//===- ARCISelLowering.cpp - ARC DAG Lowering Impl --------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the ARCTargetLowering class. // //===----------------------------------------------------------------------===// #include "ARCISelLowering.h" #include "ARC.h" #include "ARCMachineFunctionInfo.h" #include "ARCSubtarget.h" #include "ARCTargetMachine.h" #include "MCTargetDesc/ARCInfo.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Intrinsics.h" #include "llvm/Support/Debug.h" #include #define DEBUG_TYPE "arc-lower" using namespace llvm; static SDValue lowerCallResult(SDValue Chain, SDValue InFlag, const SmallVectorImpl &RVLocs, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals); static ARCCC::CondCode ISDCCtoARCCC(ISD::CondCode isdCC) { switch (isdCC) { case ISD::SETUEQ: return ARCCC::EQ; case ISD::SETUGT: return ARCCC::HI; case ISD::SETUGE: return ARCCC::HS; case ISD::SETULT: return ARCCC::LO; case ISD::SETULE: return ARCCC::LS; case ISD::SETUNE: return ARCCC::NE; case ISD::SETEQ: return ARCCC::EQ; case ISD::SETGT: return ARCCC::GT; case ISD::SETGE: return ARCCC::GE; case ISD::SETLT: return ARCCC::LT; case ISD::SETLE: return ARCCC::LE; case ISD::SETNE: return ARCCC::NE; default: llvm_unreachable("Unhandled ISDCC code."); } } void ARCTargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { LLVM_DEBUG(dbgs() << "[ARC-ISEL] ReplaceNodeResults "); LLVM_DEBUG(N->dump(&DAG)); LLVM_DEBUG(dbgs() << "; use_count=" << N->use_size() << "\n"); switch (N->getOpcode()) { case ISD::READCYCLECOUNTER: if (N->getValueType(0) == MVT::i64) { // We read the TIMER0 and zero-extend it to 64-bits as the intrinsic // requires. SDValue V = DAG.getNode(ISD::READCYCLECOUNTER, SDLoc(N), DAG.getVTList(MVT::i32, MVT::Other), N->getOperand(0)); SDValue Op = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), MVT::i64, V); Results.push_back(Op); Results.push_back(V.getValue(1)); } break; default: break; } } ARCTargetLowering::ARCTargetLowering(const TargetMachine &TM, const ARCSubtarget &Subtarget) : TargetLowering(TM), Subtarget(Subtarget) { // Set up the register classes. addRegisterClass(MVT::i32, &ARC::GPR32RegClass); // Compute derived properties from the register classes computeRegisterProperties(Subtarget.getRegisterInfo()); setStackPointerRegisterToSaveRestore(ARC::SP); setSchedulingPreference(Sched::Source); // Use i32 for setcc operations results (slt, sgt, ...). setBooleanContents(ZeroOrOneBooleanContent); setBooleanVectorContents(ZeroOrOneBooleanContent); for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc) setOperationAction(Opc, MVT::i32, Expand); // Operations to get us off of the ground. // Basic. setOperationAction(ISD::ADD, MVT::i32, Legal); setOperationAction(ISD::SUB, MVT::i32, Legal); setOperationAction(ISD::AND, MVT::i32, Legal); setOperationAction(ISD::SMAX, MVT::i32, Legal); setOperationAction(ISD::SMIN, MVT::i32, Legal); setOperationAction(ISD::ADDC, MVT::i32, Legal); setOperationAction(ISD::ADDE, MVT::i32, Legal); setOperationAction(ISD::SUBC, MVT::i32, Legal); setOperationAction(ISD::SUBE, MVT::i32, Legal); // Need barrel shifter. setOperationAction(ISD::SHL, MVT::i32, Legal); setOperationAction(ISD::SRA, MVT::i32, Legal); setOperationAction(ISD::SRL, MVT::i32, Legal); setOperationAction(ISD::ROTR, MVT::i32, Legal); setOperationAction(ISD::Constant, MVT::i32, Legal); setOperationAction(ISD::UNDEF, MVT::i32, Legal); // Need multiplier setOperationAction(ISD::MUL, MVT::i32, Legal); setOperationAction(ISD::MULHS, MVT::i32, Legal); setOperationAction(ISD::MULHU, MVT::i32, Legal); setOperationAction(ISD::LOAD, MVT::i32, Legal); setOperationAction(ISD::STORE, MVT::i32, Legal); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::BR_CC, MVT::i32, Custom); setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::BR_JT, MVT::Other, Expand); setOperationAction(ISD::JumpTable, MVT::i32, Custom); // Have pseudo instruction for frame addresses. setOperationAction(ISD::FRAMEADDR, MVT::i32, Legal); // Custom lower global addresses. setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); // Expand var-args ops. setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VAEND, MVT::Other, Expand); setOperationAction(ISD::VAARG, MVT::Other, Expand); setOperationAction(ISD::VACOPY, MVT::Other, Expand); // Other expansions setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); // Sign extend inreg setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Custom); // TODO: Predicate these with `options.hasBitScan() ? Legal : Expand` // when the HasBitScan predicate is available. setOperationAction(ISD::CTLZ, MVT::i32, Legal); setOperationAction(ISD::CTTZ, MVT::i32, Legal); setOperationAction(ISD::READCYCLECOUNTER, MVT::i32, Legal); setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isTypeLegal(MVT::i64) ? Legal : Custom); } const char *ARCTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { case ARCISD::BL: return "ARCISD::BL"; case ARCISD::CMOV: return "ARCISD::CMOV"; case ARCISD::CMP: return "ARCISD::CMP"; case ARCISD::BRcc: return "ARCISD::BRcc"; case ARCISD::RET: return "ARCISD::RET"; case ARCISD::GAWRAPPER: return "ARCISD::GAWRAPPER"; } return nullptr; } //===----------------------------------------------------------------------===// // Misc Lower Operation implementation //===----------------------------------------------------------------------===// SDValue ARCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); ISD::CondCode CC = cast(Op.getOperand(4))->get(); SDValue TVal = Op.getOperand(2); SDValue FVal = Op.getOperand(3); SDLoc dl(Op); ARCCC::CondCode ArcCC = ISDCCtoARCCC(CC); assert(LHS.getValueType() == MVT::i32 && "Only know how to SELECT_CC i32"); SDValue Cmp = DAG.getNode(ARCISD::CMP, dl, MVT::Glue, LHS, RHS); return DAG.getNode(ARCISD::CMOV, dl, TVal.getValueType(), TVal, FVal, DAG.getConstant(ArcCC, dl, MVT::i32), Cmp); } SDValue ARCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const { SDValue Op0 = Op.getOperand(0); SDLoc dl(Op); assert(Op.getValueType() == MVT::i32 && "Unhandled target sign_extend_inreg."); // These are legal unsigned Width = cast(Op.getOperand(1))->getVT().getSizeInBits(); if (Width == 16 || Width == 8) return Op; if (Width >= 32) { return {}; } SDValue LS = DAG.getNode(ISD::SHL, dl, MVT::i32, Op0, DAG.getConstant(32 - Width, dl, MVT::i32)); SDValue SR = DAG.getNode(ISD::SRA, dl, MVT::i32, LS, DAG.getConstant(32 - Width, dl, MVT::i32)); return SR; } SDValue ARCTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue Dest = Op.getOperand(4); SDLoc dl(Op); ARCCC::CondCode arcCC = ISDCCtoARCCC(CC); assert(LHS.getValueType() == MVT::i32 && "Only know how to BR_CC i32"); return DAG.getNode(ARCISD::BRcc, dl, MVT::Other, Chain, Dest, LHS, RHS, DAG.getConstant(arcCC, dl, MVT::i32)); } SDValue ARCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { auto *N = cast(Op); SDValue GA = DAG.getTargetJumpTable(N->getIndex(), MVT::i32); return DAG.getNode(ARCISD::GAWRAPPER, SDLoc(N), MVT::i32, GA); } #include "ARCGenCallingConv.inc" //===----------------------------------------------------------------------===// // Call Calling Convention Implementation //===----------------------------------------------------------------------===// /// ARC call implementation SDValue ARCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &dl = CLI.DL; SmallVectorImpl &Outs = CLI.Outs; SmallVectorImpl &OutVals = CLI.OutVals; SmallVectorImpl &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; CallingConv::ID CallConv = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; bool &IsTailCall = CLI.IsTailCall; IsTailCall = false; // Do not support tail calls yet. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, CC_ARC); SmallVector RVLocs; // Analyze return values to determine the number of bytes of stack required. CCState RetCCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), Align(4)); RetCCInfo.AnalyzeCallResult(Ins, RetCC_ARC); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = RetCCInfo.getNextStackOffset(); Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); SmallVector, 4> RegsToPass; SmallVector MemOpChains; SDValue StackPtr; // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[i]; // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); break; } // Arguments that can be passed on register must be kept at // RegsToPass vector if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } else { assert(VA.isMemLoc() && "Must be register or memory argument."); if (!StackPtr.getNode()) StackPtr = DAG.getCopyFromReg(Chain, dl, ARC::SP, getPointerTy(DAG.getDataLayout())); // Calculate the stack position. SDValue SOffset = DAG.getIntPtrConstant(VA.getLocMemOffset(), dl); SDValue PtrOff = DAG.getNode( ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), StackPtr, SOffset); SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); MemOpChains.push_back(Store); IsTailCall = false; } } // Transform all store nodes into one single node because // all store nodes are independent of each other. