//===- SIMemoryLegalizer.cpp ----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Memory legalizer - implements memory model. More information can be /// found here: /// http://llvm.org/docs/AMDGPUUsage.html#memory-model // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUMachineModuleInfo.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "llvm/ADT/BitmaskEnum.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/TargetParser.h" using namespace llvm; using namespace llvm::AMDGPU; #define DEBUG_TYPE "si-memory-legalizer" #define PASS_NAME "SI Memory Legalizer" static cl::opt AmdgcnSkipCacheInvalidations( "amdgcn-skip-cache-invalidations", cl::init(false), cl::Hidden, cl::desc("Use this to skip inserting cache invalidating instructions.")); namespace { LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); /// Memory operation flags. Can be ORed together. enum class SIMemOp { NONE = 0u, LOAD = 1u << 0, STORE = 1u << 1, LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ STORE) }; /// Position to insert a new instruction relative to an existing /// instruction. enum class Position { BEFORE, AFTER }; /// The atomic synchronization scopes supported by the AMDGPU target. enum class SIAtomicScope { NONE, SINGLETHREAD, WAVEFRONT, WORKGROUP, AGENT, SYSTEM }; /// The distinct address spaces supported by the AMDGPU target for /// atomic memory operation. Can be ORed together. enum class SIAtomicAddrSpace { NONE = 0u, GLOBAL = 1u << 0, LDS = 1u << 1, SCRATCH = 1u << 2, GDS = 1u << 3, OTHER = 1u << 4, /// The address spaces that can be accessed by a FLAT instruction. FLAT = GLOBAL | LDS | SCRATCH, /// The address spaces that support atomic instructions. ATOMIC = GLOBAL | LDS | SCRATCH | GDS, /// All address spaces. ALL = GLOBAL | LDS | SCRATCH | GDS | OTHER, LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ ALL) }; class SIMemOpInfo final { private: friend class SIMemOpAccess; AtomicOrdering Ordering = AtomicOrdering::NotAtomic; AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; SIAtomicScope Scope = SIAtomicScope::SYSTEM; SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE; SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::NONE; bool IsCrossAddressSpaceOrdering = false; bool IsVolatile = false; bool IsNonTemporal = false; SIMemOpInfo(AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent, SIAtomicScope Scope = SIAtomicScope::SYSTEM, SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::ATOMIC, SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::ALL, bool IsCrossAddressSpaceOrdering = true, AtomicOrdering FailureOrdering = AtomicOrdering::SequentiallyConsistent, bool IsVolatile = false, bool IsNonTemporal = false) : Ordering(Ordering), FailureOrdering(FailureOrdering), Scope(Scope), OrderingAddrSpace(OrderingAddrSpace), InstrAddrSpace(InstrAddrSpace), IsCrossAddressSpaceOrdering(IsCrossAddressSpaceOrdering), IsVolatile(IsVolatile), IsNonTemporal(IsNonTemporal) { if (Ordering == AtomicOrdering::NotAtomic) { assert(Scope == SIAtomicScope::NONE && OrderingAddrSpace == SIAtomicAddrSpace::NONE && !IsCrossAddressSpaceOrdering && FailureOrdering == AtomicOrdering::NotAtomic); return; } assert(Scope != SIAtomicScope::NONE && (OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != SIAtomicAddrSpace::NONE && (InstrAddrSpace & SIAtomicAddrSpace::ATOMIC) != SIAtomicAddrSpace::NONE); // There is also no cross address space ordering if the ordering // address space is the same as the instruction address space and // only contains a single address space. if ((OrderingAddrSpace == InstrAddrSpace) && isPowerOf2_32(uint32_t(InstrAddrSpace))) this->IsCrossAddressSpaceOrdering = false; // Limit the scope to the maximum supported by the instruction's address // spaces. if ((InstrAddrSpace & ~SIAtomicAddrSpace::SCRATCH) == SIAtomicAddrSpace::NONE) { this->Scope = std::min(Scope, SIAtomicScope::SINGLETHREAD); } else if ((InstrAddrSpace & ~(SIAtomicAddrSpace::SCRATCH | SIAtomicAddrSpace::LDS)) == SIAtomicAddrSpace::NONE) { this->Scope = std::min(Scope, SIAtomicScope::WORKGROUP); } else if ((InstrAddrSpace & ~(SIAtomicAddrSpace::SCRATCH | SIAtomicAddrSpace::LDS | SIAtomicAddrSpace::GDS)) == SIAtomicAddrSpace::NONE) { this->Scope = std::min(Scope, SIAtomicScope::AGENT); } } public: /// \returns Atomic synchronization scope of the machine instruction used to /// create this SIMemOpInfo. SIAtomicScope getScope() const { return Scope; } /// \returns Ordering constraint of the machine instruction used to /// create this SIMemOpInfo. AtomicOrdering getOrdering() const { return Ordering; } /// \returns Failure ordering constraint of the machine instruction used to /// create this SIMemOpInfo. AtomicOrdering getFailureOrdering() const { return FailureOrdering; } /// \returns The address spaces be accessed by the machine /// instruction used to create this SIMemOpInfo. SIAtomicAddrSpace getInstrAddrSpace() const { return InstrAddrSpace; } /// \returns The address spaces that must be ordered by the machine /// instruction used to create this SIMemOpInfo. SIAtomicAddrSpace getOrderingAddrSpace() const { return OrderingAddrSpace; } /// \returns Return true iff memory ordering of operations on /// different address spaces is required. bool getIsCrossAddressSpaceOrdering() const { return IsCrossAddressSpaceOrdering; } /// \returns True if memory access of the machine instruction used to /// create this SIMemOpInfo is volatile, false otherwise. bool isVolatile() const { return IsVolatile; } /// \returns True if memory access of the machine instruction used to /// create this SIMemOpInfo is nontemporal, false otherwise. bool isNonTemporal() const { return IsNonTemporal; } /// \returns True if ordering constraint of the machine instruction used to /// create this SIMemOpInfo is unordered or higher, false otherwise. bool isAtomic() const { return Ordering != AtomicOrdering::NotAtomic; } }; class SIMemOpAccess final { private: AMDGPUMachineModuleInfo *MMI = nullptr; /// Reports unsupported message \p Msg for \p MI to LLVM context. void reportUnsupported(const MachineBasicBlock::iterator &MI, const char *Msg) const; /// Inspects the target synchronization scope \p SSID and determines /// the SI atomic scope it corresponds to, the address spaces it /// covers, and whether the memory ordering applies between address /// spaces. std::optional> toSIAtomicScope(SyncScope::ID SSID, SIAtomicAddrSpace InstrAddrSpace) const; /// \return Return a bit set of the address spaces accessed by \p AS. SIAtomicAddrSpace toSIAtomicAddrSpace(unsigned AS) const; /// \returns Info constructed from \p MI, which has at least machine memory /// operand. std::optional constructFromMIWithMMO(const MachineBasicBlock::iterator &MI) const; public: /// Construct class to support accessing the machine memory operands /// of instructions in the machine function \p MF. SIMemOpAccess(MachineFunction &MF); /// \returns Load info if \p MI is a load operation, "std::nullopt" otherwise. std::optional getLoadInfo(const MachineBasicBlock::iterator &MI) const; /// \returns Store info if \p MI is a store operation, "std::nullopt" /// otherwise. std::optional getStoreInfo(const MachineBasicBlock::iterator &MI) const; /// \returns Atomic fence info if \p MI is an atomic fence operation, /// "std::nullopt" otherwise. std::optional getAtomicFenceInfo(const MachineBasicBlock::iterator &MI) const; /// \returns Atomic cmpxchg/rmw info if \p MI is an atomic cmpxchg or /// rmw operation, "std::nullopt" otherwise. std::optional getAtomicCmpxchgOrRmwInfo(const MachineBasicBlock::iterator &MI) const; }; class SICacheControl { protected: /// AMDGPU subtarget info. const GCNSubtarget &ST; /// Instruction info. const SIInstrInfo *TII = nullptr; IsaVersion IV; /// Whether to insert cache invalidating instructions. bool InsertCacheInv; SICacheControl(const GCNSubtarget &ST); /// Sets named bit \p BitName to "true" if present in instruction \p MI. /// \returns Returns true if \p MI is modified, false otherwise. bool enableNamedBit(const MachineBasicBlock::iterator MI, AMDGPU::CPol::CPol Bit) const; public: /// Create a cache control for the subtarget \p ST. static std::unique_ptr create(const GCNSubtarget &ST); /// Update \p MI memory load instruction to bypass any caches up to /// the \p Scope memory scope for address spaces \p /// AddrSpace. Return true iff the instruction was modified. virtual bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const = 0; /// Update \p MI memory store instruction to bypass any caches up to /// the \p Scope memory scope for address spaces \p /// AddrSpace. Return true iff