//===- SIInstrInfo.cpp - SI Instruction Information ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// SI Implementation of TargetInstrInfo. // //===----------------------------------------------------------------------===// #include "SIInstrInfo.h" #include "AMDGPU.h" #include "AMDGPUInstrInfo.h" #include "GCNHazardRecognizer.h" #include "GCNSubtarget.h" #include "SIMachineFunctionInfo.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineScheduler.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/MC/MCContext.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; #define DEBUG_TYPE "si-instr-info" #define GET_INSTRINFO_CTOR_DTOR #include "AMDGPUGenInstrInfo.inc" namespace llvm { namespace AMDGPU { #define GET_D16ImageDimIntrinsics_IMPL #define GET_ImageDimIntrinsicTable_IMPL #define GET_RsrcIntrinsics_IMPL #include "AMDGPUGenSearchableTables.inc" } } // Must be at least 4 to be able to branch over minimum unconditional branch // code. This is only for making it possible to write reasonably small tests for // long branches. static cl::opt BranchOffsetBits("amdgpu-s-branch-bits", cl::ReallyHidden, cl::init(16), cl::desc("Restrict range of branch instructions (DEBUG)")); static cl::opt Fix16BitCopies( "amdgpu-fix-16-bit-physreg-copies", cl::desc("Fix copies between 32 and 16 bit registers by extending to 32 bit"), cl::init(true), cl::ReallyHidden); SIInstrInfo::SIInstrInfo(const GCNSubtarget &ST) : AMDGPUGenInstrInfo(AMDGPU::ADJCALLSTACKUP, AMDGPU::ADJCALLSTACKDOWN), RI(ST), ST(ST) { SchedModel.init(&ST); } //===----------------------------------------------------------------------===// // TargetInstrInfo callbacks //===----------------------------------------------------------------------===// static unsigned getNumOperandsNoGlue(SDNode *Node) { unsigned N = Node->getNumOperands(); while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) --N; return N; } /// Returns true if both nodes have the same value for the given /// operand \p Op, or if both nodes do not have this operand. static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) { unsigned Opc0 = N0->getMachineOpcode(); unsigned Opc1 = N1->getMachineOpcode(); int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName); int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName); if (Op0Idx == -1 && Op1Idx == -1) return true; if ((Op0Idx == -1 && Op1Idx != -1) || (Op1Idx == -1 && Op0Idx != -1)) return false; // getNamedOperandIdx returns the index for the MachineInstr's operands, // which includes the result as the first operand. We are indexing into the // MachineSDNode's operands, so we need to skip the result operand to get // the real index. --Op0Idx; --Op1Idx; return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx); } static bool canRemat(const MachineInstr &MI) { if (SIInstrInfo::isVOP1(MI) || SIInstrInfo::isVOP2(MI) || SIInstrInfo::isVOP3(MI) || SIInstrInfo::isSDWA(MI) || SIInstrInfo::isSALU(MI)) return true; if (SIInstrInfo::isSMRD(MI)) { return !MI.memoperands_empty() && llvm::all_of(MI.memoperands(), [](const MachineMemOperand *MMO) { return MMO->isLoad() && MMO->isInvariant(); }); } return false; } bool SIInstrInfo::isReallyTriviallyReMaterializable( const MachineInstr &MI) const { if (canRemat(MI)) { // Normally VALU use of exec would block the rematerialization, but that // is OK in this case to have an implicit exec read as all VALU do. // We really want all of the generic logic for this except for this. // Another potential implicit use is mode register. The core logic of // the RA will not attempt rematerialization if mode is set anywhere // in the function, otherwise it is safe since mode is not changed. // There is difference to generic method which does not allow // rematerialization if there are virtual register uses. We allow this, // therefore this method includes SOP instructions as well. if (!MI.hasImplicitDef() && MI.getNumImplicitOperands() == MI.getDesc().implicit_uses().size() && !MI.mayRaiseFPException()) return true; } return TargetInstrInfo::isReallyTriviallyReMaterializable(MI); } // Returns true if the scalar result of a VALU instruction depends on exec. static bool resultDependsOnExec(const MachineInstr &MI) { // Ignore comparisons which are only used masked with exec. // This allows some hoisting/sinking of VALU comparisons. if (MI.isCompare()) { const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); Register DstReg = MI.getOperand(0).getReg(); if (!DstReg.isVirtual()) return true; for (MachineInstr &Use : MRI.use_nodbg_instructions(DstReg)) { switch (Use.getOpcode()) { case AMDGPU::S_AND_SAVEEXEC_B32: case AMDGPU::S_AND_SAVEEXEC_B64: break; case AMDGPU::S_AND_B32: case AMDGPU::S_AND_B64: if (!Use.readsRegister(AMDGPU::EXEC)) return true; break; default: return true; } } return false; } switch (MI.getOpcode()) { default: break; case AMDGPU::V_READFIRSTLANE_B32: return true; } return false; } bool SIInstrInfo::isIgnorableUse(const MachineOperand &MO) const { // Any implicit use of exec by VALU is not a real register read. return MO.getReg() == AMDGPU::EXEC && MO.isImplicit() && isVALU(*MO.getParent()) && !resultDependsOnExec(*MO.getParent()); } bool SIInstrInfo::isSafeToSink(MachineInstr &MI, MachineBasicBlock *SuccToSinkTo, MachineCycleInfo *CI) const { // Allow sinking if MI edits lane mask (divergent i1 in sgpr). if (MI.getOpcode() == AMDGPU::SI_IF_BREAK) return true; MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); // Check if sinking of MI would create temporal divergent use. for (auto Op : MI.uses()) { if (Op.isReg() && Op.getReg().isVirtual() && RI.isSGPRClass(MRI.getRegClass(Op.getReg()))) { MachineInstr *SgprDef = MRI.getVRegDef(Op.getReg()); // SgprDef defined inside cycle MachineCycle *FromCycle = CI->getCycle(SgprDef->getParent()); if (FromCycle == nullptr) continue; MachineCycle *ToCycle = CI->getCycle(SuccToSinkTo); // Check if there is a FromCycle that contains SgprDef's basic block but // does not contain SuccToSinkTo and also has divergent exit condition. while (FromCycle && !FromCycle->contains(ToCycle)) { // After structurize-cfg, there should be exactly one cycle exit. SmallVector ExitBlocks; FromCycle->getExitBlocks(ExitBlocks); assert(ExitBlocks.size() == 1); assert(ExitBlocks[0]->getSinglePredecessor()); // FromCycle has divergent exit condition. if (hasDivergentBranch(ExitBlocks[0]->getSinglePredecessor())) { return false; } FromCycle = FromCycle->getParentCycle(); } } } return true; } bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1, int64_t &Offset0, int64_t &Offset1) const { if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode()) return false; unsigned Opc0 = Load0->getMachineOpcode(); unsigned Opc1 = Load1->getMachineOpcode(); // Make sure both are actually loads. if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad()) return false; // A mayLoad instruction without a def is not a load. Likely a prefetch. if (!get(Opc0).getNumDefs() || !get(Opc1).getNumDefs()) return false; if (isDS(Opc0) && isDS(Opc1)) { // FIXME: Handle this case: if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1)) return false; // Check base reg. if (Load0->getOperand(0) != Load1->getOperand(0)) return false; // Skip read2 / write2 variants for simplicity. // TODO: We should report true if the used offsets are adjacent (excluded // st64 versions). int Offset0Idx = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset); int Offset1Idx = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset); if (Offset0Idx == -1 || Offset1Idx == -1) return false; // XXX - be careful of dataless loads // getNamedOperandIdx returns the index for MachineInstrs. Since they // include the output in the operand list, but SDNodes don't, we need to // subtract the index by one. Offset0Idx -= get(Opc0).NumDefs; Offset1Idx -= get(Opc1).NumDefs; Offset0 = Load0->getConstantOperandVal(Offset0Idx); Offset1 = Load1->getConstantOperandVal(Offset1Idx); return true; } if (isSMRD(Opc0) && isSMRD(Opc1)) { // Skip time and cache invalidation instructions. if (!AMDGPU::hasNamedOperand(Opc0, AMDGPU::OpName::sbase) || !AMDGPU::hasNamedOperand(Opc1, AMDGPU::OpName::sbase)) return false; unsigned NumOps = getNumOperandsNoGlue(Load0); if (NumOps != getNumOperandsNoGlue(Load1)) return false; // Check base reg. if (Load0->getOperand(0) != Load1->getOperand(0)) return false; // Match register offsets, if both register and immediate offsets present. assert(NumOps == 4 || NumOps == 5); if (NumOps == 5 && Load0->getOperand(1) != Load1->getOperand(1)) return false; const ConstantSDNode *Load0Offset = dyn_cast(Load0->getOperand(NumOps - 3)); const ConstantSDNode *Load1Offset = dyn_cast(Load1->getOperand(NumOps - 3)); if (!Load0Offset || !Load1Offset) return false; Offset0 = Load0Offset->getZExtValue(); Offset1 = Load1Offset->getZExtValue(); return true; } // MUBUF and MTBUF can access the same addresses. if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) { // MUBUF and MTBUF have vaddr at different indices. if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) || !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) || !