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); // Build a sequence of copy-to-reg nodes chained together with token // chain and flag operands which copy the outgoing args into registers. // The InFlag in necessary since all emitted instructions must be // stuck together. SDValue Glue; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, Glue); Glue = Chain.getValue(1); } // If the callee is a GlobalAddress node (quite common, every direct call is) // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. // Likewise ExternalSymbol -> TargetExternalSymbol. bool IsDirect = true; if (auto *G = dyn_cast(Callee)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32); else if (auto *E = dyn_cast(Callee)) Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32); else IsDirect = false; // Branch + Link = #chain, #target_address, #opt_in_flags... // = Chain, Callee, Reg#1, Reg#2, ... // // Returns a chain & a flag for retval copy to use. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Callee); for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); // Add a register mask operand representing the call-preserved registers. const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); const uint32_t *Mask = TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); if (Glue.getNode()) Ops.push_back(Glue); Chain = DAG.getNode(IsDirect ? ARCISD::BL : ARCISD::JL, dl, NodeTys, Ops); Glue = Chain.getValue(1); // Create the CALLSEQ_END node. Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, dl); Glue = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. if (IsTailCall) return Chain; return lowerCallResult(Chain, Glue, RVLocs, dl, DAG, InVals); } /// Lower the result values of a call into the appropriate copies out of /// physical registers / memory locations. static SDValue lowerCallResult(SDValue Chain, SDValue Glue, const SmallVectorImpl &RVLocs, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) { SmallVector, 4> ResultMemLocs; // Copy results out of physical registers. for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { const CCValAssign &VA = RVLocs[i]; if (VA.isRegLoc()) { SDValue RetValue; RetValue = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(), Glue); Chain = RetValue.getValue(1); Glue = RetValue.getValue(2); InVals.push_back(RetValue); } else { assert(VA.isMemLoc() && "Must be memory location."); ResultMemLocs.push_back( std::make_pair(VA.getLocMemOffset(), InVals.size())); // Reserve space for this result. InVals.push_back(SDValue()); } } // Copy results out of memory. SmallVector MemOpChains; for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) { int Offset = ResultMemLocs[i].first; unsigned Index = ResultMemLocs[i].second; SDValue StackPtr = DAG.getRegister(ARC::SP, MVT::i32); SDValue SpLoc = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, DAG.getConstant(Offset, dl, MVT::i32)); SDValue Load = DAG.getLoad(MVT::i32, dl, Chain, SpLoc, MachinePointerInfo()); InVals[Index] = Load; MemOpChains.push_back(Load.getValue(1)); } // Transform all loads nodes into one single node because // all load nodes are independent of each other. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); return Chain; } //===----------------------------------------------------------------------===// // Formal Arguments Calling Convention Implementation //===----------------------------------------------------------------------===// namespace { struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; }; } // end anonymous namespace /// ARC formal arguments implementation SDValue ARCTargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { switch (CallConv) { default: llvm_unreachable("Unsupported calling convention"); case CallingConv::C: case CallingConv::Fast: return LowerCallArguments(Chain, CallConv, IsVarArg, Ins, dl, DAG, InVals); } } /// Transform physical registers into virtual registers, and generate load /// operations for argument places on the stack. SDValue ARCTargetLowering::LowerCallArguments( SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); auto *AFI = MF.getInfo(); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_ARC); unsigned StackSlotSize = 4; if (!IsVarArg) AFI->setReturnStackOffset(CCInfo.getNextStackOffset()); // All getCopyFromReg ops must precede any getMemcpys to prevent the // scheduler clobbering a register before it has been copied. // The stages are: // 1. CopyFromReg (and load) arg & vararg registers. // 2. Chain CopyFromReg nodes into a TokenFactor. // 3. Memcpy 'byVal' args & push final InVals. // 4. Chain mem ops nodes into a TokenFactor. SmallVector CFRegNode; SmallVector ArgData; SmallVector MemOps; // 1a. CopyFromReg (and load) arg registers. