//===- SILoadStoreOptimizer.cpp -------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass tries to fuse DS instructions with close by immediate offsets. // This will fuse operations such as // ds_read_b32 v0, v2 offset:16 // ds_read_b32 v1, v2 offset:32 // ==> // ds_read2_b32 v[0:1], v2, offset0:4 offset1:8 // // The same is done for certain SMEM and VMEM opcodes, e.g.: // s_buffer_load_dword s4, s[0:3], 4 // s_buffer_load_dword s5, s[0:3], 8 // ==> // s_buffer_load_dwordx2 s[4:5], s[0:3], 4 // // This pass also tries to promote constant offset to the immediate by // adjusting the base. It tries to use a base from the nearby instructions that // allows it to have a 13bit constant offset and then promotes the 13bit offset // to the immediate. // E.g. // s_movk_i32 s0, 0x1800 // v_add_co_u32_e32 v0, vcc, s0, v2 // v_addc_co_u32_e32 v1, vcc, 0, v6, vcc // // s_movk_i32 s0, 0x1000 // v_add_co_u32_e32 v5, vcc, s0, v2 // v_addc_co_u32_e32 v6, vcc, 0, v6, vcc // global_load_dwordx2 v[5:6], v[5:6], off // global_load_dwordx2 v[0:1], v[0:1], off // => // s_movk_i32 s0, 0x1000 // v_add_co_u32_e32 v5, vcc, s0, v2 // v_addc_co_u32_e32 v6, vcc, 0, v6, vcc // global_load_dwordx2 v[5:6], v[5:6], off // global_load_dwordx2 v[0:1], v[5:6], off offset:2048 // // Future improvements: // // - This is currently missing stores of constants because loading // the constant into the data register is placed between the stores, although // this is arguably a scheduling problem. // // - Live interval recomputing seems inefficient. This currently only matches // one pair, and recomputes live intervals and moves on to the next pair. It // would be better to compute a list of all merges that need to occur. // // - With a list of instructions to process, we can also merge more. If a // cluster of loads have offsets that are too large to fit in the 8-bit // offsets, but are close enough to fit in the 8 bits, we can add to the base // pointer and use the new reduced offsets. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/InitializePasses.h" using namespace llvm; #define DEBUG_TYPE "si-load-store-opt" namespace { enum InstClassEnum { UNKNOWN, DS_READ, DS_WRITE, S_BUFFER_LOAD_IMM, BUFFER_LOAD, BUFFER_STORE, MIMG, TBUFFER_LOAD, TBUFFER_STORE, }; struct AddressRegs { unsigned char NumVAddrs = 0; bool SBase = false; bool SRsrc = false; bool SOffset = false; bool VAddr = false; bool Addr = false; bool SSamp = false; }; // GFX10 image_sample instructions can have 12 vaddrs + srsrc + ssamp. const unsigned MaxAddressRegs = 12 + 1 + 1; class SILoadStoreOptimizer : public MachineFunctionPass { struct CombineInfo { MachineBasicBlock::iterator I; unsigned EltSize; unsigned Offset; unsigned Width; unsigned Format; unsigned BaseOff; unsigned DMask; InstClassEnum InstClass; unsigned CPol = 0; bool IsAGPR; bool UseST64; int AddrIdx[MaxAddressRegs]; const MachineOperand *AddrReg[MaxAddressRegs]; unsigned NumAddresses; unsigned Order; bool hasSameBaseAddress(const MachineInstr &MI) { for (unsigned i = 0; i < NumAddresses; i++) { const MachineOperand &AddrRegNext = MI.getOperand(AddrIdx[i]); if (AddrReg[i]->isImm() || AddrRegNext.isImm()) { if (AddrReg[i]->isImm() != AddrRegNext.isImm() || AddrReg[i]->getImm() != AddrRegNext.getImm()) { return false; } continue; } // Check same base pointer. Be careful of subregisters, which can occur // with vectors of pointers. if (AddrReg[i]->getReg() != AddrRegNext.getReg() || AddrReg[i]->getSubReg() != AddrRegNext.getSubReg()) { return false; } } return true; } bool hasMergeableAddress(const MachineRegisterInfo &MRI) { for (unsigned i = 0; i < NumAddresses; ++i) { const MachineOperand *AddrOp = AddrReg[i]; // Immediates are always OK. if (AddrOp->isImm()) continue; // Don't try to merge addresses that aren't either immediates or registers. // TODO: Should be possible to merge FrameIndexes and maybe some other // non-register if (!AddrOp->isReg()) return false; // TODO: We should be able to merge physical reg addresses. if (AddrOp->getReg().isPhysical()) return false; // If an address has only one use then there will be on other // instructions with the same address, so we can't merge this one. if (MRI.hasOneNonDBGUse(AddrOp->getReg())) return false; } return true; } void setMI(MachineBasicBlock::iterator MI, const SILoadStoreOptimizer &LSO); }; struct BaseRegisters { Register LoReg; Register HiReg; unsigned LoSubReg = 0; unsigned HiSubReg = 0; }; struct MemAddress { BaseRegisters Base; int64_t Offset = 0; }; using MemInfoMap = DenseMap; private: const GCNSubtarget *STM = nullptr; const SIInstrInfo *TII = nullptr; const SIRegisterInfo *TRI = nullptr; MachineRegisterInfo *MRI = nullptr; AliasAnalysis *AA = nullptr; bool OptimizeAgain; static bool dmasksCanBeCombined(const CombineInfo &CI, const SIInstrInfo &TII, const CombineInfo &Paired); static bool offsetsCanBeCombined(CombineInfo &CI, const GCNSubtarget &STI, CombineInfo &Paired, bool Modify = false); static bool widthsFit(const GCNSubtarget &STI, const CombineInfo &CI, const CombineInfo &Paired); static unsigned getNewOpcode(const CombineInfo &CI, const CombineInfo &Paired); static std::pair getSubRegIdxs(const CombineInfo &CI, const CombineInfo &Paired); const TargetRegisterClass *getTargetRegisterClass(const CombineInfo &CI, const CombineInfo &Paired); const TargetRegisterClass *getDataRegClass(const MachineInstr &MI) const; bool checkAndPrepareMerge(CombineInfo &CI, CombineInfo &Paired, SmallVectorImpl &InstsToMove); unsigned read2Opcode(unsigned EltSize) const; unsigned read2ST64Opcode(unsigned EltSize) const; MachineBasicBlock::iterator mergeRead2Pair(CombineInfo &CI, CombineInfo &Paired, const SmallVectorImpl &InstsToMove); unsigned write2Opcode(unsigned EltSize) const; unsigned write2ST64Opcode(unsigned EltSize) const; MachineBasicBlock::iterator mergeWrite2Pair(CombineInfo &CI, CombineInfo &Paired, const SmallVectorImpl &InstsToMove); MachineBasicBlock::iterator mergeImagePair(CombineInfo &CI, CombineInfo &Paired, const SmallVectorImpl &InstsToMove); MachineBasicBlock::iterator mergeSBufferLoadImmPair(CombineInfo &CI, CombineInfo &Paired, const SmallVectorImpl &InstsToMove); MachineBasicBlock::iterator mergeBufferLoadPair(CombineInfo &CI, CombineInfo &Paired, const SmallVectorImpl &InstsToMove); MachineBasicBlock::iterator mergeBufferStorePair(CombineInfo &CI, CombineInfo &Paired, const SmallVectorImpl &InstsToMove); MachineBasicBlock::iterator mergeTBufferLoadPair(CombineInfo &CI, CombineInfo &Paired, const SmallVectorImpl &InstsToMove); MachineBasicBlock::iterator mergeTBufferStorePair(CombineInfo &CI, CombineInfo &Paired, const SmallVectorImpl &InstsToMove); void updateBaseAndOffset(MachineInstr &I, Register NewBase, int32_t NewOffset) const; Register computeBase(MachineInstr &MI, const MemAddress &Addr) const; MachineOperand createRegOrImm(int32_t Val, MachineInstr &MI) const; Optional extractConstOffset(const MachineOperand &Op) const; void processBaseWithConstOffset(const MachineOperand &Base, MemAddress &Addr) const; /// Promotes constant offset to the immediate by adjusting the base. It /// tries to use a base from the nearby instructions that allows it to have /// a 13bit constant offset which gets promoted to the immediate. bool promoteConstantOffsetToImm(MachineInstr &CI, MemInfoMap &Visited, SmallPtrSet &Promoted) const; void addInstToMergeableList(const CombineInfo &CI, std::list > &MergeableInsts) const; std::pair collectMergeableInsts( MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, MemInfoMap &Visited, SmallPtrSet &AnchorList, std::list> &MergeableInsts) const; public: static char ID; SILoadStoreOptimizer() : MachineFunctionPass(ID) { initializeSILoadStoreOptimizerPass(*PassRegistry::getPassRegistry()); } bool optimizeInstsWithSameBaseAddr(std::list &MergeList, bool &OptimizeListAgain); bool optimizeBlock(std::list > &MergeableInsts); bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return "SI Load Store Optimizer"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties() .set(MachineFunctionProperties::Property::IsSSA); } }; static unsigned getOpcodeWidth(const MachineInstr &MI, const SIInstrInfo &TII) { const unsigned Opc = MI.getOpcode(); if (TII.isMUBUF(Opc)) { // FIXME: Handle d16 correctly return AMDGPU::getMUBUFElements(Opc); } if (TII.isMIMG(MI)) { uint64_t DMaskImm = TII.getNamedOperand(MI, AMDGPU::OpName::dmask)->getImm(); return countPopulation(DMaskImm); } if (TII.isMTBUF(Opc)) { return AMDGPU::getMTBUFElements(Opc); } switch (Opc) { case AMDGPU::S_BUFFER_LOAD_DWORD_IMM: return 1; case AMDGPU::S_BUFFER_LOAD_DWORDX2_IMM: return 2; case AMDGPU::S_BUFFER_LOAD_DWORDX4_IMM: return 4; case AMDGPU::S_BUFFER_LOAD_DWORDX8_IMM: return 8; case AMDGPU::DS_READ_B32: LLVM_FALLTHROUGH; case AMDGPU::DS_READ_B32_gfx9: LLVM_FALLTHROUGH; case AMDGPU::DS_WRITE_B32: LLVM_FALLTHROUGH; case AMDGPU::DS_WRITE_B32_gfx9: return 1; case AMDGPU::DS_READ_B64: LLVM_FALLTHROUGH; case AMDGPU::DS_READ_B64_gfx9: LLVM_FALLTHROUGH; case AMDGPU::DS_WRITE_B64: LLVM_FALLTHROUGH; case AMDGPU::DS_WRITE_B64_gfx9: return 2; default: return 0; } } /// Maps instruction opcode to enum InstClassEnum. static InstClassEnum getInstClass(unsigned Opc, const SIInstrInfo &TII) { switch (Opc) { default: if (TII.isMUBUF(Opc)) { switch (AMDGPU::getMUBUFBaseOpcode(Opc)) { default: return UNKNOWN; case AMDGPU::BUFFER_LOAD_DWORD_OFFEN: case AMDGPU::BUFFER_LOAD_DWORD_OFFEN_exact: case AMDGPU::BUFFER_LOAD_DWORD_OFFSET: case AMDGPU::BUFFER_LOAD_DWORD_OFFSET_exact: return BUFFER_LOAD; case AMDGPU::BUFFER_STORE_DWORD_OFFEN: case AMDGPU::BUFFER_STORE_DWORD_OFFEN_exact: case AMDGPU::BUFFER_STORE_DWORD_OFFSET: case AMDGPU::BUFFER_STORE_DWORD_OFFSET_exact: return BUFFER_STORE; } } if (TII.isMIMG(Opc)) { // Ignore instructions encoded without vaddr. if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr) == -1 && AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0) == -1) return UNKNOWN; // Ignore BVH instructions if (AMDGPU::getMIMGBaseOpcode(Opc)->BVH) return UNKNOWN; // TODO: Support IMAGE_GET_RESINFO and IMAGE_GET_LOD. if (TII.get(Opc).mayStore() || !TII.get(Opc).mayLoad() || TII.isGather4(Opc)) return UNKNOWN; return MIMG; } if (TII.isMTBUF(Opc)) { switch (AMDGPU::getMTBUFBaseOpcode(Opc)) { default: return UNKNOWN; case AMDGPU::TBUFFER_LOAD_FORMAT_X_OFFEN: case AMDGPU::TBUFFER_LOAD_FORMAT_X_OFFEN_exact: case AMDGPU::TBUFFER_LOAD_FORMAT_X_OFFSET: case AMDGPU::TBUFFER_LOAD_FORMAT_X_OFFSET_exact: return TBUFFER_LOAD; case AMDGPU::TBUFFER_STORE_FORMAT_X_OFFEN: case AMDGPU::TBUFFER_STORE_FORMAT_X_OFFEN_exact: case AMDGPU::TBUFFER_STORE_FORMAT_X_OFFSET: case AMDGPU::TBUFFER_STORE_FORMAT_X_OFFSET_exact: return TBUFFER_STORE; } } return UNKNOWN; case AMDGPU::S_BUFFER_LOAD_DWORD_IMM: case AMDGPU::S_BUFFER_LOAD_DWORDX2_IMM: case AMDGPU::S_BUFFER_LOAD_DWORDX4_IMM: case AMDGPU::S_BUFFER_LOAD_DWORDX8_IMM: return S_BUFFER_LOAD_IMM; case AMDGPU::DS_READ_B32: case AMDGPU::DS_READ_B32_gfx9: case AMDGPU::DS_READ_B64: case AMDGPU::DS_READ_B64_gfx9: return DS_READ; case AMDGPU::DS_WRITE_B32: case AMDGPU::DS_WRITE_B32_gfx9: case AMDGPU::DS_WRITE_B64: case AMDGPU::DS_WRITE_B64_gfx9: return DS_WRITE; } } /// Determines instruction subclass from opcode. Only instructions /// of the same subclass can be merged together. static unsigned getInstSubclass(unsigned Opc, const SIInstrInfo &TII) { switch (Opc) { default: if (TII.isMUBUF(Opc)) return AMDGPU::getMUBUFBaseOpcode(Opc); if (TII.isMIMG(Opc)) { const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Opc); assert(Info); return Info->BaseOpcode; } if (TII.isMTBUF(Opc)) return AMDGPU::getMTBUFBaseOpcode(Opc); return -1; case AMDGPU::DS_READ_B32: case AMDGPU::DS_READ_B32_gfx9: case AMDGPU::DS_READ_B64: case AMDGPU::DS_READ_B64_gfx9: case AMDGPU::DS_WRITE_B32: case AMDGPU::DS_WRITE_B32_gfx9: case AMDGPU::DS_WRITE_B64: case AMDGPU::DS_WRITE_B64_gfx9: return Opc; case AMDGPU::S_BUFFER_LOAD_DWORD_IMM: case AMDGPU::S_BUFFER_LOAD_DWORDX2_IMM: case AMDGPU::S_BUFFER_LOAD_DWORDX4_IMM: case AMDGPU::S_BUFFER_LOAD_DWORDX8_IMM: return AMDGPU::S_BUFFER_LOAD_DWORD_IMM; } } static AddressRegs getRegs(unsigned Opc, const SIInstrInfo &TII) { AddressRegs Result; if (TII.isMUBUF(Opc)) { if (AMDGPU::getMUBUFHasVAddr(Opc)) Result.VAddr = true; if (AMDGPU::getMUBUFHasSrsrc(Opc)) Result.SRsrc = true; if (AMDGPU::getMUBUFHasSoffset(Opc)) Result.SOffset = true; return Result; } if (TII.isMIMG(Opc)) { int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0); if (VAddr0Idx >= 0) { int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc); Result.NumVAddrs = SRsrcIdx - VAddr0Idx; } else { Result.VAddr = true; } Result.SRsrc = true; const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Opc); if (Info && AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode)->Sampler) Result.SSamp = true; return Result; } if (TII.isMTBUF(Opc)) { if (AMDGPU::getMTBUFHasVAddr(Opc)) Result.VAddr = true; if (AMDGPU::getMTBUFHasSrsrc(Opc)) Result.SRsrc = true; if (AMDGPU::getMTBUFHasSoffset(Opc)) Result.SOffset = true; return Result; } switch (Opc) { default: return Result; case AMDGPU::S_BUFFER_LOAD_DWORD_IMM: case AMDGPU::S_BUFFER_LOAD_DWORDX2_IMM: case AMDGPU::S_BUFFER_LOAD_DWORDX4_IMM: case AMDGPU::S_BUFFER_LOAD_DWORDX8_IMM: Result.SBase = true; return Result; case AMDGPU::DS_READ_B32: case AMDGPU::DS_READ_B64: case AMDGPU::DS_READ_B32_gfx9: case AMDGPU::DS_READ_B64_gfx9: case AMDGPU::DS_WRITE_B32: case AMDGPU::DS_WRITE_B64: case AMDGPU::DS_WRITE_B32_gfx9: case AMDGPU::DS_WRITE_B64_gfx9: Result.Addr = true; return Result; } } void SILoadStoreOptimizer::CombineInfo::setMI(MachineBasicBlock::iterator MI, const SILoadStoreOptimizer &LSO) { I = MI; unsigned Opc = MI->getOpcode(); InstClass = getInstClass(Opc, *LSO.TII); if (InstClass == UNKNOWN) return; IsAGPR = LSO.TRI->hasAGPRs(LSO.getDataRegClass(*MI)); switch (InstClass) { case DS_READ: EltSize = (Opc == AMDGPU::DS_READ_B64 || Opc == AMDGPU::DS_READ_B64_gfx9) ? 8 : 4; break; case DS_WRITE: EltSize = (Opc == AMDGPU::DS_WRITE_B64 || Opc == AMDGPU::DS_WRITE_B64_gfx9) ? 8 : 4; break; case S_BUFFER_LOAD_IMM: EltSize = AMDGPU::convertSMRDOffsetUnits(*LSO.STM, 4); break; default: EltSize = 4; break; } if (InstClass == MIMG) { DMask = LSO.TII->getNamedOperand(*I, AMDGPU::OpName::dmask)->getImm(); // Offset is not considered for MIMG instructions. Offset = 0; } else { int OffsetIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::offset); Offset = I->getOperand(OffsetIdx).getImm(); } if (InstClass == TBUFFER_LOAD || InstClass == TBUFFER_STORE) Format = LSO.TII->getNamedOperand(*I, AMDGPU::OpName::format)->getImm(); Width = getOpcodeWidth(*I, *LSO.TII); if ((InstClass == DS_READ) || (InstClass == DS_WRITE)) { Offset &= 0xffff; } else if (InstClass != MIMG) { CPol = LSO.TII->getNamedOperand(*I, AMDGPU::OpName::cpol)->getImm(); } AddressRegs Regs = getRegs(Opc, *LSO.TII); NumAddresses = 0; for (unsigned J = 0; J < Regs.NumVAddrs; J++) AddrIdx[NumAddresses++] = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0) + J; if (Regs.Addr) AddrIdx[NumAddresses++] = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::addr); if (Regs.SBase) AddrIdx[NumAddresses++] = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::sbase); if (Regs.SRsrc) AddrIdx[NumAddresses++] = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc); if (Regs.SOffset) AddrIdx[NumAddresses++] = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::soffset); if (Regs.VAddr) AddrIdx[NumAddresses++] = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); if (Regs.SSamp) AddrIdx[NumAddresses++] = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::ssamp); assert(NumAddresses <= MaxAddressRegs); for (unsigned J = 0; J < NumAddresses; J++) AddrReg[J] = &I->getOperand(AddrIdx[J]); } } // end anonymous namespace. INITIALIZE_PASS_BEGIN(SILoadStoreOptimizer, DEBUG_TYPE, "SI Load Store Optimizer", false, false) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(SILoadStoreOptimizer, DEBUG_TYPE, "SI Load Store Optimizer", false, false) char SILoadStoreOptimizer::ID = 0; char &llvm::SILoadStoreOptimizerID = SILoadStoreOptimizer::ID; FunctionPass *llvm::createSILoadStoreOptimizerPass() { return new SILoadStoreOptimizer(); } static void moveInstsAfter(MachineBasicBlock::iterator I, ArrayRef InstsToMove) { MachineBasicBlock *MBB = I->getParent(); ++I; for (MachineInstr *MI : InstsToMove) { MI->removeFromParent(); MBB->insert(I, MI); } } static void addDefsUsesToList(const MachineInstr &MI, DenseSet &RegDefs, DenseSet &PhysRegUses) { for (const MachineOperand &Op : MI.operands()) { if (Op.isReg()) { if (Op.isDef()) RegDefs.insert(Op.getReg()); else if (Op.readsReg() && Op.getReg().isPhysical()) PhysRegUses.insert(Op.getReg()); } } } static bool memAccessesCanBeReordered(MachineBasicBlock::iterator A, MachineBasicBlock::iterator B, AliasAnalysis *AA) { // RAW or WAR - cannot reorder // WAW - cannot reorder // RAR - safe to reorder return !