//===- SIInstrInfo.h - SI Instruction Info Interface ------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Interface definition for SIInstrInfo. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_AMDGPU_SIINSTRINFO_H #define LLVM_LIB_TARGET_AMDGPU_SIINSTRINFO_H #include "AMDGPUMIRFormatter.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "SIRegisterInfo.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/ADT/SetVector.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetSchedule.h" #define GET_INSTRINFO_HEADER #include "AMDGPUGenInstrInfo.inc" namespace llvm { class APInt; class GCNSubtarget; class LiveVariables; class MachineDominatorTree; class MachineRegisterInfo; class RegScavenger; class TargetRegisterClass; class ScheduleHazardRecognizer; /// Mark the MMO of a uniform load if there are no potentially clobbering stores /// on any path from the start of an entry function to this load. static const MachineMemOperand::Flags MONoClobber = MachineMemOperand::MOTargetFlag1; /// Mark the MMO of a load as the last use. static const MachineMemOperand::Flags MOLastUse = MachineMemOperand::MOTargetFlag2; /// Utility to store machine instructions worklist. struct SIInstrWorklist { SIInstrWorklist() = default; void insert(MachineInstr *MI); MachineInstr *top() const { auto iter = InstrList.begin(); return *iter; } void erase_top() { auto iter = InstrList.begin(); InstrList.erase(iter); } bool empty() const { return InstrList.empty(); } void clear() { InstrList.clear(); DeferredList.clear(); } bool isDeferred(MachineInstr *MI); SetVector &getDeferredList() { return DeferredList; } private: /// InstrList contains the MachineInstrs. SetVector InstrList; /// Deferred instructions are specific MachineInstr /// that will be added by insert method. SetVector DeferredList; }; class SIInstrInfo final : public AMDGPUGenInstrInfo { private: const SIRegisterInfo RI; const GCNSubtarget &ST; TargetSchedModel SchedModel; mutable std::unique_ptr Formatter; // The inverse predicate should have the negative value. enum BranchPredicate { INVALID_BR = 0, SCC_TRUE = 1, SCC_FALSE = -1, VCCNZ = 2, VCCZ = -2, EXECNZ = -3, EXECZ = 3 }; using SetVectorType = SmallSetVector; static unsigned getBranchOpcode(BranchPredicate Cond); static BranchPredicate getBranchPredicate(unsigned Opcode); public: unsigned buildExtractSubReg(MachineBasicBlock::iterator MI, MachineRegisterInfo &MRI, const MachineOperand &SuperReg, const TargetRegisterClass *SuperRC, unsigned SubIdx, const TargetRegisterClass *SubRC) const; MachineOperand buildExtractSubRegOrImm( MachineBasicBlock::iterator MI, MachineRegisterInfo &MRI, const MachineOperand &SuperReg, const TargetRegisterClass *SuperRC, unsigned SubIdx, const TargetRegisterClass *SubRC) const; private: void swapOperands(MachineInstr &Inst) const; std::pair moveScalarAddSub(SIInstrWorklist &Worklist, MachineInstr &Inst, MachineDominatorTree *MDT = nullptr) const; void lowerSelect(SIInstrWorklist &Worklist, MachineInstr &Inst, MachineDominatorTree *MDT = nullptr) const; void lowerScalarAbs(SIInstrWorklist &Worklist, MachineInstr &Inst) const; void lowerScalarXnor(SIInstrWorklist &Worklist, MachineInstr &Inst) const; void splitScalarNotBinop(SIInstrWorklist &Worklist, MachineInstr &Inst, unsigned Opcode) const; void splitScalarBinOpN2(SIInstrWorklist &Worklist, MachineInstr &Inst, unsigned Opcode) const; void splitScalar64BitUnaryOp(SIInstrWorklist &Worklist, MachineInstr &Inst, unsigned Opcode, bool Swap = false) const; void splitScalar64BitBinaryOp(SIInstrWorklist &Worklist, MachineInstr &Inst, unsigned Opcode, MachineDominatorTree *MDT = nullptr) const; void splitScalarSMulU64(SIInstrWorklist &Worklist, MachineInstr &Inst, MachineDominatorTree *MDT) const; void splitScalarSMulPseudo(SIInstrWorklist &Worklist, MachineInstr &Inst, MachineDominatorTree *MDT) const; void splitScalar64BitXnor(SIInstrWorklist &Worklist, MachineInstr &Inst, MachineDominatorTree *MDT = nullptr) const; void splitScalar64BitBCNT(SIInstrWorklist &Worklist, MachineInstr &Inst) const; void splitScalar64BitBFE(SIInstrWorklist &Worklist, MachineInstr &Inst) const; void splitScalar64BitCountOp(SIInstrWorklist &Worklist, MachineInstr &Inst, unsigned Opcode, MachineDominatorTree *MDT = nullptr) const; void movePackToVALU(SIInstrWorklist &Worklist, MachineRegisterInfo &MRI, MachineInstr &Inst) const; void addUsersToMoveToVALUWorklist(Register Reg, MachineRegisterInfo &MRI, SIInstrWorklist &Worklist) const; void addSCCDefUsersToVALUWorklist(MachineOperand &Op, MachineInstr &SCCDefInst, SIInstrWorklist &Worklist, Register NewCond = Register()) const; void addSCCDefsToVALUWorklist(MachineInstr *SCCUseInst, SIInstrWorklist &Worklist) const; const TargetRegisterClass * getDestEquivalentVGPRClass(const MachineInstr &Inst) const; bool checkInstOffsetsDoNotOverlap(const MachineInstr &MIa, const MachineInstr &MIb) const; Register findUsedSGPR(const MachineInstr &MI, int OpIndices[3]) const; protected: /// If the specific machine instruction is a instruction that moves/copies /// value from one register to another register return destination and source /// registers as machine operands. std::optional isCopyInstrImpl(const MachineInstr &MI) const override; bool swapSourceModifiers(MachineInstr &MI, MachineOperand &Src0, unsigned Src0OpName, MachineOperand &Src1, unsigned Src1OpName) const; MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx0, unsigned OpIdx1) const override; public: enum TargetOperandFlags { MO_MASK = 0xf, MO_NONE = 0, // MO_GOTPCREL -> symbol@GOTPCREL -> R_AMDGPU_GOTPCREL. MO_GOTPCREL = 1, // MO_GOTPCREL32_LO -> symbol@gotpcrel32@lo -> R_AMDGPU_GOTPCREL32_LO. MO_GOTPCREL32 = 2, MO_GOTPCREL32_LO = 