//===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This pass adds instructions to enable whole quad mode (strict or non-strict) /// for pixel shaders, and strict whole wavefront mode for all programs. /// /// The "strict" prefix indicates that inactive lanes do not take part in /// control flow, specifically an inactive lane enabled by a strict WQM/WWM will /// always be enabled irrespective of control flow decisions. Conversely in /// non-strict WQM inactive lanes may control flow decisions. /// /// Whole quad mode is required for derivative computations, but it interferes /// with shader side effects (stores and atomics). It ensures that WQM is /// enabled when necessary, but disabled around stores and atomics. /// /// When necessary, this pass creates a function prolog /// /// S_MOV_B64 LiveMask, EXEC /// S_WQM_B64 EXEC, EXEC /// /// to enter WQM at the top of the function and surrounds blocks of Exact /// instructions by /// /// S_AND_SAVEEXEC_B64 Tmp, LiveMask /// ... /// S_MOV_B64 EXEC, Tmp /// /// We also compute when a sequence of instructions requires strict whole /// wavefront mode (StrictWWM) and insert instructions to save and restore it: /// /// S_OR_SAVEEXEC_B64 Tmp, -1 /// ... /// S_MOV_B64 EXEC, Tmp /// /// When a sequence of instructions requires strict whole quad mode (StrictWQM) /// we use a similar save and restore mechanism and force whole quad mode for /// those instructions: /// /// S_MOV_B64 Tmp, EXEC /// S_WQM_B64 EXEC, EXEC /// ... /// S_MOV_B64 EXEC, Tmp /// /// In order to avoid excessive switching during sequences of Exact /// instructions, the pass first analyzes which instructions must be run in WQM /// (aka which instructions produce values that lead to derivative /// computations). /// /// Basic blocks are always exited in WQM as long as some successor needs WQM. /// /// There is room for improvement given better control flow analysis: /// /// (1) at the top level (outside of control flow statements, and as long as /// kill hasn't been used), one SGPR can be saved by recovering WQM from /// the LiveMask (this is implemented for the entry block). /// /// (2) when entire regions (e.g. if-else blocks or entire loops) only /// consist of exact and don't-care instructions, the switch only has to /// be done at the entry and exit points rather than potentially in each /// block of the region. /// //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachinePostDominators.h" #include "llvm/IR/CallingConv.h" #include "llvm/InitializePasses.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "si-wqm" namespace { enum { StateWQM = 0x1, StateStrictWWM = 0x2, StateStrictWQM = 0x4, StateExact = 0x8, StateStrict = StateStrictWWM | StateStrictWQM, }; struct PrintState { public: int State; explicit PrintState(int State) : State(State) {} }; #ifndef NDEBUG static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) { static const std::pair Mapping[] = { std::make_pair(StateWQM, "WQM"), std::make_pair(StateStrictWWM, "StrictWWM"), std::make_pair(StateStrictWQM, "StrictWQM"), std::make_pair(StateExact, "Exact")}; char State = PS.State; for (auto M : Mapping) { if (State & M.first) { OS << M.second; State &= ~M.first; if (State) OS << '|'; } } assert(State == 0); return OS; } #endif struct InstrInfo { char Needs = 0; char Disabled = 0; char OutNeeds = 0; }; struct BlockInfo { char Needs = 0; char InNeeds = 0; char OutNeeds = 0; char InitialState = 0; bool NeedsLowering = false; }; struct WorkItem { MachineBasicBlock *MBB = nullptr; MachineInstr *MI = nullptr; WorkItem() = default; WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {} WorkItem(MachineInstr *MI) : MI(MI) {} }; class SIWholeQuadMode : public MachineFunctionPass { private: const SIInstrInfo *TII; const SIRegisterInfo *TRI; const GCNSubtarget *ST; MachineRegisterInfo *MRI; LiveIntervals *LIS; MachineDominatorTree *MDT; MachinePostDominatorTree *PDT; unsigned AndOpc; unsigned AndN2Opc; unsigned XorOpc; unsigned AndSaveExecOpc; unsigned OrSaveExecOpc; unsigned WQMOpc; Register Exec; Register LiveMaskReg; DenseMap Instructions; MapVector Blocks; // Tracks state (WQM/StrictWWM/StrictWQM/Exact) after a given instruction DenseMap StateTransition; SmallVector LiveMaskQueries; SmallVector LowerToMovInstrs; SmallVector LowerToCopyInstrs; SmallVector KillInstrs; void printInfo(); void markInstruction(MachineInstr &MI, char Flag, std::vector &Worklist); void markDefs(const MachineInstr &UseMI, LiveRange &LR, Register Reg, unsigned SubReg, char Flag, std::vector &Worklist); void markOperand(const MachineInstr &MI, const MachineOperand &Op, char Flag, std::vector &Worklist); void markInstructionUses(const MachineInstr &MI, char Flag, std::vector &Worklist); char scanInstructions(MachineFunction &MF, std::vector &Worklist); void propagateInstruction(MachineInstr &MI, std::vector &Worklist); void propagateBlock(MachineBasicBlock &MBB, std::vector &Worklist); char analyzeFunction(MachineFunction &MF); MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before); MachineBasicBlock::iterator prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First, MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC); void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, Register SaveWQM); void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, Register SavedWQM); void toStrictMode(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, Register SaveOrig, char