(A->mayStore() || B->mayStore()) || !A->mayAlias(AA, *B, true); } // Add MI and its defs to the lists if MI reads one of the defs that are // already in the list. Returns true in that case. static bool addToListsIfDependent(MachineInstr &MI, DenseSet &RegDefs, DenseSet &PhysRegUses, SmallVectorImpl &Insts) { for (MachineOperand &Use : MI.operands()) { // If one of the defs is read, then there is a use of Def between I and the // instruction that I will potentially be merged with. We will need to move // this instruction after the merged instructions. // // Similarly, if there is a def which is read by an instruction that is to // be moved for merging, then we need to move the def-instruction as well. // This can only happen for physical registers such as M0; virtual // registers are in SSA form. if (Use.isReg() && ((Use.readsReg() && RegDefs.count(Use.getReg())) || (Use.isDef() && RegDefs.count(Use.getReg())) || (Use.isDef() && Use.getReg().isPhysical() && PhysRegUses.count(Use.getReg())))) { Insts.push_back(&MI); addDefsUsesToList(MI, RegDefs, PhysRegUses); return true; } } return false; } static bool canMoveInstsAcrossMemOp(MachineInstr &MemOp, ArrayRef InstsToMove, AliasAnalysis *AA) { assert(MemOp.mayLoadOrStore()); for (MachineInstr *InstToMove : InstsToMove) { if (!InstToMove->mayLoadOrStore()) continue; if (!memAccessesCanBeReordered(MemOp, *InstToMove, AA)) return false; } return true; } // This function assumes that \p A and \p B have are identical except for // size and offset, and they reference adjacent memory. static MachineMemOperand *combineKnownAdjacentMMOs(MachineFunction &MF, const MachineMemOperand *A, const MachineMemOperand *B) { unsigned MinOffset = std::min(A->getOffset(), B->getOffset()); unsigned Size = A->getSize() + B->getSize(); // This function adds the offset parameter to the existing offset for A, // so we pass 0 here as the offset and then manually set it to the correct // value after the call. MachineMemOperand *MMO = MF.getMachineMemOperand(A, 0, Size); MMO->setOffset(MinOffset); return MMO; } bool SILoadStoreOptimizer::dmasksCanBeCombined(const CombineInfo &CI, const SIInstrInfo &TII, const CombineInfo &Paired) { assert(CI.InstClass == MIMG); // Ignore instructions with tfe/lwe set. const auto *TFEOp = TII.getNamedOperand(*CI.I, AMDGPU::OpName::tfe); const auto *LWEOp = TII.getNamedOperand(*CI.I, AMDGPU::OpName::lwe); if ((TFEOp && TFEOp->getImm()) || (LWEOp && LWEOp->getImm())) return false; // Check other optional immediate operands for equality. unsigned OperandsToMatch[] = {AMDGPU::OpName::cpol, AMDGPU::OpName::d16, AMDGPU::OpName::unorm, AMDGPU::OpName::da, AMDGPU::OpName::r128, AMDGPU::OpName::a16}; for (auto op : OperandsToMatch) { int Idx = AMDGPU::getNamedOperandIdx(CI.I->getOpcode(), op); if (AMDGPU::getNamedOperandIdx(Paired.I->getOpcode(), op) != Idx) return false; if (Idx != -1 && CI.I->getOperand(Idx).getImm() != Paired.I->getOperand(Idx).getImm()) return false; } // Check DMask for overlaps. unsigned MaxMask = std::max(CI.DMask, Paired.DMask); unsigned MinMask = std::min(CI.DMask, Paired.DMask); unsigned AllowedBitsForMin = llvm::countTrailingZeros(MaxMask); if ((1u << AllowedBitsForMin) <= MinMask) return false; return true; } static unsigned getBufferFormatWithCompCount(unsigned OldFormat, unsigned ComponentCount, const GCNSubtarget &STI) { if (ComponentCount > 4) return 0; const llvm::AMDGPU::GcnBufferFormatInfo *OldFormatInfo = llvm::AMDGPU::getGcnBufferFormatInfo(OldFormat, STI); if (!OldFormatInfo) return 0; const llvm::AMDGPU::GcnBufferFormatInfo *NewFormatInfo = llvm::AMDGPU::getGcnBufferFormatInfo(OldFormatInfo->BitsPerComp, ComponentCount, OldFormatInfo->NumFormat, STI); if (!NewFormatInfo) return 0; assert(NewFormatInfo->NumFormat == OldFormatInfo->NumFormat && NewFormatInfo->BitsPerComp == OldFormatInfo->BitsPerComp); return NewFormatInfo->Format; } // Return the value in the inclusive range [Lo,Hi] that is aligned to the // highest power of two. Note that the result is well defined for all inputs // including corner cases like: // - if Lo == Hi, return that value // - if Lo == 0, return 0 (even though the "- 1" below underflows // - if Lo > Hi, return 0 (as if the range wrapped around) static uint32_t mostAlignedValueInRange(uint32_t Lo, uint32_t Hi) { return Hi & maskLeadingOnes(countLeadingZeros((Lo - 1) ^ Hi) + 1); } bool SILoadStoreOptimizer::offsetsCanBeCombined(CombineInfo &CI, const GCNSubtarget &STI, CombineInfo &Paired, bool Modify) { assert(CI.InstClass != MIMG); // XXX - Would the same offset be OK? Is there any reason this would happen or // be useful? if (CI.Offset == Paired.Offset) return false; // This won't be valid if the offset isn't aligned. if ((CI.Offset % CI.EltSize != 0) || (Paired.Offset % CI.EltSize != 0)) return false; if (CI.InstClass == TBUFFER_LOAD || CI.InstClass == TBUFFER_STORE) { const llvm::AMDGPU::GcnBufferFormatInfo *Info0 = llvm::AMDGPU::getGcnBufferFormatInfo(CI.Format, STI); if (!Info0) return false; const llvm::AMDGPU::GcnBufferFormatInfo *Info1 = llvm::AMDGPU::getGcnBufferFormatInfo(Paired.Format, STI); if (!Info1) return false; if (Info0->BitsPerComp != Info1->BitsPerComp || Info0->NumFormat != Info1->NumFormat) return false; // TODO: Should be possible to support more formats, but if format loads // are not dword-aligned, the merged load might not be valid. if (Info0->BitsPerComp != 32) return false; if (getBufferFormatWithCompCount(CI.Format, CI.Width + Paired.Width, STI) == 0) return false; } uint32_t EltOffset0 = CI.Offset / CI.EltSize; uint32_t EltOffset1 = Paired.Offset / CI.EltSize; CI.UseST64 = false; CI.BaseOff = 0; // Handle all non-DS instructions. if ((CI.InstClass != DS_READ) && (CI.InstClass != DS_WRITE)) { return (EltOffset0 + CI.Width == EltOffset1 || EltOffset1 + Paired.Width == EltOffset0) && CI.CPol == Paired.CPol && (CI.InstClass == S_BUFFER_LOAD_IMM || CI.CPol == Paired.CPol); } // If the offset in elements doesn't fit in 8-bits, we might be able to use // the stride 64 versions. if ((EltOffset0 % 64 == 0) && (EltOffset1 % 64) == 0 && isUInt<8>(EltOffset0 / 64) && isUInt<8>(EltOffset1 / 64)) { if (Modify) { CI.Offset = EltOffset0 / 64; Paired.Offset = EltOffset1 / 64; CI.UseST64 = true; } return true; } // Check if the new offsets fit in the reduced 8-bit range. if (isUInt<8>(EltOffset0) && isUInt<8>(EltOffset1)) { if (Modify) { CI.Offset = EltOffset0; Paired.Offset = EltOffset1; } return true; } // Try to shift base address to decrease offsets. uint32_t Min = std::min(EltOffset0, EltOffset1); uint32_t Max = std::max(EltOffset0, EltOffset1); const uint32_t Mask = maskTrailingOnes(8) * 64; if (((Max - Min) & ~Mask) == 0) { if (Modify) { // From the range of values we could use for BaseOff, choose the one that // is aligned to the highest power of two, to maximise the chance that // the same offset can be reused for other load/store pairs. uint32_t BaseOff = mostAlignedValueInRange(Max - 0xff * 64, Min); // Copy the low bits of the offsets, so that when we adjust them by // subtracting BaseOff they will be multiples of 64. BaseOff |= Min & maskTrailingOnes(6); CI.BaseOff = BaseOff * CI.EltSize; CI.Offset = (EltOffset0 - BaseOff) / 64; Paired.Offset = (EltOffset1 - BaseOff) / 64; CI.UseST64 = true; } return true; } if (isUInt<8>(Max - Min)) { if (Modify) { // From the range of values we could use for BaseOff, choose the one that // is aligned to the highest power of two, to maximise the chance that // the same offset can be reused for other load/store pairs. uint32_t BaseOff = mostAlignedValueInRange(Max - 0xff, Min); CI.BaseOff = BaseOff * CI.EltSize; CI.Offset = EltOffset0 - BaseOff; Paired.Offset = EltOffset1 - BaseOff; } return true; } return false; } bool SILoadStoreOptimizer::widthsFit(const GCNSubtarget &STM, const CombineInfo &CI, const CombineInfo &Paired) { const unsigned Width = (CI.Width + Paired.Width); switch (CI.InstClass) { default: return (Width <= 4) && (STM.hasDwordx3LoadStores() || (Width != 3)); case S_BUFFER_LOAD_IMM: switch (Width) { default: return false; case 2: case 4: case 8: return true; } } } const TargetRegisterClass * SILoadStoreOptimizer::getDataRegClass(const MachineInstr &MI) const { if (const auto *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)) { return TRI->getRegClassForReg(*MRI, Dst->getReg()); } if (const auto *Src = TII->getNamedOperand(MI, AMDGPU::OpName::vdata)) { return TRI->getRegClassForReg(*MRI, Src->getReg()); } if (const auto *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) { return TRI->getRegClassForReg(*MRI, Src->getReg()); } if (const auto *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::sdst)) { return TRI->getRegClassForReg(*MRI, Dst->getReg()); } if (const auto *Src = TII->getNamedOperand(MI, AMDGPU::OpName::sdata)) { return TRI->getRegClassForReg(*MRI, Src->getReg()); } return nullptr; } /// This function assumes that CI comes before Paired in a basic block. bool SILoadStoreOptimizer::checkAndPrepareMerge( CombineInfo &CI, CombineInfo &Paired, SmallVectorImpl &InstsToMove) { // Check both offsets (or masks for MIMG) can be combined and fit in the // reduced range. if (CI.InstClass == MIMG && !dmasksCanBeCombined(CI, *TII, Paired)) return false; if (CI.InstClass != MIMG && (!widthsFit(*STM, CI, Paired) || !offsetsCanBeCombined(CI, *STM, Paired))) return false; const unsigned Opc = CI.I->getOpcode(); const InstClassEnum InstClass = getInstClass(Opc, *TII); if (InstClass == UNKNOWN) { return false; } const unsigned InstSubclass = getInstSubclass(Opc, *TII); DenseSet RegDefsToMove; DenseSet PhysRegUsesToMove; addDefsUsesToList(*CI.I, RegDefsToMove, PhysRegUsesToMove); MachineBasicBlock::iterator E = std::next(Paired.I); MachineBasicBlock::iterator MBBI = std::next(CI.I); MachineBasicBlock::iterator MBBE = CI.I->getParent()->end(); for (; MBBI != E; ++MBBI) { if (MBBI == MBBE) { // CombineInfo::Order is a hint on the instruction ordering within the // basic block. This hint suggests that CI precedes Paired, which is // true most of the time. However, moveInstsAfter() processing a // previous list may have changed this order in a situation when it // moves an instruction which exists in some other merge list. // In this case it must be dependent. return false; } if ((getInstClass(MBBI->getOpcode(), *TII) != InstClass) || (getInstSubclass(MBBI->getOpcode(), *TII) != InstSubclass)) { // This is not a matching instruction, but we can keep looking as // long as one of these conditions are met: // 1. It is safe to move I down past MBBI. // 2. It is safe to move MBBI down past the instruction that I will // be merged into. if (MBBI->mayLoadOrStore() && (!memAccessesCanBeReordered(*CI.I, *MBBI, AA) || !canMoveInstsAcrossMemOp(*MBBI, InstsToMove, AA))) { // We fail condition #1, but we may still be able to satisfy condition // #2. Add this instruction to the move list and then we will check // if condition #2 holds once we have selected the matching instruction. InstsToMove.push_back(&*MBBI); addDefsUsesToList(*MBBI, RegDefsToMove, PhysRegUsesToMove); continue; } // When we match I with another DS instruction we will be moving I down // to the location of the matched instruction any uses of I will need to // be moved down as well. addToListsIfDependent(*MBBI, RegDefsToMove, PhysRegUsesToMove, InstsToMove); continue; } // Handle a case like // DS_WRITE_B32 addr, v, idx0 // w = DS_READ_B32 addr, idx0 // DS_WRITE_B32 addr, f(w), idx1 // where the DS_READ_B32 ends up in InstsToMove and therefore prevents // merging of the two writes. if (addToListsIfDependent(*MBBI, RegDefsToMove, PhysRegUsesToMove, InstsToMove)) continue; if (&*MBBI == &*Paired.I) { // We need to go through the list of instructions that we plan to // move and make sure they are all safe to move down past the merged // instruction. if (canMoveInstsAcrossMemOp(*MBBI, InstsToMove, AA)) { // Call offsetsCanBeCombined with modify = true so that the offsets are // correct for the new instruction. This should return true, because // this function should only be called on CombineInfo objects that // have already been confirmed to be mergeable. if (CI.InstClass != MIMG) offsetsCanBeCombined(CI, *STM, Paired, true); return true; } return false; } // We've found a load/store that we couldn't merge for some reason. // We could potentially keep looking, but we'd need to make sure that // it was safe to move I and also all the instruction in InstsToMove // down past this instruction. // check if we can move I across MBBI and if we can move all I's users if (!memAccessesCanBeReordered(*CI.I, *MBBI, AA) || !canMoveInstsAcrossMemOp(*MBBI, InstsToMove, AA)) break; } return false; } unsigned SILoadStoreOptimizer::read2Opcode(unsigned EltSize) const { if (STM->ldsRequiresM0Init()) return (EltSize == 4) ? AMDGPU::DS_READ2_B32 : AMDGPU::DS_READ2_B64; return (EltSize == 4) ? AMDGPU::DS_READ2_B32_gfx9 : AMDGPU::DS_READ2_B64_gfx9; } unsigned SILoadStoreOptimizer::read2ST64Opcode(unsigned EltSize) const { if (STM->ldsRequiresM0Init()) return (EltSize == 4) ? AMDGPU::DS_READ2ST64_B32 : AMDGPU::DS_READ2ST64_B64; return (EltSize == 4) ? AMDGPU::DS_READ2ST64_B32_gfx9 : AMDGPU::DS_READ2ST64_B64_gfx9; } MachineBasicBlock::iterator SILoadStoreOptimizer::mergeRead2Pair(CombineInfo &CI, CombineInfo &Paired, const SmallVectorImpl &InstsToMove) { MachineBasicBlock *MBB = CI.I->getParent(); // Be careful, since the addresses could be subregisters themselves in weird // cases, like vectors of pointers. const auto *AddrReg = TII->getNamedOperand(*CI.I, AMDGPU::OpName::addr); const auto *Dest0 = TII->getNamedOperand(*CI.I, AMDGPU::OpName::vdst); const auto *Dest1 = TII->getNamedOperand(*Paired.I, AMDGPU::OpName::vdst); unsigned NewOffset0 = CI.Offset; unsigned NewOffset1 = Paired.Offset; unsigned Opc = CI.UseST64 ? read2ST64Opcode(CI.EltSize) : read2Opcode(CI.EltSize); unsigned SubRegIdx0 = (CI.EltSize == 4) ? AMDGPU::sub0 : AMDGPU::sub0_sub1; unsigned SubRegIdx1 = (CI.EltSize == 4) ? AMDGPU::sub1 : AMDGPU::sub2_sub3; if (NewOffset0 > NewOffset1) { // Canonicalize the merged instruction so the smaller offset comes first. std::swap(NewOffset0, NewOffset1); std::swap(SubRegIdx0, SubRegIdx1); } assert((isUInt<8>(NewOffset0) && isUInt<8>(NewOffset1)) && (NewOffset0 != NewOffset1) && "Computed offset doesn't fit"); const MCInstrDesc &Read2Desc = TII->get(Opc); const TargetRegisterClass *SuperRC = getTargetRegisterClass(CI, Paired); Register DestReg = MRI->createVirtualRegister(SuperRC); DebugLoc DL = CI.I->getDebugLoc(); Register BaseReg = AddrReg->getReg(); unsigned BaseSubReg = AddrReg->getSubReg(); unsigned BaseRegFlags = 0; if (CI.BaseOff) { Register ImmReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*MBB, Paired.I, DL, TII->get(AMDGPU::S_MOV_B32), ImmReg) .addImm(CI.BaseOff); BaseReg = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); BaseRegFlags = RegState::Kill; TII->getAddNoCarry(*MBB, Paired.I, DL, BaseReg) .addReg(ImmReg) .addReg(AddrReg->getReg(), 0, BaseSubReg) .addImm(0); // clamp bit BaseSubReg = 0; } MachineInstrBuilder Read2 = BuildMI(*MBB, Paired.I, DL, Read2Desc, DestReg) .addReg(BaseReg, BaseRegFlags, BaseSubReg) // addr .addImm(NewOffset0) // offset0 .addImm(NewOffset1) // offset1 .addImm(0) // gds .cloneMergedMemRefs({&*CI.I, &*Paired.I}); (void)Read2; const MCInstrDesc &CopyDesc = TII->get(TargetOpcode::COPY); // Copy to the old destination registers. BuildMI(*MBB, Paired.I, DL, CopyDesc) .add(*Dest0) // Copy to same destination including flags and sub reg. .addReg(DestReg, 0, SubRegIdx0); MachineInstr *Copy1 = BuildMI(*MBB, Paired.I, DL, CopyDesc) .add(*Dest1) .addReg(DestReg, RegState::Kill, SubRegIdx1); moveInstsAfter(Copy1, InstsToMove); CI.I->eraseFromParent(); Paired.I->eraseFromParent(); LLVM_DEBUG(dbgs() << "Inserted read2: " << *Read2 << '\n'); return Read2; } unsigned SILoadStoreOptimizer::write2Opcode(unsigned EltSize) const { if (STM->ldsRequiresM0Init()) return (EltSize == 4) ? AMDGPU::DS_WRITE2_B32 : AMDGPU::DS_WRITE2_B64; return (EltSize == 4) ? AMDGPU::DS_WRITE2_B32_gfx9 : AMDGPU::DS_WRITE2_B64_gfx9; } unsigned SILoadStoreOptimizer::write2ST64Opcode(unsigned EltSize) const { if (STM->ldsRequiresM0Init()) return (EltSize == 4) ? AMDGPU::DS_WRITE2ST64_B32 : AMDGPU::DS_WRITE2ST64_B64; return (EltSize == 4) ? AMDGPU::DS_WRITE2ST64_B32_gfx9 : AMDGPU::DS_WRITE2ST64_B64_gfx9; } MachineBasicBlock::iterator SILoadStoreOptimizer::mergeWrite2Pair(CombineInfo &CI, CombineInfo &Paired, const SmallVectorImpl &InstsToMove) { MachineBasicBlock *MBB = CI.I->getParent(); // Be sure to use .addOperand(), and not .addReg() with these. We want to be // sure we preserve the subregister index and any register flags set on them. const MachineOperand *AddrReg = TII->getNamedOperand(*CI.I, AMDGPU::OpName::addr); const