//===-- SIOptimizeExecMaskingPreRA.cpp ------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This pass performs exec mask handling peephole optimizations which needs /// to be done before register allocation to reduce register pressure. /// //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/InitializePasses.h" using namespace llvm; #define DEBUG_TYPE "si-optimize-exec-masking-pre-ra" namespace { class SIOptimizeExecMaskingPreRA : public MachineFunctionPass { private: const SIRegisterInfo *TRI; const SIInstrInfo *TII; MachineRegisterInfo *MRI; LiveIntervals *LIS; unsigned AndOpc; unsigned Andn2Opc; unsigned OrSaveExecOpc; unsigned XorTermrOpc; MCRegister CondReg; MCRegister ExecReg; bool optimizeVcndVcmpPair(MachineBasicBlock &MBB); bool optimizeElseBranch(MachineBasicBlock &MBB); public: static char ID; SIOptimizeExecMaskingPreRA() : MachineFunctionPass(ID) { initializeSIOptimizeExecMaskingPreRAPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return "SI optimize exec mask operations pre-RA"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } }; } // End anonymous namespace. INITIALIZE_PASS_BEGIN(SIOptimizeExecMaskingPreRA, DEBUG_TYPE, "SI optimize exec mask operations pre-RA", false, false) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_END(SIOptimizeExecMaskingPreRA, DEBUG_TYPE, "SI optimize exec mask operations pre-RA", false, false) char SIOptimizeExecMaskingPreRA::ID = 0; char &llvm::SIOptimizeExecMaskingPreRAID = SIOptimizeExecMaskingPreRA::ID; FunctionPass *llvm::createSIOptimizeExecMaskingPreRAPass() { return new SIOptimizeExecMaskingPreRA(); } // See if there is a def between \p AndIdx and \p SelIdx that needs to live // beyond \p AndIdx. static bool isDefBetween(const LiveRange &LR, SlotIndex AndIdx, SlotIndex SelIdx) { LiveQueryResult AndLRQ = LR.Query(AndIdx); return (!AndLRQ.isKill() && AndLRQ.valueIn() != LR.Query(SelIdx).valueOut()); } // FIXME: Why do we bother trying to handle physical registers here? static bool isDefBetween(const SIRegisterInfo &TRI, LiveIntervals *LIS, Register Reg, const MachineInstr &Sel, const MachineInstr &And) { SlotIndex AndIdx = LIS->getInstructionIndex(And).getRegSlot(); SlotIndex SelIdx = LIS->getInstructionIndex(Sel).getRegSlot(); if (Reg.isVirtual()) return isDefBetween(LIS->getInterval(Reg), AndIdx, SelIdx); for (MCRegUnitIterator UI(Reg.asMCReg(), &TRI); UI.isValid(); ++UI) { if (isDefBetween(LIS->getRegUnit(*UI), AndIdx, SelIdx)) return true; } return false; } // Optimize sequence // %sel = V_CNDMASK_B32_e64 0, 1, %cc // %cmp = V_CMP_NE_U32 1, %1 // $vcc = S_AND_B64 $exec, %cmp // S_CBRANCH_VCC[N]Z // => // $vcc = S_ANDN2_B64 $exec, %cc // S_CBRANCH_VCC[N]Z // // It is the negation pattern inserted by DAGCombiner::visitBRCOND() in the // rebuildSetCC(). We start with S_CBRANCH to avoid exhaustive search, but // only 3 first instructions are really needed. S_AND_B64 with exec is a // required part of the pattern since V_CNDMASK_B32 writes zeroes for inactive // lanes. // // Returns true on success. bool SIOptimizeExecMaskingPreRA::optimizeVcndVcmpPair(MachineBasicBlock &MBB) { auto I = llvm::find_if(MBB.terminators(), [](const MachineInstr &MI) { unsigned Opc = MI.getOpcode(); return Opc == AMDGPU::S_CBRANCH_VCCZ || Opc == AMDGPU::S_CBRANCH_VCCNZ; }); if (I == MBB.terminators().end()) return false; auto *And = TRI->findReachingDef(CondReg, AMDGPU::NoSubRegister, *I, *MRI, LIS); if (!And || And->getOpcode() != AndOpc || !And->getOperand(1).isReg() || !And->getOperand(2).isReg()) return false; MachineOperand *AndCC = &And->getOperand(1); Register CmpReg = AndCC->getReg(); unsigned CmpSubReg = AndCC->getSubReg(); if (CmpReg == Register(ExecReg)) { AndCC = &And->getOperand(2); CmpReg = AndCC->getReg(); CmpSubReg = AndCC->getSubReg(); } else if (And->getOperand(2).getReg() != Register(ExecReg)) { return false; } auto *Cmp = TRI->findReachingDef(CmpReg, CmpSubReg, *And, *MRI, LIS); if (!Cmp || !