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; SDValue ArgIn; if (VA.isRegLoc()) { // Arguments passed in registers EVT RegVT = VA.getLocVT(); switch (RegVT.getSimpleVT().SimpleTy) { default: { LLVM_DEBUG(errs() << "LowerFormalArguments Unhandled argument type: " << (unsigned)RegVT.getSimpleVT().SimpleTy << "\n"); llvm_unreachable("Unhandled LowerFormalArguments type."); } case MVT::i32: unsigned VReg = RegInfo.createVirtualRegister(&ARC::GPR32RegClass); RegInfo.addLiveIn(VA.getLocReg(), VReg); ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1)); } } else { // Only arguments passed on the stack should make it here. assert(VA.isMemLoc()); // Load the argument to a virtual register unsigned ObjSize = VA.getLocVT().getStoreSize(); assert((ObjSize <= StackSlotSize) && "Unhandled argument"); // Create the frame index object for this incoming parameter... int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); // Create the SelectionDAG nodes corresponding to a load // from this parameter SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, MachinePointerInfo::getFixedStack(MF, FI)); } const ArgDataPair ADP = {ArgIn, Ins[i].Flags}; ArgData.push_back(ADP); } // 1b. CopyFromReg vararg registers. if (IsVarArg) { // Argument registers static const MCPhysReg ArgRegs[] = {ARC::R0, ARC::R1, ARC::R2, ARC::R3, ARC::R4, ARC::R5, ARC::R6, ARC::R7}; auto *AFI = MF.getInfo(); unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs); if (FirstVAReg < std::size(ArgRegs)) { int Offset = 0; // Save remaining registers, storing higher register numbers at a higher // address // There are (std::size(ArgRegs) - FirstVAReg) registers which // need to be saved. int VarFI = MFI.CreateFixedObject((std::size(ArgRegs) - FirstVAReg) * 4, CCInfo.getNextStackOffset(), true); AFI->setVarArgsFrameIndex(VarFI); SDValue FIN = DAG.getFrameIndex(VarFI, MVT::i32); for (unsigned i = FirstVAReg; i < std::size(ArgRegs); i++) { // Move argument from phys reg -> virt reg unsigned VReg = RegInfo.createVirtualRegister(&ARC::GPR32RegClass); RegInfo.addLiveIn(ArgRegs[i], VReg); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1)); SDValue VAObj = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN, DAG.getConstant(Offset, dl, MVT::i32)); // Move argument from virt reg -> stack SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, VAObj, MachinePointerInfo()); MemOps.push_back(Store); Offset += 4; } } else { llvm_unreachable("Too many var args parameters."); } } // 2. Chain CopyFromReg nodes into a TokenFactor. if (!CFRegNode.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode); // 3. Memcpy 'byVal' args & push final InVals. // Aggregates passed "byVal" need to be copied by the callee. // The callee will use a pointer to this copy, rather than the original // pointer. for (const auto &ArgDI : ArgData) { if (ArgDI.Flags.isByVal() && ArgDI.Flags.getByValSize()) { unsigned Size = ArgDI.Flags.getByValSize(); Align Alignment = std::max(Align(StackSlotSize), ArgDI.Flags.getNonZeroByValAlign()); // Create a new object on the stack and copy the pointee into it. int FI = MFI.CreateStackObject(Size, Alignment, false); SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); InVals.push_back(FIN); MemOps.push_back(DAG.getMemcpy( Chain, dl, FIN, ArgDI.SDV, DAG.getConstant(Size, dl, MVT::i32), Alignment, false, false, false, MachinePointerInfo(), MachinePointerInfo())); } else { InVals.push_back(ArgDI.SDV); } } // 4. Chain mem ops nodes into a TokenFactor. if (!MemOps.empty()) { MemOps.push_back(Chain); Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); } return Chain; } //===----------------------------------------------------------------------===// // Return Value Calling Convention Implementation //===----------------------------------------------------------------------===// bool ARCTargetLowering::CanLowerReturn( CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { SmallVector RVLocs; CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); if (!CCInfo.CheckReturn(Outs, RetCC_ARC)) return false; if (CCInfo.getNextStackOffset() != 0 && IsVarArg) return false; return true; } SDValue ARCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &dl, SelectionDAG &DAG) const { auto *AFI = DAG.getMachineFunction().getInfo(); MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); // CCValAssign - represent the assignment of // the return value to a location SmallVector RVLocs; // CCState - Info about the registers and stack slot. CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); // Analyze return values. if (!IsVarArg) CCInfo.AllocateStack(AFI->getReturnStackOffset(), Align(4)); CCInfo.AnalyzeReturn(Outs, RetCC_ARC); SDValue Flag; SmallVector RetOps(1, Chain); SmallVector MemOpChains; // Handle return values that must be copied to memory. for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign &VA = RVLocs[i]; if (VA.isRegLoc()) continue; assert(VA.isMemLoc()); if (IsVarArg) { report_fatal_error("Can't return value from vararg function in memory"); } int Offset = VA.getLocMemOffset(); unsigned ObjSize = VA.getLocVT().getStoreSize(); // Create the frame index object for the memory location. int FI = MFI.CreateFixedObject(ObjSize, Offset, false); // Create a SelectionDAG node corresponding to a store // to this memory location. SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); MemOpChains.push_back(DAG.getStore( Chain, dl, OutVals[i], FIN, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); } // Transform all store nodes into one single node because // all stores are independent of each other. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); // Now handle return values copied to registers. for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign &VA = RVLocs[i]; if (!VA.isRegLoc()) continue; // Copy the result values into the output registers. Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); // guarantee that all emitted copies are // stuck together, avoiding something bad Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } RetOps[0] = Chain; // Update chain. // Add the flag if we have it. if (Flag.getNode()) RetOps.push_back(Flag); // What to do with the RetOps? return DAG.getNode(ARCISD::RET, dl, MVT::Other, RetOps); } //===----------------------------------------------------------------------===// // Target Optimization Hooks //===----------------------------------------------------------------------===// SDValue ARCTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { return {}; } //===----------------------------------------------------------------------===// // Addressing mode description hooks //===----------------------------------------------------------------------===// /// Return true if the addressing mode represented by AM is legal for this /// target, for a load/store of the specified type. bool ARCTargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { return AM.Scale == 0; } // Don't emit tail calls for the time being. bool ARCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { return false; } SDValue ARCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { const ARCRegisterInfo &ARI = *Subtarget.getRegisterInfo(); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MFI.setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc dl(Op); assert(cast(Op.getOperand(0))->getZExtValue() == 0 && "Only support lowering frame addr of current frame."); Register FrameReg = ARI.getFrameRegister(MF); return DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); } SDValue ARCTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { const GlobalAddressSDNode *GN = cast(Op); const GlobalValue *GV = GN->getGlobal(); SDLoc dl(GN); int64_t Offset = GN->getOffset(); SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, Offset); return DAG.getNode(ARCISD::GAWRAPPER, dl, MVT::i32, GA); } static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) { MachineFunction &MF = DAG.getMachineFunction(); auto *FuncInfo = MF.getInfo(); // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. SDLoc dl(Op); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); const Value *SV = cast(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), MachinePointerInfo(SV)); } SDValue ARCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::BR_CC: return LowerBR_CC(Op, DAG); case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::READCYCLECOUNTER: // As of LLVM 3.8, the lowering code insists that we customize it even // though we've declared the i32 version as legal. This is because it only // thinks i64 is the truly supported version. We've already converted the // i64 version to a widened i32. assert(Op.getSimpleValueType() == MVT::i32); return Op; default: llvm_unreachable("unimplemented operand"); } }