MachineOperand *Data0 = TII->getNamedOperand(*CI.I, AMDGPU::OpName::data0); const MachineOperand *Data1 = TII->getNamedOperand(*Paired.I, AMDGPU::OpName::data0); unsigned NewOffset0 = CI.Offset; unsigned NewOffset1 = Paired.Offset; unsigned Opc = CI.UseST64 ? write2ST64Opcode(CI.EltSize) : write2Opcode(CI.EltSize); if (NewOffset0 > NewOffset1) { // Canonicalize the merged instruction so the smaller offset comes first. std::swap(NewOffset0, NewOffset1); std::swap(Data0, Data1); } assert((isUInt<8>(NewOffset0) && isUInt<8>(NewOffset1)) && (NewOffset0 != NewOffset1) && "Computed offset doesn't fit"); const MCInstrDesc &Write2Desc = TII->get(Opc); DebugLoc DL = CI.I->getDebugLoc(); Register BaseReg = AddrReg->getReg(); unsigned BaseSubReg = AddrReg->getSubReg(); unsigned BaseRegFlags = 0; if (CI.BaseOff) { Register ImmReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*MBB, Paired.I, DL, TII->get(AMDGPU::S_MOV_B32), ImmReg) .addImm(CI.BaseOff); BaseReg = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); BaseRegFlags = RegState::Kill; TII->getAddNoCarry(*MBB, Paired.I, DL, BaseReg) .addReg(ImmReg) .addReg(AddrReg->getReg(), 0, BaseSubReg) .addImm(0); // clamp bit BaseSubReg = 0; } MachineInstrBuilder Write2 = BuildMI(*MBB, Paired.I, DL, Write2Desc) .addReg(BaseReg, BaseRegFlags, BaseSubReg) // addr .add(*Data0) // data0 .add(*Data1) // data1 .addImm(NewOffset0) // offset0 .addImm(NewOffset1) // offset1 .addImm(0) // gds .cloneMergedMemRefs({&*CI.I, &*Paired.I}); moveInstsAfter(Write2, InstsToMove); CI.I->eraseFromParent(); Paired.I->eraseFromParent(); LLVM_DEBUG(dbgs() << "Inserted write2 inst: " << *Write2 << '\n'); return Write2; } MachineBasicBlock::iterator SILoadStoreOptimizer::mergeImagePair(CombineInfo &CI, CombineInfo &Paired, const SmallVectorImpl &InstsToMove) { MachineBasicBlock *MBB = CI.I->getParent(); DebugLoc DL = CI.I->getDebugLoc(); const unsigned Opcode = getNewOpcode(CI, Paired); const TargetRegisterClass *SuperRC = getTargetRegisterClass(CI, Paired); Register DestReg = MRI->createVirtualRegister(SuperRC); unsigned MergedDMask = CI.DMask | Paired.DMask; unsigned DMaskIdx = AMDGPU::getNamedOperandIdx(CI.I->getOpcode(), AMDGPU::OpName::dmask); auto MIB = BuildMI(*MBB, Paired.I, DL, TII->get(Opcode), DestReg); for (unsigned I = 1, E = (*CI.I).getNumOperands(); I != E; ++I) { if (I == DMaskIdx) MIB.addImm(MergedDMask); else MIB.add((*CI.I).getOperand(I)); } // It shouldn't be possible to get this far if the two instructions // don't have a single memoperand, because MachineInstr::mayAlias() // will return true if this is the case. assert(CI.I->hasOneMemOperand() && Paired.I->hasOneMemOperand()); const MachineMemOperand *MMOa = *CI.I->memoperands_begin(); const MachineMemOperand *MMOb = *Paired.I->memoperands_begin(); MachineInstr *New = MIB.addMemOperand(combineKnownAdjacentMMOs(*MBB->getParent(), MMOa, MMOb)); unsigned SubRegIdx0, SubRegIdx1; std::tie(SubRegIdx0, SubRegIdx1) = getSubRegIdxs(CI, Paired); // Copy to the old destination registers. const MCInstrDesc &CopyDesc = TII->get(TargetOpcode::COPY); const auto *Dest0 = TII->getNamedOperand(*CI.I, AMDGPU::OpName::vdata); const auto *Dest1 = TII->getNamedOperand(*Paired.I, AMDGPU::OpName::vdata); BuildMI(*MBB, Paired.I, DL, CopyDesc) .add(*Dest0) // Copy to same destination including flags and sub reg. .addReg(DestReg, 0, SubRegIdx0); MachineInstr *Copy1 = BuildMI(*MBB, Paired.I, DL, CopyDesc) .add(*Dest1) .addReg(DestReg, RegState::Kill, SubRegIdx1); moveInstsAfter(Copy1, InstsToMove); CI.I->eraseFromParent(); Paired.I->eraseFromParent(); return New; } MachineBasicBlock::iterator SILoadStoreOptimizer::mergeSBufferLoadImmPair( CombineInfo &CI, CombineInfo &Paired, const SmallVectorImpl &InstsToMove) { MachineBasicBlock *MBB = CI.I->getParent(); DebugLoc DL = CI.I->getDebugLoc(); const unsigned Opcode = getNewOpcode(CI, Paired); const TargetRegisterClass *SuperRC = getTargetRegisterClass(CI, Paired); Register DestReg = MRI->createVirtualRegister(SuperRC); unsigned MergedOffset = std::min(CI.Offset, Paired.Offset); // It shouldn't be possible to get this far if the two instructions // don't have a single memoperand, because MachineInstr::mayAlias() // will return true if this is the case. assert(CI.I->hasOneMemOperand() && Paired.I->hasOneMemOperand()); const MachineMemOperand *MMOa = *CI.I->memoperands_begin(); const MachineMemOperand *MMOb = *Paired.I->memoperands_begin(); MachineInstr *New = BuildMI(*MBB, Paired.I, DL, TII->get(Opcode), DestReg) .add(*TII->getNamedOperand(*CI.I, AMDGPU::OpName::sbase)) .addImm(MergedOffset) // offset .addImm(CI.CPol) // cpol .addMemOperand(combineKnownAdjacentMMOs(*MBB->getParent(), MMOa, MMOb)); std::pair SubRegIdx = getSubRegIdxs(CI, Paired); const unsigned SubRegIdx0 = std::get<0>(SubRegIdx); const unsigned SubRegIdx1 = std::get<1>(SubRegIdx); // Copy to the old destination registers. const MCInstrDesc &CopyDesc = TII->get(TargetOpcode::COPY); const auto *Dest0 = TII->getNamedOperand(*CI.I, AMDGPU::OpName::sdst); const auto *Dest1 = TII->getNamedOperand(*Paired.I, AMDGPU::OpName::sdst); BuildMI(*MBB, Paired.I, DL, CopyDesc) .add(*Dest0) // Copy to same destination including flags and sub reg. .addReg(DestReg, 0, SubRegIdx0); MachineInstr *Copy1 = BuildMI(*MBB, Paired.I, DL, CopyDesc) .add(*Dest1) .addReg(DestReg, RegState::Kill, SubRegIdx1); moveInstsAfter(Copy1, InstsToMove); CI.I->eraseFromParent(); Paired.I->eraseFromParent(); return New; } MachineBasicBlock::iterator SILoadStoreOptimizer::mergeBufferLoadPair( CombineInfo &CI, CombineInfo &Paired, const SmallVectorImpl &InstsToMove) { MachineBasicBlock *MBB = CI.I->getParent(); DebugLoc DL = CI.I->getDebugLoc(); const unsigned Opcode = getNewOpcode(CI, Paired); const TargetRegisterClass *SuperRC = getTargetRegisterClass(CI, Paired); // Copy to the new source register. Register DestReg = MRI->createVirtualRegister(SuperRC); unsigned MergedOffset = std::min(CI.Offset, Paired.Offset); auto MIB = BuildMI(*MBB, Paired.I, DL, TII->get(Opcode), DestReg); AddressRegs Regs = getRegs(Opcode, *TII); if (Regs.VAddr) MIB.add(*TII->getNamedOperand(*CI.I, AMDGPU::OpName::vaddr)); // It shouldn't be possible to get this far if the two instructions // don't have a single memoperand, because MachineInstr::mayAlias() // will return true if this is the case. assert(CI.I->hasOneMemOperand() && Paired.I->hasOneMemOperand()); const MachineMemOperand *MMOa = *CI.I->memoperands_begin(); const MachineMemOperand *MMOb = *Paired.I->memoperands_begin(); MachineInstr *New = MIB.add(*TII->getNamedOperand(*CI.I, AMDGPU::OpName::srsrc)) .add(*TII->getNamedOperand(*CI.I, AMDGPU::OpName::soffset)) .addImm(MergedOffset) // offset .addImm(CI.CPol) // cpol .addImm(0) // tfe .addImm(0) // swz .addMemOperand(combineKnownAdjacentMMOs(*MBB->getParent(), MMOa, MMOb)); std::pair SubRegIdx = getSubRegIdxs(CI, Paired); const unsigned SubRegIdx0 = std::get<0>(SubRegIdx); const unsigned SubRegIdx1 = std::get<1>(SubRegIdx); // Copy to the old destination registers. const MCInstrDesc &CopyDesc = TII->get(TargetOpcode::COPY); const auto *Dest0 = TII->getNamedOperand(*CI.I, AMDGPU::OpName::vdata); const auto *Dest1 = TII->getNamedOperand(*Paired.I, AMDGPU::OpName::vdata); BuildMI(*MBB, Paired.I, DL, CopyDesc) .add(*Dest0) // Copy to same destination including flags and sub reg. .addReg(DestReg, 0, SubRegIdx0); MachineInstr *Copy1 = BuildMI(*MBB, Paired.I, DL, CopyDesc) .add(*Dest1) .addReg(DestReg, RegState::Kill, SubRegIdx1); moveInstsAfter(Copy1, InstsToMove); CI.I->eraseFromParent(); Paired.I->eraseFromParent(); return New; } MachineBasicBlock::iterator SILoadStoreOptimizer::mergeTBufferLoadPair( CombineInfo &CI, CombineInfo &Paired, const SmallVectorImpl &InstsToMove) { MachineBasicBlock *MBB = CI.I->getParent(); DebugLoc DL = CI.I->getDebugLoc(); const unsigned Opcode = getNewOpcode(CI, Paired); const TargetRegisterClass *SuperRC = getTargetRegisterClass(CI, Paired); // Copy to the new source register. Register DestReg = MRI->createVirtualRegister(SuperRC); unsigned MergedOffset = std::min(CI.Offset, Paired.Offset); auto MIB = BuildMI(*MBB, Paired.I, DL, TII->get(Opcode), DestReg); AddressRegs Regs = getRegs(Opcode, *TII); if (Regs.VAddr) MIB.add(*TII->getNamedOperand(*CI.I, AMDGPU::OpName::vaddr)); unsigned JoinedFormat = getBufferFormatWithCompCount(CI.Format, CI.Width + Paired.Width, *STM); // It shouldn't be possible to get this far if the