2, // MO_GOTPCREL32_HI -> symbol@gotpcrel32@hi -> R_AMDGPU_GOTPCREL32_HI. MO_GOTPCREL32_HI = 3, // MO_REL32_LO -> symbol@rel32@lo -> R_AMDGPU_REL32_LO. MO_REL32 = 4, MO_REL32_LO = 4, // MO_REL32_HI -> symbol@rel32@hi -> R_AMDGPU_REL32_HI. MO_REL32_HI = 5, MO_FAR_BRANCH_OFFSET = 6, MO_ABS32_LO = 8, MO_ABS32_HI = 9, }; explicit SIInstrInfo(const GCNSubtarget &ST); const SIRegisterInfo &getRegisterInfo() const { return RI; } const GCNSubtarget &getSubtarget() const { return ST; } bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const override; bool isIgnorableUse(const MachineOperand &MO) const override; bool isSafeToSink(MachineInstr &MI, MachineBasicBlock *SuccToSinkTo, MachineCycleInfo *CI) const override; bool areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1, int64_t &Offset0, int64_t &Offset1) const override; bool getMemOperandsWithOffsetWidth( const MachineInstr &LdSt, SmallVectorImpl &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const final; bool shouldClusterMemOps(ArrayRef BaseOps1, int64_t Offset1, bool OffsetIsScalable1, ArrayRef BaseOps2, int64_t Offset2, bool OffsetIsScalable2, unsigned ClusterSize, unsigned NumBytes) const override; bool shouldScheduleLoadsNear(SDNode *Load0, SDNode *Load1, int64_t Offset0, int64_t Offset1, unsigned NumLoads) const override; void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc) const override; void materializeImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, Register DestReg, int64_t Value) const; const TargetRegisterClass *getPreferredSelectRegClass( unsigned Size) const; Register insertNE(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register SrcReg, int Value) const; Register insertEQ(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register SrcReg, int Value) const; void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const override; void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const override; bool expandPostRAPseudo(MachineInstr &MI) const override; void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, unsigned SubIdx, const MachineInstr &Orig, const TargetRegisterInfo &TRI) const override; // Splits a V_MOV_B64_DPP_PSEUDO opcode into a pair of v_mov_b32_dpp // instructions. Returns a pair of generated instructions. // Can split either post-RA with physical registers or pre-RA with // virtual registers. In latter case IR needs to be in SSA form and // and a REG_SEQUENCE is produced to define original register. std::pair expandMovDPP64(MachineInstr &MI) const; // Returns an opcode that can be used to move a value to a \p DstRC // register. If there is no hardware instruction that can store to \p // DstRC, then AMDGPU::COPY is returned. unsigned getMovOpcode(const TargetRegisterClass *DstRC) const; const MCInstrDesc &getIndirectRegWriteMovRelPseudo(unsigned VecSize, unsigned EltSize, bool IsSGPR) const; const MCInstrDesc &getIndirectGPRIDXPseudo(unsigned VecSize, bool IsIndirectSrc) const; LLVM_READONLY int commuteOpcode(unsigned Opc) const; LLVM_READONLY inline int commuteOpcode(const MachineInstr &MI) const { return commuteOpcode(MI.getOpcode()); } bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx0, unsigned &SrcOpIdx1) const override; bool findCommutedOpIndices(const MCInstrDesc &Desc, unsigned &SrcOpIdx0, unsigned &SrcOpIdx1) const; bool isBranchOffsetInRange(unsigned BranchOpc, int64_t BrOffset) const override; MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const override; /// Return whether the block terminate with divergent branch. /// Note this only work before lowering the pseudo control flow instructions. bool hasDivergentBranch(const MachineBasicBlock *MBB) const; void insertIndirectBranch(MachineBasicBlock &MBB, MachineBasicBlock &NewDestBB, MachineBasicBlock &RestoreBB, const DebugLoc &DL, int64_t BrOffset, RegScavenger *RS) const override; bool analyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const; bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify = false) const override; unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved = nullptr) const override; unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef Cond, const DebugLoc &DL, int *BytesAdded = nullptr) const override; bool reverseBranchCondition( SmallVectorImpl &Cond) const override; bool canInsertSelect(const MachineBasicBlock &MBB, ArrayRef Cond, Register DstReg, Register TrueReg, Register FalseReg, int &CondCycles, int &TrueCycles, int &FalseCycles) const override; void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register DstReg, ArrayRef Cond, Register TrueReg, Register FalseReg) const override; void insertVectorSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register DstReg, ArrayRef Cond, Register TrueReg, Register FalseReg) const; bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &CmpMask, int64_t &CmpValue) const override; bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask, int64_t CmpValue, const MachineRegisterInfo *MRI) const override; bool areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, const MachineInstr &MIb) const override; static bool isFoldableCopy(const MachineInstr &MI); void removeModOperands(MachineInstr &MI) const; bool foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg, MachineRegisterInfo *MRI) const final; unsigned getMachineCSELookAheadLimit() const override { return 500; } MachineInstr *convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, LiveIntervals *LIS) const override; bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const override; static bool isSALU(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::SALU; } bool isSALU(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::SALU; } static