StrictStateNeeded); void fromStrictMode(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, Register SavedOrig, char NonStrictState, char CurrentStrictState); MachineBasicBlock *splitBlock(MachineBasicBlock *BB, MachineInstr *TermMI); MachineInstr *lowerKillI1(MachineBasicBlock &MBB, MachineInstr &MI, bool IsWQM); MachineInstr *lowerKillF32(MachineBasicBlock &MBB, MachineInstr &MI); void lowerBlock(MachineBasicBlock &MBB); void processBlock(MachineBasicBlock &MBB, bool IsEntry); void lowerLiveMaskQueries(); void lowerCopyInstrs(); void lowerKillInstrs(bool IsWQM); public: static char ID; SIWholeQuadMode() : MachineFunctionPass(ID) { } bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return "SI Whole Quad Mode"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } MachineFunctionProperties getClearedProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::IsSSA); } }; } // end anonymous namespace char SIWholeQuadMode::ID = 0; INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, false) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, false) char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID; FunctionPass *llvm::createSIWholeQuadModePass() { return new SIWholeQuadMode; } #ifndef NDEBUG LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() { for (const auto &BII : Blocks) { dbgs() << "\n" << printMBBReference(*BII.first) << ":\n" << " InNeeds = " << PrintState(BII.second.InNeeds) << ", Needs = " << PrintState(BII.second.Needs) << ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n"; for (const MachineInstr &MI : *BII.first) { auto III = Instructions.find(&MI); if (III == Instructions.end()) continue; dbgs() << " " << MI << " Needs = " << PrintState(III->second.Needs) << ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n'; } } } #endif void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag, std::vector &Worklist) { InstrInfo &II = Instructions[&MI]; assert(!(Flag & StateExact) && Flag != 0); // Remove any disabled states from the flag. The user that required it gets // an undefined value in the helper lanes. For example, this can happen if // the result of an atomic is used by instruction that requires WQM, where // ignoring the request for WQM is correct as per the relevant specs. Flag &= ~II.Disabled; // Ignore if the flag is already encompassed by the existing needs, or we // just disabled everything. if ((II.Needs & Flag) == Flag) return; LLVM_DEBUG(dbgs() << "markInstruction " << PrintState(Flag) << ": " << MI); II.Needs |= Flag; Worklist.push_back(&MI); } /// Mark all relevant definitions of register \p Reg in usage \p UseMI. void SIWholeQuadMode::markDefs(const MachineInstr &UseMI, LiveRange &LR, Register Reg, unsigned SubReg, char Flag, std::vector &Worklist) { LLVM_DEBUG(dbgs() << "markDefs " << PrintState(Flag) << ": " << UseMI); LiveQueryResult UseLRQ = LR.Query(LIS->getInstructionIndex(UseMI)); const VNInfo *Value = UseLRQ.valueIn(); if (!Value) return; // Note: this code assumes that lane masks on AMDGPU completely // cover registers. const LaneBitmask UseLanes = SubReg ? TRI->getSubRegIndexLaneMask(SubReg) : (Reg.isVirtual() ? MRI->getMaxLaneMaskForVReg(Reg) : LaneBitmask::getNone()); // Perform a depth-first iteration of the LiveRange graph marking defs. // Stop processing of a given branch when all use lanes have been defined. // The first definition stops processing for a physical register. struct PhiEntry { const VNInfo *Phi; unsigned PredIdx; LaneBitmask DefinedLanes; PhiEntry(const VNInfo *Phi, unsigned PredIdx, LaneBitmask DefinedLanes) : Phi(Phi), PredIdx(PredIdx), DefinedLanes(DefinedLanes) {} }; using VisitKey = std::pair; SmallVector PhiStack; SmallSet Visited; LaneBitmask DefinedLanes; unsigned NextPredIdx = 0; // Only used for processing phi nodes do { const VNInfo *NextValue = nullptr; const VisitKey Key(Value, DefinedLanes); if (!Visited.count(Key)) { Visited.insert(Key); // On first visit to a phi then start processing first predecessor NextPredIdx = 0; } if (Value->isPHIDef()) { // Each predecessor node in the phi must be processed as a subgraph const MachineBasicBlock *MBB = LIS->getMBBFromIndex(Value->def); assert(MBB && "Phi-def has no defining MBB"); // Find next predecessor to process unsigned Idx = NextPredIdx; auto PI = MBB->pred_begin() + Idx; auto PE = MBB->pred_end(); for (; PI != PE && !NextValue; ++PI, ++Idx) { if (const VNInfo *VN = LR.getVNInfoBefore(LIS->getMBBEndIdx(*PI))) { if (!Visited.count(VisitKey(VN, DefinedLanes))) NextValue = VN; } } // If there are more predecessors to process; add phi to stack if (PI != PE) PhiStack.emplace_back(Value, Idx, DefinedLanes); } else { MachineInstr *MI = LIS->getInstructionFromIndex(Value->def); assert(MI && "Def has no defining instruction"); if (Reg.isVirtual()) { // Iterate over all operands to find relevant definitions bool HasDef = false; for (const MachineOperand &Op : MI->operands()) { if (!