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc)) return false; int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset); int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset); if (OffIdx0 == -1 || OffIdx1 == -1) return false; // getNamedOperandIdx returns the index for MachineInstrs. Since they // include the output in the operand list, but SDNodes don't, we need to // subtract the index by one. OffIdx0 -= get(Opc0).NumDefs; OffIdx1 -= get(Opc1).NumDefs; SDValue Off0 = Load0->getOperand(OffIdx0); SDValue Off1 = Load1->getOperand(OffIdx1); // The offset might be a FrameIndexSDNode. if (!isa(Off0) || !isa(Off1)) return false; Offset0 = Off0->getAsZExtVal(); Offset1 = Off1->getAsZExtVal(); return true; } return false; } static bool isStride64(unsigned Opc) { switch (Opc) { case AMDGPU::DS_READ2ST64_B32: case AMDGPU::DS_READ2ST64_B64: case AMDGPU::DS_WRITE2ST64_B32: case AMDGPU::DS_WRITE2ST64_B64: return true; default: return false; } } bool SIInstrInfo::getMemOperandsWithOffsetWidth( const MachineInstr &LdSt, SmallVectorImpl &BaseOps, int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, const TargetRegisterInfo *TRI) const { if (!LdSt.mayLoadOrStore()) return false; unsigned Opc = LdSt.getOpcode(); OffsetIsScalable = false; const MachineOperand *BaseOp, *OffsetOp; int DataOpIdx; if (isDS(LdSt)) { BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::addr); OffsetOp = getNamedOperand(LdSt, AMDGPU::OpName::offset); if (OffsetOp) { // Normal, single offset LDS instruction. if (!BaseOp) { // DS_CONSUME/DS_APPEND use M0 for the base address. // TODO: find the implicit use operand for M0 and use that as BaseOp? return false; } BaseOps.push_back(BaseOp); Offset = OffsetOp->getImm(); // Get appropriate operand, and compute width accordingly. DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); if (DataOpIdx == -1) DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); Width = getOpSize(LdSt, DataOpIdx); } else { // The 2 offset instructions use offset0 and offset1 instead. We can treat // these as a load with a single offset if the 2 offsets are consecutive. // We will use this for some partially aligned loads. const MachineOperand *Offset0Op = getNamedOperand(LdSt, AMDGPU::OpName::offset0); const MachineOperand *Offset1Op = getNamedOperand(LdSt, AMDGPU::OpName::offset1); unsigned Offset0 = Offset0Op->getImm() & 0xff; unsigned Offset1 = Offset1Op->getImm() & 0xff; if (Offset0 + 1 != Offset1) return false; // Each of these offsets is in element sized units, so we need to convert // to bytes of the individual reads. unsigned EltSize; if (LdSt.mayLoad()) EltSize = TRI->getRegSizeInBits(*getOpRegClass(LdSt, 0)) / 16; else { assert(LdSt.mayStore()); int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); EltSize = TRI->getRegSizeInBits(*getOpRegClass(LdSt, Data0Idx)) / 8; } if (isStride64(Opc)) EltSize *= 64; BaseOps.push_back(BaseOp); Offset = EltSize * Offset0; // Get appropriate operand(s), and compute width accordingly. DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); if (DataOpIdx == -1) { DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); Width = getOpSize(LdSt, DataOpIdx); DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); Width += getOpSize(LdSt, DataOpIdx); } else { Width = getOpSize(LdSt, DataOpIdx); } } return true; } if (isMUBUF(LdSt) || isMTBUF(LdSt)) { const MachineOperand *RSrc = getNamedOperand(LdSt, AMDGPU::OpName::srsrc); if (!RSrc) // e.g. BUFFER_WBINVL1_VOL return false; BaseOps.push_back(RSrc); BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::vaddr); if (BaseOp && !BaseOp->isFI()) BaseOps.push_back(BaseOp); const MachineOperand *OffsetImm = getNamedOperand(LdSt, AMDGPU::OpName::offset); Offset = OffsetImm->getImm(); const MachineOperand *SOffset = getNamedOperand(LdSt, AMDGPU::OpName::soffset); if (SOffset) { if (SOffset->isReg()) BaseOps.push_back(SOffset); else Offset += SOffset->getImm(); } // Get appropriate operand, and compute width accordingly. DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); if (DataOpIdx == -1) DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata); if (DataOpIdx == -1) // LDS DMA return false; Width = getOpSize(LdSt, DataOpIdx); return true; } if (isMIMG(LdSt)) { int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc); BaseOps.push_back(&LdSt.getOperand(SRsrcIdx)); int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0); if (VAddr0Idx >= 0) { // GFX10 possible NSA encoding. for (int I = VAddr0Idx; I < SRsrcIdx; ++I) BaseOps.push_back(&LdSt.getOperand(I)); } else { BaseOps.push_back(getNamedOperand(LdSt, AMDGPU::OpName::vaddr)); } Offset = 0; // Get appropriate operand, and compute width accordingly. DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata); Width = getOpSize(LdSt, DataOpIdx); return true; } if (isSMRD(LdSt)) { BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::sbase); if (!BaseOp) // e.g. S_MEMTIME return false; BaseOps.push_back(BaseOp); OffsetOp = getNamedOperand(LdSt, AMDGPU::OpName::offset); Offset = OffsetOp ? OffsetOp->getImm() : 0; // Get appropriate operand, and compute width accordingly. DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::sdst); if (DataOpIdx == -1) return false; Width = getOpSize(LdSt, DataOpIdx); return true; } if (isFLAT(LdSt)) { // Instructions have either vaddr or saddr or both or none. BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::vaddr); if (BaseOp) BaseOps.push_back(BaseOp); BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::saddr); if (BaseOp) BaseOps.push_back(BaseOp); Offset = getNamedOperand(LdSt, AMDGPU::OpName::offset)->getImm(); // Get appropriate operand, and compute width accordingly. DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); if (DataOpIdx == -1) DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata); if (DataOpIdx == -1) // LDS DMA return false; Width = getOpSize(LdSt, DataOpIdx); return true; } return false; } static bool memOpsHaveSameBasePtr(const MachineInstr &MI1, ArrayRef BaseOps1, const MachineInstr &MI2, ArrayRef BaseOps2) { // Only examine the first "base" operand of each instruction, on the // assumption that it represents the real base address of the memory access. // Other operands are typically offsets or indices from this base address. if (BaseOps1.front()->isIdenticalTo(*BaseOps2.front())) return true; if (!MI1.hasOneMemOperand() || !MI2.hasOneMemOperand()) return false; auto MO1 = *MI1.memoperands_begin(); auto MO2 = *MI2.memoperands_begin(); if (MO1->getAddrSpace() != MO2->getAddrSpace()) return false; auto Base1 = MO1->getValue(); auto Base2 = MO2->getValue(); if (!Base1 || !Base2) return false; Base1 = getUnderlyingObject(Base1); Base2 = getUnderlyingObject(Base2); if (isa(Base1) || isa(Base2)) return false; return Base1 == Base2; } bool SIInstrInfo::shouldClusterMemOps(ArrayRef BaseOps1, int64_t Offset1, bool OffsetIsScalable1, ArrayRef BaseOps2, int64_t Offset2, bool OffsetIsScalable2, unsigned ClusterSize, unsigned NumBytes) const { // If the mem ops (to be clustered) do not have the same base ptr, then they // should not be clustered if (!BaseOps1.empty() && !BaseOps2.empty()) { const MachineInstr &FirstLdSt = *BaseOps1.front()->getParent(); const MachineInstr &SecondLdSt = *BaseOps2.front()->getParent(); if (!memOpsHaveSameBasePtr(FirstLdSt, BaseOps1, SecondLdSt, BaseOps2)) return false; } else if (!BaseOps1.empty() || !BaseOps2.empty()) { // If only one base op is empty, they do not have the same base ptr return false; } // In order to avoid register pressure, on an average, the number of DWORDS // loaded together by all clustered mem ops should not exceed 8. This is an // empirical value based on certain observations and performance related // experiments. // The good thing about this heuristic is - it avoids clustering of too many // sub-word loads, and also avoids clustering of wide loads. Below is the // brief summary of how the heuristic behaves for various `LoadSize`. // (1) 1 <= LoadSize <= 4: cluster at max 8 mem ops // (2) 5 <= LoadSize <= 8: cluster at max 4 mem ops // (3) 9 <= LoadSize <= 12: cluster at max 2 mem ops // (4) 13 <= LoadSize <= 16: cluster at max 2 mem ops // (5) LoadSize >= 17: do not cluster const unsigned LoadSize = NumBytes / ClusterSize; const unsigned NumDWORDs = ((LoadSize + 3) / 4) * ClusterSize; return NumDWORDs <= 8; } // FIXME: This behaves strangely. If, for example, you have 32 load + stores, // the first 16 loads will be interleaved with the stores, and the next 16 will // be clustered as expected. It should really split into 2 16 store batches. // // Loads are clustered until this returns false, rather than trying to schedule // groups of stores. This also means we have to deal with saying different // address space loads should be clustered, and ones which might cause bank // conflicts. // // This might be deprecated so it might not be worth that much effort to fix. bool SIInstrInfo::shouldScheduleLoadsNear(SDNode *Load0, SDNode *Load1, int64_t Offset0, int64_t Offset1, unsigned NumLoads) const { assert(Offset1 > Offset0 && "Second offset should be larger than first offset!"); // If we have less than 16 loads in a row, and the offsets are within 64 // bytes, then schedule together. // A cacheline is 64 bytes (for global memory). return (NumLoads <= 16 && (Offset1 - Offset0) < 64); } static void reportIllegalCopy(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc, const char *Msg = "illegal VGPR to SGPR copy") { MachineFunction *MF = MBB.getParent(); DiagnosticInfoUnsupported IllegalCopy(MF->getFunction(), Msg, DL, DS_Error); LLVMContext &C = MF->getFunction().getContext(); C.diagnose(IllegalCopy); BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_ILLEGAL_COPY), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); } /// Handle