(Cmp->getOpcode() == AMDGPU::V_CMP_NE_U32_e32 || Cmp->getOpcode() == AMDGPU::V_CMP_NE_U32_e64) || Cmp->getParent() != And->getParent()) return false; MachineOperand *Op1 = TII->getNamedOperand(*Cmp, AMDGPU::OpName::src0); MachineOperand *Op2 = TII->getNamedOperand(*Cmp, AMDGPU::OpName::src1); if (Op1->isImm() && Op2->isReg()) std::swap(Op1, Op2); if (!Op1->isReg() || !Op2->isImm() || Op2->getImm() != 1) return false; Register SelReg = Op1->getReg(); if (SelReg.isPhysical()) return false; auto *Sel = TRI->findReachingDef(SelReg, Op1->getSubReg(), *Cmp, *MRI, LIS); if (!Sel || Sel->getOpcode() != AMDGPU::V_CNDMASK_B32_e64) return false; if (TII->hasModifiersSet(*Sel, AMDGPU::OpName::src0_modifiers) || TII->hasModifiersSet(*Sel, AMDGPU::OpName::src1_modifiers)) return false; Op1 = TII->getNamedOperand(*Sel, AMDGPU::OpName::src0); Op2 = TII->getNamedOperand(*Sel, AMDGPU::OpName::src1); MachineOperand *CC = TII->getNamedOperand(*Sel, AMDGPU::OpName::src2); if (!Op1->isImm() || !Op2->isImm() || !CC->isReg() || Op1->getImm() != 0 || Op2->getImm() != 1) return false; Register CCReg = CC->getReg(); // If there was a def between the select and the and, we would need to move it // to fold this. if (isDefBetween(*TRI, LIS, CCReg, *Sel, *And)) return false; // Cannot safely mirror live intervals with PHI nodes, so check for these // before optimization. SlotIndex SelIdx = LIS->getInstructionIndex(*Sel); LiveInterval *SelLI = &LIS->getInterval(SelReg); if (llvm::any_of(SelLI->vnis(), [](const VNInfo *VNI) { return VNI->isPHIDef(); })) return false; // TODO: Guard against implicit def operands? LLVM_DEBUG(dbgs() << "Folding sequence:\n\t" << *Sel << '\t' << *Cmp << '\t' << *And); MachineInstr *Andn2 = BuildMI(MBB, *And, And->getDebugLoc(), TII->get(Andn2Opc), And->getOperand(0).getReg()) .addReg(ExecReg) .addReg(CCReg, getUndefRegState(CC->isUndef()), CC->getSubReg()); MachineOperand &AndSCC = And->getOperand(3); assert(AndSCC.getReg() == AMDGPU::SCC); MachineOperand &Andn2SCC = Andn2->getOperand(3); assert(Andn2SCC.getReg() == AMDGPU::SCC); Andn2SCC.setIsDead(AndSCC.isDead()); SlotIndex AndIdx = LIS->ReplaceMachineInstrInMaps(*And, *Andn2); And->eraseFromParent(); LLVM_DEBUG(dbgs() << "=>\n\t" << *Andn2 << '\n'); // Update live intervals for CCReg before potentially removing CmpReg/SelReg, // and their associated liveness information. SlotIndex CmpIdx = LIS->getInstructionIndex(*Cmp); if (CCReg.isVirtual()) { // Apply live ranges from SelLI to CCReg potentially matching splits // and extending to loop boundaries. auto applyLiveRanges = [&](LiveRange &Dst, VNInfo *VNI) { // Copy live ranges from SelLI, adjusting start and end as required auto DefSegment = SelLI->FindSegmentContaining(SelIdx.getRegSlot()); assert(DefSegment != SelLI->end() && "No live interval segment covering definition?"); for (auto I = DefSegment; I != SelLI->end() && I->start <= AndIdx; ++I) { SlotIndex Start = I->start < SelIdx.getRegSlot() ? SelIdx.getRegSlot() : I->start; SlotIndex End = I->end < AndIdx.getRegSlot() || I->end.isBlock() ? I->end : AndIdx.getRegSlot(); Dst.addSegment(LiveRange::Segment(Start, End, VNI)); } // If SelLI does not cover AndIdx (because Cmp killed Sel) then extend. if (!SelLI->getSegmentContaining(AndIdx.getRegSlot())) Dst.addSegment(LiveRange::Segment(CmpIdx.getRegSlot(), AndIdx.getRegSlot(), VNI)); }; LiveInterval &CCLI = LIS->getInterval(CCReg); auto CCQ = CCLI.Query(SelIdx.getRegSlot()); if (CCQ.valueIn()) applyLiveRanges(CCLI, CCQ.valueIn()); if (CC->getSubReg()) { LaneBitmask Mask = TRI->getSubRegIndexLaneMask(CC->getSubReg()); BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); CCLI.refineSubRanges( Allocator, Mask, [=](LiveInterval::SubRange &SR) { auto CCQS = SR.Query(SelIdx.getRegSlot()); if (CCQS.valueIn()) applyLiveRanges(SR, CCQS.valueIn()); }, *LIS->getSlotIndexes(), *TRI); CCLI.removeEmptySubRanges(); SmallVector SplitLIs; LIS->splitSeparateComponents(CCLI, SplitLIs); } } else LIS->removeAllRegUnitsForPhysReg(CCReg); // Try to remove compare. Cmp value should not used in between of cmp // and s_and_b64 if VCC or just unused if any other register. LiveInterval *CmpLI = CmpReg.isVirtual() ? &LIS->getInterval(CmpReg) : nullptr; if ((CmpLI && CmpLI->Query(AndIdx.getRegSlot()).isKill()) || (CmpReg == Register(CondReg) && std::none_of(std::next(Cmp->getIterator()), Andn2->getIterator(), [&](const MachineInstr &MI) { return MI.readsRegister(CondReg, TRI); }))) { LLVM_DEBUG(dbgs() << "Erasing: " << *Cmp << '\n'); if (CmpLI) LIS->removeVRegDefAt(*CmpLI, CmpIdx.getRegSlot()); LIS->RemoveMachineInstrFromMaps(*Cmp); Cmp->eraseFromParent(); // Try to remove v_cndmask_b32. // Kill status must be checked before shrinking the live range. bool IsKill = SelLI->Query(CmpIdx.getRegSlot()).isKill(); LIS->shrinkToUses(SelLI); bool IsDead = SelLI->Query(SelIdx.getRegSlot()).isDeadDef(); if (MRI->use_nodbg_empty(SelReg) && (IsKill || IsDead)) { LLVM_DEBUG(dbgs() << "Erasing: " << *Sel << '\n'); LIS->removeVRegDefAt(*SelLI, SelIdx.getRegSlot()); LIS->RemoveMachineInstrFromMaps(*Sel); Sel->eraseFromParent(); } } return true; } // Optimize sequence // %dst = S_OR_SAVEEXEC %src // ... instructions not modifying exec ... // %tmp = S_AND $exec, %dst // $exec = S_XOR_term $exec, %tmp // => // %dst = S_OR_SAVEEXEC %src // ... instructions not modifying exec ... // $exec = S_XOR_term $exec, %dst // // Clean up potentially unnecessary code added for safety during // control flow lowering. // // Return whether any changes were made to MBB. bool SIOptimizeExecMaskingPreRA::optimizeElseBranch(MachineBasicBlock &MBB) { if (MBB.empty()) return false; // Check this is an else block. auto First = MBB.begin(); MachineInstr &SaveExecMI = *First; if (SaveExecMI.getOpcode() != OrSaveExecOpc) return false; auto I = llvm::find_if(MBB.terminators(), [this](const MachineInstr &MI) { return MI.getOpcode() == XorTermrOpc; }); if (I == MBB.terminators().end()) return false; MachineInstr &XorTermMI = *I; if (XorTermMI.getOperand(1).getReg() != Register(ExecReg)) return false; Register SavedExecReg = SaveExecMI.getOperand(0).getReg(); Register DstReg = XorTermMI.getOperand(2).getReg(); // Find potentially unnecessary S_AND MachineInstr *AndExecMI = nullptr; I--; while (I != First && !AndExecMI) { if (I->getOpcode() == AndOpc && I->getOperand(0).getReg() == DstReg && I->getOperand(1).getReg() == Register(ExecReg)) AndExecMI = &*I; I--; } if (!AndExecMI) return false; // Check for exec modifying instructions. // Note: exec defs do not create live ranges beyond the // instruction so isDefBetween cannot be used. // Instead just check that the def segments are adjacent. SlotIndex StartIdx = LIS->getInstructionIndex(SaveExecMI); SlotIndex EndIdx = LIS->getInstructionIndex(*AndExecMI); for (MCRegUnitIterator UI(ExecReg, TRI); UI.isValid(); ++UI) { LiveRange &RegUnit = LIS->getRegUnit(*UI); if (RegUnit.find(StartIdx) != std::prev(RegUnit.find(EndIdx))) return false; } // Remove unnecessary S_AND LIS->removeInterval(SavedExecReg); LIS->removeInterval(DstReg); SaveExecMI.getOperand(0).setReg(DstReg); LIS->RemoveMachineInstrFromMaps(*AndExecMI); AndExecMI->eraseFromParent(); LIS->createAndComputeVirtRegInterval(DstReg); return true; } bool