bool isVALU(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::VALU; } bool isVALU(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VALU; } static bool isImage(const MachineInstr &MI) { return isMIMG(MI) || isVSAMPLE(MI) || isVIMAGE(MI); } bool isImage(uint16_t Opcode) const { return isMIMG(Opcode) || isVSAMPLE(Opcode) || isVIMAGE(Opcode); } static bool isVMEM(const MachineInstr &MI) { return isMUBUF(MI) || isMTBUF(MI) || isImage(MI); } bool isVMEM(uint16_t Opcode) const { return isMUBUF(Opcode) || isMTBUF(Opcode) || isImage(Opcode); } static bool isSOP1(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::SOP1; } bool isSOP1(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::SOP1; } static bool isSOP2(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::SOP2; } bool isSOP2(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::SOP2; } static bool isSOPC(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::SOPC; } bool isSOPC(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::SOPC; } static bool isSOPK(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::SOPK; } bool isSOPK(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::SOPK; } static bool isSOPP(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::SOPP; } bool isSOPP(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::SOPP; } static bool isPacked(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::IsPacked; } bool isPacked(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::IsPacked; } static bool isVOP1(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::VOP1; } bool isVOP1(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VOP1; } static bool isVOP2(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::VOP2; } bool isVOP2(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VOP2; } static bool isVOP3(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::VOP3; } bool isVOP3(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VOP3; } static bool isSDWA(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::SDWA; } bool isSDWA(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::SDWA; } static bool isVOPC(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::VOPC; } bool isVOPC(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VOPC; } static bool isMUBUF(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::MUBUF; } bool isMUBUF(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::MUBUF; } static bool isMTBUF(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::MTBUF; } bool isMTBUF(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::MTBUF; } static bool isSMRD(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::SMRD; } bool isSMRD(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::SMRD; } bool isBufferSMRD(const MachineInstr &MI) const; static bool isDS(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::DS; } bool isDS(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::DS; } static bool isLDSDMA(const MachineInstr &MI) { return isVALU(MI) && (isMUBUF(MI) || isFLAT(MI)); } bool isLDSDMA(uint16_t Opcode) { return isVALU(Opcode) && (isMUBUF(Opcode) || isFLAT(Opcode)); } static bool isGWS(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::GWS; } bool isGWS(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::GWS; } bool isAlwaysGDS(uint16_t Opcode) const; static bool isMIMG(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::MIMG; } bool isMIMG(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::MIMG; } static bool isVIMAGE(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::VIMAGE; } bool isVIMAGE(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VIMAGE; } static bool isVSAMPLE(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::VSAMPLE; } bool isVSAMPLE(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VSAMPLE; } static bool isGather4(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::Gather4; } bool isGather4(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::Gather4; } static bool isFLAT(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::FLAT; } // Is a FLAT encoded instruction which accesses a specific segment, // i.e. global_* or scratch_*. static bool isSegmentSpecificFLAT(const MachineInstr &MI) { auto Flags = MI.getDesc().TSFlags; return Flags & (SIInstrFlags::FlatGlobal | SIInstrFlags::FlatScratch); } bool isSegmentSpecificFLAT(uint16_t Opcode) const { auto Flags = get(Opcode).TSFlags; return Flags & (SIInstrFlags::FlatGlobal | SIInstrFlags::FlatScratch); } static bool isFLATGlobal(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::FlatGlobal; } bool isFLATGlobal(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::FlatGlobal; } static bool isFLATScratch(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::FlatScratch; } bool isFLATScratch(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::FlatScratch; } // Any FLAT encoded instruction, including global_* and scratch_*. bool isFLAT(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::FLAT; } static bool isEXP(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::EXP; } static bool isDualSourceBlendEXP(const MachineInstr &MI) { if (!isEXP(MI)) return false; unsigned Target = MI.getOperand(0).getImm(); return Target == AMDGPU::Exp::ET_DUAL_SRC_BLEND0 || Target == AMDGPU::Exp::ET_DUAL_SRC_BLEND1; } bool isEXP(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::EXP; } static bool isAtomicNoRet(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::IsAtomicNoRet; } bool isAtomicNoRet(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::IsAtomicNoRet; } static bool isAtomicRet(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::IsAtomicRet; } bool