7; let fieldB = b3; let fieldU = u7{6-2}; let u7{1-0} = 0b00; } class F16_SP_OPS_bconst b, string asmop> : F16_SP_OPS_u7_aligned<0b101, (outs), (ins immU<7>:$u7), !strconcat(asmop, "\t%sp, %sp, $u7")> { let fieldB = b; } class F16_SP_OPS_uconst i, dag outs, dag ins, string asmop> : F16_SP_OPS_u7_aligned { let fieldU = 0b00001; } class F16_SP_OPS_buconst i, string asmop> : F16_SP_OPS_u7_aligned { let fieldB = 0x000; let fieldU = 0b10001; } class F16_SP_LD i, string asmop> : F16_SP_OPS_u7_aligned:$u7), !strconcat(asmop, "\t$b3, [%sp, $u7]")>; class F16_SP_ST i, string asmop> : F16_SP_OPS_u7_aligned:$u7), !strconcat(asmop, "\t$b3, [%sp, $u7]")>; // Compact MOV/ADD/CMP Immediate Format. class F16_OP_IMM opc, dag outs, dag ins, string asmstr> : InstARC<2, outs, ins, asmstr, []> { bits<3> b; let Inst{15-11} = opc; let Inst{10-8} = b; } class F16_OP_U7 : F16_OP_IMM<0b11100, (outs GPR32:$b), (ins immU<7>:$u7), asmstr> { bits<7> u7; let Inst{7} = i; let Inst{6-0} = u7; } // Special types for different instruction operands. def cmovpred : Operand, PredicateOp, ComplexPattern { let MIOperandInfo = (ops i32imm, i32imm); let PrintMethod = "printPredicateOperand"; } def ccond : Operand { let MIOperandInfo = (ops i32imm); let PrintMethod = "printPredicateOperand"; } def brccond : Operand { let MIOperandInfo = (ops i32imm); let PrintMethod = "printBRCCPredicateOperand"; } // Branch/call targets of different offset sizes. class BCTarget : Operand { let OperandType = "OPERAND_PCREL"; } def btarget : BCTarget; class BCTargetSigned : BCTarget { let DecoderMethod = "DecodeBranchTargetS<"#BSz#">"; } class BranchTargetS : BCTargetSigned; def btargetS7 : BranchTargetS<7>; def btargetS8 : BranchTargetS<8>; def btargetS9 : BranchTargetS<9>; def btargetS10 : BranchTargetS<10>; def btargetS13 : BranchTargetS<13>; def btargetS21 : BranchTargetS<21>; def btargetS25 : BranchTargetS<25>; class CallTargetS : BCTargetSigned; def calltargetS25: CallTargetS<25>; // Compact Branch on Compare Register with Zero. class F16_BCC_REG : InstARC<2, (outs), (ins GPR32:$b, btargetS8:$s8), !strconcat(asmstr, "\t$b, 0, $s8"), []> { bits<3> b; bits<8> s8; let Inst{15-11} = 0b11101; let Inst{10-8} = b; let Inst{7} = i; let Inst{6-0} = s8{7-1}; let s8{0} = 0b0; } // Compact Branch Conditionally Format. class F16_BCC i, dag ins, string asmstr> : InstARC<2, (outs), ins, asmstr, []> { let Inst{15-11} = 0b11110; let Inst{10-9} = i; } class F16_BCC_s10 i, string asmstr> : F16_BCC { bits<10> s; let Inst{8-0} = s{9-1}; let s{0} = 0b0; } class F16_BCC_s7 i, string asmstr> : F16_BCC<0b11, (ins btargetS7:$s), !strconcat(asmstr, "\t$s")> { bits<7> s; let Inst{8-6} = i; let Inst{5-0} = s{6-1}; let s{0} = 0b0; }