(Op.isReg() && Op.isDef() && Op.getReg() == Reg)) continue; // Compute lanes defined and overlap with use LaneBitmask OpLanes = Op.isUndef() ? LaneBitmask::getAll() : TRI->getSubRegIndexLaneMask(Op.getSubReg()); LaneBitmask Overlap = (UseLanes & OpLanes); // Record if this instruction defined any of use HasDef |= Overlap.any(); // Mark any lanes defined DefinedLanes |= OpLanes; } // Check if all lanes of use have been defined if ((DefinedLanes & UseLanes) != UseLanes) { // Definition not complete; need to process input value LiveQueryResult LRQ = LR.Query(LIS->getInstructionIndex(*MI)); if (const VNInfo *VN = LRQ.valueIn()) { if (!Visited.count(VisitKey(VN, DefinedLanes))) NextValue = VN; } } // Only mark the instruction if it defines some part of the use if (HasDef) markInstruction(*MI, Flag, Worklist); } else { // For physical registers simply mark the defining instruction markInstruction(*MI, Flag, Worklist); } } if (!NextValue && !PhiStack.empty()) { // Reach end of chain; revert to processing last phi PhiEntry &Entry = PhiStack.back(); NextValue = Entry.Phi; NextPredIdx = Entry.PredIdx; DefinedLanes = Entry.DefinedLanes; PhiStack.pop_back(); } Value = NextValue; } while (Value); } void SIWholeQuadMode::markOperand(const MachineInstr &MI, const MachineOperand &Op, char Flag, std::vector &Worklist) { assert(Op.isReg()); Register Reg = Op.getReg(); // Ignore some hardware registers switch (Reg) { case AMDGPU::EXEC: case AMDGPU::EXEC_LO: return; default: break; } LLVM_DEBUG(dbgs() << "markOperand " << PrintState(Flag) << ": " << Op << " for " << MI); if (Reg.isVirtual()) { LiveRange &LR = LIS->getInterval(Reg); markDefs(MI, LR, Reg, Op.getSubReg(), Flag, Worklist); } else { // Handle physical registers that we need to track; this is mostly relevant // for VCC, which can appear as the (implicit) input of a uniform branch, // e.g. when a loop counter is stored in a VGPR. for (MCRegUnitIterator RegUnit(Reg.asMCReg(), TRI); RegUnit.isValid(); ++RegUnit) { LiveRange &LR = LIS->getRegUnit(*RegUnit); const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn(); if (!Value) continue; markDefs(MI, LR, *RegUnit, AMDGPU::NoSubRegister, Flag, Worklist); } } } /// Mark all instructions defining the uses in \p MI with \p Flag. void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag, std::vector &Worklist) { LLVM_DEBUG(dbgs() << "markInstructionUses " << PrintState(Flag) << ": " << MI); for (const MachineOperand &Use : MI.uses()) { if (!Use.isReg() || !Use.isUse()) continue; markOperand(MI, Use, Flag, Worklist); } } // Scan instructions to determine which ones require an Exact execmask and // which ones seed WQM requirements. char SIWholeQuadMode::scanInstructions(MachineFunction &MF, std::vector &Worklist) { char GlobalFlags = 0; bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs"); SmallVector SetInactiveInstrs; SmallVector SoftWQMInstrs; // We need to visit the basic blocks in reverse post-order so that we visit // defs before uses, in particular so that we don't accidentally mark an // instruction as needing e.g. WQM before visiting it and realizing it needs // WQM disabled. ReversePostOrderTraversal RPOT(&MF); for (auto BI = RPOT.begin(), BE = RPOT.end(); BI != BE; ++BI) { MachineBasicBlock &MBB = **BI; BlockInfo &BBI = Blocks[&MBB]; for (auto II = MBB.begin(), IE = MBB.end(); II != IE; ++II) { MachineInstr &MI = *II; InstrInfo &III = Instructions[&MI]; unsigned Opcode = MI.getOpcode(); char Flags = 0; if (TII->isWQM(Opcode)) { // If LOD is not supported WQM is not needed. if (!ST->hasExtendedImageInsts()) continue; // Sampling instructions don't need to produce results for all pixels // in a quad, they just require all inputs of a quad to have been // computed for derivatives. markInstructionUses(MI, StateWQM, Worklist); GlobalFlags |= StateWQM; continue; } else if (Opcode == AMDGPU::WQM) { // The WQM intrinsic requires its output to have all the helper lanes // correct, so we need it to be in WQM. Flags = StateWQM; LowerToCopyInstrs.push_back(&MI); } else if (Opcode == AMDGPU::SOFT_WQM) { LowerToCopyInstrs.push_back(&MI); SoftWQMInstrs.push_back(&MI); continue; } else if (Opcode == AMDGPU::STRICT_WWM) { // The STRICT_WWM intrinsic doesn't make the same guarantee, and plus // it needs to be executed in WQM or Exact so that its copy doesn't // clobber inactive lanes. markInstructionUses(MI, StateStrictWWM, Worklist); GlobalFlags |= StateStrictWWM; LowerToMovInstrs.push_back(&MI); continue; } else if (Opcode == AMDGPU::STRICT_WQM) { // STRICT_WQM is similar to STRICTWWM, but instead of enabling all // threads of the wave like STRICTWWM, STRICT_WQM enables all threads in // quads that have at least one active thread. markInstructionUses(MI, StateStrictWQM, Worklist); GlobalFlags |= StateStrictWQM; LowerToMovInstrs.push_back(&MI); continue; } else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 || Opcode == AMDGPU::V_SET_INACTIVE_B64) { III.Disabled = StateStrict; MachineOperand &Inactive = MI.getOperand(2); if (Inactive.isReg()) { if (Inactive.isUndef()) { LowerToCopyInstrs.push_back(&MI); } else { markOperand(MI, Inactive, StateStrictWWM, Worklist); } } SetInactiveInstrs.push_back(&MI); continue; } else if (TII->isDisableWQM(MI)) { BBI.Needs |= StateExact; if (!