isAtomicRet(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::IsAtomicRet; } static bool isAtomic(const MachineInstr &MI) { return MI.getDesc().TSFlags & (SIInstrFlags::IsAtomicRet | SIInstrFlags::IsAtomicNoRet); } bool isAtomic(uint16_t Opcode) const { return get(Opcode).TSFlags & (SIInstrFlags::IsAtomicRet | SIInstrFlags::IsAtomicNoRet); } static bool mayWriteLDSThroughDMA(const MachineInstr &MI) { return isLDSDMA(MI) && MI.getOpcode() != AMDGPU::BUFFER_STORE_LDS_DWORD; } static bool isWQM(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::WQM; } bool isWQM(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::WQM; } static bool isDisableWQM(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::DisableWQM; } bool isDisableWQM(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::DisableWQM; } // SI_SPILL_S32_TO_VGPR and SI_RESTORE_S32_FROM_VGPR form a special case of // SGPRs spilling to VGPRs which are SGPR spills but from VALU instructions // therefore we need an explicit check for them since just checking if the // Spill bit is set and what instruction type it came from misclassifies // them. static bool isVGPRSpill(const MachineInstr &MI) { return MI.getOpcode() != AMDGPU::SI_SPILL_S32_TO_VGPR && MI.getOpcode() != AMDGPU::SI_RESTORE_S32_FROM_VGPR && (isSpill(MI) && isVALU(MI)); } bool isVGPRSpill(uint16_t Opcode) const { return Opcode != AMDGPU::SI_SPILL_S32_TO_VGPR && Opcode != AMDGPU::SI_RESTORE_S32_FROM_VGPR && (isSpill(Opcode) && isVALU(Opcode)); } static bool isSGPRSpill(const MachineInstr &MI) { return MI.getOpcode() == AMDGPU::SI_SPILL_S32_TO_VGPR || MI.getOpcode() == AMDGPU::SI_RESTORE_S32_FROM_VGPR || (isSpill(MI) && isSALU(MI)); } bool isSGPRSpill(uint16_t Opcode) const { return Opcode == AMDGPU::SI_SPILL_S32_TO_VGPR || Opcode == AMDGPU::SI_RESTORE_S32_FROM_VGPR || (isSpill(Opcode) && isSALU(Opcode)); } bool isSpill(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::Spill; } static bool isSpill(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::Spill; } static bool isWWMRegSpillOpcode(uint16_t Opcode) { return Opcode == AMDGPU::SI_SPILL_WWM_V32_SAVE || Opcode == AMDGPU::SI_SPILL_WWM_AV32_SAVE || Opcode == AMDGPU::SI_SPILL_WWM_V32_RESTORE || Opcode == AMDGPU::SI_SPILL_WWM_AV32_RESTORE; } static bool isChainCallOpcode(uint64_t Opcode) { return Opcode == AMDGPU::SI_CS_CHAIN_TC_W32 || Opcode == AMDGPU::SI_CS_CHAIN_TC_W64; } static bool isDPP(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::DPP; } bool isDPP(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::DPP; } static bool isTRANS(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::TRANS; } bool isTRANS(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::TRANS; } static bool isVOP3P(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::VOP3P; } bool isVOP3P(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VOP3P; } static bool isVINTRP(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::VINTRP; } bool isVINTRP(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VINTRP; } static bool isMAI(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::IsMAI; } bool isMAI(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::IsMAI; } static bool isMFMA(const MachineInstr &MI) { return isMAI(MI) && MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 && MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64; } static bool isDOT(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::IsDOT; } static bool isWMMA(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::IsWMMA; } bool isWMMA(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::IsWMMA; } static bool isMFMAorWMMA(const MachineInstr &MI) { return isMFMA(MI) || isWMMA(MI) || isSWMMAC(MI); } static bool isSWMMAC(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::IsSWMMAC; } bool isSWMMAC(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::IsSWMMAC; } bool isDOT(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::IsDOT; } static bool isLDSDIR(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::LDSDIR; } bool isLDSDIR(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::LDSDIR; } static bool isVINTERP(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::VINTERP; } bool isVINTERP(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VINTERP; } static bool isScalarUnit(const MachineInstr &MI) { return MI.getDesc().TSFlags & (SIInstrFlags::SALU | SIInstrFlags::SMRD); } static bool usesVM_CNT(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::VM_CNT; } static bool usesLGKM_CNT(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::LGKM_CNT; } // Most sopk treat the immediate as a signed 16-bit, however some // use it as unsigned. static bool sopkIsZext(unsigned Opcode) { return Opcode == AMDGPU::S_CMPK_EQ_U32 || Opcode == AMDGPU::S_CMPK_LG_U32 || Opcode == AMDGPU::S_CMPK_GT_U32 || Opcode == AMDGPU::S_CMPK_GE_U32 || Opcode == AMDGPU::S_CMPK_LT_U32 || Opcode == AMDGPU::S_CMPK_LE_U32 || Opcode == AMDGPU::S_GETREG_B32; } /// \returns true if this is an s_store_dword* instruction. This is more /// specific than isSMEM && mayStore. static bool isScalarStore(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::SCALAR_STORE; } bool isScalarStore(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::SCALAR_STORE; } static bool isFixedSize(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::FIXED_SIZE; } bool isFixedSize(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::FIXED_SIZE; } static bool hasFPClamp(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::FPClamp; } bool hasFPClamp(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::FPClamp; } static bool