copying from SGPR to AGPR, or from AGPR to AGPR on GFX908. It is not /// possible to have a direct copy in these cases on GFX908, so an intermediate /// VGPR copy is required. static void indirectCopyToAGPR(const SIInstrInfo &TII, MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc, RegScavenger &RS, bool RegsOverlap, Register ImpDefSuperReg = Register(), Register ImpUseSuperReg = Register()) { assert((TII.getSubtarget().hasMAIInsts() && !TII.getSubtarget().hasGFX90AInsts()) && "Expected GFX908 subtarget."); assert((AMDGPU::SReg_32RegClass.contains(SrcReg) || AMDGPU::AGPR_32RegClass.contains(SrcReg)) && "Source register of the copy should be either an SGPR or an AGPR."); assert(AMDGPU::AGPR_32RegClass.contains(DestReg) && "Destination register of the copy should be an AGPR."); const SIRegisterInfo &RI = TII.getRegisterInfo(); // First try to find defining accvgpr_write to avoid temporary registers. // In the case of copies of overlapping AGPRs, we conservatively do not // reuse previous accvgpr_writes. Otherwise, we may incorrectly pick up // an accvgpr_write used for this same copy due to implicit-defs if (!RegsOverlap) { for (auto Def = MI, E = MBB.begin(); Def != E; ) { --Def; if (!Def->modifiesRegister(SrcReg, &RI)) continue; if (Def->getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 || Def->getOperand(0).getReg() != SrcReg) break; MachineOperand &DefOp = Def->getOperand(1); assert(DefOp.isReg() || DefOp.isImm()); if (DefOp.isReg()) { bool SafeToPropagate = true; // Check that register source operand is not clobbered before MI. // Immediate operands are always safe to propagate. for (auto I = Def; I != MI && SafeToPropagate; ++I) if (I->modifiesRegister(DefOp.getReg(), &RI)) SafeToPropagate = false; if (!SafeToPropagate) break; DefOp.setIsKill(false); } MachineInstrBuilder Builder = BuildMI(MBB, MI, DL, TII.get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg) .add(DefOp); if (ImpDefSuperReg) Builder.addReg(ImpDefSuperReg, RegState::Define | RegState::Implicit); if (ImpUseSuperReg) { Builder.addReg(ImpUseSuperReg, getKillRegState(KillSrc) | RegState::Implicit); } return; } } RS.enterBasicBlockEnd(MBB); RS.backward(std::next(MI)); // Ideally we want to have three registers for a long reg_sequence copy // to hide 2 waitstates between v_mov_b32 and accvgpr_write. unsigned MaxVGPRs = RI.getRegPressureLimit(&AMDGPU::VGPR_32RegClass, *MBB.getParent()); // Registers in the sequence are allocated contiguously so we can just // use register number to pick one of three round-robin temps. unsigned RegNo = (DestReg - AMDGPU::AGPR0) % 3; Register Tmp = MBB.getParent()->getInfo()->getVGPRForAGPRCopy(); assert(MBB.getParent()->getRegInfo().isReserved(Tmp) && "VGPR used for an intermediate copy should have been reserved."); // Only loop through if there are any free registers left. We don't want to // spill. while (RegNo--) { Register Tmp2 = RS.scavengeRegisterBackwards(AMDGPU::VGPR_32RegClass, MI, /* RestoreAfter */ false, 0, /* AllowSpill */ false); if (!Tmp2 || RI.getHWRegIndex(Tmp2) >= MaxVGPRs) break; Tmp = Tmp2; RS.setRegUsed(Tmp); } // Insert copy to temporary VGPR. unsigned TmpCopyOp = AMDGPU::V_MOV_B32_e32; if (AMDGPU::AGPR_32RegClass.contains(SrcReg)) { TmpCopyOp = AMDGPU::V_ACCVGPR_READ_B32_e64; } else { assert(AMDGPU::SReg_32RegClass.contains(SrcReg)); } MachineInstrBuilder UseBuilder = BuildMI(MBB, MI, DL, TII.get(TmpCopyOp), Tmp) .addReg(SrcReg, getKillRegState(KillSrc)); if (ImpUseSuperReg) { UseBuilder.addReg(ImpUseSuperReg, getKillRegState(KillSrc) | RegState::Implicit); } MachineInstrBuilder DefBuilder = BuildMI(MBB, MI, DL, TII.get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg) .addReg(Tmp, RegState::Kill); if (ImpDefSuperReg) DefBuilder.addReg(ImpDefSuperReg, RegState::Define | RegState::Implicit); } static void expandSGPRCopy(const SIInstrInfo &TII, MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc, const TargetRegisterClass *RC, bool Forward) { const SIRegisterInfo &RI = TII.getRegisterInfo(); ArrayRef BaseIndices = RI.getRegSplitParts(RC, 4); MachineBasicBlock::iterator I = MI; MachineInstr *FirstMI = nullptr, *LastMI = nullptr; for (unsigned Idx = 0; Idx < BaseIndices.size(); ++Idx) { int16_t SubIdx = BaseIndices[Idx]; Register DestSubReg = RI.getSubReg(DestReg, SubIdx); Register SrcSubReg = RI.getSubReg(SrcReg, SubIdx); assert(DestSubReg && SrcSubReg && "Failed to find subregs!"); unsigned Opcode = AMDGPU::S_MOV_B32; // Is SGPR aligned? If so try to combine with next. bool AlignedDest = ((DestSubReg - AMDGPU::SGPR0) % 2) == 0; bool AlignedSrc = ((SrcSubReg - AMDGPU::SGPR0) % 2) == 0; if (AlignedDest && AlignedSrc && (Idx + 1 < BaseIndices.size())) { // Can use SGPR64 copy unsigned Channel = RI.getChannelFromSubReg(SubIdx); SubIdx = RI.getSubRegFromChannel(Channel, 2); DestSubReg = RI.getSubReg(DestReg, SubIdx); SrcSubReg = RI.getSubReg(SrcReg, SubIdx); assert(DestSubReg && SrcSubReg && "Failed to find subregs!"); Opcode = AMDGPU::S_MOV_B64; Idx++; } LastMI = BuildMI(MBB, I, DL, TII.get(Opcode), DestSubReg) .addReg(SrcSubReg) .addReg(SrcReg, RegState::Implicit); if (!FirstMI) FirstMI = LastMI; if (!Forward) I--; } assert(FirstMI && LastMI); if (!Forward) std::swap(FirstMI, LastMI); FirstMI->addOperand( MachineOperand::CreateReg(DestReg, true /*IsDef*/, true /*IsImp*/)); if (KillSrc) LastMI->addRegisterKilled(SrcReg, &RI); } void SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc) const { const TargetRegisterClass *RC = RI.getPhysRegBaseClass(DestReg); unsigned Size = RI.getRegSizeInBits(*RC); const TargetRegisterClass *SrcRC = RI.getPhysRegBaseClass(SrcReg); unsigned SrcSize = RI.getRegSizeInBits(*SrcRC); // The rest of copyPhysReg assumes Src and Dst size are the same size. // TODO-GFX11_16BIT If all true 16 bit instruction patterns are completed can // we remove Fix16BitCopies and this code block? if (Fix16BitCopies) { if (((Size == 16) != (SrcSize == 16))) { // Non-VGPR Src and Dst will later be expanded back to 32 bits. assert(ST.hasTrue16BitInsts()); MCRegister &RegToFix = (Size == 32) ? DestReg : SrcReg; MCRegister SubReg = RI.getSubReg(RegToFix, AMDGPU::lo16); RegToFix = SubReg; if (DestReg == SrcReg) { // Identity copy. Insert empty bundle since ExpandPostRA expects an // instruction here. BuildMI(MBB, MI, DL, get(AMDGPU::BUNDLE)); return; } RC = RI.getPhysRegBaseClass(DestReg); Size = RI.getRegSizeInBits(*RC); SrcRC = RI.getPhysRegBaseClass(SrcReg); SrcSize = RI.getRegSizeInBits(*SrcRC); } } if (RC == &AMDGPU::VGPR_32RegClass) { assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) || AMDGPU::SReg_32RegClass.contains(SrcReg) || AMDGPU::AGPR_32RegClass.contains(SrcReg)); unsigned Opc = AMDGPU::AGPR_32RegClass.contains(SrcReg) ? AMDGPU::V_ACCVGPR_READ_B32_e64 : AMDGPU::V_MOV_B32_e32; BuildMI(MBB, MI, DL, get(Opc), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } if (RC == &AMDGPU::SReg_32_XM0RegClass || RC == &AMDGPU::SReg_32RegClass) { if (SrcReg == AMDGPU::SCC) { BuildMI(MBB, MI, DL, get(AMDGPU::S_CSELECT_B32), DestReg) .addImm(1) .addImm(0); return; } if (DestReg == AMDGPU::VCC_LO) { if (AMDGPU::SReg_32RegClass.contains(SrcReg)) { BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), AMDGPU::VCC_LO) .addReg(SrcReg, getKillRegState(KillSrc)); } else { // FIXME: Hack until VReg_1 removed. assert(AMDGPU::VGPR_32RegClass.contains(SrcReg)); BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_U32_e32)) .addImm(0) .addReg(SrcReg, getKillRegState(KillSrc)); } return; } if (!AMDGPU::SReg_32RegClass.contains(SrcReg)) { reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); return; } BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } if (RC == &AMDGPU::SReg_64RegClass) { if (SrcReg == AMDGPU::SCC) { BuildMI(MBB, MI, DL, get(AMDGPU::S_CSELECT_B64), DestReg) .addImm(1) .addImm(0); return; } if (DestReg == AMDGPU::VCC) { if (AMDGPU::SReg_64RegClass.contains(SrcReg)) { BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC) .addReg(SrcReg, getKillRegState(KillSrc)); } else { // FIXME: Hack until VReg_1 removed. assert(AMDGPU::VGPR_32RegClass.contains(SrcReg)); BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_U32_e32)) .addImm(0) .addReg(SrcReg, getKillRegState(KillSrc)); } return; } if (!AMDGPU::SReg_64RegClass.contains(SrcReg)) { reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); return; } BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } if (DestReg == AMDGPU::SCC) { // Copying 64-bit or 32-bit sources to SCC barely makes sense, // but SelectionDAG emits such copies for i1 sources. if (AMDGPU::SReg_64RegClass.contains(SrcReg)) { // This copy can only be produced by patterns // with explicit SCC, which are known to be enabled // only for subtargets with S_CMP_LG_U64 present. assert(ST.hasScalarCompareEq64()); BuildMI(MBB, MI, DL, get(AMDGPU::S_CMP_LG_U64)) .addReg(SrcReg, getKillRegState(KillSrc)) .addImm(0); } else { assert(AMDGPU::SReg_32RegClass.contains(SrcReg)); BuildMI(MBB, MI, DL, get(AMDGPU::S_CMP_LG_U32)) .addReg(SrcReg, getKillRegState(KillSrc)) .addImm(0); } return; } if (RC == &AMDGPU::AGPR_32RegClass) { if (AMDGPU::VGPR_32RegClass.contains(SrcReg) || (ST.hasGFX90AInsts() && AMDGPU::SReg_32RegClass.contains(SrcReg))) { BuildMI(MBB, MI, DL, get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } if (AMDGPU::AGPR_32RegClass.contains(SrcReg) && ST.hasGFX90AInsts()) { BuildMI(MBB, MI, DL, get(AMDGPU::V_ACCVGPR_MOV_B32), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } // FIXME: Pass should maintain scavenger to avoid scan through the block on // every AGPR spill. RegScavenger RS; const bool Overlap = RI.regsOverlap(SrcReg, DestReg); indirectCopyToAGPR(*this, MBB, MI, DL, DestReg, SrcReg, KillSrc, RS, Overlap); return; } if (Size == 16) { assert(AMDGPU::VGPR_16RegClass.contains(SrcReg) || AMDGPU::SReg_LO16RegClass.contains(SrcReg) || AMDGPU::AGPR_LO16RegClass.contains(SrcReg)); bool IsSGPRDst = AMDGPU::SReg_LO16RegClass.contains(DestReg); bool IsSGPRSrc = AMDGPU::SReg_LO16RegClass.contains(SrcReg); bool IsAGPRDst = AMDGPU::AGPR_LO16RegClass.contains(DestReg); bool IsAGPRSrc = AMDGPU::AGPR_LO16RegClass.contains(SrcReg); bool DstLow = !AMDGPU::isHi(DestReg, RI); bool SrcLow = !AMDGPU::isHi(SrcReg, RI); MCRegister NewDestReg = RI.get32BitRegister(DestReg); MCRegister NewSrcReg = RI.get32BitRegister(SrcReg); if (IsSGPRDst) { if (!IsSGPRSrc) { reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); return; } BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), NewDestReg) .addReg(NewSrcReg, getKillRegState(KillSrc)); return; } if (IsAGPRDst || IsAGPRSrc) { if (!DstLow || !SrcLow) { reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc, "Cannot use hi16 subreg with an AGPR!"); } copyPhysReg(MBB, MI, DL, NewDestReg, NewSrcReg, KillSrc); return; } if (ST.hasTrue16BitInsts()) { if (IsSGPRSrc) { assert(SrcLow); SrcReg = NewSrcReg; } // Use the smaller instruction encoding if possible. if (AMDGPU::VGPR_16_Lo128RegClass.contains(DestReg) && (IsSGPRSrc || AMDGPU::VGPR_16_Lo128RegClass.contains(SrcReg))) { BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B16_t16_e32), DestReg) .addReg(SrcReg); } else { BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B16_t16_e64), DestReg) .addImm(0) // src0_modifiers .addReg(SrcReg) .addImm(0); // op_sel } return; } if (IsSGPRSrc && !ST.hasSDWAScalar()) { if (!DstLow || !SrcLow) { reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc, "Cannot use hi16 subreg on VI!"); } BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), NewDestReg) .addReg(NewSrcReg, getKillRegState(KillSrc)); return; } auto MIB = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_sdwa), NewDestReg) .addImm(0) // src0_modifiers .addReg(NewSrcReg) .addImm(0) // clamp .addImm(DstLow ? AMDGPU::SDWA::SdwaSel::WORD_0 : AMDGPU::SDWA::SdwaSel::WORD_1) .addImm(AMDGPU::SDWA::DstUnused::UNUSED_PRESERVE) .addImm(SrcLow ? AMDGPU::SDWA::SdwaSel::WORD_0 : AMDGPU::SDWA::SdwaSel::WORD_1) .addReg(NewDestReg, RegState::Implicit | RegState::Undef); // First implicit operand is $exec. MIB->tieOperands(0, MIB->getNumOperands() - 1); return; } if (RC == RI.getVGPR64Class() && (SrcRC == RC || RI.isSGPRClass(SrcRC))) { if (ST.hasMovB64()) { BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_e32), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } if (ST.hasPkMovB32()) { BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), DestReg) .addImm(SISrcMods::OP_SEL_1) .addReg(SrcReg) .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) .addReg(SrcReg) .addImm(0) // op_sel_lo .addImm(0) // op_sel_hi .addImm(0) // neg_lo .addImm(0) // neg_hi .addImm(0) // clamp .addReg(SrcReg, getKillRegState(KillSrc) | RegState::Implicit); return; } } const bool Forward = RI.getHWRegIndex(DestReg) <= RI.getHWRegIndex(SrcReg); if (RI.isSGPRClass(RC)) { if (!RI.isSGPRClass(SrcRC)) { reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); return; } const bool CanKillSuperReg = KillSrc && !RI.regsOverlap(SrcReg, DestReg); expandSGPRCopy(*this, MBB, MI, DL, DestReg, SrcReg, CanKillSuperReg, RC, Forward); return; } unsigned EltSize = 4; unsigned Opcode = AMDGPU::V_MOV_B32_e32; if (RI.isAGPRClass(RC)) { if (ST.hasGFX90AInsts() && RI.isAGPRClass(SrcRC)) Opcode = AMDGPU::V_ACCVGPR_MOV_B32; else if (RI.hasVGPRs(SrcRC) || (ST.hasGFX90AInsts() && RI.isSGPRClass(SrcRC))) Opcode = AMDGPU::V_ACCVGPR_WRITE_B32_e64; else Opcode = AMDGPU::INSTRUCTION_LIST_END; } else if (RI.hasVGPRs(RC) && RI.isAGPRClass(SrcRC)) { Opcode = AMDGPU::V_ACCVGPR_READ_B32_e64; } else if ((Size % 64 == 0) && RI.hasVGPRs(RC) && (RI.isProperlyAlignedRC(*RC) && (SrcRC == RC || RI.isSGPRClass(SrcRC)))) { // TODO: In 96-bit case, could do a 64-bit mov and then a 32-bit mov. if (ST.hasMovB64()) { Opcode = AMDGPU::V_MOV_B64_e32; EltSize = 8; } else if (ST.hasPkMovB32()) { Opcode = AMDGPU::V_PK_MOV_B32; EltSize = 8; } } // For the cases where we need an intermediate instruction/temporary register // (destination is an AGPR), we need a scavenger. // // FIXME: The pass should maintain this for us so we don't have to re-scan the // whole block for every handled copy. std::unique_ptr RS; if (Opcode == AMDGPU::INSTRUCTION_LIST_END) RS.reset(new RegScavenger()); ArrayRef SubIndices = RI.getRegSplitParts(RC, EltSize); // If there is an overlap, we can't kill the super-register on the last // instruction, since it will also kill the components made live by this def. const bool Overlap = RI.regsOverlap(SrcReg, DestReg); const bool CanKillSuperReg = KillSrc && !Overlap; for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) { unsigned SubIdx; if (Forward) SubIdx = SubIndices[Idx]; else SubIdx = SubIndices[SubIndices.size() - Idx - 1]; Register DestSubReg = RI.getSubReg(DestReg, SubIdx); Register SrcSubReg = RI.getSubReg(SrcReg, SubIdx); assert(DestSubReg && SrcSubReg && "Failed to find subregs!"); bool IsFirstSubreg = Idx == 0; bool UseKill = CanKillSuperReg && Idx == SubIndices.size() - 1; if (Opcode == AMDGPU::INSTRUCTION_LIST_END) { Register ImpDefSuper = IsFirstSubreg ? Register(DestReg) : Register(); Register ImpUseSuper = SrcReg; indirectCopyToAGPR(*this, MBB, MI, DL, DestSubReg, SrcSubReg, UseKill, *RS, Overlap, ImpDefSuper, ImpUseSuper); } else if (Opcode == AMDGPU::V_PK_MOV_B32) { MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), DestSubReg) .addImm(SISrcMods::OP_SEL_1) .addReg(SrcSubReg) .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) .addReg(SrcSubReg) .addImm(0) // op_sel_lo .addImm(0) // op_sel_hi .addImm(0) // neg_lo .addImm(0) // neg_hi .addImm(0) // clamp .addReg(SrcReg, getKillRegState(UseKill) | RegState::Implicit); if (IsFirstSubreg) MIB.addReg(DestReg, RegState::Define | RegState::Implicit); } else { MachineInstrBuilder Builder = BuildMI(MBB, MI, DL, get(Opcode), DestSubReg).addReg(SrcSubReg); if (IsFirstSubreg) Builder.addReg(DestReg, RegState::Define | RegState::Implicit); Builder.addReg(SrcReg, getKillRegState(UseKill) | RegState::Implicit); } } } int SIInstrInfo::commuteOpcode(unsigned Opcode) const { int NewOpc; // Try to map original to commuted opcode NewOpc = AMDGPU::getCommuteRev(Opcode); if (NewOpc != -1) // Check if the commuted (REV) opcode exists on the target. return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; // Try to map commuted to original opcode NewOpc = AMDGPU::getCommuteOrig(Opcode); if (NewOpc != -1) // Check if the original (non-REV) opcode exists on the target. return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; return Opcode; } void SIInstrInfo::materializeImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, Register DestReg, int64_t Value) const { MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const TargetRegisterClass *RegClass = MRI.getRegClass(DestReg); if (RegClass == &AMDGPU::SReg_32RegClass || RegClass == &AMDGPU::SGPR_32RegClass || RegClass == &AMDGPU::SReg_32_XM0RegClass || RegClass == &AMDGPU::SReg_32_XM0_XEXECRegClass) { BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg) .addImm(Value); return; } if (RegClass == &AMDGPU::SReg_64RegClass || RegClass == &AMDGPU::SGPR_64RegClass || RegClass == &AMDGPU::SReg_64_XEXECRegClass) { BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg) .addImm(Value); return; } if (RegClass == &AMDGPU::VGPR_32RegClass) { BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg) .addImm(Value); return; } if (RegClass->hasSuperClassEq(&AMDGPU::VReg_64RegClass)) { BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO), DestReg) .addImm(Value); return; } unsigned EltSize = 4; unsigned Opcode = AMDGPU::V_MOV_B32_e32; if (RI.isSGPRClass(RegClass)) { if (RI.getRegSizeInBits(*RegClass) > 32) { Opcode = AMDGPU::S_MOV_B64; EltSize = 8; } else { Opcode = AMDGPU::S_MOV_B32; EltSize = 4; } } ArrayRef SubIndices = RI.getRegSplitParts(RegClass, EltSize); for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) { int64_t IdxValue = Idx == 0 ? Value : 0; MachineInstrBuilder Builder = BuildMI(MBB, MI, DL, get(Opcode), RI.getSubReg(DestReg, SubIndices[Idx])); Builder.addImm(IdxValue); } } const TargetRegisterClass * SIInstrInfo::getPreferredSelectRegClass(unsigned Size) const { return &AMDGPU::VGPR_32RegClass; } void SIInstrInfo::insertVectorSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register DstReg, ArrayRef Cond, Register TrueReg, Register FalseReg) const { MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const TargetRegisterClass *BoolXExecRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID); assert(MRI.getRegClass(DstReg) == &AMDGPU::VGPR_32RegClass && "Not a VGPR32 reg"); if (Cond.size() == 1) { Register SReg = MRI.createVirtualRegister(BoolXExecRC); BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg) .add(Cond[0]); BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) .addImm(0) .addReg(FalseReg) .addImm(0) .addReg(TrueReg) .addReg(SReg); } else