(BBI.InNeeds & StateExact)) { BBI.InNeeds |= StateExact; Worklist.push_back(&MBB); } GlobalFlags |= StateExact; III.Disabled = StateWQM | StateStrict; continue; } else { if (Opcode == AMDGPU::SI_PS_LIVE || Opcode == AMDGPU::SI_LIVE_MASK) { LiveMaskQueries.push_back(&MI); } else if (Opcode == AMDGPU::SI_KILL_I1_TERMINATOR || Opcode == AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR || Opcode == AMDGPU::SI_DEMOTE_I1) { KillInstrs.push_back(&MI); BBI.NeedsLowering = true; } else if (WQMOutputs) { // The function is in machine SSA form, which means that physical // VGPRs correspond to shader inputs and outputs. Inputs are // only used, outputs are only defined. // FIXME: is this still valid? for (const MachineOperand &MO : MI.defs()) { if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (!Reg.isVirtual() && TRI->hasVectorRegisters(TRI->getPhysRegClass(Reg))) { Flags = StateWQM; break; } } } if (!Flags) continue; } markInstruction(MI, Flags, Worklist); GlobalFlags |= Flags; } } // Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is // ever used anywhere in the function. This implements the corresponding // semantics of @llvm.amdgcn.set.inactive. // Similarly for SOFT_WQM instructions, implementing @llvm.amdgcn.softwqm. if (GlobalFlags & StateWQM) { for (MachineInstr *MI : SetInactiveInstrs) markInstruction(*MI, StateWQM, Worklist); for (MachineInstr *MI : SoftWQMInstrs) markInstruction(*MI, StateWQM, Worklist); } return GlobalFlags; } void SIWholeQuadMode::propagateInstruction(MachineInstr &MI, std::vector& Worklist) { MachineBasicBlock *MBB = MI.getParent(); InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references BlockInfo &BI = Blocks[MBB]; // Control flow-type instructions and stores to temporary memory that are // followed by WQM computations must themselves be in WQM. if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) && (MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) { Instructions[&MI].Needs = StateWQM; II.Needs = StateWQM; } // Propagate to block level if (II.Needs & StateWQM) { BI.Needs |= StateWQM; if (!(BI.InNeeds & StateWQM)) { BI.InNeeds |= StateWQM; Worklist.push_back(MBB); } } // Propagate backwards within block if (MachineInstr *PrevMI = MI.getPrevNode()) { char InNeeds = (II.Needs & ~StateStrict) | II.OutNeeds; if (!PrevMI->isPHI()) { InstrInfo &PrevII = Instructions[PrevMI]; if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) { PrevII.OutNeeds |= InNeeds; Worklist.push_back(PrevMI); } } } // Propagate WQM flag to instruction inputs assert(!(II.Needs & StateExact)); if (II.Needs != 0) markInstructionUses(MI, II.Needs, Worklist); // Ensure we process a block containing StrictWWM/StrictWQM, even if it does // not require any WQM transitions. if (II.Needs & StateStrictWWM) BI.Needs |= StateStrictWWM; if (II.Needs & StateStrictWQM) BI.Needs |= StateStrictWQM; } void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB, std::vector& Worklist) { BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references. // Propagate through instructions if (!MBB.empty()) { MachineInstr *LastMI = &*MBB.rbegin(); InstrInfo &LastII = Instructions[LastMI]; if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) { LastII.OutNeeds |= BI.OutNeeds; Worklist.push_back(LastMI); } } // Predecessor blocks must provide for our WQM/Exact needs. for (MachineBasicBlock *Pred : MBB.predecessors()) { BlockInfo &PredBI = Blocks[Pred]; if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds) continue; PredBI.OutNeeds |= BI.InNeeds; PredBI.InNeeds |= BI.InNeeds; Worklist.push_back(Pred); } // All successors must be prepared to accept the same set of WQM/Exact data. for (MachineBasicBlock *Succ : MBB.successors()) { BlockInfo &SuccBI = Blocks[Succ]; if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds) continue; SuccBI.InNeeds |= BI.OutNeeds; Worklist.push_back(Succ); } } char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) { std::vector Worklist; char GlobalFlags = scanInstructions(MF, Worklist); while (!Worklist.empty()) { WorkItem WI = Worklist.back(); Worklist.pop_back(); if (WI.MI) propagateInstruction(*WI.MI, Worklist); else propagateBlock(*WI.MBB, Worklist); } return GlobalFlags; } MachineBasicBlock::iterator SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before) { Register SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); MachineInstr *Save = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg) .addReg(AMDGPU::SCC); MachineInstr *Restore = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC) .addReg(SaveReg); LIS->InsertMachineInstrInMaps(*Save); LIS->InsertMachineInstrInMaps(*Restore); LIS->createAndComputeVirtRegInterval(SaveReg); return Restore; } MachineBasicBlock *SIWholeQuadMode::splitBlock(MachineBasicBlock *BB, MachineInstr *TermMI) { LLVM_DEBUG(dbgs() << "Split block " << printMBBReference(*BB) << " @ " << *TermMI << "\n"); MachineBasicBlock *SplitBB = BB->splitAt(*TermMI, /*UpdateLiveIns*/ true, LIS); // Convert last instruction in block to a terminator. // Note: this only covers the expected patterns unsigned NewOpcode = 0; switch (TermMI->getOpcode()) { case AMDGPU::S_AND_B32: NewOpcode = AMDGPU::S_AND_B32_term; break; case AMDGPU::S_AND_B64: NewOpcode = AMDGPU::S_AND_B64_term; break; case AMDGPU::S_MOV_B32: NewOpcode = AMDGPU::S_MOV_B32_term; break; case AMDGPU::S_MOV_B64: NewOpcode = AMDGPU::S_MOV_B64_term; break; default: break; } if (NewOpcode) TermMI->setDesc(TII->get(NewOpcode)); if (SplitBB != BB) { // Update dominator trees using DomTreeT = DomTreeBase; SmallVector DTUpdates; for (MachineBasicBlock *Succ : SplitBB->successors()) { DTUpdates.push_back({DomTreeT::Insert, SplitBB, Succ}); DTUpdates.push_back({DomTreeT::Delete, BB, Succ}); } DTUpdates.push_back({DomTreeT::Insert, BB, SplitBB}); if (MDT) MDT->getBase().applyUpdates(DTUpdates); if (PDT) PDT->getBase().applyUpdates(DTUpdates); // Link blocks MachineInstr *MI = BuildMI(*BB, BB->end(), DebugLoc(), TII->get(AMDGPU::S_BRANCH)) .addMBB(SplitBB); LIS->InsertMachineInstrInMaps(*MI); } return SplitBB; } MachineInstr *SIWholeQuadMode::lowerKillF32(MachineBasicBlock &MBB, MachineInstr &MI) { const