SIOptimizeExecMaskingPreRA::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; const GCNSubtarget &ST = MF.getSubtarget(); TRI = ST.getRegisterInfo(); TII = ST.getInstrInfo(); MRI = &MF.getRegInfo(); LIS = &getAnalysis(); const bool Wave32 = ST.isWave32(); AndOpc = Wave32 ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64; Andn2Opc = Wave32 ? AMDGPU::S_ANDN2_B32 : AMDGPU::S_ANDN2_B64; OrSaveExecOpc = Wave32 ? AMDGPU::S_OR_SAVEEXEC_B32 : AMDGPU::S_OR_SAVEEXEC_B64; XorTermrOpc = Wave32 ? AMDGPU::S_XOR_B32_term : AMDGPU::S_XOR_B64_term; CondReg = MCRegister::from(Wave32 ? AMDGPU::VCC_LO : AMDGPU::VCC); ExecReg = MCRegister::from(Wave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC); DenseSet RecalcRegs({AMDGPU::EXEC_LO, AMDGPU::EXEC_HI}); bool Changed = false; for (MachineBasicBlock &MBB : MF) { if (optimizeElseBranch(MBB)) { RecalcRegs.insert(AMDGPU::SCC); Changed = true; } if (optimizeVcndVcmpPair(MBB)) { RecalcRegs.insert(AMDGPU::VCC_LO); RecalcRegs.insert(AMDGPU::VCC_HI); RecalcRegs.insert(AMDGPU::SCC); Changed = true; } // Try to remove unneeded instructions before s_endpgm. if (MBB.succ_empty()) { if (MBB.empty()) continue; // Skip this if the endpgm has any implicit uses, otherwise we would need // to be careful to update / remove them. // S_ENDPGM always has a single imm operand that is not used other than to // end up in the encoding MachineInstr &Term = MBB.back(); if (Term.getOpcode() != AMDGPU::S_ENDPGM || Term.getNumOperands() != 1) continue; SmallVector Blocks({&MBB}); while (!Blocks.empty()) { auto CurBB = Blocks.pop_back_val(); auto I = CurBB->rbegin(), E = CurBB->rend(); if (I != E) { if (I->isUnconditionalBranch() || I->getOpcode() == AMDGPU::S_ENDPGM) ++I; else if (I->isBranch()) continue; } while (I != E) { if (I->isDebugInstr()) { I = std::next(I); continue; } if (I->mayStore() || I->isBarrier() || I->isCall() || I->hasUnmodeledSideEffects() || I->hasOrderedMemoryRef()) break; LLVM_DEBUG(dbgs() << "Removing no effect instruction: " << *I << '\n'); for (auto &Op : I->operands()) { if (Op.isReg()) RecalcRegs.insert(Op.getReg()); } auto Next = std::next(I); LIS->RemoveMachineInstrFromMaps(*I); I->eraseFromParent(); I = Next; Changed = true; } if (I != E) continue; // Try to ascend predecessors. for (auto *Pred : CurBB->predecessors()) { if (Pred->succ_size() == 1) Blocks.push_back(Pred); } } continue; } // If the only user of a logical operation is move to exec, fold it now // to prevent forming of saveexec. I.e.: // // %0:sreg_64 = COPY $exec // %1:sreg_64 = S_AND_B64 %0:sreg_64, %2:sreg_64 // => // %1 = S_AND_B64 $exec, %2:sreg_64 unsigned ScanThreshold = 10; for (auto I = MBB.rbegin(), E = MBB.rend(); I != E && ScanThreshold--; ++I) { // Continue scanning if this is not a full exec copy if (!(I->isFullCopy() && I->getOperand(1).getReg() == Register(ExecReg))) continue; Register SavedExec = I->getOperand(0).getReg(); if (SavedExec.isVirtual() && MRI->hasOneNonDBGUse(SavedExec)) { MachineInstr *SingleExecUser = &*MRI->use_instr_nodbg_begin(SavedExec); int Idx = SingleExecUser->findRegisterUseOperandIdx(SavedExec); assert(Idx != -1); if (SingleExecUser->getParent() == I->getParent() && !SingleExecUser->getOperand(Idx).isImplicit() && TII->isOperandLegal(*SingleExecUser, Idx, &I->getOperand(1))) { LLVM_DEBUG(dbgs() << "Redundant EXEC COPY: " << *I << '\n'); LIS->RemoveMachineInstrFromMaps(*I); I->eraseFromParent(); MRI->replaceRegWith(SavedExec, ExecReg); LIS->removeInterval(SavedExec); Changed = true; } } break; } } if (Changed) { for (auto Reg : RecalcRegs) { if (Reg.isVirtual()) { LIS->removeInterval(Reg); if (!MRI->reg_empty(Reg)) LIS->createAndComputeVirtRegInterval(Reg); } else { LIS->removeAllRegUnitsForPhysReg(Reg); } } } return Changed; }