if (Cond.size() == 2) { assert(Cond[0].isImm() && "Cond[0] is not an immediate"); switch (Cond[0].getImm()) { case SIInstrInfo::SCC_TRUE: { Register SReg = MRI.createVirtualRegister(BoolXExecRC); BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 : AMDGPU::S_CSELECT_B64), SReg) .addImm(1) .addImm(0); BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) .addImm(0) .addReg(FalseReg) .addImm(0) .addReg(TrueReg) .addReg(SReg); break; } case SIInstrInfo::SCC_FALSE: { Register SReg = MRI.createVirtualRegister(BoolXExecRC); BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 : AMDGPU::S_CSELECT_B64), SReg) .addImm(0) .addImm(1); BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) .addImm(0) .addReg(FalseReg) .addImm(0) .addReg(TrueReg) .addReg(SReg); break; } case SIInstrInfo::VCCNZ: { MachineOperand RegOp = Cond[1]; RegOp.setImplicit(false); Register SReg = MRI.createVirtualRegister(BoolXExecRC); BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg) .add(RegOp); BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) .addImm(0) .addReg(FalseReg) .addImm(0) .addReg(TrueReg) .addReg(SReg); break; } case SIInstrInfo::VCCZ: { MachineOperand RegOp = Cond[1]; RegOp.setImplicit(false); Register SReg = MRI.createVirtualRegister(BoolXExecRC); BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg) .add(RegOp); BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) .addImm(0) .addReg(TrueReg) .addImm(0) .addReg(FalseReg) .addReg(SReg); break; } case SIInstrInfo::EXECNZ: { Register SReg = MRI.createVirtualRegister(BoolXExecRC); Register SReg2 = MRI.createVirtualRegister(RI.getBoolRC()); BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32 : AMDGPU::S_OR_SAVEEXEC_B64), SReg2) .addImm(0); BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 : AMDGPU::S_CSELECT_B64), SReg) .addImm(1) .addImm(0); BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) .addImm(0) .addReg(FalseReg) .addImm(0) .addReg(TrueReg) .addReg(SReg); break; } case SIInstrInfo::EXECZ: { Register SReg = MRI.createVirtualRegister(BoolXExecRC); Register SReg2 = MRI.createVirtualRegister(RI.getBoolRC()); BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32 : AMDGPU::S_OR_SAVEEXEC_B64), SReg2) .addImm(0); BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 : AMDGPU::S_CSELECT_B64), SReg) .addImm(0) .addImm(1); BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) .addImm(0) .addReg(FalseReg) .addImm(0) .addReg(TrueReg) .addReg(SReg); llvm_unreachable("Unhandled branch predicate EXECZ"); break; } default: llvm_unreachable("invalid branch predicate"); } } else { llvm_unreachable("Can only handle Cond size 1 or 2"); } } Register SIInstrInfo::insertEQ(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register SrcReg, int Value) const { MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); Register Reg = MRI.createVirtualRegister(RI.getBoolRC()); BuildMI(*MBB, I, DL, get(AMDGPU::V_CMP_EQ_I32_e64), Reg) .addImm(Value) .addReg(SrcReg); return Reg; } Register SIInstrInfo::insertNE(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register SrcReg, int Value) const { MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); Register Reg = MRI.createVirtualRegister(RI.getBoolRC()); BuildMI(*MBB, I, DL, get(AMDGPU::V_CMP_NE_I32_e64), Reg) .addImm(Value) .addReg(SrcReg); return Reg; } unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const { if (RI.isAGPRClass(DstRC)) return AMDGPU::COPY; if (RI.getRegSizeInBits(*DstRC) == 16) { // Assume hi bits are unneeded. Only _e64 true16 instructions are legal // before RA. return RI.isSGPRClass(DstRC) ? AMDGPU::COPY : AMDGPU::V_MOV_B16_t16_e64; } else if (RI.getRegSizeInBits(*DstRC) == 32) { return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; } else if (RI.getRegSizeInBits(*DstRC) == 64 && RI.isSGPRClass(DstRC)) { return AMDGPU::S_MOV_B64; } else if (RI.getRegSizeInBits(*DstRC) == 64 && !RI.isSGPRClass(DstRC)) { return AMDGPU::V_MOV_B64_PSEUDO; } return AMDGPU::COPY; } const MCInstrDesc & SIInstrInfo::getIndirectGPRIDXPseudo(unsigned VecSize, bool IsIndirectSrc) const { if (IsIndirectSrc) { if (VecSize <= 32) // 4 bytes return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V1); if (VecSize <= 64) // 8 bytes return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V2); if (VecSize <= 96) // 12 bytes return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V3); if (VecSize <= 128) // 16 bytes return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V4); if (VecSize <= 160) // 20 bytes return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V5); if (VecSize <= 256) // 32 bytes return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V8); if (VecSize <= 288) // 36 bytes return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V9); if (VecSize <= 320) // 40 bytes return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V10); if (VecSize <= 352) // 44 bytes return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V11); if (VecSize <= 384) // 48 bytes return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V12); if (VecSize <= 512) // 64 bytes return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V16); if (VecSize <= 1024) // 128 bytes return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V32); llvm_unreachable("unsupported size for IndirectRegReadGPRIDX pseudos"); } if (VecSize <= 32) // 4 bytes return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1); if (VecSize <= 64) // 8 bytes return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2); if (VecSize <= 96) // 12 bytes return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3); if (VecSize <= 128) // 16 bytes return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4); if (VecSize <= 160) // 20 bytes return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5); if (VecSize <= 256) // 32 bytes return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8); if (VecSize <= 288) // 36 bytes return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9); if (VecSize <= 320) // 40 bytes return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10); if (VecSize <= 352) // 44 bytes return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11); if (VecSize <= 384) // 48 bytes return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12); if (VecSize <= 512) // 64 bytes return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16); if (VecSize <= 1024) // 128 bytes return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32); llvm_unreachable("unsupported size for IndirectRegWriteGPRIDX pseudos"); } static unsigned getIndirectVGPRWriteMovRelPseudoOpc(unsigned VecSize) { if (VecSize <= 32) // 4 bytes return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V1; if (VecSize <= 64) // 8 bytes return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V2; if (VecSize <= 96) // 12 bytes return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V3; if (VecSize <= 128) // 16 bytes return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V4; if (VecSize <= 160) // 20 bytes return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V5; if (VecSize <= 256) // 32 bytes return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V8; if (VecSize <= 288) // 36 bytes return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V9; if (VecSize <= 320) // 40 bytes return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V10; if (VecSize <= 352) // 44 bytes return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V11; if (VecSize <= 384) // 48 bytes return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V12; if (VecSize <= 512) // 64 bytes return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V16; if (VecSize <= 1024) // 128 bytes return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V32; llvm_unreachable("unsupported size for IndirectRegWrite pseudos"); } static unsigned getIndirectSGPRWriteMovRelPseudo32(unsigned VecSize) { if (VecSize <= 32) // 4 bytes return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V1; if (VecSize <= 64) // 8 bytes return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V2; if (VecSize <= 96) // 12 bytes return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V3; if (VecSize <= 128) // 16 bytes return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V4; if (VecSize <= 160) // 20 bytes return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V5; if (VecSize <= 256) // 32 bytes return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V8; if (VecSize <= 288) // 36 bytes return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V9; if (VecSize <= 320) // 40 bytes return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V10; if (VecSize <= 352) // 44 bytes return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V11; if (VecSize <= 384) // 48 bytes return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V12; if (VecSize <= 512) // 64 bytes return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V16; if (VecSize <= 1024) // 128 bytes return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V32; llvm_unreachable("unsupported size for IndirectRegWrite pseudos"); } static unsigned getIndirectSGPRWriteMovRelPseudo64(unsigned VecSize) { if (VecSize <= 64) // 8 bytes return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V1; if (VecSize <= 128) // 16 bytes return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V2; if (VecSize <= 256) // 32 bytes