two instructions // don't have a single memoperand, because MachineInstr::mayAlias() // will return true if this is the case. assert(CI.I->hasOneMemOperand() && Paired.I->hasOneMemOperand()); const MachineMemOperand *MMOa = *CI.I->memoperands_begin(); const MachineMemOperand *MMOb = *Paired.I->memoperands_begin(); MachineInstr *New = MIB.add(*TII->getNamedOperand(*CI.I, AMDGPU::OpName::srsrc)) .add(*TII->getNamedOperand(*CI.I, AMDGPU::OpName::soffset)) .addImm(MergedOffset) // offset .addImm(JoinedFormat) // format .addImm(CI.CPol) // cpol .addImm(0) // tfe .addImm(0) // swz .addMemOperand( combineKnownAdjacentMMOs(*MBB->getParent(), MMOa, MMOb)); std::pair SubRegIdx = getSubRegIdxs(CI, Paired); const unsigned SubRegIdx0 = std::get<0>(SubRegIdx); const unsigned SubRegIdx1 = std::get<1>(SubRegIdx); // Copy to the old destination registers. const MCInstrDesc &CopyDesc = TII->get(TargetOpcode::COPY); const auto *Dest0 = TII->getNamedOperand(*CI.I, AMDGPU::OpName::vdata); const auto *Dest1 = TII->getNamedOperand(*Paired.I, AMDGPU::OpName::vdata); BuildMI(*MBB, Paired.I, DL, CopyDesc) .add(*Dest0) // Copy to same destination including flags and sub reg. .addReg(DestReg, 0, SubRegIdx0); MachineInstr *Copy1 = BuildMI(*MBB, Paired.I, DL, CopyDesc) .add(*Dest1) .addReg(DestReg, RegState::Kill, SubRegIdx1); moveInstsAfter(Copy1, InstsToMove); CI.I->eraseFromParent(); Paired.I->eraseFromParent(); return New; } MachineBasicBlock::iterator SILoadStoreOptimizer::mergeTBufferStorePair( CombineInfo &CI, CombineInfo &Paired, const SmallVectorImpl &InstsToMove) { MachineBasicBlock *MBB = CI.I->getParent(); DebugLoc DL = CI.I->getDebugLoc(); const unsigned Opcode = getNewOpcode(CI, Paired); std::pair SubRegIdx = getSubRegIdxs(CI, Paired); const unsigned SubRegIdx0 = std::get<0>(SubRegIdx); const unsigned SubRegIdx1 = std::get<1>(SubRegIdx); // Copy to the new source register. const TargetRegisterClass *SuperRC = getTargetRegisterClass(CI, Paired); Register SrcReg = MRI->createVirtualRegister(SuperRC); const auto *Src0 = TII->getNamedOperand(*CI.I, AMDGPU::OpName::vdata); const auto *Src1 = TII->getNamedOperand(*Paired.I, AMDGPU::OpName::vdata); BuildMI(*MBB, Paired.I, DL, TII->get(AMDGPU::REG_SEQUENCE), SrcReg) .add(*Src0) .addImm(SubRegIdx0) .add(*Src1) .addImm(SubRegIdx1); auto MIB = BuildMI(*MBB, Paired.I, DL, TII->get(Opcode)) .addReg(SrcReg, RegState::Kill); AddressRegs Regs = getRegs(Opcode, *TII); if (Regs.VAddr) MIB.add(*TII->getNamedOperand(*CI.I, AMDGPU::OpName::vaddr)); unsigned JoinedFormat = getBufferFormatWithCompCount(CI.Format, CI.Width + Paired.Width, *STM); // It shouldn't be possible to get this far if the two instructions // don't have a single memoperand, because MachineInstr::mayAlias() // will return true if this is the case. assert(CI.I->hasOneMemOperand() && Paired.I->hasOneMemOperand()); const MachineMemOperand *MMOa = *CI.I->memoperands_begin(); const MachineMemOperand *MMOb = *Paired.I->memoperands_begin(); MachineInstr *New = MIB.add(*TII->getNamedOperand(*CI.I, AMDGPU::OpName::srsrc)) .add(*TII->getNamedOperand(*CI.I, AMDGPU::OpName::soffset)) .addImm(std::min(CI.Offset, Paired.Offset)) // offset .addImm(JoinedFormat) // format .addImm(CI.CPol) // cpol .addImm(0) // tfe .addImm(0) // swz .addMemOperand( combineKnownAdjacentMMOs(*MBB->getParent(), MMOa, MMOb)); moveInstsAfter(MIB, InstsToMove); CI.I->eraseFromParent(); Paired.I->eraseFromParent(); return New; } unsigned SILoadStoreOptimizer::getNewOpcode(const CombineInfo &CI, const CombineInfo &Paired) { const unsigned Width = CI.Width + Paired.Width; switch (CI.InstClass) { default: assert(CI.InstClass == BUFFER_LOAD || CI.InstClass == BUFFER_STORE); // FIXME: Handle d16 correctly return AMDGPU::getMUBUFOpcode(AMDGPU::getMUBUFBaseOpcode(CI.I->getOpcode()), Width); case TBUFFER_LOAD: case TBUFFER_STORE: return AMDGPU::getMTBUFOpcode(AMDGPU::getMTBUFBaseOpcode(CI.I->getOpcode()), Width); case UNKNOWN: llvm_unreachable("Unknown instruction class"); case S_BUFFER_LOAD_IMM: switch (Width) { default: return 0; case 2: return AMDGPU::S_BUFFER_LOAD_DWORDX2_IMM; case 4: return AMDGPU::S_BUFFER_LOAD_DWORDX4_IMM; case 8: return AMDGPU::S_BUFFER_LOAD_DWORDX8_IMM; } case MIMG: assert((countPopulation(CI.DMask | Paired.DMask) == Width) && "No overlaps"); return AMDGPU::getMaskedMIMGOp(CI.I->getOpcode(), Width); } } std::pair SILoadStoreOptimizer::getSubRegIdxs(const CombineInfo &CI, const CombineInfo &Paired) { bool ReverseOrder; if (CI.InstClass == MIMG) { assert( (countPopulation(CI.DMask | Paired.DMask) == CI.Width + Paired.Width) && "No overlaps"); ReverseOrder = CI.DMask > Paired.DMask; } else { ReverseOrder = CI.Offset > Paired.Offset; } unsigned Idx0; unsigned Idx1; static const unsigned Idxs[5][4] = { {AMDGPU::sub0, AMDGPU::sub0_sub1, AMDGPU::sub0_sub1_sub2, AMDGPU::sub0_sub1_sub2_sub3}, {AMDGPU::sub1, AMDGPU::sub1_sub2, AMDGPU::sub1_sub2_sub3, AMDGPU::sub1_sub2_sub3_sub4}, {AMDGPU::sub2, AMDGPU::sub2_sub3, AMDGPU::sub2_sub3_sub4, AMDGPU::sub2_sub3_sub4_sub5}, {AMDGPU::sub3, AMDGPU::sub3_sub4, AMDGPU::sub3_sub4_sub5, AMDGPU::sub3_sub4_sub5_sub6}, {AMDGPU::sub4, AMDGPU::sub4_sub5, AMDGPU::sub4_sub5_sub6, AMDGPU::sub4_sub5_sub6_sub7}, }; assert(CI.Width >= 1 && CI.Width <= 4); assert(Paired.Width >= 1 && Paired.Width <= 4); if (ReverseOrder) { Idx1 = Idxs[0][Paired.Width - 1]; Idx0 = Idxs[Paired.Width][CI.Width - 1]; } else { Idx0 = Idxs[0][CI.Width - 1]; Idx1 = Idxs[CI.Width][Paired.Width - 1]; } return std::make_pair(Idx0, Idx1); } const TargetRegisterClass * SILoadStoreOptimizer::getTargetRegisterClass(const CombineInfo &CI, const CombineInfo &Paired) { if (CI.InstClass == S_BUFFER_LOAD_IMM) { switch (CI.Width + Paired.Width) { default: return nullptr; case 2: return &AMDGPU::SReg_64_XEXECRegClass; case 4: return &AMDGPU::SGPR_128RegClass; case 8: return &AMDGPU::SGPR_256RegClass; case 16: return &AMDGPU::SGPR_512RegClass; } } unsigned BitWidth = 32 * (CI.Width + Paired.Width); return TRI->isAGPRClass(getDataRegClass(*CI.I)) ? TRI->getAGPRClassForBitWidth(BitWidth) : TRI->getVGPRClassForBitWidth(BitWidth); } MachineBasicBlock::iterator SILoadStoreOptimizer::mergeBufferStorePair( CombineInfo &CI, CombineInfo &Paired, const SmallVectorImpl &InstsToMove) { MachineBasicBlock *MBB = CI.I->getParent(); DebugLoc DL = CI.I->getDebugLoc(); const unsigned Opcode = getNewOpcode(CI, Paired); std::pair SubRegIdx = getSubRegIdxs(CI, Paired); const unsigned SubRegIdx0 = std::get<0>(SubRegIdx); const unsigned SubRegIdx1 = std::get<1>(SubRegIdx); // Copy to the new source register. const TargetRegisterClass *SuperRC = getTargetRegisterClass(CI, Paired); Register SrcReg = MRI->createVirtualRegister(SuperRC); const auto *Src0 = TII->getNamedOperand(*CI.I, AMDGPU::OpName::vdata); const auto *Src1 = TII->getNamedOperand(*Paired.I, AMDGPU::OpName::vdata); BuildMI(*MBB, Paired.I, DL, TII->get(AMDGPU::REG_SEQUENCE), SrcReg) .add(*Src0) .addImm(SubRegIdx0) .add(*Src1) .addImm(SubRegIdx1); auto MIB = BuildMI(*MBB, Paired.I, DL, TII->get(Opcode)) .addReg(SrcReg, RegState::Kill); AddressRegs Regs = getRegs(Opcode, *TII); if (Regs.VAddr) MIB.add(*TII->getNamedOperand(*CI.I, AMDGPU::OpName::vaddr)); // It shouldn't be possible to get this far if the two instructions // don't have a single memoperand, because MachineInstr::mayAlias() // will return true if this is the case. assert(CI.I->hasOneMemOperand() && Paired.I->hasOneMemOperand()); const MachineMemOperand *MMOa = *CI.I->memoperands_begin(); const MachineMemOperand *MMOb = *Paired.I->memoperands_begin(); MachineInstr *New = MIB.add(*TII->getNamedOperand(*CI.I, AMDGPU::OpName::srsrc)) .add(*TII->getNamedOperand(*CI.I, AMDGPU::OpName::soffset)) .addImm(std::min(CI.Offset, Paired.Offset)) // offset .addImm(CI.CPol) // cpol .addImm(0) // tfe .addImm(0) // swz .addMemOperand(combineKnownAdjacentMMOs(*MBB->getParent(), MMOa, MMOb)); moveInstsAfter(MIB, InstsToMove); CI.I->eraseFromParent(); Paired.I->eraseFromParent(); return New; } MachineOperand SILoadStoreOptimizer::createRegOrImm(int32_t Val, MachineInstr &MI) const { APInt V(32, Val, true); if (TII->isInlineConstant(V)) return MachineOperand::CreateImm(Val); Register Reg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass); MachineInstr *Mov = BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), Reg) .addImm(Val); (void)Mov; LLVM_DEBUG(dbgs() << " "; Mov->dump()); return MachineOperand::CreateReg(Reg, false); } // Compute