hasIntClamp(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::IntClamp; } uint64_t getClampMask(const MachineInstr &MI) const { const uint64_t ClampFlags = SIInstrFlags::FPClamp | SIInstrFlags::IntClamp | SIInstrFlags::ClampLo | SIInstrFlags::ClampHi; return MI.getDesc().TSFlags & ClampFlags; } static bool usesFPDPRounding(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::FPDPRounding; } bool usesFPDPRounding(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::FPDPRounding; } static bool isFPAtomic(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::FPAtomic; } bool isFPAtomic(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::FPAtomic; } static bool isNeverUniform(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::IsNeverUniform; } // Check to see if opcode is for a barrier start. Pre gfx12 this is just the // S_BARRIER, but after support for S_BARRIER_SIGNAL* / S_BARRIER_WAIT we want // to check for the barrier start (S_BARRIER_SIGNAL*) bool isBarrierStart(unsigned Opcode) const { return Opcode == AMDGPU::S_BARRIER || Opcode == AMDGPU::S_BARRIER_SIGNAL_M0 || Opcode == AMDGPU::S_BARRIER_SIGNAL_ISFIRST_M0 || Opcode == AMDGPU::S_BARRIER_SIGNAL_IMM || Opcode == AMDGPU::S_BARRIER_SIGNAL_ISFIRST_IMM; } bool isBarrier(unsigned Opcode) const { return isBarrierStart(Opcode) || Opcode == AMDGPU::S_BARRIER_WAIT || Opcode == AMDGPU::S_BARRIER_INIT_M0 || Opcode == AMDGPU::S_BARRIER_INIT_IMM || Opcode == AMDGPU::S_BARRIER_JOIN_IMM || Opcode == AMDGPU::S_BARRIER_LEAVE || Opcode == AMDGPU::DS_GWS_INIT || Opcode == AMDGPU::DS_GWS_BARRIER; } static bool isF16PseudoScalarTrans(unsigned Opcode) { return Opcode == AMDGPU::V_S_EXP_F16_e64 || Opcode == AMDGPU::V_S_LOG_F16_e64 || Opcode == AMDGPU::V_S_RCP_F16_e64 || Opcode == AMDGPU::V_S_RSQ_F16_e64 || Opcode == AMDGPU::V_S_SQRT_F16_e64; } static bool doesNotReadTiedSource(const MachineInstr &MI) { return MI.getDesc().TSFlags & SIInstrFlags::TiedSourceNotRead; } bool doesNotReadTiedSource(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::TiedSourceNotRead; } static unsigned getNonSoftWaitcntOpcode(unsigned Opcode) { switch (Opcode) { case AMDGPU::S_WAITCNT_soft: return AMDGPU::S_WAITCNT; case AMDGPU::S_WAITCNT_VSCNT_soft: return AMDGPU::S_WAITCNT_VSCNT; case AMDGPU::S_WAIT_LOADCNT_soft: return AMDGPU::S_WAIT_LOADCNT; case AMDGPU::S_WAIT_STORECNT_soft: return AMDGPU::S_WAIT_STORECNT; case AMDGPU::S_WAIT_SAMPLECNT_soft: return AMDGPU::S_WAIT_SAMPLECNT; case AMDGPU::S_WAIT_BVHCNT_soft: return AMDGPU::S_WAIT_BVHCNT; case AMDGPU::S_WAIT_DSCNT_soft: return AMDGPU::S_WAIT_DSCNT; case AMDGPU::S_WAIT_KMCNT_soft: return AMDGPU::S_WAIT_KMCNT; default: return Opcode; } } bool isWaitcnt(unsigned Opcode) const { switch (getNonSoftWaitcntOpcode(Opcode)) { case AMDGPU::S_WAITCNT: case AMDGPU::S_WAITCNT_VSCNT: case AMDGPU::S_WAITCNT_VMCNT: case AMDGPU::S_WAITCNT_EXPCNT: case AMDGPU::S_WAITCNT_LGKMCNT: case AMDGPU::S_WAIT_LOADCNT: case AMDGPU::S_WAIT_LOADCNT_DSCNT: case AMDGPU::S_WAIT_STORECNT: case AMDGPU::S_WAIT_STORECNT_DSCNT: case AMDGPU::S_WAIT_SAMPLECNT: case AMDGPU::S_WAIT_BVHCNT: case AMDGPU::S_WAIT_EXPCNT: case AMDGPU::S_WAIT_DSCNT: case AMDGPU::S_WAIT_KMCNT: case AMDGPU::S_WAIT_IDLE: return true; default: return false; } } bool isVGPRCopy(const MachineInstr &MI) const { assert(isCopyInstr(MI)); Register Dest = MI.getOperand(0).getReg(); const MachineFunction &MF = *MI.getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); return !RI.isSGPRReg(MRI, Dest); } bool hasVGPRUses(const MachineInstr &MI) const { const MachineFunction &MF = *MI.getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); return llvm::any_of(MI.explicit_uses(), [&MRI, this](const MachineOperand &MO) { return MO.isReg() && RI.isVGPR(MRI, MO.getReg());}); } /// Return true if the instruction modifies the mode register.q static bool modifiesModeRegister(const MachineInstr &MI); /// This function is used to determine if an instruction can be safely /// executed under EXEC = 0 without hardware error, indeterminate results, /// and/or visible effects on future vector execution or outside the shader. /// Note: as of 2024 the only use of this is SIPreEmitPeephole where it is /// used in removing branches over short EXEC = 0 sequences. /// As such it embeds certain assumptions which may not apply to every case /// of EXEC = 0 execution. bool hasUnwantedEffectsWhenEXECEmpty(const MachineInstr &MI) const; /// Returns true if the instruction could potentially depend on the value of /// exec. If false, exec dependencies may safely be ignored. bool mayReadEXEC(const MachineRegisterInfo &MRI, const MachineInstr &MI) const; bool isInlineConstant(const APInt &Imm) const; bool isInlineConstant(const APFloat &Imm) const; // Returns true if this non-register operand definitely does not need to be // encoded as a 32-bit literal. Note that this function handles all kinds of // operands, not just immediates. // // Some operands like FrameIndexes could resolve to an inline immediate value // that will not require an additional 4-bytes; this function assumes that it // will. bool isInlineConstant(const MachineOperand &MO, uint8_t OperandType) const; bool isInlineConstant(const MachineOperand &MO, const MCOperandInfo &OpInfo) const { return isInlineConstant(MO, OpInfo.OperandType); } /// \p returns true if \p UseMO is substituted with \p DefMO in \p MI it would /// be an inline immediate. bool isInlineConstant(const MachineInstr &MI, const MachineOperand &UseMO, const MachineOperand &DefMO) const { assert(UseMO.getParent() == &MI); int OpIdx = UseMO.getOperandNo(); if (OpIdx >= MI.getDesc().NumOperands) return false; return isInlineConstant(DefMO, MI.getDesc().operands()[OpIdx]); } /// \p returns true if the operand \p OpIdx in \p