return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V4; if (VecSize <= 512) // 64 bytes return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V8; if (VecSize <= 1024) // 128 bytes return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V16; llvm_unreachable("unsupported size for IndirectRegWrite pseudos"); } const MCInstrDesc & SIInstrInfo::getIndirectRegWriteMovRelPseudo(unsigned VecSize, unsigned EltSize, bool IsSGPR) const { if (IsSGPR) { switch (EltSize) { case 32: return get(getIndirectSGPRWriteMovRelPseudo32(VecSize)); case 64: return get(getIndirectSGPRWriteMovRelPseudo64(VecSize)); default: llvm_unreachable("invalid reg indexing elt size"); } } assert(EltSize == 32 && "invalid reg indexing elt size"); return get(getIndirectVGPRWriteMovRelPseudoOpc(VecSize)); } static unsigned getSGPRSpillSaveOpcode(unsigned Size) { switch (Size) { case 4: return AMDGPU::SI_SPILL_S32_SAVE; case 8: return AMDGPU::SI_SPILL_S64_SAVE; case 12: return AMDGPU::SI_SPILL_S96_SAVE; case 16: return AMDGPU::SI_SPILL_S128_SAVE; case 20: return AMDGPU::SI_SPILL_S160_SAVE; case 24: return AMDGPU::SI_SPILL_S192_SAVE; case 28: return AMDGPU::SI_SPILL_S224_SAVE; case 32: return AMDGPU::SI_SPILL_S256_SAVE; case 36: return AMDGPU::SI_SPILL_S288_SAVE; case 40: return AMDGPU::SI_SPILL_S320_SAVE; case 44: return AMDGPU::SI_SPILL_S352_SAVE; case 48: return AMDGPU::SI_SPILL_S384_SAVE; case 64: return AMDGPU::SI_SPILL_S512_SAVE; case 128: return AMDGPU::SI_SPILL_S1024_SAVE; default: llvm_unreachable("unknown register size"); } } static unsigned getVGPRSpillSaveOpcode(unsigned Size) { switch (Size) { case 4: return AMDGPU::SI_SPILL_V32_SAVE; case 8: return AMDGPU::SI_SPILL_V64_SAVE; case 12: return AMDGPU::SI_SPILL_V96_SAVE; case 16: return AMDGPU::SI_SPILL_V128_SAVE; case 20: return AMDGPU::SI_SPILL_V160_SAVE; case 24: return AMDGPU::SI_SPILL_V192_SAVE; case 28: return AMDGPU::SI_SPILL_V224_SAVE; case 32: return AMDGPU::SI_SPILL_V256_SAVE; case 36: return AMDGPU::SI_SPILL_V288_SAVE; case 40: return AMDGPU::SI_SPILL_V320_SAVE; case 44: return AMDGPU::SI_SPILL_V352_SAVE; case 48: return AMDGPU::SI_SPILL_V384_SAVE; case 64: return AMDGPU::SI_SPILL_V512_SAVE; case 128: return AMDGPU::SI_SPILL_V1024_SAVE; default: llvm_unreachable("unknown register size"); } } static unsigned getAGPRSpillSaveOpcode(unsigned Size) { switch (Size) { case 4: return AMDGPU::SI_SPILL_A32_SAVE; case 8: return AMDGPU::SI_SPILL_A64_SAVE; case 12: return AMDGPU::SI_SPILL_A96_SAVE; case 16: return AMDGPU::SI_SPILL_A128_SAVE; case 20: return AMDGPU::SI_SPILL_A160_SAVE; case 24: return AMDGPU::SI_SPILL_A192_SAVE; case 28: return AMDGPU::SI_SPILL_A224_SAVE; case 32: return AMDGPU::SI_SPILL_A256_SAVE; case 36: return AMDGPU::SI_SPILL_A288_SAVE; case 40: return AMDGPU::SI_SPILL_A320_SAVE; case 44: return AMDGPU::SI_SPILL_A352_SAVE; case 48: return AMDGPU::SI_SPILL_A384_SAVE; case 64: return AMDGPU::SI_SPILL_A512_SAVE; case 128: return AMDGPU::SI_SPILL_A1024_SAVE; default: llvm_unreachable("unknown register size"); } } static unsigned getAVSpillSaveOpcode(unsigned Size) { switch (Size) { case 4: return AMDGPU::SI_SPILL_AV32_SAVE; case 8: return AMDGPU::SI_SPILL_AV64_SAVE; case 12: return AMDGPU::SI_SPILL_AV96_SAVE; case 16: return AMDGPU::SI_SPILL_AV128_SAVE; case 20: return AMDGPU::SI_SPILL_AV160_SAVE; case 24: return AMDGPU::SI_SPILL_AV192_SAVE; case 28: return AMDGPU::SI_SPILL_AV224_SAVE; case 32: return AMDGPU::SI_SPILL_AV256_SAVE; case 36: return AMDGPU::SI_SPILL_AV288_SAVE; case 40: return AMDGPU::SI_SPILL_AV320_SAVE; case 44: return AMDGPU::SI_SPILL_AV352_SAVE; case 48: return AMDGPU::SI_SPILL_AV384_SAVE; case 64: return AMDGPU::SI_SPILL_AV512_SAVE; case 128: return AMDGPU::SI_SPILL_AV1024_SAVE; default: llvm_unreachable("unknown register size"); } } static unsigned getWWMRegSpillSaveOpcode(unsigned Size, bool IsVectorSuperClass) { // Currently, there is only 32-bit WWM register spills needed. if (Size != 4) llvm_unreachable("unknown wwm register spill size"); if (IsVectorSuperClass) return AMDGPU::SI_SPILL_WWM_AV32_SAVE; return AMDGPU::SI_SPILL_WWM_V32_SAVE; } static unsigned getVectorRegSpillSaveOpcode(Register Reg, const TargetRegisterClass *RC, unsigned Size, const SIRegisterInfo &TRI, const SIMachineFunctionInfo &MFI) { bool IsVectorSuperClass = TRI.isVectorSuperClass(RC); // Choose the right opcode if spilling a WWM register. if (MFI.checkFlag(Reg, AMDGPU::VirtRegFlag::WWM_REG)) return getWWMRegSpillSaveOpcode(Size, IsVectorSuperClass); if (IsVectorSuperClass) return getAVSpillSaveOpcode(Size); return TRI.isAGPRClass(RC) ? getAGPRSpillSaveOpcode(Size) : getVGPRSpillSaveOpcode(Size); } void SIInstrInfo::storeRegToStackSlot( MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const { MachineFunction *MF = MBB.getParent(); SIMachineFunctionInfo *MFI = MF->getInfo(); MachineFrameInfo &FrameInfo = MF->getFrameInfo(); const DebugLoc &DL = MBB.findDebugLoc(MI); MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(*MF, FrameIndex); MachineMemOperand *MMO = MF->getMachineMemOperand( PtrInfo, MachineMemOperand::MOStore, FrameInfo.getObjectSize(FrameIndex), FrameInfo.getObjectAlign(FrameIndex)); unsigned SpillSize = TRI->getSpillSize(*RC); MachineRegisterInfo &MRI = MF->getRegInfo(); if (RI.isSGPRClass(RC)) { MFI->setHasSpilledSGPRs(); assert(SrcReg != AMDGPU::M0 && "m0 should not be spilled"); assert(SrcReg != AMDGPU::EXEC_LO && SrcReg != AMDGPU::EXEC_HI && SrcReg != AMDGPU::EXEC && "exec should not be spilled"); // We are only allowed to create one new instruction when spilling // registers, so we need to use pseudo instruction for spilling SGPRs. const MCInstrDesc &OpDesc = get(getSGPRSpillSaveOpcode(SpillSize)); // The SGPR spill/restore instructions only work on number sgprs, so we need // to make sure we are using the correct register class. if (SrcReg.isVirtual() && SpillSize == 4) { MRI.constrainRegClass(SrcReg, &AMDGPU::SReg_32_XM0_XEXECRegClass); } BuildMI(MBB, MI, DL, OpDesc) .addReg(SrcReg, getKillRegState(isKill)) // data .addFrameIndex(FrameIndex) // addr .addMemOperand(MMO) .addReg(MFI->getStackPtrOffsetReg(), RegState::Implicit); if (RI.spillSGPRToVGPR()) FrameInfo.setStackID(FrameIndex, TargetStackID::SGPRSpill); return; } unsigned Opcode = getVectorRegSpillSaveOpcode(VReg ? VReg : SrcReg, RC, SpillSize, RI, *MFI); MFI->setHasSpilledVGPRs(); BuildMI(MBB, MI, DL, get(Opcode)) .addReg(SrcReg, getKillRegState(isKill)) // data .addFrameIndex(FrameIndex) // addr .addReg(MFI->getStackPtrOffsetReg()) // scratch_offset .addImm(0) // offset .addMemOperand(MMO); } static unsigned getSGPRSpillRestoreOpcode(unsigned Size) { switch (Size) { case 4: return AMDGPU::SI_SPILL_S32_RESTORE; case 8: return AMDGPU::SI_SPILL_S64_RESTORE; case 12: return AMDGPU::SI_SPILL_S96_RESTORE; case 16: return AMDGPU::SI_SPILL_S128_RESTORE; case 20: return AMDGPU::SI_SPILL_S160_RESTORE; case 24: return AMDGPU::SI_SPILL_S192_RESTORE; case 28: return AMDGPU::SI_SPILL_S224_RESTORE; case 32: return AMDGPU::SI_SPILL_S256_RESTORE; case 36: return AMDGPU::SI_SPILL_S288_RESTORE; case 40: return AMDGPU::SI_SPILL_S320_RESTORE; case 44: return AMDGPU::SI_SPILL_S352_RESTORE; case 48: return AMDGPU::SI_SPILL_S384_RESTORE; case 64: return AMDGPU::SI_SPILL_S512_RESTORE; case 128: return AMDGPU::SI_SPILL_S1024_RESTORE; default: llvm_unreachable("unknown register size"); } } static unsigned getVGPRSpillRestoreOpcode(unsigned Size) { switch (Size) { case 4: return AMDGPU::SI_SPILL_V32_RESTORE; case 8: return AMDGPU::SI_SPILL_V64_RESTORE; case 12: return AMDGPU::SI_SPILL_V96_RESTORE; case 16: return AMDGPU::SI_SPILL_V128_RESTORE; case 20: return AMDGPU::SI_SPILL_V160_RESTORE; case 24: return AMDGPU::SI_SPILL_V192_RESTORE; case 28: return AMDGPU::SI_SPILL_V224_RESTORE; case 32: return AMDGPU::SI_SPILL_V256_RESTORE; case 36: return AMDGPU::SI_SPILL_V288_RESTORE; case 40: return AMDGPU::SI_SPILL_V320_RESTORE; case 44: return AMDGPU::SI_SPILL_V352_RESTORE; case 48: return AMDGPU::SI_SPILL_V384_RESTORE; case 64: return AMDGPU::SI_SPILL_V512_RESTORE; case 128: return AMDGPU::SI_SPILL_V1024_RESTORE; default: llvm_unreachable("unknown register size"); } } static unsigned getAGPRSpillRestoreOpcode(unsigned Size) { switch (Size) { case 4: return AMDGPU::SI_SPILL_A32_RESTORE; case 8: return AMDGPU::SI_SPILL_A64_RESTORE; case 12: return AMDGPU::SI_SPILL_A96_RESTORE; case 16: return AMDGPU::SI_SPILL_A128_RESTORE; case 20: return AMDGPU::SI_SPILL_A160_RESTORE; case 24: return AMDGPU::SI_SPILL_A192_RESTORE; case 28: return AMDGPU::SI_SPILL_A224_RESTORE; case 32: return AMDGPU::SI_SPILL_A256_RESTORE; case 36: return AMDGPU::SI_SPILL_A288_RESTORE; case 40: return AMDGPU::SI_SPILL_A320_RESTORE; case 44: return AMDGPU::SI_SPILL_A352_RESTORE; case 48: return AMDGPU::SI_SPILL_A384_RESTORE; case 64: return AMDGPU::SI_SPILL_A512_RESTORE; case 128: return AMDGPU::SI_SPILL_A1024_RESTORE; default: llvm_unreachable("unknown register size"); } } static unsigned getAVSpillRestoreOpcode(unsigned Size) { switch (Size) { case 4: return AMDGPU::SI_SPILL_AV32_RESTORE; case 8: return AMDGPU::SI_SPILL_AV64_RESTORE; case 12: return AMDGPU::SI_SPILL_AV96_RESTORE; case 16: return AMDGPU::SI_SPILL_AV128_RESTORE; case 20: return AMDGPU::SI_SPILL_AV160_RESTORE; case 24: return AMDGPU::SI_SPILL_AV192_RESTORE; case 28: return AMDGPU::SI_SPILL_AV224_RESTORE; case 32: return AMDGPU::SI_SPILL_AV256_RESTORE; case 36: return AMDGPU::SI_SPILL_AV288_RESTORE; case 40: return