the instruction was modified. virtual bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const = 0; /// Update \p MI memory read-modify-write instruction to bypass any caches up /// to the \p Scope memory scope for address spaces \p AddrSpace. Return true /// iff the instruction was modified. virtual bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const = 0; /// Update \p MI memory instruction of kind \p Op associated with address /// spaces \p AddrSpace to indicate it is volatile and/or nontemporal. Return /// true iff the instruction was modified. virtual bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsVolatile, bool IsNonTemporal) const = 0; /// Inserts any necessary instructions at position \p Pos relative /// to instruction \p MI to ensure memory instructions before \p Pos of kind /// \p Op associated with address spaces \p AddrSpace have completed. Used /// between memory instructions to enforce the order they become visible as /// observed by other memory instructions executing in memory scope \p Scope. /// \p IsCrossAddrSpaceOrdering indicates if the memory ordering is between /// address spaces. Returns true iff any instructions inserted. virtual bool insertWait(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsCrossAddrSpaceOrdering, Position Pos) const = 0; /// Inserts any necessary instructions at position \p Pos relative to /// instruction \p MI to ensure any subsequent memory instructions of this /// thread with address spaces \p AddrSpace will observe the previous memory /// operations by any thread for memory scopes up to memory scope \p Scope . /// Returns true iff any instructions inserted. virtual bool insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, Position Pos) const = 0; /// Inserts any necessary instructions at position \p Pos relative to /// instruction \p MI to ensure previous memory instructions by this thread /// with address spaces \p AddrSpace have completed and can be observed by /// subsequent memory instructions by any thread executing in memory scope \p /// Scope. \p IsCrossAddrSpaceOrdering indicates if the memory ordering is /// between address spaces. Returns true iff any instructions inserted. virtual bool insertRelease(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, bool IsCrossAddrSpaceOrdering, Position Pos) const = 0; /// Virtual destructor to allow derivations to be deleted. virtual ~SICacheControl() = default; }; class SIGfx6CacheControl : public SICacheControl { protected: /// Sets GLC bit to "true" if present in \p MI. Returns true if \p MI /// is modified, false otherwise. bool enableGLCBit(const MachineBasicBlock::iterator &MI) const { return enableNamedBit(MI, AMDGPU::CPol::GLC); } /// Sets SLC bit to "true" if present in \p MI. Returns true if \p MI /// is modified, false otherwise. bool enableSLCBit(const MachineBasicBlock::iterator &MI) const { return enableNamedBit(MI, AMDGPU::CPol::SLC); } public: SIGfx6CacheControl(const GCNSubtarget &ST) : SICacheControl(ST) {} bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const override; bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const override; bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const override; bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsVolatile, bool IsNonTemporal) const override; bool insertWait(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsCrossAddrSpaceOrdering, Position Pos) const override; bool insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, Position Pos) const override; bool insertRelease(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, bool IsCrossAddrSpaceOrdering, Position Pos) const override; }; class SIGfx7CacheControl : public SIGfx6CacheControl { public: SIGfx7CacheControl(const GCNSubtarget &ST) : SIGfx6CacheControl(ST) {} bool insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, Position Pos) const override; }; class SIGfx90ACacheControl : public SIGfx7CacheControl { public: SIGfx90ACacheControl(const GCNSubtarget &ST) : SIGfx7CacheControl(ST) {} bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const override; bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const override; bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const override; bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsVolatile, bool IsNonTemporal) const override; bool insertWait(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsCrossAddrSpaceOrdering, Position Pos) const override; bool insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, Position Pos) const override; bool insertRelease(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, bool IsCrossAddrSpaceOrdering, Position Pos) const override; }; class SIGfx940CacheControl : public SIGfx90ACacheControl { protected: /// Sets SC0 bit to "true" if present in \p MI. Returns true if \p MI /// is modified, false otherwise. bool enableSC0Bit(const MachineBasicBlock::iterator &MI) const { return enableNamedBit(MI, AMDGPU::CPol::SC0); } /// Sets SC1 bit to "true" if present in \p MI. Returns true if \p MI /// is modified, false otherwise. bool enableSC1Bit(const MachineBasicBlock::iterator &MI) const { return enableNamedBit(MI, AMDGPU::CPol::SC1); } /// Sets NT bit to "true" if present in \p MI. Returns true if \p MI /// is modified, false otherwise. bool enableNTBit(const MachineBasicBlock::iterator &MI) const { return enableNamedBit(MI, AMDGPU::CPol::NT); } public: SIGfx940CacheControl(const GCNSubtarget &ST) : SIGfx90ACacheControl(ST) {}; bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const override; bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const override; bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const override; bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsVolatile, bool IsNonTemporal) const override; bool insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, Position Pos) const override; bool insertRelease(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, bool IsCrossAddrSpaceOrdering, Position Pos) const override; }; class SIGfx10CacheControl : public SIGfx7CacheControl { protected: /// Sets DLC bit to "true" if present in \p MI. Returns true if \p MI /// is modified, false otherwise. bool enableDLCBit(const MachineBasicBlock::iterator &MI) const { return enableNamedBit(MI, AMDGPU::CPol::DLC); } public: SIGfx10CacheControl(const GCNSubtarget &ST) : SIGfx7CacheControl(ST) {} bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const override; bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsVolatile, bool IsNonTemporal) const override; bool insertWait(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsCrossAddrSpaceOrdering, Position Pos) const override; bool insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, Position Pos) const override; }; class SIGfx11CacheControl : public SIGfx10CacheControl { public: SIGfx11CacheControl(const GCNSubtarget &ST) : SIGfx10CacheControl(ST) {} bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const override; bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsVolatile, bool IsNonTemporal) const override; }; class SIMemoryLegalizer final : public MachineFunctionPass { private: /// Cache Control. std::unique_ptr CC = nullptr; /// List of atomic pseudo instructions. std::list AtomicPseudoMIs; /// Return true iff instruction \p MI is a atomic instruction that /// returns a result. bool isAtomicRet(const MachineInstr &MI) const { return SIInstrInfo::isAtomicRet(MI); } /// Removes all processed atomic pseudo instructions from the current /// function. Returns true if current function is modified, false otherwise. bool removeAtomicPseudoMIs(); /// Expands load operation \p MI. Returns true if instructions are /// added/deleted or \p MI is modified, false otherwise. bool expandLoad(const SIMemOpInfo &MOI, MachineBasicBlock::iterator &MI); /// Expands store operation \p MI. Returns true if instructions are /// added/deleted or \p MI is modified, false otherwise. bool expandStore(const SIMemOpInfo &MOI, MachineBasicBlock::iterator &MI); /// Expands atomic fence operation \p MI. Returns true if /// instructions are added/deleted or \p MI is modified, false otherwise. bool expandAtomicFence(const SIMemOpInfo &MOI, MachineBasicBlock::iterator &MI); /// Expands atomic cmpxchg or rmw operation \p MI. Returns true if /// instructions are added/deleted or \p MI is modified, false otherwise. bool expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI, MachineBasicBlock::iterator &MI); public: static char ID; SIMemoryLegalizer() : MachineFunctionPass(ID) {} void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } StringRef