DebugLoc &DL = MI.getDebugLoc(); unsigned Opcode = 0; assert(MI.getOperand(0).isReg()); // Comparison is for live lanes; however here we compute the inverse // (killed lanes). This is because VCMP will always generate 0 bits // for inactive lanes so a mask of live lanes would not be correct // inside control flow. // Invert the comparison by swapping the operands and adjusting // the comparison codes. switch (MI.getOperand(2).getImm()) { case ISD::SETUEQ: Opcode = AMDGPU::V_CMP_LG_F32_e64; break; case ISD::SETUGT: Opcode = AMDGPU::V_CMP_GE_F32_e64; break; case ISD::SETUGE: Opcode = AMDGPU::V_CMP_GT_F32_e64; break; case ISD::SETULT: Opcode = AMDGPU::V_CMP_LE_F32_e64; break; case ISD::SETULE: Opcode = AMDGPU::V_CMP_LT_F32_e64; break; case ISD::SETUNE: Opcode = AMDGPU::V_CMP_EQ_F32_e64; break; case ISD::SETO: Opcode = AMDGPU::V_CMP_O_F32_e64; break; case ISD::SETUO: Opcode = AMDGPU::V_CMP_U_F32_e64; break; case ISD::SETOEQ: case ISD::SETEQ: Opcode = AMDGPU::V_CMP_NEQ_F32_e64; break; case ISD::SETOGT: case ISD::SETGT: Opcode = AMDGPU::V_CMP_NLT_F32_e64; break; case ISD::SETOGE: case ISD::SETGE: Opcode = AMDGPU::V_CMP_NLE_F32_e64; break; case ISD::SETOLT: case ISD::SETLT: Opcode = AMDGPU::V_CMP_NGT_F32_e64; break; case ISD::SETOLE: case ISD::SETLE: Opcode = AMDGPU::V_CMP_NGE_F32_e64; break; case ISD::SETONE: case ISD::SETNE: Opcode = AMDGPU::V_CMP_NLG_F32_e64; break; default: llvm_unreachable("invalid ISD:SET cond code"); } // Pick opcode based on comparison type. MachineInstr *VcmpMI; const MachineOperand &Op0 = MI.getOperand(0); const MachineOperand &Op1 = MI.getOperand(1); if (TRI->isVGPR(*MRI, Op0.getReg())) { Opcode = AMDGPU::getVOPe32(Opcode); VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode)).add(Op1).add(Op0); } else { VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode)) .addReg(AMDGPU::VCC, RegState::Define) .addImm(0) // src0 modifiers .add(Op1) .addImm(0) // src1 modifiers .add(Op0) .addImm(0); // omod } // VCC represents lanes killed. Register VCC = ST->isWave32() ? AMDGPU::VCC_LO : AMDGPU::VCC; MachineInstr *MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) .addReg(LiveMaskReg) .addReg(VCC); // State of SCC represents whether any lanes are live in mask, // if SCC is 0 then no lanes will be alive anymore. MachineInstr *EarlyTermMI = BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0)); MachineInstr *ExecMaskMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), Exec).addReg(Exec).addReg(VCC); assert(MBB.succ_size() == 1); MachineInstr *NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH)) .addMBB(*MBB.succ_begin()); // Update live intervals LIS->ReplaceMachineInstrInMaps(MI, *VcmpMI); MBB.remove(&MI); LIS->InsertMachineInstrInMaps(*MaskUpdateMI); LIS->InsertMachineInstrInMaps(*ExecMaskMI); LIS->InsertMachineInstrInMaps(*EarlyTermMI); LIS->InsertMachineInstrInMaps(*NewTerm); return NewTerm; } MachineInstr *SIWholeQuadMode::lowerKillI1(MachineBasicBlock &MBB, MachineInstr &MI, bool IsWQM) { const DebugLoc &DL = MI.getDebugLoc(); MachineInstr *MaskUpdateMI = nullptr; const bool IsDemote = IsWQM && (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1); const MachineOperand &Op = MI.getOperand(0); int64_t KillVal = MI.getOperand(1).getImm(); MachineInstr *ComputeKilledMaskMI = nullptr; Register CndReg = !Op.isImm() ? Op.getReg() : Register(); Register TmpReg; // Is this a static or dynamic kill? if (Op.isImm()) { if (Op.getImm() == KillVal) { // Static: all active lanes are killed MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) .addReg(LiveMaskReg) .addReg(Exec); } else { // Static: kill does nothing MachineInstr *NewTerm = nullptr; if (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1) { LIS->RemoveMachineInstrFromMaps(MI); } else { assert(MBB.succ_size() == 1); NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH)) .addMBB(*MBB.succ_begin()); LIS->ReplaceMachineInstrInMaps(MI, *NewTerm); } MBB.remove(&MI); return NewTerm; } } else { if (!KillVal) { // Op represents live lanes after kill, // so exec mask needs to be factored in. TmpReg = MRI->createVirtualRegister(TRI->getBoolRC()); ComputeKilledMaskMI = BuildMI(MBB, MI, DL, TII->get(XorOpc), TmpReg).add(Op).addReg(Exec); MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) .addReg(LiveMaskReg) .addReg(TmpReg); } else { // Op represents lanes to kill MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) .addReg(LiveMaskReg) .add(Op); } } // State of SCC represents whether any lanes are live in mask, // if SCC is 0 then no lanes will be alive anymore. MachineInstr *EarlyTermMI = BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0)); // In the case we got this far some lanes are still live, // update EXEC to deactivate lanes as appropriate. MachineInstr *NewTerm; MachineInstr *WQMMaskMI = nullptr; Register LiveMaskWQM; if (IsDemote) { // Demotes deactive quads with only helper lanes LiveMaskWQM = MRI->createVirtualRegister(TRI->getBoolRC()); WQMMaskMI = BuildMI(MBB, MI, DL, TII->get(WQMOpc), LiveMaskWQM).addReg(LiveMaskReg); NewTerm = BuildMI(MBB, MI, DL, TII->get(AndOpc), Exec) .addReg(Exec) .addReg(LiveMaskWQM); } else { // Kills deactivate lanes if (Op.isImm()) { unsigned MovOpc = ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; NewTerm = BuildMI(MBB, &MI, DL, TII->get(MovOpc), Exec).addImm(0); } else if (!IsWQM) { NewTerm = BuildMI(MBB, &MI, DL, TII->get(AndOpc), Exec) .addReg(Exec) .addReg(LiveMaskReg); } else { unsigned Opcode = KillVal ? AndN2Opc : AndOpc; NewTerm = BuildMI(MBB, &MI, DL, TII->get(Opcode), Exec).addReg(Exec).add(Op); } } // Update live intervals LIS->RemoveMachineInstrFromMaps(MI); MBB.remove(&MI); assert(EarlyTermMI); assert(MaskUpdateMI); assert(NewTerm); if (ComputeKilledMaskMI) LIS->InsertMachineInstrInMaps(*ComputeKilledMaskMI); LIS->InsertMachineInstrInMaps(*MaskUpdateMI); LIS->InsertMachineInstrInMaps(*EarlyTermMI); if (WQMMaskMI) LIS->InsertMachineInstrInMaps(*WQMMaskMI); LIS->InsertMachineInstrInMaps(*NewTerm); if (CndReg) { LIS->removeInterval(CndReg); LIS->createAndComputeVirtRegInterval(CndReg); } if (TmpReg) LIS->createAndComputeVirtRegInterval(TmpReg); if (LiveMaskWQM) LIS->createAndComputeVirtRegInterval(LiveMaskWQM); return NewTerm; } // Replace (or supplement) instructions accessing live mask. // This can only happen once all the live mask registers have been created // and the execute state (WQM/StrictWWM/Exact) of instructions is known. void SIWholeQuadMode::lowerBlock(MachineBasicBlock &MBB) { auto BII = Blocks.find(&MBB); if (BII == Blocks.end()) return; const BlockInfo &BI = BII->second; if (!BI.NeedsLowering) return; LLVM_DEBUG(dbgs() << "\nLowering block " << printMBBReference(MBB) << ":\n"); SmallVector SplitPoints; char State = BI.InitialState; auto II = MBB.getFirstNonPHI(), IE = MBB.end(); while (II != IE) { auto Next = std::next(II); MachineInstr &MI = *II; if (StateTransition.count(&MI)) State = StateTransition[&MI]; MachineInstr *SplitPoint = nullptr; switch (MI.getOpcode()) { case AMDGPU::SI_DEMOTE_I1: case AMDGPU::SI_KILL_I1_TERMINATOR: SplitPoint = lowerKillI1(MBB, MI, State == StateWQM); break; case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: SplitPoint = lowerKillF32(MBB, MI); break; default: break; } if (SplitPoint) SplitPoints.push_back(SplitPoint); II = Next; } // Perform splitting after instruction scan to simplify iteration. if (!SplitPoints.empty()) { MachineBasicBlock *BB = &MBB; for (MachineInstr *MI : SplitPoints) { BB = splitBlock(BB, MI); } } } // Return an iterator in the (inclusive) range [First, Last] at which // instructions can be safely inserted, keeping in mind that some of the // instructions we want to add necessarily clobber SCC. MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion( MachineBasicBlock &MBB, MachineBasicBlock::iterator First, MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) { if (!SaveSCC) return PreferLast ? Last : First; LiveRange &LR = LIS->getRegUnit(*MCRegUnitIterator(MCRegister::from(AMDGPU::SCC), TRI)); auto MBBE = MBB.end(); SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First) : LIS->getMBBEndIdx(&MBB); SlotIndex LastIdx = Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB); SlotIndex Idx = PreferLast ? LastIdx : FirstIdx; const LiveRange::Segment *S; for (;;) { S = LR.getSegmentContaining(Idx); if (!S) break; if (PreferLast) { SlotIndex Next = S->start.getBaseIndex(); if (Next < FirstIdx) break; Idx = Next; } else { MachineInstr *EndMI = LIS->getInstructionFromIndex(S->end.getBaseIndex()); assert(EndMI && "Segment does not end on valid instruction"); auto NextI = std::next(EndMI->getIterator()); if (NextI == MBB.end()) break; SlotIndex Next = LIS->getInstructionIndex(*NextI); if (Next > LastIdx) break; Idx = Next; } } MachineBasicBlock::iterator MBBI; if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx)) MBBI = MI; else { assert(Idx == LIS->getMBBEndIdx(&MBB)); MBBI = MBB.end(); } // Move insertion point past any operations modifying EXEC. // This assumes that the value of SCC defined by any of these operations // does not need to be preserved. while (MBBI != Last) { bool IsExecDef = false; for (const MachineOperand &MO : MBBI->operands()) { if (MO.isReg() && MO.isDef()) { IsExecDef |= MO.getReg() == AMDGPU::EXEC_LO || MO.getReg() == AMDGPU::EXEC; } } if (!IsExecDef) break; MBBI++; S = nullptr; } if (S) MBBI = saveSCC(MBB, MBBI); return MBBI; } void SIWholeQuadMode::toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, Register SaveWQM) { MachineInstr *MI; if (SaveWQM) { MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AndSaveExecOpc), SaveWQM) .addReg(LiveMaskReg); } else { MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AndOpc), Exec) .addReg(Exec) .addReg(LiveMaskReg); } LIS->InsertMachineInstrInMaps(*MI); StateTransition[MI] = StateExact; } void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, Register SavedWQM) { MachineInstr *MI; if (SavedWQM) { MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), Exec) .addReg(SavedWQM); } else { MI = BuildMI(MBB, Before, DebugLoc(), TII->get(WQMOpc), Exec).addReg(Exec); } LIS->InsertMachineInstrInMaps(*MI); StateTransition[MI] = StateWQM; } void SIWholeQuadMode::toStrictMode(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, Register SaveOrig, char StrictStateNeeded) { MachineInstr *MI; assert(SaveOrig); assert(StrictStateNeeded == StateStrictWWM || StrictStateNeeded == StateStrictWQM); if (StrictStateNeeded == StateStrictWWM) { MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WWM), SaveOrig) .addImm(-1); } else { MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WQM), SaveOrig) .addImm(-1); } LIS->InsertMachineInstrInMaps(*MI); StateTransition[MI] = StateStrictWWM; } void SIWholeQuadMode::fromStrictMode(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, Register SavedOrig, char NonStrictState, char CurrentStrictState) { MachineInstr *MI; assert(SavedOrig); assert(CurrentStrictState == StateStrictWWM || CurrentStrictState == StateStrictWQM); if (CurrentStrictState == StateStrictWWM) { MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WWM), Exec) .addReg(SavedOrig); } else { MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WQM), Exec) .addReg(SavedOrig); } LIS->InsertMachineInstrInMaps(*MI); StateTransition[MI] = NonStrictState; } void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, bool IsEntry) { auto BII = Blocks.find(&MBB); if (BII == Blocks.end()) return; BlockInfo &BI = BII->second; // This is a non-entry block that is WQM throughout, so no need to do // anything. if (!IsEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact) { BI.InitialState = StateWQM; return; } LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB) << ":\n"); Register SavedWQMReg; Register SavedNonStrictReg; bool WQMFromExec = IsEntry; char State = (IsEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM; char NonStrictState = 0; const TargetRegisterClass *BoolRC = TRI->getBoolRC(); auto II = MBB.getFirstNonPHI(), IE = MBB.end(); if (IsEntry) { // Skip the instruction that saves LiveMask if (II != IE && II->getOpcode() == AMDGPU::COPY) ++II; } // This stores the first instruction where it's safe to switch from WQM to // Exact or vice versa. MachineBasicBlock::iterator FirstWQM = IE; // This stores the first instruction where it's safe to switch from Strict // mode to Exact/WQM or to switch to Strict mode. It must always be the same // as, or after, FirstWQM since if it's safe to switch to/from Strict, it must // be safe to switch to/from WQM as well. MachineBasicBlock::iterator FirstStrict = IE; // Record initial state is block information. BI.InitialState = State; for (;;) { MachineBasicBlock::iterator Next = II; char Needs = StateExact | StateWQM; // Strict mode is disabled by default. char OutNeeds = 0; if (FirstWQM == IE) FirstWQM = II; if (FirstStrict == IE) FirstStrict = II; // First, figure out the allowed states (Needs) based on the propagated // flags. if (II != IE) { MachineInstr &MI = *II; if (MI.isTerminator() || TII->mayReadEXEC(*MRI, MI)) { auto III = Instructions.find(&MI); if (III != Instructions.end()) { if (III->second.Needs & StateStrictWWM) Needs = StateStrictWWM; else if (III->second.Needs & StateStrictWQM) Needs = StateStrictWQM; else if (III->second.Needs & StateWQM) Needs = StateWQM; else Needs &= ~III->second.Disabled; OutNeeds = III->second.OutNeeds; } } else { // If the instruction doesn't actually need a correct EXEC, then we can // safely leave Strict mode enabled. Needs = StateExact | StateWQM | StateStrict; } if (MI.isTerminator() && OutNeeds == StateExact) Needs = StateExact; ++Next; } else { // End of basic block if (BI.OutNeeds & StateWQM) Needs = StateWQM; else if (BI.OutNeeds == StateExact) Needs = StateExact; else Needs = StateWQM | StateExact; } // Now, transition if necessary. if (!(Needs & State)) { MachineBasicBlock::iterator First; if (State == StateStrictWWM || Needs == StateStrictWWM || State == StateStrictWQM || Needs == StateStrictWQM) { // We must switch to or from Strict mode. First = FirstStrict; } else { // We only need to switch to/from WQM, so we can use FirstWQM. First = FirstWQM; } // Whether we need to save SCC depends on start and end states. bool SaveSCC = false; switch (State) { case StateExact: case StateStrictWWM: case StateStrictWQM: // Exact/Strict -> Strict: save SCC // Exact/Strict -> WQM: save SCC if WQM mask is generated from exec // Exact/Strict -> Exact: no save SaveSCC = (Needs & StateStrict) || ((Needs & StateWQM) && WQMFromExec); break; case StateWQM: // WQM -> Exact/Strict: save SCC SaveSCC = !(Needs & StateWQM); break; default: llvm_unreachable("Unknown state"); break; } MachineBasicBlock::iterator Before = prepareInsertion(MBB, First, II, Needs == StateWQM, SaveSCC); if (State & StateStrict) { assert(State == StateStrictWWM || State == StateStrictWQM); assert(SavedNonStrictReg); fromStrictMode(MBB, Before, SavedNonStrictReg, NonStrictState, State); LIS->createAndComputeVirtRegInterval(SavedNonStrictReg); SavedNonStrictReg = 0; State = NonStrictState; } if (Needs & StateStrict) { NonStrictState = State; assert(Needs == StateStrictWWM || Needs == StateStrictWQM); assert(!SavedNonStrictReg); SavedNonStrictReg = MRI->createVirtualRegister(BoolRC); toStrictMode(MBB, Before, SavedNonStrictReg, Needs); State = Needs; } else { if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) { if (!WQMFromExec && (OutNeeds & StateWQM)) { assert(!SavedWQMReg); SavedWQMReg = MRI->createVirtualRegister(BoolRC); } toExact(MBB, Before, SavedWQMReg); State = StateExact; } else if (State == StateExact && (Needs & StateWQM) && !