AMDGPU::SI_SPILL_AV320_RESTORE; case 44: return AMDGPU::SI_SPILL_AV352_RESTORE; case 48: return AMDGPU::SI_SPILL_AV384_RESTORE; case 64: return AMDGPU::SI_SPILL_AV512_RESTORE; case 128: return AMDGPU::SI_SPILL_AV1024_RESTORE; default: llvm_unreachable("unknown register size"); } } static unsigned getWWMRegSpillRestoreOpcode(unsigned Size, bool IsVectorSuperClass) { // Currently, there is only 32-bit WWM register spills needed. if (Size != 4) llvm_unreachable("unknown wwm register spill size"); if (IsVectorSuperClass) return AMDGPU::SI_SPILL_WWM_AV32_RESTORE; return AMDGPU::SI_SPILL_WWM_V32_RESTORE; } static unsigned getVectorRegSpillRestoreOpcode(Register Reg, const TargetRegisterClass *RC, unsigned Size, const SIRegisterInfo &TRI, const SIMachineFunctionInfo &MFI) { bool IsVectorSuperClass = TRI.isVectorSuperClass(RC); // Choose the right opcode if restoring a WWM register. if (MFI.checkFlag(Reg, AMDGPU::VirtRegFlag::WWM_REG)) return getWWMRegSpillRestoreOpcode(Size, IsVectorSuperClass); if (IsVectorSuperClass) return getAVSpillRestoreOpcode(Size); return TRI.isAGPRClass(RC) ? getAGPRSpillRestoreOpcode(Size) : getVGPRSpillRestoreOpcode(Size); } void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const { MachineFunction *MF = MBB.getParent(); SIMachineFunctionInfo *MFI = MF->getInfo(); MachineFrameInfo &FrameInfo = MF->getFrameInfo(); const DebugLoc &DL = MBB.findDebugLoc(MI); unsigned SpillSize = TRI->getSpillSize(*RC); MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(*MF, FrameIndex); MachineMemOperand *MMO = MF->getMachineMemOperand( PtrInfo, MachineMemOperand::MOLoad, FrameInfo.getObjectSize(FrameIndex), FrameInfo.getObjectAlign(FrameIndex)); if (RI.isSGPRClass(RC)) { MFI->setHasSpilledSGPRs(); assert(DestReg != AMDGPU::M0 && "m0 should not be reloaded into"); assert(DestReg != AMDGPU::EXEC_LO && DestReg != AMDGPU::EXEC_HI && DestReg != AMDGPU::EXEC && "exec should not be spilled"); // FIXME: Maybe this should not include a memoperand because it will be // lowered to non-memory instructions. const MCInstrDesc &OpDesc = get(getSGPRSpillRestoreOpcode(SpillSize)); if (DestReg.isVirtual() && SpillSize == 4) { MachineRegisterInfo &MRI = MF->getRegInfo(); MRI.constrainRegClass(DestReg, &AMDGPU::SReg_32_XM0_XEXECRegClass); } if (RI.spillSGPRToVGPR()) FrameInfo.setStackID(FrameIndex, TargetStackID::SGPRSpill); BuildMI(MBB, MI, DL, OpDesc, DestReg) .addFrameIndex(FrameIndex) // addr .addMemOperand(MMO) .addReg(MFI->getStackPtrOffsetReg(), RegState::Implicit); return; } unsigned Opcode = getVectorRegSpillRestoreOpcode(VReg ? VReg : DestReg, RC, SpillSize, RI, *MFI); BuildMI(MBB, MI, DL, get(Opcode), DestReg) .addFrameIndex(FrameIndex) // vaddr .addReg(MFI->getStackPtrOffsetReg()) // scratch_offset .addImm(0) // offset .addMemOperand(MMO); } void SIInstrInfo::insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { insertNoops(MBB, MI, 1); } void SIInstrInfo::insertNoops(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned Quantity) const { DebugLoc DL = MBB.findDebugLoc(MI); while (Quantity > 0) { unsigned Arg = std::min(Quantity, 8u); Quantity -= Arg; BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP)).addImm(Arg - 1); } } void SIInstrInfo::insertReturn(MachineBasicBlock &MBB) const { auto MF = MBB.getParent(); SIMachineFunctionInfo *Info = MF->getInfo(); assert(Info->isEntryFunction()); if (MBB.succ_empty()) { bool HasNoTerminator = MBB.getFirstTerminator() == MBB.end(); if (HasNoTerminator) { if (Info->returnsVoid()) { BuildMI(MBB, MBB.end(), DebugLoc(), get(AMDGPU::S_ENDPGM)).addImm(0); } else { BuildMI(MBB, MBB.end(), DebugLoc(), get(AMDGPU::SI_RETURN_TO_EPILOG)); } } } } unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) { switch (MI.getOpcode()) { default: if (MI.isMetaInstruction()) return 0; return 1; // FIXME: Do wait states equal cycles? case AMDGPU::S_NOP: return MI.getOperand(0).getImm() + 1; // SI_RETURN_TO_EPILOG is a fallthrough to code outside of the function. The // hazard, even if one exist, won't really be visible. Should we handle it? } } bool SIInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { const SIRegisterInfo *TRI = ST.getRegisterInfo(); MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MBB.findDebugLoc(MI); switch (MI.getOpcode()) { default: return TargetInstrInfo::expandPostRAPseudo(MI); case AMDGPU::S_MOV_B64_term: // This is only a terminator to get the correct spill code placement during // register allocation. MI.setDesc(get(AMDGPU::S_MOV_B64)); break; case AMDGPU::S_MOV_B32_term: // This is only a terminator to get the correct spill code placement during // register allocation. MI.setDesc(get(AMDGPU::S_MOV_B32)); break; case AMDGPU::S_XOR_B64_term: // This is only a terminator to get the correct spill code placement during // register allocation. MI.setDesc(get(AMDGPU::S_XOR_B64)); break; case AMDGPU::S_XOR_B32_term: // This is only a terminator to get the correct spill code placement during // register allocation. MI.setDesc(get(AMDGPU::S_XOR_B32)); break; case AMDGPU::S_OR_B64_term: // This is only a terminator to get the correct spill code placement during // register allocation. MI.setDesc(get(AMDGPU::S_OR_B64)); break; case AMDGPU::S_OR_B32_term: // This is only a terminator to get the correct spill code placement during // register allocation. MI.setDesc(get(AMDGPU::S_OR_B32)); break; case AMDGPU::S_ANDN2_B64_term: // This is only a terminator to get the correct spill code placement during // register allocation. MI.setDesc(get(AMDGPU::S_ANDN2_B64)); break; case AMDGPU::S_ANDN2_B32_term: // This is only a terminator to get the correct spill code placement during // register allocation. MI.setDesc(get(AMDGPU::S_ANDN2_B32)); break; case AMDGPU::S_AND_B64_term: // This is only a terminator to get the correct spill code placement during // register allocation. MI.setDesc(get(AMDGPU::S_AND_B64)); break; case AMDGPU::S_AND_B32_term: // This is only a terminator to get the correct spill code placement during // register allocation. MI.setDesc(get(AMDGPU::S_AND_B32)); break; case AMDGPU::S_AND_SAVEEXEC_B64_term: // This is only a terminator to get the correct spill code placement during // register allocation. MI.setDesc(get(AMDGPU::S_AND_SAVEEXEC_B64)); break; case AMDGPU::S_AND_SAVEEXEC_B32_term: // This is only a terminator to get the correct spill code placement during // register allocation. MI.setDesc(get(AMDGPU::S_AND_SAVEEXEC_B32)); break; case AMDGPU::SI_SPILL_S32_TO_VGPR: MI.setDesc(get(AMDGPU::V_WRITELANE_B32)); break; case AMDGPU::SI_RESTORE_S32_FROM_VGPR: MI.setDesc(get(AMDGPU::V_READLANE_B32)); break; case AMDGPU::V_MOV_B64_PSEUDO: { Register Dst = MI.getOperand(0).getReg(); Register DstLo = RI.getSubReg(Dst, AMDGPU::sub0); Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1); const MachineOperand &SrcOp = MI.getOperand(1); // FIXME: Will this work for 64-bit floating point immediates? assert(!SrcOp.isFPImm()); if (ST.hasMovB64()) { MI.setDesc(get(AMDGPU::V_MOV_B64_e32)); if (SrcOp.isReg() || isInlineConstant(MI, 1) || isUInt<32>(SrcOp.getImm())) break; } if (SrcOp.isImm()) { APInt Imm(64, SrcOp.getImm()); APInt Lo(32, Imm.getLoBits(32).getZExtValue()); APInt Hi(32, Imm.getHiBits(32).getZExtValue()); if (ST.hasPkMovB32() && Lo == Hi && isInlineConstant(Lo)) { BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), Dst) .addImm(SISrcMods::OP_SEL_1) .addImm(Lo.getSExtValue()) .addImm(SISrcMods::OP_SEL_1) .addImm(Lo.getSExtValue()) .addImm(0) // op_sel_lo .addImm(0) // op_sel_hi .addImm(0) // neg_lo .addImm(0) // neg_hi .addImm(0); // clamp } else { BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) .addImm(Lo.getSExtValue()) .addReg(Dst, RegState::Implicit | RegState::Define); BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) .addImm(Hi.getSExtValue()) .addReg(Dst, RegState::Implicit | RegState::Define); } } else { assert(SrcOp.isReg()); if (ST.hasPkMovB32() && !RI.isAGPR(MBB.getParent()->getRegInfo(), SrcOp.getReg())) { BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), Dst) .addImm(SISrcMods::OP_SEL_1) // src0_mod .addReg(SrcOp.getReg()) .