MI is a valid inline /// immediate. bool isInlineConstant(const MachineInstr &MI, unsigned OpIdx) const { const MachineOperand &MO = MI.getOperand(OpIdx); return isInlineConstant(MO, MI.getDesc().operands()[OpIdx].OperandType); } bool isInlineConstant(const MachineInstr &MI, unsigned OpIdx, const MachineOperand &MO) const { if (OpIdx >= MI.getDesc().NumOperands) return false; if (isCopyInstr(MI)) { unsigned Size = getOpSize(MI, OpIdx); assert(Size == 8 || Size == 4); uint8_t OpType = (Size == 8) ? AMDGPU::OPERAND_REG_IMM_INT64 : AMDGPU::OPERAND_REG_IMM_INT32; return isInlineConstant(MO, OpType); } return isInlineConstant(MO, MI.getDesc().operands()[OpIdx].OperandType); } bool isInlineConstant(const MachineOperand &MO) const { return isInlineConstant(*MO.getParent(), MO.getOperandNo()); } bool isImmOperandLegal(const MachineInstr &MI, unsigned OpNo, const MachineOperand &MO) const; /// Return true if this 64-bit VALU instruction has a 32-bit encoding. /// This function will return false if you pass it a 32-bit instruction. bool hasVALU32BitEncoding(unsigned Opcode) const; /// Returns true if this operand uses the constant bus. bool usesConstantBus(const MachineRegisterInfo &MRI, const MachineOperand &MO, const MCOperandInfo &OpInfo) const; /// Return true if this instruction has any modifiers. /// e.g. src[012]_mod, omod, clamp. bool hasModifiers(unsigned Opcode) const; bool hasModifiersSet(const MachineInstr &MI, unsigned OpName) const; bool hasAnyModifiersSet(const MachineInstr &MI) const; bool canShrink(const MachineInstr &MI, const MachineRegisterInfo &MRI) const; MachineInstr *buildShrunkInst(MachineInstr &MI, unsigned NewOpcode) const; bool verifyInstruction(const MachineInstr &MI, StringRef &ErrInfo) const override; unsigned getVALUOp(const MachineInstr &MI) const; void insertScratchExecCopy(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, Register Reg, bool IsSCCLive, SlotIndexes *Indexes = nullptr) const; void restoreExec(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, Register Reg, SlotIndexes *Indexes = nullptr) const; /// Return the correct register class for \p OpNo. For target-specific /// instructions, this will return the register class that has been defined /// in tablegen. For generic instructions, like REG_SEQUENCE it will return /// the register class of its machine operand. /// to infer the correct register class base on the other operands. const TargetRegisterClass *getOpRegClass(const MachineInstr &MI, unsigned OpNo) const; /// Return the size in bytes of the operand OpNo on the given // instruction opcode. unsigned getOpSize(uint16_t Opcode, unsigned OpNo) const { const MCOperandInfo &OpInfo = get(Opcode).operands()[OpNo]; if (OpInfo.RegClass == -1) { // If this is an immediate operand, this must be a 32-bit literal. assert(OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE); return 4; } return RI.getRegSizeInBits(*RI.getRegClass(OpInfo.RegClass)) / 8; } /// This form should usually be preferred since it handles operands /// with unknown register classes. unsigned getOpSize(const MachineInstr &MI, unsigned OpNo) const { const MachineOperand &MO = MI.getOperand(OpNo); if (MO.isReg()) { if (unsigned SubReg = MO.getSubReg()) { return RI.getSubRegIdxSize(SubReg) / 8; } } return RI.getRegSizeInBits(*getOpRegClass(MI, OpNo)) / 8; } /// Legalize the \p OpIndex operand of this instruction by inserting /// a MOV. For example: /// ADD_I32_e32 VGPR0, 15 /// to /// MOV VGPR1, 15 /// ADD_I32_e32 VGPR0, VGPR1 /// /// If the operand being legalized is a register, then a COPY will be used /// instead of MOV. void legalizeOpWithMove(MachineInstr &MI, unsigned OpIdx) const; /// Check if \p MO is a legal operand if it was the \p OpIdx Operand /// for \p MI. bool isOperandLegal(const MachineInstr &MI, unsigned OpIdx, const MachineOperand *MO = nullptr) const; /// Check if \p MO would be a valid operand for the given operand /// definition \p OpInfo. Note this does not attempt to validate constant bus /// restrictions (e.g. literal constant usage). bool isLegalVSrcOperand(const MachineRegisterInfo &MRI, const MCOperandInfo &OpInfo, const MachineOperand &MO) const; /// Check if \p MO (a register operand) is a legal register for the /// given operand description. bool isLegalRegOperand(const MachineRegisterInfo &MRI, const MCOperandInfo &OpInfo, const MachineOperand &MO) const; /// Legalize operands in \p MI by either commuting it or inserting a /// copy of src1. void legalizeOperandsVOP2(MachineRegisterInfo &MRI, MachineInstr &MI) const; /// Fix operands in \p MI to satisfy constant bus requirements. void legalizeOperandsVOP3(MachineRegisterInfo &MRI, MachineInstr &MI) const; /// Copy a value from a VGPR (\p SrcReg) to SGPR. This function can only /// be used when it is know that the value in SrcReg is same across all /// threads in the wave. /// \returns The SGPR register that \p SrcReg was copied to. Register readlaneVGPRToSGPR(Register SrcReg, MachineInstr &UseMI, MachineRegisterInfo &MRI) const; void legalizeOperandsSMRD(MachineRegisterInfo &MRI, MachineInstr &MI) const; void legalizeOperandsFLAT(MachineRegisterInfo &MRI, MachineInstr &MI) const; void legalizeGenericOperand(MachineBasicBlock &InsertMBB, MachineBasicBlock::iterator I, const TargetRegisterClass *DstRC, MachineOperand &Op, MachineRegisterInfo &MRI, const DebugLoc &DL) const; /// Legalize all operands in this instruction. This function may create new /// instructions and control-flow around \p MI. If present, \p MDT is /// updated. /// \returns A new basic block that contains \p MI if new blocks were created. MachineBasicBlock * legalizeOperands(MachineInstr &MI, MachineDominatorTree *MDT = nullptr) const; /// Change SADDR form of a FLAT \p Inst to its VADDR form if saddr operand /// was moved to VGPR. \returns true if succeeded. bool moveFlatAddrToVGPR(MachineInstr &Inst) const; /// Replace the instructions opcode with the equivalent VALU /// opcode. This function will also move the users of MachineInstruntions /// in the \p WorkList to the VALU if necessary. If present, \p MDT is /// updated. void moveToVALU(SIInstrWorklist &Worklist, MachineDominatorTree *MDT) const; void moveToVALUImpl(SIInstrWorklist &Worklist, MachineDominatorTree *MDT, MachineInstr &Inst) const; void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const override; void insertNoops(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned Quantity) const override; void insertReturn(MachineBasicBlock &MBB) const; /// Build instructions that simulate the behavior of a `s_trap 2` instructions /// for hardware (namely, gfx11) that runs in PRIV=1 mode. There, s_trap is /// interpreted as a nop. MachineBasicBlock *insertSimulatedTrap(MachineRegisterInfo &MRI, MachineBasicBlock &MBB, MachineInstr &MI, const DebugLoc &DL) const; /// Return the number of wait states that result from executing this /// instruction. static unsigned getNumWaitStates(const MachineInstr &MI); /// Returns the operand named \p Op. If \p MI does not have an /// operand named \c Op, this function returns nullptr. LLVM_READONLY MachineOperand *getNamedOperand(MachineInstr &MI, unsigned OperandName) const; LLVM_READONLY const MachineOperand *getNamedOperand(const MachineInstr &MI, unsigned OpName) const { return getNamedOperand(const_cast(MI), OpName); } /// Get required immediate operand int64_t getNamedImmOperand(const MachineInstr &MI, unsigned OpName) const { int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OpName); return MI.getOperand(Idx).getImm(); } uint64_t getDefaultRsrcDataFormat() const; uint64_t getScratchRsrcWords23() const; bool isLowLatencyInstruction(const MachineInstr &MI) const; bool isHighLatencyDef(int Opc) const override; /// Return the descriptor of the target-specific machine instruction /// that corresponds to the specified pseudo or native opcode. const MCInstrDesc &getMCOpcodeFromPseudo(unsigned Opcode) const { return get(pseudoToMCOpcode(Opcode)); } unsigned isStackAccess(const MachineInstr &MI, int &FrameIndex) const; unsigned isSGPRStackAccess(const MachineInstr &MI, int &FrameIndex) const; Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const override; Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const override; unsigned getInstBundleSize(const MachineInstr &MI) const; unsigned getInstSizeInBytes(const MachineInstr &MI) const override; bool mayAccessFlatAddressSpace(const MachineInstr &MI) const; bool isNonUniformBranchInstr(MachineInstr &Instr) const; void convertNonUniformIfRegion(MachineBasicBlock *IfEntry, MachineBasicBlock *IfEnd) const; void convertNonUniformLoopRegion(MachineBasicBlock *LoopEntry, MachineBasicBlock *LoopEnd) const; std::pair decomposeMachineOperandsTargetFlags(unsigned TF) const override; ArrayRef> getSerializableTargetIndices() const override; ArrayRef> getSerializableDirectMachineOperandTargetFlags() const override; ArrayRef> getSerializableMachineMemOperandTargetFlags() const override; ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, const ScheduleDAG *DAG) const override; ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const override; ScheduleHazardRecognizer * CreateTargetMIHazardRecognizer(const InstrItineraryData *II, const ScheduleDAGMI *DAG) const override; unsigned getLiveRangeSplitOpcode(Register Reg, const MachineFunction &MF) const override; bool isBasicBlockPrologue(const MachineInstr &MI, Register Reg = Register()) const override; MachineInstr *createPHIDestinationCopy(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt, const DebugLoc &DL, Register Src, Register Dst) const override; MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt, const DebugLoc &DL, Register Src, unsigned SrcSubReg, Register Dst) const override; bool isWave32() const; /// Return a partially built integer add instruction without carry. /// Caller must add source operands. /// For pre-GFX9 it will generate unused carry destination operand. /// TODO: After GFX9 it should return a no-carry operation. MachineInstrBuilder getAddNoCarry(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register DestReg) const; MachineInstrBuilder getAddNoCarry(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register DestReg, RegScavenger &RS) const; static bool isKillTerminator(unsigned Opcode); const MCInstrDesc &getKillTerminatorFromPseudo(unsigned Opcode) const; bool isLegalMUBUFImmOffset(unsigned Imm) const; static unsigned getMaxMUBUFImmOffset(const GCNSubtarget &ST); bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, Align Alignment = Align(4)) const; /// Returns if \p Offset is legal for the subtarget as the offset to a FLAT /// encoded instruction. If \p Signed, this is for an instruction that /// interprets the offset as signed. bool isLegalFLATOffset(int64_t Offset, unsigned AddrSpace, uint64_t FlatVariant) const; /// Split \p COffsetVal into {immediate offset field, remainder offset} /// values. std::pair splitFlatOffset(int64_t COffsetVal, unsigned AddrSpace, uint64_t FlatVariant) const; /// Returns true if negative offsets are allowed for the given \p FlatVariant. bool allowNegativeFlatOffset(uint64_t FlatVariant) const; /// \brief Return a target-specific opcode if Opcode is a pseudo instruction. /// Return -1 if the target-specific opcode for the pseudo instruction does /// not exist. If Opcode is not a pseudo instruction, this is identity. int pseudoToMCOpcode(int