base address using Addr and return the final register. Register SILoadStoreOptimizer::computeBase(MachineInstr &MI, const MemAddress &Addr) const { MachineBasicBlock *MBB = MI.getParent(); MachineBasicBlock::iterator MBBI = MI.getIterator(); DebugLoc DL = MI.getDebugLoc(); assert((TRI->getRegSizeInBits(Addr.Base.LoReg, *MRI) == 32 || Addr.Base.LoSubReg) && "Expected 32-bit Base-Register-Low!!"); assert((TRI->getRegSizeInBits(Addr.Base.HiReg, *MRI) == 32 || Addr.Base.HiSubReg) && "Expected 32-bit Base-Register-Hi!!"); LLVM_DEBUG(dbgs() << " Re-Computed Anchor-Base:\n"); MachineOperand OffsetLo = createRegOrImm(static_cast(Addr.Offset), MI); MachineOperand OffsetHi = createRegOrImm(static_cast(Addr.Offset >> 32), MI); const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); Register CarryReg = MRI->createVirtualRegister(CarryRC); Register DeadCarryReg = MRI->createVirtualRegister(CarryRC); Register DestSub0 = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register DestSub1 = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); MachineInstr *LoHalf = BuildMI(*MBB, MBBI, DL, TII->get(AMDGPU::V_ADD_CO_U32_e64), DestSub0) .addReg(CarryReg, RegState::Define) .addReg(Addr.Base.LoReg, 0, Addr.Base.LoSubReg) .add(OffsetLo) .addImm(0); // clamp bit (void)LoHalf; LLVM_DEBUG(dbgs() << " "; LoHalf->dump();); MachineInstr *HiHalf = BuildMI(*MBB, MBBI, DL, TII->get(AMDGPU::V_ADDC_U32_e64), DestSub1) .addReg(DeadCarryReg, RegState::Define | RegState::Dead) .addReg(Addr.Base.HiReg, 0, Addr.Base.HiSubReg) .add(OffsetHi) .addReg(CarryReg, RegState::Kill) .addImm(0); // clamp bit (void)HiHalf; LLVM_DEBUG(dbgs() << " "; HiHalf->dump();); Register FullDestReg = MRI->createVirtualRegister(TRI->getVGPR64Class()); MachineInstr *FullBase = BuildMI(*MBB, MBBI, DL, TII->get(TargetOpcode::REG_SEQUENCE), FullDestReg) .addReg(DestSub0) .addImm(AMDGPU::sub0) .addReg(DestSub1) .addImm(AMDGPU::sub1); (void)FullBase; LLVM_DEBUG(dbgs() << " "; FullBase->dump(); dbgs() << "\n";); return FullDestReg; } // Update base and offset with the NewBase and NewOffset in MI. void SILoadStoreOptimizer::updateBaseAndOffset(MachineInstr &MI, Register NewBase, int32_t NewOffset) const { auto Base = TII->getNamedOperand(MI, AMDGPU::OpName::vaddr); Base->setReg(NewBase); Base->setIsKill(false); TII->getNamedOperand(MI, AMDGPU::OpName::offset)->setImm(NewOffset); } Optional SILoadStoreOptimizer::extractConstOffset(const MachineOperand &Op) const { if (Op.isImm()) return Op.getImm(); if (!Op.isReg()) return None; MachineInstr *Def = MRI->getUniqueVRegDef(Op.getReg()); if (!Def || Def->getOpcode() != AMDGPU::S_MOV_B32 || !Def->getOperand(1).isImm()) return None; return Def->getOperand(1).getImm(); } // Analyze Base and extracts: // - 32bit base registers, subregisters // - 64bit constant offset // Expecting base computation as: // %OFFSET0:sgpr_32 = S_MOV_B32 8000 // %LO:vgpr_32, %c:sreg_64_xexec = // V_ADD_CO_U32_e64 %BASE_LO:vgpr_32, %103:sgpr_32, // %HI:vgpr_32, = V_ADDC_U32_e64 %BASE_HI:vgpr_32, 0, killed %c:sreg_64_xexec // %Base:vreg_64 = // REG_SEQUENCE %LO:vgpr_32, %subreg.sub0, %HI:vgpr_32, %subreg.sub1 void SILoadStoreOptimizer::processBaseWithConstOffset(const MachineOperand &Base, MemAddress &Addr) const { if (!Base.isReg()) return; MachineInstr *Def = MRI->getUniqueVRegDef(Base.getReg()); if (!Def || Def->getOpcode() != AMDGPU::REG_SEQUENCE || Def->getNumOperands() != 5) return; MachineOperand BaseLo = Def->getOperand(1); MachineOperand BaseHi = Def->getOperand(3); if (!BaseLo.isReg() || !BaseHi.isReg()) return; MachineInstr *BaseLoDef = MRI->getUniqueVRegDef(BaseLo.getReg()); MachineInstr *BaseHiDef = MRI->getUniqueVRegDef(BaseHi.getReg()); if (!BaseLoDef || BaseLoDef->getOpcode() != AMDGPU::V_ADD_CO_U32_e64 || !BaseHiDef || BaseHiDef->getOpcode() != AMDGPU::V_ADDC_U32_e64) return; const auto *Src0 = TII->getNamedOperand(*BaseLoDef, AMDGPU::OpName::src0); const auto *Src1 = TII->getNamedOperand(*BaseLoDef, AMDGPU::OpName::src1); auto Offset0P = extractConstOffset(*Src0); if (Offset0P) BaseLo = *Src1; else { if (!(Offset0P = extractConstOffset(*Src1))) return; BaseLo = *Src0; } Src0 = TII->getNamedOperand(*BaseHiDef, AMDGPU::OpName::src0); Src1 = TII->getNamedOperand(*BaseHiDef, AMDGPU::OpName::src1); if (Src0->isImm()) std::swap(Src0, Src1); if (!Src1->isImm()) return; uint64_t Offset1 = Src1->getImm(); BaseHi = *Src0; Addr.Base.LoReg = BaseLo.getReg(); Addr.Base.HiReg = BaseHi.getReg(); Addr.Base.LoSubReg = BaseLo.getSubReg(); Addr.Base.HiSubReg = BaseHi.getSubReg(); Addr.Offset = (*Offset0P & 0x00000000ffffffff) | (Offset1 << 32); } bool SILoadStoreOptimizer::promoteConstantOffsetToImm( MachineInstr &MI, MemInfoMap &Visited, SmallPtrSet &AnchorList) const { if (!(MI.mayLoad() ^ MI.mayStore())) return false; // TODO: Support flat and scratch. if (AMDGPU::getGlobalSaddrOp(MI.getOpcode()) < 0) return false; if (MI.mayLoad() && TII->getNamedOperand(MI, AMDGPU::OpName::vdata) != nullptr) return false; if (AnchorList.count(&MI)) return false; LLVM_DEBUG(dbgs() << "\nTryToPromoteConstantOffsetToImmFor "; MI.dump()); if (TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm()) { LLVM_DEBUG(dbgs() << " Const-offset is already promoted.\n";); return false; } // Step1: Find the base-registers and a 64bit constant offset. MachineOperand &Base = *TII->getNamedOperand(MI, AMDGPU::OpName::vaddr); MemAddress MAddr; if (Visited.find(&MI) == Visited.end()) { processBaseWithConstOffset(Base, MAddr); Visited[&MI] = MAddr; } else MAddr = Visited[&MI]; if (MAddr.Offset == 0) { LLVM_DEBUG(dbgs() << " Failed to extract constant-offset or there are no" " constant offsets that can be promoted.\n";); return false; } LLVM_DEBUG(dbgs() << " BASE: {" << MAddr.Base.HiReg << ", " << MAddr.Base.LoReg << "} Offset: " << MAddr.Offset << "\n\n";); // Step2: Traverse through MI's basic block and find an anchor(that has the // same base-registers) with the highest 13bit distance from MI's offset. // E.g. (64bit loads) // bb: // addr1 = &a + 4096; load1 = load(addr1, 0) // addr2 = &a + 6144; load2 = load(addr2, 0) // addr3 = &a + 8192; load3 = load(addr3, 0) // addr4 = &a + 10240; load4 = load(addr4, 0) // addr5 = &a + 12288; load5 = load(addr5, 0) // // Starting from the first load, the optimization will try to find a new base // from which (&a + 4096) has 13 bit distance. Both &a + 6144 and &a + 8192 // has 13bit distance from &a + 4096. The heuristic considers &a + 8192 // as the new-base(anchor) because of the maximum distance which can // accomodate more intermediate bases presumeably. // // Step3: move (&a + 8192) above load1. Compute and promote offsets from // (&a + 8192) for load1, load2, load4. // addr = &a + 8192 // load1 = load(addr, -4096) // load2 = load(addr, -2048) // load3 = load(addr, 0) // load4 = load(addr, 2048) // addr5 = &a + 12288; load5 = load(addr5, 0) // MachineInstr *AnchorInst = nullptr; MemAddress AnchorAddr; uint32_t MaxDist = std::numeric_limits::min(); SmallVector, 4> InstsWCommonBase; MachineBasicBlock *MBB = MI.getParent(); MachineBasicBlock::iterator E = MBB->end(); MachineBasicBlock::iterator MBBI = MI.getIterator(); ++MBBI; const SITargetLowering *TLI = static_cast(STM->getTargetLowering()); for ( ; MBBI != E; ++MBBI) { MachineInstr &MINext = *MBBI; // TODO: Support finding an anchor(with same base) from store addresses or // any other load addresses where the opcodes are different. if (MINext.getOpcode() != MI.getOpcode() || TII->getNamedOperand(MINext, AMDGPU::OpName::offset)->getImm()) continue; const MachineOperand &BaseNext = *TII->getNamedOperand(MINext, AMDGPU::OpName::vaddr); MemAddress MAddrNext; if (Visited.find(&MINext) == Visited.end()) { processBaseWithConstOffset(BaseNext, MAddrNext); Visited[&MINext] = MAddrNext; } else MAddrNext = Visited[&MINext]; if (MAddrNext.Base.LoReg != MAddr.Base.LoReg || MAddrNext.Base.HiReg != MAddr.Base.HiReg || MAddrNext.Base.LoSubReg != MAddr.Base.LoSubReg || MAddrNext.Base.HiSubReg != MAddr.Base.HiSubReg) continue; InstsWCommonBase.push_back(std::make_pair(&MINext, MAddrNext.Offset)); int64_t Dist = MAddr.Offset - MAddrNext.Offset; TargetLoweringBase::AddrMode AM; AM.HasBaseReg = true; AM.BaseOffs = Dist; if (TLI->isLegalGlobalAddressingMode(AM) && (uint32_t)std::abs(Dist) > MaxDist) { MaxDist = std::abs(Dist); AnchorAddr = MAddrNext; AnchorInst = &MINext; } } if (AnchorInst) { LLVM_DEBUG(dbgs() << " Anchor-Inst(with max-distance from