getPassName() const override { return PASS_NAME; } bool runOnMachineFunction(MachineFunction &MF) override; }; } // end namespace anonymous void SIMemOpAccess::reportUnsupported(const MachineBasicBlock::iterator &MI, const char *Msg) const { const Function &Func = MI->getParent()->getParent()->getFunction(); DiagnosticInfoUnsupported Diag(Func, Msg, MI->getDebugLoc()); Func.getContext().diagnose(Diag); } std::optional> SIMemOpAccess::toSIAtomicScope(SyncScope::ID SSID, SIAtomicAddrSpace InstrAddrSpace) const { if (SSID == SyncScope::System) return std::tuple(SIAtomicScope::SYSTEM, SIAtomicAddrSpace::ATOMIC, true); if (SSID == MMI->getAgentSSID()) return std::tuple(SIAtomicScope::AGENT, SIAtomicAddrSpace::ATOMIC, true); if (SSID == MMI->getWorkgroupSSID()) return std::tuple(SIAtomicScope::WORKGROUP, SIAtomicAddrSpace::ATOMIC, true); if (SSID == MMI->getWavefrontSSID()) return std::tuple(SIAtomicScope::WAVEFRONT, SIAtomicAddrSpace::ATOMIC, true); if (SSID == SyncScope::SingleThread) return std::tuple(SIAtomicScope::SINGLETHREAD, SIAtomicAddrSpace::ATOMIC, true); if (SSID == MMI->getSystemOneAddressSpaceSSID()) return std::tuple(SIAtomicScope::SYSTEM, SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false); if (SSID == MMI->getAgentOneAddressSpaceSSID()) return std::tuple(SIAtomicScope::AGENT, SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false); if (SSID == MMI->getWorkgroupOneAddressSpaceSSID()) return std::tuple(SIAtomicScope::WORKGROUP, SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false); if (SSID == MMI->getWavefrontOneAddressSpaceSSID()) return std::tuple(SIAtomicScope::WAVEFRONT, SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false); if (SSID == MMI->getSingleThreadOneAddressSpaceSSID()) return std::tuple(SIAtomicScope::SINGLETHREAD, SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false); return std::nullopt; } SIAtomicAddrSpace SIMemOpAccess::toSIAtomicAddrSpace(unsigned AS) const { if (AS == AMDGPUAS::FLAT_ADDRESS) return SIAtomicAddrSpace::FLAT; if (AS == AMDGPUAS::GLOBAL_ADDRESS) return SIAtomicAddrSpace::GLOBAL; if (AS == AMDGPUAS::LOCAL_ADDRESS) return SIAtomicAddrSpace::LDS; if (AS == AMDGPUAS::PRIVATE_ADDRESS) return SIAtomicAddrSpace::SCRATCH; if (AS == AMDGPUAS::REGION_ADDRESS) return SIAtomicAddrSpace::GDS; return SIAtomicAddrSpace::OTHER; } SIMemOpAccess::SIMemOpAccess(MachineFunction &MF) { MMI = &MF.getMMI().getObjFileInfo(); } std::optional SIMemOpAccess::constructFromMIWithMMO( const MachineBasicBlock::iterator &MI) const { assert(MI->getNumMemOperands() > 0); SyncScope::ID SSID = SyncScope::SingleThread; AtomicOrdering Ordering = AtomicOrdering::NotAtomic; AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::NONE; bool IsNonTemporal = true; bool IsVolatile = false; // Validator should check whether or not MMOs cover the entire set of // locations accessed by the memory instruction. for (const auto &MMO : MI->memoperands()) { IsNonTemporal &= MMO->isNonTemporal(); IsVolatile |= MMO->isVolatile(); InstrAddrSpace |= toSIAtomicAddrSpace(MMO->getPointerInfo().getAddrSpace()); AtomicOrdering OpOrdering = MMO->getSuccessOrdering(); if (OpOrdering != AtomicOrdering::NotAtomic) { const auto &IsSyncScopeInclusion = MMI->isSyncScopeInclusion(SSID, MMO->getSyncScopeID()); if (!IsSyncScopeInclusion) { reportUnsupported(MI, "Unsupported non-inclusive atomic synchronization scope"); return std::nullopt; } SSID = *IsSyncScopeInclusion ? SSID : MMO->getSyncScopeID(); Ordering = getMergedAtomicOrdering(Ordering, OpOrdering); assert(MMO->getFailureOrdering() != AtomicOrdering::Release && MMO->getFailureOrdering() != AtomicOrdering::AcquireRelease); FailureOrdering = getMergedAtomicOrdering(FailureOrdering, MMO->getFailureOrdering()); } } SIAtomicScope Scope = SIAtomicScope::NONE; SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE; bool IsCrossAddressSpaceOrdering = false; if (Ordering != AtomicOrdering::NotAtomic) { auto ScopeOrNone = toSIAtomicScope(SSID, InstrAddrSpace); if (!ScopeOrNone) { reportUnsupported(MI, "Unsupported atomic synchronization scope"); return std::nullopt; } std::tie(Scope, OrderingAddrSpace, IsCrossAddressSpaceOrdering) = *ScopeOrNone; if ((OrderingAddrSpace == SIAtomicAddrSpace::NONE) || ((OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != OrderingAddrSpace) || ((InstrAddrSpace & SIAtomicAddrSpace::ATOMIC) == SIAtomicAddrSpace::NONE)) { reportUnsupported(MI, "Unsupported atomic address space"); return std::nullopt; } } return SIMemOpInfo(Ordering, Scope, OrderingAddrSpace, InstrAddrSpace, IsCrossAddressSpaceOrdering, FailureOrdering, IsVolatile, IsNonTemporal); } std::optional SIMemOpAccess::getLoadInfo(const MachineBasicBlock::iterator &MI) const { assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); if (!(MI->mayLoad() && !MI->mayStore())) return std::nullopt; // Be conservative if there are no memory operands. if (MI->getNumMemOperands() == 0) return SIMemOpInfo(); return constructFromMIWithMMO(MI); } std::optional SIMemOpAccess::getStoreInfo(const MachineBasicBlock::iterator &MI) const { assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); if (!(!MI->mayLoad() && MI->mayStore())) return std::nullopt; // Be conservative if there are no memory operands. if (MI->getNumMemOperands() == 0) return SIMemOpInfo(); return constructFromMIWithMMO(MI); } std::optional SIMemOpAccess::getAtomicFenceInfo(const MachineBasicBlock::iterator &MI) const { assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); if (MI->getOpcode() != AMDGPU::ATOMIC_FENCE) return std::nullopt; AtomicOrdering Ordering = static_cast(MI->getOperand(0).getImm()); SyncScope::ID SSID = static_cast(MI->getOperand(1).getImm()); auto ScopeOrNone = toSIAtomicScope(SSID, SIAtomicAddrSpace::ATOMIC); if (!ScopeOrNone) { reportUnsupported(MI, "Unsupported atomic synchronization scope"); return std::nullopt; } SIAtomicScope Scope = SIAtomicScope::NONE; SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE; bool IsCrossAddressSpaceOrdering = false; std::tie(Scope, OrderingAddrSpace, IsCrossAddressSpaceOrdering) = *ScopeOrNone; if ((OrderingAddrSpace == SIAtomicAddrSpace::NONE) || ((OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != OrderingAddrSpace)) { reportUnsupported(MI, "Unsupported atomic address space"); return std::nullopt; } return SIMemOpInfo(Ordering, Scope, OrderingAddrSpace, SIAtomicAddrSpace::ATOMIC, IsCrossAddressSpaceOrdering, AtomicOrdering::NotAtomic); } std::optional SIMemOpAccess::getAtomicCmpxchgOrRmwInfo( const MachineBasicBlock::iterator &MI) const { assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); if (!(MI->mayLoad() && MI->mayStore())) return std::nullopt; // Be conservative if there are no memory operands. if (MI->getNumMemOperands() == 0) return SIMemOpInfo(); return constructFromMIWithMMO(MI); } SICacheControl::SICacheControl(const GCNSubtarget &ST) : ST(ST) { TII = ST.getInstrInfo(); IV = getIsaVersion(ST.getCPU()); InsertCacheInv = !AmdgcnSkipCacheInvalidations; } bool SICacheControl::enableNamedBit(const MachineBasicBlock::iterator MI, AMDGPU::CPol::CPol Bit) const { MachineOperand *CPol = TII->getNamedOperand(*MI, AMDGPU::OpName::cpol); if (!CPol) return false; CPol->setImm(CPol->getImm() | Bit); return true; } /* static */ std::unique_ptr SICacheControl::create(const GCNSubtarget &ST) { GCNSubtarget::Generation Generation = ST.getGeneration(); if (ST.hasGFX940Insts()) return std::make_unique(ST); if (ST.hasGFX90AInsts()) return std::make_unique(ST); if (Generation <= AMDGPUSubtarget::SOUTHERN_ISLANDS) return std::make_unique(ST); if (Generation < AMDGPUSubtarget::GFX10) return std::make_unique(ST); if (Generation < AMDGPUSubtarget::GFX11) return std::make_unique(ST); return std::make_unique(ST); } bool SIGfx6CacheControl::enableLoadCacheBypass( const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const { assert(MI->mayLoad() && !MI->mayStore()); bool Changed = false; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: // Set L1 cache policy to MISS_EVICT. // Note: there is no L2 cache bypass policy at the ISA level. Changed |= enableGLCBit(MI); break; case SIAtomicScope::WORKGROUP: case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // No cache to bypass. break; default: llvm_unreachable("Unsupported synchronization scope"); } } /// The scratch address space does not need the global memory caches /// to be bypassed as all memory operations by the same thread are /// sequentially consistent, and no other thread can access scratch /// memory. /// Other address spaces do not have a cache. return