(Needs & StateExact)) { assert(WQMFromExec == (SavedWQMReg == 0)); toWQM(MBB, Before, SavedWQMReg); if (SavedWQMReg) { LIS->createAndComputeVirtRegInterval(SavedWQMReg); SavedWQMReg = 0; } State = StateWQM; } else { // We can get here if we transitioned from StrictWWM to a // non-StrictWWM state that already matches our needs, but we // shouldn't need to do anything. assert(Needs & State); } } } if (Needs != (StateExact | StateWQM | StateStrict)) { if (Needs != (StateExact | StateWQM)) FirstWQM = IE; FirstStrict = IE; } if (II == IE) break; II = Next; } assert(!SavedWQMReg); assert(!SavedNonStrictReg); } void SIWholeQuadMode::lowerLiveMaskQueries() { for (MachineInstr *MI : LiveMaskQueries) { const DebugLoc &DL = MI->getDebugLoc(); Register Dest = MI->getOperand(0).getReg(); MachineInstr *Copy = BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest) .addReg(LiveMaskReg); LIS->ReplaceMachineInstrInMaps(*MI, *Copy); MI->eraseFromParent(); } } void SIWholeQuadMode::lowerCopyInstrs() { for (MachineInstr *MI : LowerToMovInstrs) { assert(MI->getNumExplicitOperands() == 2); const Register Reg = MI->getOperand(0).getReg(); const unsigned SubReg = MI->getOperand(0).getSubReg(); if (TRI->isVGPR(*MRI, Reg)) { const TargetRegisterClass *regClass = Reg.isVirtual() ? MRI->getRegClass(Reg) : TRI->getPhysRegClass(Reg); if (SubReg) regClass = TRI->getSubRegClass(regClass, SubReg); const unsigned MovOp = TII->getMovOpcode(regClass); MI->setDesc(TII->get(MovOp)); // Check that it already implicitly depends on exec (like all VALU movs // should do). assert(any_of(MI->implicit_operands(), [](const MachineOperand &MO) { return MO.isUse() && MO.getReg() == AMDGPU::EXEC; })); } else { // Remove early-clobber and exec dependency from simple SGPR copies. // This allows some to be eliminated during/post RA. LLVM_DEBUG(dbgs() << "simplify SGPR copy: " << *MI); if (MI->getOperand(0).isEarlyClobber()) { LIS->removeInterval(Reg); MI->getOperand(0).setIsEarlyClobber(false); LIS->createAndComputeVirtRegInterval(Reg); } int Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC); while (Index >= 0) { MI->RemoveOperand(Index); Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC); } MI->setDesc(TII->get(AMDGPU::COPY)); LLVM_DEBUG(dbgs() << " -> " << *MI); } } for (MachineInstr *MI : LowerToCopyInstrs) { if (MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B32 || MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B64) { assert(MI->getNumExplicitOperands() == 3); // the only reason we should be here is V_SET_INACTIVE has // an undef input so it is being replaced by a simple copy. // There should be a second undef source that we should remove. assert(MI->getOperand(2).isUndef()); MI->RemoveOperand(2); MI->untieRegOperand(1); } else { assert(MI->getNumExplicitOperands() == 2); } MI->setDesc(TII->get(AMDGPU::COPY)); } } void SIWholeQuadMode::lowerKillInstrs(bool IsWQM) { for (MachineInstr *MI : KillInstrs) { MachineBasicBlock *MBB = MI->getParent(); MachineInstr *SplitPoint = nullptr; switch (MI->getOpcode()) { case AMDGPU::SI_DEMOTE_I1: case AMDGPU::SI_KILL_I1_TERMINATOR: SplitPoint = lowerKillI1(*MBB, *MI, IsWQM); break; case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: SplitPoint = lowerKillF32(*MBB, *MI); break; default: continue; } if (SplitPoint) splitBlock(MBB, SplitPoint); } } bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) { LLVM_DEBUG(dbgs() << "SI Whole Quad Mode on " << MF.getName() << " ------------- \n"); LLVM_DEBUG(MF.dump();); Instructions.clear(); Blocks.clear(); LiveMaskQueries.clear(); LowerToCopyInstrs.clear(); LowerToMovInstrs.clear(); KillInstrs.clear(); StateTransition.clear(); ST = &MF.getSubtarget(); TII = ST->getInstrInfo(); TRI = &TII->getRegisterInfo(); MRI = &MF.getRegInfo(); LIS = &getAnalysis(); MDT = &getAnalysis(); PDT = &getAnalysis(); if (ST->isWave32()) { AndOpc = AMDGPU::S_AND_B32; AndN2Opc = AMDGPU::S_ANDN2_B32; XorOpc = AMDGPU::S_XOR_B32; AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B32; OrSaveExecOpc = AMDGPU::S_OR_SAVEEXEC_B32; WQMOpc = AMDGPU::S_WQM_B32; Exec = AMDGPU::EXEC_LO; } else { AndOpc = AMDGPU::S_AND_B64; AndN2Opc = AMDGPU::S_ANDN2_B64; XorOpc = AMDGPU::S_XOR_B64; AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B64; OrSaveExecOpc = AMDGPU::S_OR_SAVEEXEC_B64; WQMOpc = AMDGPU::S_WQM_B64; Exec = AMDGPU::EXEC; } const char GlobalFlags = analyzeFunction(MF); const bool NeedsLiveMask = !(KillInstrs.empty() && LiveMaskQueries.empty()); LiveMaskReg = Exec; // Shader is simple does not need any state changes or any complex lowering if (!(GlobalFlags & (StateWQM | StateStrict)) && LowerToCopyInstrs.empty() && LowerToMovInstrs.empty() && KillInstrs.empty()) { lowerLiveMaskQueries(); return !LiveMaskQueries.empty(); } MachineBasicBlock &Entry = MF.front(); MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI(); // Store a copy of the original live mask when required if (NeedsLiveMask || (GlobalFlags & StateWQM)) { LiveMaskReg = MRI->createVirtualRegister(TRI->getBoolRC()); MachineInstr *MI = BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::COPY), LiveMaskReg) .addReg(Exec); LIS->InsertMachineInstrInMaps(*MI); } LLVM_DEBUG(printInfo()); lowerLiveMaskQueries(); lowerCopyInstrs(); // Shader only needs WQM if (GlobalFlags == StateWQM) { auto MI = BuildMI(Entry, EntryMI, DebugLoc(), TII->get(WQMOpc), Exec) .addReg(Exec); LIS->InsertMachineInstrInMaps(*MI); lowerKillInstrs(true); } else { for (auto BII : Blocks) processBlock(*BII.first, BII.first == &Entry); // Lowering blocks causes block splitting so perform as a second pass. for (auto BII : Blocks) lowerBlock(*BII.first); } // Compute live range for live mask if (LiveMaskReg != Exec) LIS->createAndComputeVirtRegInterval(LiveMaskReg); // Physical registers like SCC aren't tracked by default anyway, so just // removing the ranges we computed is the simplest option for maintaining // the analysis results. LIS->removeRegUnit(*MCRegUnitIterator(MCRegister::from(AMDGPU::SCC), TRI)); // If we performed any kills then recompute EXEC if (!KillInstrs.empty()) LIS->removeRegUnit(*MCRegUnitIterator(AMDGPU::EXEC, TRI)); return true; }