Offset): "; AnchorInst->dump()); LLVM_DEBUG(dbgs() << " Anchor-Offset from BASE: " << AnchorAddr.Offset << "\n\n"); // Instead of moving up, just re-compute anchor-instruction's base address. Register Base = computeBase(MI, AnchorAddr); updateBaseAndOffset(MI, Base, MAddr.Offset - AnchorAddr.Offset); LLVM_DEBUG(dbgs() << " After promotion: "; MI.dump();); for (auto P : InstsWCommonBase) { TargetLoweringBase::AddrMode AM; AM.HasBaseReg = true; AM.BaseOffs = P.second - AnchorAddr.Offset; if (TLI->isLegalGlobalAddressingMode(AM)) { LLVM_DEBUG(dbgs() << " Promote Offset(" << P.second; dbgs() << ")"; P.first->dump()); updateBaseAndOffset(*P.first, Base, P.second - AnchorAddr.Offset); LLVM_DEBUG(dbgs() << " After promotion: "; P.first->dump()); } } AnchorList.insert(AnchorInst); return true; } return false; } void SILoadStoreOptimizer::addInstToMergeableList(const CombineInfo &CI, std::list > &MergeableInsts) const { for (std::list &AddrList : MergeableInsts) { if (AddrList.front().InstClass == CI.InstClass && AddrList.front().IsAGPR == CI.IsAGPR && AddrList.front().hasSameBaseAddress(*CI.I)) { AddrList.emplace_back(CI); return; } } // Base address not found, so add a new list. MergeableInsts.emplace_back(1, CI); } std::pair SILoadStoreOptimizer::collectMergeableInsts( MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, MemInfoMap &Visited, SmallPtrSet &AnchorList, std::list> &MergeableInsts) const { bool Modified = false; // Sort potential mergeable instructions into lists. One list per base address. unsigned Order = 0; MachineBasicBlock::iterator BlockI = Begin; for (; BlockI != End; ++BlockI) { MachineInstr &MI = *BlockI; // We run this before checking if an address is mergeable, because it can produce // better code even if the instructions aren't mergeable. if (promoteConstantOffsetToImm(MI, Visited, AnchorList)) Modified = true; // Treat volatile accesses, ordered accesses and unmodeled side effects as // barriers. We can look after this barrier for separate merges. if (MI.hasOrderedMemoryRef() || MI.hasUnmodeledSideEffects()) { LLVM_DEBUG(dbgs() << "Breaking search on barrier: " << MI); // Search will resume after this instruction in a separate merge list. ++BlockI; break; } const InstClassEnum InstClass = getInstClass(MI.getOpcode(), *TII); if (InstClass == UNKNOWN) continue; // Do not merge VMEM buffer instructions with "swizzled" bit set. int Swizzled = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); if (Swizzled != -1 && MI.getOperand(Swizzled).getImm()) continue; CombineInfo CI; CI.setMI(MI, *this); CI.Order = Order++; if (!CI.hasMergeableAddress(*MRI)) continue; if (CI.InstClass == DS_WRITE && CI.IsAGPR) { // FIXME: nothing is illegal in a ds_write2 opcode with two AGPR data // operands. However we are reporting that ds_write2 shall have // only VGPR data so that machine copy propagation does not // create an illegal instruction with a VGPR and AGPR sources. // Consequenctially if we create such instruction the verifier // will complain. continue; } LLVM_DEBUG(dbgs() << "Mergeable: " << MI); addInstToMergeableList(CI, MergeableInsts); } // At this point we have lists of Mergeable instructions. // // Part 2: Sort lists by offset and then for each CombineInfo object in the // list try to find an instruction that can be merged with I. If an instruction // is found, it is stored in the Paired field. If no instructions are found, then // the CombineInfo object is deleted from the list. for (std::list>::iterator I = MergeableInsts.begin(), E = MergeableInsts.end(); I != E;) { std::list &MergeList = *I; if (MergeList.size() <= 1) { // This means we have found only one instruction with a given address // that can be merged, and we need at least 2 instructions to do a merge, // so this list can be discarded. I = MergeableInsts.erase(I); continue; } // Sort the lists by offsets, this way mergeable instructions will be // adjacent to each other in the list, which will make it easier to find // matches. MergeList.sort( [] (const CombineInfo &A, const CombineInfo &B) { return A.Offset < B.Offset; }); ++I; } return std::make_pair(BlockI, Modified); } // Scan through looking for adjacent LDS operations with constant offsets from // the same base register. We rely on the scheduler to do the hard work of // clustering nearby loads, and assume these are all adjacent. bool SILoadStoreOptimizer::optimizeBlock( std::list > &MergeableInsts) { bool Modified = false; for (std::list>::iterator I = MergeableInsts.begin(), E = MergeableInsts.end(); I != E;) { std::list &MergeList = *I; bool OptimizeListAgain = false; if (!optimizeInstsWithSameBaseAddr(MergeList, OptimizeListAgain)) { // We weren't able to make any changes, so delete the list so we don't // process the same instructions the next time we try to optimize this // block. I = MergeableInsts.erase(I); continue; } Modified = true; // We made changes, but also determined that there were no more optimization // opportunities, so we don't need to reprocess the list if (!OptimizeListAgain) { I = MergeableInsts.erase(I); continue; } OptimizeAgain = true; } return Modified; } bool SILoadStoreOptimizer::optimizeInstsWithSameBaseAddr( std::list &MergeList, bool &OptimizeListAgain) { if (MergeList.empty()) return false; bool Modified = false; for (auto I = MergeList.begin(), Next = std::next(I); Next != MergeList.end(); Next = std::next(I)) { auto First = I; auto Second = Next; if ((*First).Order > (*Second).Order) std::swap(First, Second); CombineInfo &CI = *First; CombineInfo &Paired = *Second; SmallVector InstsToMove; if (!checkAndPrepareMerge(CI, Paired, InstsToMove)) { ++I; continue; } Modified = true; LLVM_DEBUG(dbgs() << "Merging: " << *CI.I << " with: " << *Paired.I); switch (CI.InstClass) { default: llvm_unreachable("unknown InstClass"); break; case DS_READ: { MachineBasicBlock::iterator NewMI = mergeRead2Pair(CI, Paired, InstsToMove); CI.setMI(NewMI, *this); break; } case DS_WRITE: { MachineBasicBlock::iterator NewMI = mergeWrite2Pair(CI, Paired, InstsToMove); CI.setMI(NewMI, *this); break; } case S_BUFFER_LOAD_IMM: { MachineBasicBlock::iterator NewMI = mergeSBufferLoadImmPair(CI, Paired, InstsToMove); CI.setMI(NewMI, *this); OptimizeListAgain |= (CI.Width + Paired.Width) < 8; break; } case BUFFER_LOAD: { MachineBasicBlock::iterator NewMI = mergeBufferLoadPair(CI, Paired, InstsToMove); CI.setMI(NewMI, *this); OptimizeListAgain |= (CI.Width + Paired.Width) < 4; break; } case BUFFER_STORE: { MachineBasicBlock::iterator NewMI = mergeBufferStorePair(CI, Paired, InstsToMove); CI.setMI(NewMI, *this); OptimizeListAgain |= (CI.Width + Paired.Width) < 4; break; } case MIMG: { MachineBasicBlock::iterator NewMI = mergeImagePair(CI, Paired, InstsToMove); CI.setMI(NewMI, *this); OptimizeListAgain |= (CI.Width + Paired.Width) < 4; break; } case TBUFFER_LOAD: { MachineBasicBlock::iterator NewMI = mergeTBufferLoadPair(CI, Paired, InstsToMove); CI.setMI(NewMI, *this); OptimizeListAgain |= (CI.Width + Paired.Width) < 4; break; } case TBUFFER_STORE: { MachineBasicBlock::iterator NewMI = mergeTBufferStorePair(CI, Paired, InstsToMove); CI.setMI(NewMI, *this); OptimizeListAgain |= (CI.Width + Paired.Width) < 4; break; } } CI.Order = Paired.Order; if (I == Second) I = Next; MergeList.erase(Second); } return Modified; } bool SILoadStoreOptimizer::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; STM = &MF.getSubtarget(); if (!STM->loadStoreOptEnabled()) return false; TII = STM->getInstrInfo(); TRI = &TII->getRegisterInfo(); MRI = &MF.getRegInfo(); AA = &getAnalysis().getAAResults(); LLVM_DEBUG(dbgs() << "Running SILoadStoreOptimizer\n"); bool Modified = false; // Contains the list of instructions for which constant offsets are being // promoted to the IMM. This is tracked for an entire block at time. SmallPtrSet AnchorList; MemInfoMap Visited; for (MachineBasicBlock &MBB : MF) { MachineBasicBlock::iterator SectionEnd; for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; I = SectionEnd) { bool CollectModified; std::list> MergeableInsts; // First pass: Collect list of all instructions we know how to merge in a // subset of the block. std::tie(SectionEnd, CollectModified) = collectMergeableInsts(I, E, Visited, AnchorList, MergeableInsts); Modified |= CollectModified; do { OptimizeAgain = false; Modified |= optimizeBlock(MergeableInsts); } while (OptimizeAgain); } Visited.clear(); AnchorList.clear(); } return Modified; }