Changed; } bool SIGfx6CacheControl::enableStoreCacheBypass( const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const { assert(!MI->mayLoad() && MI->mayStore()); bool Changed = false; /// The L1 cache is write through so does not need to be bypassed. There is no /// bypass control for the L2 cache at the isa level. return Changed; } bool SIGfx6CacheControl::enableRMWCacheBypass( const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const { assert(MI->mayLoad() && MI->mayStore()); bool Changed = false; /// Do not set GLC for RMW atomic operations as L0/L1 cache is automatically /// bypassed, and the GLC bit is instead used to indicate if they are /// return or no-return. /// Note: there is no L2 cache coherent bypass control at the ISA level. return Changed; } bool SIGfx6CacheControl::enableVolatileAndOrNonTemporal( MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsVolatile, bool IsNonTemporal) const { // Only handle load and store, not atomic read-modify-write insructions. The // latter use glc to indicate if the atomic returns a result and so must not // be used for cache control. assert(MI->mayLoad() ^ MI->mayStore()); // Only update load and store, not LLVM IR atomic read-modify-write // instructions. The latter are always marked as volatile so cannot sensibly // handle it as do not want to pessimize all atomics. Also they do not support // the nontemporal attribute. assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); bool Changed = false; if (IsVolatile) { // Set L1 cache policy to be MISS_EVICT for load instructions // and MISS_LRU for store instructions. // Note: there is no L2 cache bypass policy at the ISA level. if (Op == SIMemOp::LOAD) Changed |= enableGLCBit(MI); // Ensure operation has completed at system scope to cause all volatile // operations to be visible outside the program in a global order. Do not // request cross address space as only the global address space can be // observable outside the program, so no need to cause a waitcnt for LDS // address space operations. Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, Position::AFTER); return Changed; } if (IsNonTemporal) { // Setting both GLC and SLC configures L1 cache policy to MISS_EVICT // for both loads and stores, and the L2 cache policy to STREAM. Changed |= enableGLCBit(MI); Changed |= enableSLCBit(MI); return Changed; } return Changed; } bool SIGfx6CacheControl::insertWait(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsCrossAddrSpaceOrdering, Position Pos) const { bool Changed = false; MachineBasicBlock &MBB = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); if (Pos == Position::AFTER) ++MI; bool VMCnt = false; bool LGKMCnt = false; if ((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH)) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: VMCnt |= true; break; case SIAtomicScope::WORKGROUP: case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // The L1 cache keeps all memory operations in order for // wavefronts in the same work-group. break; default: llvm_unreachable("Unsupported synchronization scope"); } } if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: case SIAtomicScope::WORKGROUP: // If no cross address space ordering then an "S_WAITCNT lgkmcnt(0)" is // not needed as LDS operations for all waves are executed in a total // global ordering as observed by all waves. Required if also // synchronizing with global/GDS memory as LDS operations could be // reordered with respect to later global/GDS memory operations of the // same wave. LGKMCnt |= IsCrossAddrSpaceOrdering; break; case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // The LDS keeps all memory operations in order for // the same wavefront. break; default: llvm_unreachable("Unsupported synchronization scope"); } } if ((AddrSpace & SIAtomicAddrSpace::GDS) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: // If no cross address space ordering then an GDS "S_WAITCNT lgkmcnt(0)" // is not needed as GDS operations for all waves are executed in a total // global ordering as observed by all waves. Required if also // synchronizing with global/LDS memory as GDS operations could be // reordered with respect to later global/LDS memory operations of the // same wave. LGKMCnt |= IsCrossAddrSpaceOrdering; break; case SIAtomicScope::WORKGROUP: case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // The GDS keeps all memory operations in order for // the same work-group. break; default: llvm_unreachable("Unsupported synchronization scope"); } } if (VMCnt || LGKMCnt) { unsigned WaitCntImmediate = AMDGPU::encodeWaitcnt(IV, VMCnt ? 0 : getVmcntBitMask(IV), getExpcntBitMask(IV), LGKMCnt ? 0 : getLgkmcntBitMask(IV)); BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(WaitCntImmediate); Changed = true; } if (Pos == Position::AFTER) --MI; return Changed; } bool SIGfx6CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, Position Pos) const { if (!InsertCacheInv) return false; bool Changed = false; MachineBasicBlock &MBB = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); if (Pos == Position::AFTER) ++MI; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBINVL1)); Changed = true; break; case SIAtomicScope::WORKGROUP: case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // No cache to invalidate. break; default: llvm_unreachable("Unsupported synchronization scope"); } } /// The scratch address space does not need the global memory cache /// to be flushed as all memory operations by the same thread are /// sequentially consistent, and no other thread can access scratch /// memory. /// Other address spaces do not have a cache. if (Pos == Position::AFTER) --MI; return Changed; } bool SIGfx6CacheControl::insertRelease(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, bool IsCrossAddrSpaceOrdering, Position Pos) const { return insertWait(MI, Scope, AddrSpace, SIMemOp::LOAD | SIMemOp::STORE, IsCrossAddrSpaceOrdering, Pos); } bool SIGfx7CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, Position Pos) const { if (!InsertCacheInv) return false; bool Changed = false; MachineBasicBlock &MBB = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); const GCNSubtarget &STM = MBB.getParent()->getSubtarget(); const unsigned InvalidateL1 = STM.isAmdPalOS() || STM.isMesa3DOS() ? AMDGPU::BUFFER_WBINVL1 : AMDGPU::BUFFER_WBINVL1_VOL; if (Pos == Position::AFTER) ++MI; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: BuildMI(MBB, MI, DL, TII->get(InvalidateL1)); Changed = true; break; case SIAtomicScope::WORKGROUP: case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // No cache to invalidate. break; default: llvm_unreachable("Unsupported synchronization scope"); } } /// The scratch address space does not need the global memory cache /// to be flushed as all memory operations by the same thread are /// sequentially consistent, and no other thread can access scratch /// memory. /// Other address spaces do not have a cache. if (Pos == Position::AFTER) --MI; return Changed; } bool SIGfx90ACacheControl::enableLoadCacheBypass( const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const { assert(MI->mayLoad() && !MI->mayStore()); bool Changed = false; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: // Set the L1 cache policy to MISS_LRU. // Note: there is no L2 cache bypass policy at the ISA level. Changed |= enableGLCBit(MI); break; case SIAtomicScope::WORKGROUP: // In threadgroup split mode the waves of a work-group can be executing on // different CUs. Therefore need to bypass the L1 which is per CU. // Otherwise in non-threadgroup split mode all waves of a work-group are // on the same CU, and so the L1 does not need to be bypassed. if (ST.isTgSplitEnabled()) Changed |= enableGLCBit(MI); break; case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // No cache to bypass. break; default: llvm_unreachable("Unsupported synchronization scope"); } } /// The scratch address space does not need the global memory caches /// to be bypassed as all memory operations by the same thread are /// sequentially consistent, and no other thread can access scratch /// memory. /// Other address spaces do not have a cache. return Changed; } bool SIGfx90ACacheControl::enableStoreCacheBypass( const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const { assert(!MI->mayLoad() && MI->mayStore()); bool Changed = false; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: /// Do not set glc for store atomic operations as they implicitly write /// through the L1 cache. break; case SIAtomicScope::WORKGROUP: case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // No cache to bypass. Store atomics implicitly write through the L1 // cache. break; default: llvm_unreachable("Unsupported synchronization scope"); } } /// The scratch address space does not need the global memory caches /// to be bypassed as all memory operations by the same thread are /// sequentially consistent, and no other thread can access scratch /// memory. /// Other address spaces do not have a cache. return Changed; } bool SIGfx90ACacheControl::enableRMWCacheBypass( const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const { assert(MI->mayLoad() && MI->mayStore()); bool Changed = false; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: /// Do not set glc for RMW atomic operations as they implicitly bypass /// the L1 cache, and the glc bit is instead used to indicate if they are /// return or no-return. break; case SIAtomicScope::WORKGROUP: case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // No cache to bypass. RMW atomics implicitly bypass the L1 cache. break; default: llvm_unreachable("Unsupported synchronization scope"); } } return Changed; } bool SIGfx90ACacheControl::enableVolatileAndOrNonTemporal( MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsVolatile, bool IsNonTemporal) const { // Only handle load and store, not atomic read-modify-write insructions. The // latter use glc to indicate if the atomic returns a result and so must not // be used for cache control. assert(MI->mayLoad() ^ MI->mayStore()); // Only update load and store, not LLVM IR atomic read-modify-write // instructions. The latter are always marked as volatile so cannot sensibly // handle it as do not want to pessimize all atomics. Also they do not support // the nontemporal attribute. assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); bool Changed = false; if (IsVolatile) { // Set L1 cache policy to be MISS_EVICT for load instructions // and MISS_LRU for store instructions. // Note: there is no L2 cache bypass policy at the ISA level. if (Op == SIMemOp::LOAD) Changed |= enableGLCBit(MI); // Ensure operation has completed at system scope to cause all volatile // operations to be visible outside the program in a global order. Do not // request cross address space as only the global address space can be // observable outside the program, so no need to cause a waitcnt for LDS // address space operations. Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, Position::AFTER); return Changed; } if (IsNonTemporal) { // Setting both GLC and SLC configures L1 cache policy to MISS_EVICT // for both loads and stores, and the L2 cache policy to STREAM. Changed |= enableGLCBit(MI); Changed |= enableSLCBit(MI); return Changed; } return Changed; } bool SIGfx90ACacheControl::insertWait(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsCrossAddrSpaceOrdering, Position Pos) const { if (ST.isTgSplitEnabled()) { // In threadgroup split mode the waves of a work-group can be executing on // different CUs. Therefore need to wait for global or GDS memory operations // to complete to ensure they are visible to waves in the other CUs. // Otherwise in non-threadgroup split mode all waves of a work-group are on // the same CU, so no need to wait for global memory as all waves in the // work-group access the same the L1, nor wait for GDS as access are ordered // on a CU. if (((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH | SIAtomicAddrSpace::GDS)) != SIAtomicAddrSpace::NONE) && (Scope == SIAtomicScope::WORKGROUP)) { // Same as GFX7 using agent scope. Scope = SIAtomicScope::AGENT; } // In threadgroup split mode LDS cannot be allocated so no need to wait for // LDS memory operations. AddrSpace &= ~SIAtomicAddrSpace::LDS; } return SIGfx7CacheControl::insertWait(MI, Scope, AddrSpace, Op, IsCrossAddrSpaceOrdering, Pos); } bool SIGfx90ACacheControl::insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, Position Pos) const { if (!InsertCacheInv) return false; bool Changed = false; MachineBasicBlock &MBB = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); if (Pos == Position::AFTER) ++MI; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: // Ensures that following loads will not see stale remote VMEM data or // stale local VMEM data with MTYPE NC. Local VMEM data with MTYPE RW and // CC will never be stale due to the local memory probes. BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_INVL2)); // Inserting a "S_WAITCNT vmcnt(0)" after is not required because the // hardware does not reorder memory operations by the same wave with // respect to a preceding "BUFFER_INVL2". The invalidate is guaranteed to // remove any cache lines of earlier writes by the same wave and ensures // later reads by the same wave will refetch the cache lines. Changed = true; break; case SIAtomicScope::AGENT: // Same as GFX7. break; case SIAtomicScope::WORKGROUP: // In threadgroup split mode the waves of a work-group can be executing on // different CUs. Therefore need to invalidate the L1 which is per CU. // Otherwise in non-threadgroup split mode all waves of a work-group are // on the same CU, and so the L1 does not need to be invalidated. if (ST.isTgSplitEnabled()) { // Same as GFX7 using agent scope. Scope = SIAtomicScope::AGENT; } break; case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // Same as GFX7. break; default: llvm_unreachable("Unsupported synchronization scope"); } } /// The scratch address space does not need the global memory cache /// to be flushed as all memory operations by the same thread are /// sequentially consistent, and no other thread can access scratch /// memory. /// Other address spaces do not have a cache. if (Pos == Position::AFTER) --MI; Changed |= SIGfx7CacheControl::insertAcquire(MI, Scope, AddrSpace, Pos); return Changed; } bool SIGfx90ACacheControl::insertRelease(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, bool IsCrossAddrSpaceOrdering, Position Pos) const { bool Changed = false; MachineBasicBlock &MBB = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); if (Pos == Position::AFTER) ++MI; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: // Inserting a "S_WAITCNT vmcnt(0)" before is not required because the // hardware does not reorder memory operations by the same wave with // respect to a following "BUFFER_WBL2". The "BUFFER_WBL2" is guaranteed // to initiate writeback of any dirty cache lines of earlier writes by the // same wave. A "S_WAITCNT vmcnt(0)" is needed after to ensure the // writeback has completed. BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBL2)) // Set SC bits to indicate system scope. .addImm(AMDGPU::CPol::SC0 | AMDGPU::CPol::SC1); // Followed by same as GFX7, which will ensure the necessary "S_WAITCNT // vmcnt(0)" needed by the "BUFFER_WBL2". Changed = true; break; case SIAtomicScope::AGENT: case SIAtomicScope::WORKGROUP: case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // Same as GFX7. break; default: llvm_unreachable("Unsupported synchronization scope"); } } if (Pos == Position::AFTER) --MI; Changed |= SIGfx7CacheControl::insertRelease(MI, Scope, AddrSpace, IsCrossAddrSpaceOrdering, Pos); return Changed; } bool SIGfx940CacheControl::enableLoadCacheBypass( const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const { assert(MI->mayLoad() && !MI->mayStore()); bool Changed = false; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: // Set SC bits to indicate system scope. Changed |= enableSC0Bit(MI); Changed |= enableSC1Bit(MI); break; case SIAtomicScope::AGENT: // Set SC bits to indicate agent scope. Changed |= enableSC1Bit(MI); break; case SIAtomicScope::WORKGROUP: // In threadgroup split mode the waves of a work-group can be executing on // different CUs. Therefore need to bypass the L1 which is per CU. // Otherwise in non-threadgroup split mode all waves of a work-group are // on the same CU, and so the L1 does not need to be bypassed. Setting SC // bits to indicate work-group scope will do this automatically. Changed |= enableSC0Bit(MI); break; case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // Leave SC bits unset to indicate wavefront scope. break; default: llvm_unreachable("Unsupported synchronization scope"); } } /// The scratch address space does not need the global memory caches /// to be bypassed as all memory operations by the same thread are /// sequentially consistent, and no other thread can access scratch /// memory. /// Other address spaces do not have a cache. return Changed; } bool SIGfx940CacheControl::enableStoreCacheBypass( const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const { assert(!MI->mayLoad() && MI->mayStore()); bool Changed = false; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: // Set SC bits to indicate system scope. Changed |= enableSC0Bit(MI); Changed |= enableSC1Bit(MI); break; case SIAtomicScope::AGENT: // Set SC bits to indicate agent scope. Changed |= enableSC1Bit(MI); break; case SIAtomicScope::WORKGROUP: // Set SC bits to indicate workgroup scope. Changed |= enableSC0Bit(MI); break; case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // Leave SC bits unset to indicate wavefront scope. break; default: llvm_unreachable("Unsupported synchronization scope"); } } /// The scratch address space does not need the global memory caches /// to be bypassed as all memory operations by the same thread are /// sequentially consistent, and no other thread can access scratch /// memory. /// Other address spaces do not have a cache. return Changed; } bool SIGfx940CacheControl::enableRMWCacheBypass( const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const { assert(MI->mayLoad() && MI->mayStore()); bool Changed = false; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: // Set SC1 bit to indicate system scope. Changed |= enableSC1Bit(MI); break; case SIAtomicScope::AGENT: case SIAtomicScope::WORKGROUP: case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // RMW atomic operations implicitly bypass the L1 cache and only use SC1 // to indicate system or agent scope. The SC0 bit is used to indicate if // they are return or no-return. Leave SC1 bit unset to indicate agent // scope. break; default: llvm_unreachable("Unsupported synchronization scope"); } } return Changed; } bool SIGfx940CacheControl::enableVolatileAndOrNonTemporal( MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsVolatile, bool IsNonTemporal) const { // Only handle load and store, not atomic read-modify-write insructions. The // latter use glc to indicate if the atomic returns a result and so must not // be used for cache control. assert(MI->mayLoad() ^ MI->mayStore()); // Only update load and store, not LLVM IR atomic read-modify-write // instructions. The latter are always marked as volatile so cannot sensibly // handle it as do not want to pessimize all atomics. Also they do not support // the nontemporal attribute. assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); bool Changed = false; if (IsVolatile) { // Set SC bits to indicate system scope. Changed |= enableSC0Bit(MI); Changed |= enableSC1Bit(MI); // Ensure operation has completed at system scope to cause all volatile // operations to be visible outside the program in a global order. Do not // request cross address space as only the global address space can be // observable outside the program, so no need to cause a waitcnt for LDS // address space operations. Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, Position::AFTER); return Changed; } if (IsNonTemporal) { Changed |= enableNTBit(MI); return Changed; } return Changed; } bool SIGfx940CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, Position Pos) const { if (!InsertCacheInv) return false; bool Changed = false; MachineBasicBlock &MBB = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); if (Pos == Position::AFTER) ++MI; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: // Ensures that following loads will not see stale remote VMEM data or // stale local VMEM data with MTYPE NC. Local VMEM data with MTYPE RW and // CC will never be stale due to the local memory probes. BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_INV)) // Set SC bits to indicate system scope. .addImm(AMDGPU::CPol::SC0 | AMDGPU::CPol::SC1); // Inserting a "S_WAITCNT vmcnt(0)" after is not required because the // hardware does not reorder memory operations by the same wave with // respect to a preceding "BUFFER_INV". The invalidate is guaranteed to // remove any cache lines of earlier writes by the same wave and ensures // later reads by the same wave will refetch the cache lines. Changed = true; break; case SIAtomicScope::AGENT: // Ensures that following loads will not see stale remote date or local // MTYPE NC global data. Local MTYPE RW and CC memory will never be stale // due to the memory probes. BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_INV)) // Set SC bits to indicate agent scope. .addImm(AMDGPU::CPol::SC1); // Inserting "S_WAITCNT vmcnt(0)" is not required because the hardware // does not reorder memory operations with respect to preceeding buffer // invalidate. The invalidate is guaranteed to remove any cache lines of // earlier writes and ensures later writes will refetch the cache lines. Changed = true; break; case SIAtomicScope::WORKGROUP: // In threadgroup split mode the waves of a work-group can be executing on // different CUs. Therefore need to invalidate the L1 which is per CU. // Otherwise in non-threadgroup split mode all waves of a work-group are // on the same CU, and so the L1 does not need to be invalidated. if (ST.isTgSplitEnabled()) { // Ensures L1 is invalidated if in threadgroup split mode. In // non-threadgroup split mode it is a NOP, but no point generating it in // that case if know not in that mode. BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_INV)) // Set SC bits to indicate work-group scope. .addImm(AMDGPU::CPol::SC0); // Inserting "S_WAITCNT vmcnt(0)" is not required because the hardware // does not reorder memory operations with respect to preceeding buffer // invalidate. The invalidate is guaranteed to remove any cache lines of // earlier writes and ensures later writes will refetch the cache lines. Changed = true; } break; case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // Could generate "BUFFER_INV" but it would do nothing as there are no // caches to invalidate. break; default: llvm_unreachable("Unsupported synchronization scope"); } } /// The scratch address space does not need the global memory cache /// to be flushed as all memory operations by the same thread are /// sequentially consistent, and no other thread can access scratch /// memory. /// Other address spaces do not have a cache. if (Pos == Position::AFTER) --MI; return Changed; } bool SIGfx940CacheControl::insertRelease(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, bool IsCrossAddrSpaceOrdering, Position Pos) const { bool Changed = false; MachineBasicBlock &MBB = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); if (Pos == Position::AFTER) ++MI; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: // Inserting a "S_WAITCNT vmcnt(0)" before is not required because the // hardware does not reorder memory operations by the same wave with // respect to a following "BUFFER_WBL2". The "BUFFER_WBL2" is guaranteed // to initiate writeback of any dirty cache lines of earlier writes by the // same wave. A "S_WAITCNT vmcnt(0)" is needed after to ensure the // writeback has completed. BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBL2)) // Set SC bits to indicate system scope. .addImm(AMDGPU::CPol::SC0 | AMDGPU::CPol::SC1); // Since AddrSpace contains SIAtomicAddrSpace::GLOBAL and Scope is // SIAtomicScope::SYSTEM, the following insertWait will generate the // required "S_WAITCNT vmcnt(0)" needed by the "BUFFER_WBL2". Changed = true; break; case SIAtomicScope::AGENT: BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBL2)) // Set SC bits to indicate agent scope. .addImm(AMDGPU::CPol::SC1); // Since AddrSpace contains SIAtomicAddrSpace::GLOBAL and Scope is // SIAtomicScope::AGENT, the following insertWait will generate the // required "S_WAITCNT vmcnt(0)". Changed = true; break; case SIAtomicScope::WORKGROUP: case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // Do not generate "BUFFER_WBL2" as there are no caches it would // writeback, and would require an otherwise unnecessary // "S_WAITCNT vmcnt(0)". break; default: llvm_unreachable("Unsupported synchronization scope"); } } if (Pos == Position::AFTER) --MI; // Ensure the necessary S_WAITCNT needed by any "BUFFER_WBL2" as well as other // S_WAITCNT needed. Changed |= insertWait(MI, Scope, AddrSpace, SIMemOp::LOAD | SIMemOp::STORE, IsCrossAddrSpaceOrdering, Pos); return Changed; } bool SIGfx10CacheControl::enableLoadCacheBypass( const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const { assert(MI->mayLoad() && !MI->mayStore()); bool Changed = false; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: // Set the L0 and L1 cache policies to MISS_EVICT. // Note: there is no L2 cache coherent bypass control at the ISA level. Changed |= enableGLCBit(MI); Changed |= enableDLCBit(MI); break; case SIAtomicScope::WORKGROUP: // In WGP mode the waves of a work-group can be executing on either CU of // the WGP. Therefore need to bypass the L0 which is per CU. Otherwise in // CU mode all waves of a work-group are on the same CU, and so the L0 // does not need to be bypassed. if (!ST.isCuModeEnabled()) Changed |= enableGLCBit(MI); break; case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // No cache to bypass. break; default: llvm_unreachable("Unsupported synchronization scope"); } } /// The scratch address space does not need the global memory caches /// to be bypassed as all memory operations by the same thread are /// sequentially consistent, and no other thread can access scratch /// memory. /// Other address spaces do not have a cache. return Changed; } bool SIGfx10CacheControl::enableVolatileAndOrNonTemporal( MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsVolatile, bool IsNonTemporal) const { // Only handle load and store, not atomic read-modify-write insructions. The // latter use glc to indicate if the atomic returns a result and so must not // be used for cache control. assert(MI->mayLoad() ^ MI->mayStore()); // Only update load and store, not LLVM IR atomic read-modify-write // instructions. The latter are always marked as volatile so cannot sensibly // handle it as do not want to pessimize all atomics. Also they do not support // the nontemporal attribute. assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); bool Changed = false; if (IsVolatile) { // Set L0 and L1 cache policy to be MISS_EVICT for load instructions // and MISS_LRU for store instructions. // Note: there is no L2 cache coherent bypass control at the ISA level. if (Op == SIMemOp::LOAD) { Changed |= enableGLCBit(MI); Changed |= enableDLCBit(MI); } // Ensure operation has completed at system scope to cause all volatile // operations to be visible outside the program in a global order. Do not // request cross address space as only the global address space can be // observable outside the program, so no need to cause a waitcnt for LDS // address space operations. Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, Position::AFTER); return Changed; } if (IsNonTemporal) { // For loads setting SLC configures L0 and L1 cache policy to HIT_EVICT // and L2 cache policy to STREAM. // For stores setting both GLC and SLC configures L0 and L1 cache policy // to MISS_EVICT and the L2 cache policy to STREAM. if (Op == SIMemOp::STORE) Changed |= enableGLCBit(MI); Changed |= enableSLCBit(MI); return Changed; } return Changed; } bool SIGfx10CacheControl::insertWait(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsCrossAddrSpaceOrdering, Position Pos) const { bool Changed = false; MachineBasicBlock &MBB = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); if (Pos == Position::AFTER) ++MI; bool VMCnt = false; bool VSCnt = false; bool LGKMCnt = false; if ((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH)) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: if ((Op & SIMemOp::LOAD) != SIMemOp::NONE) VMCnt |= true; if ((Op & SIMemOp::STORE) != SIMemOp::NONE) VSCnt |= true; break; case SIAtomicScope::WORKGROUP: // In WGP mode the waves of a work-group can be executing on either CU of // the WGP. Therefore need to wait for operations to complete to ensure // they are visible to waves in the other CU as the L0 is per CU. // Otherwise in CU mode and all waves of a work-group are on the same CU // which shares the same L0. if (!ST.isCuModeEnabled()) { if ((Op & SIMemOp::LOAD) != SIMemOp::NONE) VMCnt |= true; if ((Op & SIMemOp::STORE) != SIMemOp::NONE) VSCnt |= true; } break; case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // The L0 cache keeps all memory operations in order for // work-items in the same wavefront. break; default: llvm_unreachable("Unsupported synchronization scope"); } } if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: case SIAtomicScope::WORKGROUP: // If no cross address space ordering then an "S_WAITCNT lgkmcnt(0)" is // not needed as LDS operations for all waves are executed in a total // global ordering as observed by all waves. Required if also // synchronizing with global/GDS memory as LDS operations could be // reordered with respect to later global/GDS memory operations of the // same wave. LGKMCnt |= IsCrossAddrSpaceOrdering; break; case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // The LDS keeps all memory operations in order for // the same wavefront. break; default: llvm_unreachable("Unsupported synchronization scope"); } } if ((AddrSpace & SIAtomicAddrSpace::GDS) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: // If no cross address space ordering then an GDS "S_WAITCNT lgkmcnt(0)" // is not needed as GDS operations for all waves are executed in a total // global ordering as observed by all waves. Required if also // synchronizing with global/LDS memory as GDS operations could be // reordered with respect to later global/LDS memory operations of the // same wave. LGKMCnt |= IsCrossAddrSpaceOrdering; break; case SIAtomicScope::WORKGROUP: case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // The GDS keeps all memory operations in order for // the same work-group. break; default: llvm_unreachable("Unsupported synchronization scope"); } } if (VMCnt || LGKMCnt) { unsigned WaitCntImmediate = AMDGPU::encodeWaitcnt(IV, VMCnt ? 0 : getVmcntBitMask(IV), getExpcntBitMask(IV), LGKMCnt ? 0 : getLgkmcntBitMask(IV)); BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(WaitCntImmediate); Changed = true; } if (VSCnt) { BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT_VSCNT)) .addReg(AMDGPU::SGPR_NULL, RegState::Undef) .addImm(0); Changed = true; } if (Pos == Position::AFTER) --MI; return Changed; } bool SIGfx10CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace, Position Pos) const { if (!InsertCacheInv) return false; bool Changed = false; MachineBasicBlock &MBB = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); if (Pos == Position::AFTER) ++MI; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL0_INV)); BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL1_INV)); Changed = true; break; case SIAtomicScope::WORKGROUP: // In WGP mode the waves of a work-group can be executing on either CU of // the WGP. Therefore need to invalidate the L0 which is per CU. Otherwise // in CU mode and all waves of a work-group are on the same CU, and so the // L0 does not need to be invalidated. if (!ST.isCuModeEnabled()) { BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL0_INV)); Changed = true; } break; case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // No cache to invalidate. break; default: llvm_unreachable("Unsupported synchronization scope"); } } /// The scratch address space does not need the global memory cache /// to be flushed as all memory operations by the same thread are /// sequentially consistent, and no other thread can access scratch /// memory. /// Other address spaces do not have a cache. if (Pos == Position::AFTER) --MI; return Changed; } bool SIGfx11CacheControl::enableLoadCacheBypass( const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const { assert(MI->mayLoad() && !MI->mayStore()); bool Changed = false; if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { switch (Scope) { case SIAtomicScope::SYSTEM: case SIAtomicScope::AGENT: // Set the L0 and L1 cache policies to MISS_EVICT. // Note: there is no L2 cache coherent bypass control at the ISA level. Changed |= enableGLCBit(MI); break; case SIAtomicScope::WORKGROUP: // In WGP mode the waves of a work-group can be executing on either CU of // the WGP. Therefore need to bypass the L0 which is per CU. Otherwise in // CU mode all waves of a work-group are on the same CU, and so the L0 // does not need to be bypassed. if (!ST.isCuModeEnabled()) Changed |= enableGLCBit(MI); break; case SIAtomicScope::WAVEFRONT: case SIAtomicScope::SINGLETHREAD: // No cache to bypass. break; default: llvm_unreachable("Unsupported synchronization scope"); } } /// The scratch address space does not need the global memory caches /// to be bypassed as all memory operations by the same thread are /// sequentially consistent, and no other thread can access scratch /// memory. /// Other address spaces do not have a cache. return Changed; } bool SIGfx11CacheControl::enableVolatileAndOrNonTemporal( MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, bool IsVolatile, bool IsNonTemporal) const { // Only handle load and store, not atomic read-modify-write insructions. The // latter use glc to indicate if the atomic returns a result and so must not // be used for cache control. assert(MI->mayLoad() ^ MI->mayStore()); // Only update load and store, not LLVM IR atomic read-modify-write // instructions. The latter are always marked as volatile so cannot sensibly // handle it as do not want to pessimize all atomics. Also they do not support // the nontemporal attribute. assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); bool Changed = false; if (IsVolatile) { // Set L0 and L1 cache policy to be MISS_EVICT for load instructions // and MISS_LRU for store instructions. // Note: there is no L2 cache coherent bypass control at the ISA level. if (Op == SIMemOp::LOAD) Changed |= enableGLCBit(MI); // Set MALL NOALLOC for load and store instructions. Changed |= enableDLCBit(MI); // Ensure operation has completed at system scope to cause all volatile // operations to be visible outside the program in a global order. Do not // request cross address space as only the global address space can be // observable outside the program, so no need to cause a waitcnt for LDS // address space operations. Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, Position::AFTER); return Changed; } if (IsNonTemporal) { // For loads setting SLC configures L0 and L1 cache policy to HIT_EVICT // and L2 cache policy to STREAM. // For stores setting both GLC and SLC configures L0 and L1 cache policy // to MISS_EVICT and the L2 cache policy to STREAM. if (Op == SIMemOp::STORE) Changed |= enableGLCBit(MI); Changed |= enableSLCBit(MI); // Set MALL NOALLOC for load and store instructions. Changed |= enableDLCBit(MI); return Changed; } return Changed; } bool SIMemoryLegalizer::removeAtomicPseudoMIs() { if (AtomicPseudoMIs.empty()) return false; for (auto &MI : AtomicPseudoMIs) MI->eraseFromParent(); AtomicPseudoMIs.clear(); return true; } bool SIMemoryLegalizer::expandLoad(const SIMemOpInfo &MOI, MachineBasicBlock::iterator &MI) { assert(MI->mayLoad() && !MI->mayStore()); bool Changed = false; if (MOI.isAtomic()) { if (MOI.getOrdering() == AtomicOrdering::Monotonic || MOI.getOrdering() == AtomicOrdering::Acquire || MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { Changed |= CC->enableLoadCacheBypass(MI, MOI.getScope(), MOI.getOrderingAddrSpace()); } if (MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) Changed |= CC->insertWait(MI, MOI.getScope(), MOI.getOrderingAddrSpace(), SIMemOp::LOAD | SIMemOp::STORE, MOI.getIsCrossAddressSpaceOrdering(), Position::BEFORE); if (MOI.getOrdering() == AtomicOrdering::Acquire || MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { Changed |= CC->insertWait(MI, MOI.getScope(), MOI.getInstrAddrSpace(), SIMemOp::LOAD, MOI.getIsCrossAddressSpaceOrdering(), Position::AFTER); Changed |= CC->insertAcquire(MI, MOI.getScope(), MOI.getOrderingAddrSpace(), Position::AFTER); } return Changed; } // Atomic instructions already bypass caches to the scope specified by the // SyncScope operand. Only non-atomic volatile and nontemporal instructions // need additional treatment. Changed |= CC->enableVolatileAndOrNonTemporal(MI, MOI.getInstrAddrSpace(), SIMemOp::LOAD, MOI.isVolatile(), MOI.isNonTemporal()); return Changed; } bool SIMemoryLegalizer::expandStore(const SIMemOpInfo &MOI, MachineBasicBlock::iterator &MI) { assert(!MI->mayLoad() && MI->mayStore()); bool Changed = false; if (MOI.isAtomic()) { if (MOI.getOrdering() == AtomicOrdering::Monotonic || MOI.getOrdering() == AtomicOrdering::Release || MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { Changed |= CC->enableStoreCacheBypass(MI, MOI.getScope(), MOI.getOrderingAddrSpace()); } if (MOI.getOrdering() == AtomicOrdering::Release || MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) Changed |= CC->insertRelease(MI, MOI.getScope(), MOI.getOrderingAddrSpace(), MOI.getIsCrossAddressSpaceOrdering(), Position::BEFORE); return Changed; } // Atomic instructions already bypass caches to the scope specified by the // SyncScope operand. Only non-atomic volatile and nontemporal instructions // need additional treatment. Changed |= CC->enableVolatileAndOrNonTemporal( MI, MOI.getInstrAddrSpace(), SIMemOp::STORE, MOI.isVolatile(), MOI.isNonTemporal()); return Changed; } bool SIMemoryLegalizer::expandAtomicFence(const SIMemOpInfo &MOI, MachineBasicBlock::iterator &MI) { assert(MI->getOpcode() == AMDGPU::ATOMIC_FENCE); AtomicPseudoMIs.push_back(MI); bool Changed = false; if (MOI.isAtomic()) { if (MOI.getOrdering() == AtomicOrdering::Acquire || MOI.getOrdering() == AtomicOrdering::Release || MOI.getOrdering() == AtomicOrdering::AcquireRelease || MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) /// TODO: This relies on a barrier always generating a waitcnt /// for LDS to ensure it is not reordered with the completion of /// the proceeding LDS operations. If barrier had a memory /// ordering and memory scope, then library does not need to /// generate a fence. Could add support in this file for /// barrier. SIInsertWaitcnt.cpp could then stop unconditionally /// adding S_WAITCNT before a S_BARRIER. Changed |= CC->insertRelease(MI, MOI.getScope(), MOI.getOrderingAddrSpace(), MOI.getIsCrossAddressSpaceOrdering(), Position::BEFORE); // TODO: If both release and invalidate are happening they could be combined // to use the single "BUFFER_WBINV*" instruction. This could be done by // reorganizing this code or as part of optimizing SIInsertWaitcnt pass to // track cache invalidate and write back instructions. if (MOI.getOrdering() == AtomicOrdering::Acquire || MOI.getOrdering() == AtomicOrdering::AcquireRelease || MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) Changed |= CC->insertAcquire(MI, MOI.getScope(), MOI.getOrderingAddrSpace(), Position::BEFORE); return Changed; } return Changed; } bool SIMemoryLegalizer::expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI, MachineBasicBlock::iterator &MI) { assert(MI->mayLoad() && MI->mayStore()); bool Changed = false; if (MOI.isAtomic()) { if (MOI.getOrdering() == AtomicOrdering::Monotonic || MOI.getOrdering() == AtomicOrdering::Acquire || MOI.getOrdering() == AtomicOrdering::Release || MOI.getOrdering() == AtomicOrdering::AcquireRelease || MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { Changed |= CC->enableRMWCacheBypass(MI, MOI.getScope(), MOI.getInstrAddrSpace()); } if (MOI.getOrdering() == AtomicOrdering::Release || MOI.getOrdering() == AtomicOrdering::AcquireRelease || MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent || MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) Changed |= CC->insertRelease(MI, MOI.getScope(), MOI.getOrderingAddrSpace(), MOI.getIsCrossAddressSpaceOrdering(), Position::BEFORE); if (MOI.getOrdering() == AtomicOrdering::Acquire || MOI.getOrdering() == AtomicOrdering::AcquireRelease || MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent || MOI.getFailureOrdering() == AtomicOrdering::Acquire || MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) { Changed |= CC->insertWait(MI, MOI.getScope(), MOI.getInstrAddrSpace(), isAtomicRet(*MI) ? SIMemOp::LOAD : SIMemOp::STORE, MOI.getIsCrossAddressSpaceOrdering(), Position::AFTER); Changed |= CC->insertAcquire(MI, MOI.getScope(), MOI.getOrderingAddrSpace(), Position::AFTER); } return Changed; } return Changed; } bool SIMemoryLegalizer::runOnMachineFunction(MachineFunction &MF) { bool Changed = false; SIMemOpAccess MOA(MF); CC = SICacheControl::create(MF.getSubtarget()); for (auto &MBB : MF) { for (auto MI = MBB.begin(); MI != MBB.end(); ++MI) { // Unbundle instructions after the post-RA scheduler. if (MI->isBundle() && MI->mayLoadOrStore()) { MachineBasicBlock::instr_iterator II(MI->getIterator()); for (MachineBasicBlock::instr_iterator I = ++II, E = MBB.instr_end(); I != E && I->isBundledWithPred(); ++I) { I->unbundleFromPred(); for (MachineOperand &MO : I->operands()) if (MO.isReg()) MO.setIsInternalRead(false); } MI->eraseFromParent(); MI = II->getIterator(); } if (!(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic)) continue; if (const auto &MOI = MOA.getLoadInfo(MI)) Changed |= expandLoad(*MOI, MI); else if (const auto &MOI = MOA.getStoreInfo(MI)) Changed |= expandStore(*MOI, MI); else if (const auto &MOI = MOA.getAtomicFenceInfo(MI)) Changed |= expandAtomicFence(*MOI, MI); else if (const auto &MOI = MOA.getAtomicCmpxchgOrRmwInfo(MI)) Changed |= expandAtomicCmpxchgOrRmw(*MOI, MI); } } Changed |= removeAtomicPseudoMIs(); return Changed; } INITIALIZE_PASS(SIMemoryLegalizer, DEBUG_TYPE, PASS_NAME, false, false) char SIMemoryLegalizer::ID = 0; char &llvm::SIMemoryLegalizerID = SIMemoryLegalizer::ID; FunctionPass *llvm::createSIMemoryLegalizerPass() { return new SIMemoryLegalizer(); }