Opcode) const; /// \brief Check if this instruction should only be used by assembler. /// Return true if this opcode should not be used by codegen. bool isAsmOnlyOpcode(int MCOp) const; const TargetRegisterClass *getRegClass(const MCInstrDesc &TID, unsigned OpNum, const TargetRegisterInfo *TRI, const MachineFunction &MF) const override; void fixImplicitOperands(MachineInstr &MI) const; MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS = nullptr, VirtRegMap *VRM = nullptr) const override; unsigned getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr &MI, unsigned *PredCost = nullptr) const override; InstructionUniformity getInstructionUniformity(const MachineInstr &MI) const override final; InstructionUniformity getGenericInstructionUniformity(const MachineInstr &MI) const; const MIRFormatter *getMIRFormatter() const override { if (!Formatter) Formatter = std::make_unique(); return Formatter.get(); } static unsigned getDSShaderTypeValue(const MachineFunction &MF); const TargetSchedModel &getSchedModel() const { return SchedModel; } // Enforce operand's \p OpName even alignment if required by target. // This is used if an operand is a 32 bit register but needs to be aligned // regardless. void enforceOperandRCAlignment(MachineInstr &MI, unsigned OpName) const; }; /// \brief Returns true if a reg:subreg pair P has a TRC class inline bool isOfRegClass(const TargetInstrInfo::RegSubRegPair &P, const TargetRegisterClass &TRC, MachineRegisterInfo &MRI) { auto *RC = MRI.getRegClass(P.Reg); if (!P.SubReg) return RC == &TRC; auto *TRI = MRI.getTargetRegisterInfo(); return RC == TRI->getMatchingSuperRegClass(RC, &TRC, P.SubReg); } /// \brief Create RegSubRegPair from a register MachineOperand inline TargetInstrInfo::RegSubRegPair getRegSubRegPair(const MachineOperand &O) { assert(O.isReg()); return TargetInstrInfo::RegSubRegPair(O.getReg(), O.getSubReg()); } /// \brief Return the SubReg component from REG_SEQUENCE TargetInstrInfo::RegSubRegPair getRegSequenceSubReg(MachineInstr &MI, unsigned SubReg); /// \brief Return the defining instruction for a given reg:subreg pair /// skipping copy like instructions and subreg-manipulation pseudos. /// Following another subreg of a reg:subreg isn't supported. MachineInstr *getVRegSubRegDef(const TargetInstrInfo::RegSubRegPair &P, MachineRegisterInfo &MRI); /// \brief Return false if EXEC is not changed between the def of \p VReg at \p /// DefMI and the use at \p UseMI. Should be run on SSA. Currently does not /// attempt to track between blocks. bool execMayBeModifiedBeforeUse(const MachineRegisterInfo &MRI, Register VReg, const MachineInstr &DefMI, const MachineInstr &UseMI); /// \brief Return false if EXEC is not changed between the def of \p VReg at \p /// DefMI and all its uses. Should be run on SSA. Currently does not attempt to /// track between blocks. bool execMayBeModifiedBeforeAnyUse(const MachineRegisterInfo &MRI, Register VReg, const MachineInstr &DefMI); namespace AMDGPU { LLVM_READONLY int getVOPe64(uint16_t Opcode); LLVM_READONLY int getVOPe32(uint16_t Opcode); LLVM_READONLY int getSDWAOp(uint16_t Opcode); LLVM_READONLY int getDPPOp32(uint16_t Opcode); LLVM_READONLY int getDPPOp64(uint16_t Opcode); LLVM_READONLY int getBasicFromSDWAOp(uint16_t Opcode); LLVM_READONLY int getCommuteRev(uint16_t Opcode); LLVM_READONLY int getCommuteOrig(uint16_t Opcode); LLVM_READONLY int getAddr64Inst(uint16_t Opcode); /// Check if \p Opcode is an Addr64 opcode. /// /// \returns \p Opcode if it is an Addr64 opcode, otherwise -1. LLVM_READONLY int getIfAddr64Inst(uint16_t Opcode); LLVM_READONLY int getSOPKOp(uint16_t Opcode); /// \returns SADDR form of a FLAT Global instruction given an \p Opcode /// of a VADDR form. LLVM_READONLY int getGlobalSaddrOp(uint16_t Opcode); /// \returns VADDR form of a FLAT Global instruction given an \p Opcode /// of a SADDR form. LLVM_READONLY int getGlobalVaddrOp(uint16_t Opcode); LLVM_READONLY int getVCMPXNoSDstOp(uint16_t Opcode); /// \returns ST form with only immediate offset of a FLAT Scratch instruction /// given an \p Opcode of an SS (SADDR) form. LLVM_READONLY int getFlatScratchInstSTfromSS(uint16_t Opcode); /// \returns SV (VADDR) form of a FLAT Scratch instruction given an \p Opcode /// of an SVS (SADDR + VADDR) form. LLVM_READONLY int getFlatScratchInstSVfromSVS(uint16_t Opcode); /// \returns SS (SADDR) form of a FLAT Scratch instruction given an \p Opcode /// of an SV (VADDR) form. LLVM_READONLY int getFlatScratchInstSSfromSV(uint16_t Opcode); /// \returns SV (VADDR) form of a FLAT Scratch instruction given an \p Opcode /// of an SS (SADDR) form. LLVM_READONLY int getFlatScratchInstSVfromSS(uint16_t Opcode); /// \returns earlyclobber version of a MAC MFMA is exists. LLVM_READONLY int getMFMAEarlyClobberOp(uint16_t Opcode); /// \returns v_cmpx version of a v_cmp instruction. LLVM_READONLY int getVCMPXOpFromVCMP(uint16_t Opcode); const uint64_t RSRC_DATA_FORMAT = 0xf00000000000LL; const uint64_t RSRC_ELEMENT_SIZE_SHIFT = (32 + 19); const uint64_t RSRC_INDEX_STRIDE_SHIFT = (32 + 21); const uint64_t RSRC_TID_ENABLE = UINT64_C(1) << (32 + 23); } // end namespace AMDGPU namespace AMDGPU { enum AsmComments { // For sgpr to vgpr spill instructions SGPR_SPILL = MachineInstr::TAsmComments }; } // namespace AMDGPU namespace SI { namespace KernelInputOffsets { /// Offsets in bytes from the start of the input buffer enum Offsets { NGROUPS_X = 0, NGROUPS_Y = 4, NGROUPS_Z = 8, GLOBAL_SIZE_X = 12, GLOBAL_SIZE_Y = 16, GLOBAL_SIZE_Z = 20, LOCAL_SIZE_X = 24, LOCAL_SIZE_Y = 28, LOCAL_SIZE_Z = 32 }; } // end namespace KernelInputOffsets } // end namespace SI } // end namespace llvm #endif // LLVM_LIB_TARGET_AMDGPU_SIINSTRINFO_H