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) // src1_mod .addReg(SrcOp.getReg()) .addImm(0) // op_sel_lo .addImm(0) // op_sel_hi .addImm(0) // neg_lo .addImm(0) // neg_hi .addImm(0); // clamp } else { BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0)) .addReg(Dst, RegState::Implicit | RegState::Define); BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1)) .addReg(Dst, RegState::Implicit | RegState::Define); } } MI.eraseFromParent(); break; } case AMDGPU::V_MOV_B64_DPP_PSEUDO: { expandMovDPP64(MI); break; } case AMDGPU::S_MOV_B64_IMM_PSEUDO: { const MachineOperand &SrcOp = MI.getOperand(1); assert(!SrcOp.isFPImm()); APInt Imm(64, SrcOp.getImm()); if (Imm.isIntN(32) || isInlineConstant(Imm)) { MI.setDesc(get(AMDGPU::S_MOV_B64)); break; } Register Dst = MI.getOperand(0).getReg(); Register DstLo = RI.getSubReg(Dst, AMDGPU::sub0); Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1); APInt Lo(32, Imm.getLoBits(32).getZExtValue()); APInt Hi(32, Imm.getHiBits(32).getZExtValue()); BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DstLo) .addImm(Lo.getSExtValue()) .addReg(Dst, RegState::Implicit | RegState::Define); BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DstHi) .addImm(Hi.getSExtValue()) .addReg(Dst, RegState::Implicit | RegState::Define); MI.eraseFromParent(); break; } case AMDGPU::V_SET_INACTIVE_B32: { unsigned NotOpc = ST.isWave32() ? AMDGPU::S_NOT_B32 : AMDGPU::S_NOT_B64; unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; // FIXME: We may possibly optimize the COPY once we find ways to make LLVM // optimizations (mainly Register Coalescer) aware of WWM register liveness. BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), MI.getOperand(0).getReg()) .add(MI.getOperand(1)); auto FirstNot = BuildMI(MBB, MI, DL, get(NotOpc), Exec).addReg(Exec); FirstNot->addRegisterDead(AMDGPU::SCC, TRI); // SCC is overwritten BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), MI.getOperand(0).getReg()) .add(MI.getOperand(2)); BuildMI(MBB, MI, DL, get(NotOpc), Exec) .addReg(Exec); MI.eraseFromParent(); break; } case AMDGPU::V_SET_INACTIVE_B64: { unsigned NotOpc = ST.isWave32() ? AMDGPU::S_NOT_B32 : AMDGPU::S_NOT_B64; unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; MachineInstr *Copy = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO), MI.getOperand(0).getReg()) .add(MI.getOperand(1)); expandPostRAPseudo(*Copy); auto FirstNot = BuildMI(MBB, MI, DL, get(NotOpc), Exec).addReg(Exec); FirstNot->addRegisterDead(AMDGPU::SCC, TRI); // SCC is overwritten Copy = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO), MI.getOperand(0).getReg()) .add(MI.getOperand(2)); expandPostRAPseudo(*Copy); BuildMI(MBB, MI, DL, get(NotOpc), Exec) .addReg(Exec); MI.eraseFromParent(); break; } case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V1: case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V2: case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V3: case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V4: case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V5: case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V8: case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V9: case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V10: case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V11: case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V12: case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V16: case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V32: case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V1: case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V2: case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V3: case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V4: case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V5: case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V8: case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V9: case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V10: case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V11: case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V12: case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V16: case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V32: case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V1: case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V2: case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V4: case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V8: case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V16: { const TargetRegisterClass *EltRC = getOpRegClass(MI, 2); unsigned Opc; if (RI.hasVGPRs(EltRC)) { Opc = AMDGPU::V_MOVRELD_B32_e32; } else { Opc = RI.getRegSizeInBits(*EltRC) == 64 ? AMDGPU::S_MOVRELD_B64 : AMDGPU::S_MOVRELD_B32; } const MCInstrDesc &OpDesc = get(Opc); Register VecReg = MI.getOperand(0).getReg(); bool IsUndef = MI.getOperand(1).isUndef(); unsigned SubReg = MI.getOperand(3).getImm(); assert(VecReg == MI.getOperand(1).getReg()); MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, OpDesc) .addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef) .add(MI.getOperand(2)) .addReg(VecReg, RegState::ImplicitDefine) .addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0)); const int ImpDefIdx = OpDesc.getNumOperands() + OpDesc.implicit_uses().size(); const int ImpUseIdx = ImpDefIdx + 1; MIB->tieOperands(ImpDefIdx, ImpUseIdx); MI.eraseFromParent(); break; } case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1: case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2: case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3: case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4: case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5: case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8: case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9: case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10: case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11: case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12: case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16: case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32: { assert(ST.useVGPRIndexMode()); Register VecReg = MI.getOperand(0).getReg(); bool IsUndef = MI.getOperand(1).isUndef(); Register Idx = MI.getOperand(3).getReg(); Register SubReg = MI.getOperand(4).getImm(); MachineInstr *SetOn = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_ON)) .addReg(Idx) .addImm(AMDGPU::VGPRIndexMode::DST_ENABLE); SetOn->getOperand(3).setIsUndef(); const MCInstrDesc &OpDesc = get(AMDGPU::V_MOV_B32_indirect_write); MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, OpDesc) .addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef) .add(MI.getOperand(2)) .addReg(VecReg, RegState::ImplicitDefine) .addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0)); const int ImpDefIdx = OpDesc.getNumOperands() + OpDesc.implicit_uses().size(); const int ImpUseIdx = ImpDefIdx + 1; MIB->tieOperands(ImpDefIdx, ImpUseIdx); MachineInstr *SetOff = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_OFF)); finalizeBundle(MBB, SetOn->getIterator(), std::next(SetOff->getIterator())); MI.eraseFromParent(); break; } case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V1: case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V2: case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V3: case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V4: case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V5: case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V8: case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V9: case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V10: case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V11: case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V12: case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V16: case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V32: { assert(ST.useVGPRIndexMode()); Register Dst = MI.getOperand(0).getReg(); Register VecReg = MI.getOperand(1).getReg(); bool IsUndef = MI.getOperand(1).isUndef(); Register Idx = MI.getOperand(2).getReg(); Register SubReg = MI.getOperand(3).getImm(); MachineInstr *SetOn = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_ON)) .addReg(Idx) .addImm(AMDGPU::VGPRIndexMode::SRC0_ENABLE); SetOn->getOperand(3).setIsUndef(); BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_indirect_read)) .addDef(Dst) .addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef) .addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0)); MachineInstr *SetOff = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_OFF)); finalizeBundle(MBB, SetOn->getIterator(), std::next(SetOff->getIterator())); MI.eraseFromParent(); break; } case AMDGPU::SI_PC_ADD_REL_OFFSET: { MachineFunction &MF = *MBB.getParent(); Register Reg = MI.getOperand(0).getReg(); Register RegLo = RI.getSubReg(Reg, AMDGPU::sub0); Register RegHi = RI.getSubReg(Reg, AMDGPU::sub1); MachineOperand OpLo = MI.getOperand(1); MachineOperand OpHi = MI.getOperand(2); // Create a bundle so these instructions won't be re-ordered by the // post-RA scheduler. MIBundleBuilder Bundler(MBB, MI); Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg)); // What we want here is an offset from the value returned by s_getpc (which // is the address of the s_add_u32 instruction) to the global variable, but // since the encoding of $symbol starts 4 bytes after the start of the // s_add_u32 instruction, we end up with an offset that is 4 bytes too // small. This requires us to add 4 to the global variable offset in order // to compute the correct address. Similarly for the s_addc_u32 instruction, // the encoding of $symbol starts 12 bytes after the start of the s_add_u32 // instruction. int64_t Adjust = 0; if (ST.hasGetPCZeroExtension()) { // Fix up hardware that does not sign-extend the 48-bit PC value by // inserting: s_sext_i32_i16 reghi, reghi Bundler.append( BuildMI(MF, DL, get(AMDGPU::S_SEXT_I32_I16), RegHi).addReg(RegHi)); Adjust += 4; } if (OpLo.isGlobal()) OpLo.setOffset(OpLo.getOffset() + Adjust + 4); Bundler.append( BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo).addReg(RegLo).add(OpLo)); if (OpHi.isGlobal()) OpHi.setOffset(OpHi.getOffset() + Adjust + 12); Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi) .addReg(RegHi) .add(OpHi)); finalizeBundle(MBB, Bundler.begin()); MI.eraseFromParent(); break; } case AMDGPU::ENTER_STRICT_WWM: { // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when // Whole Wave Mode is entered. MI.setDesc(get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32 : AMDGPU::S_OR_SAVEEXEC_B64)); break; } case AMDGPU::ENTER_STRICT_WQM: { // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when // STRICT_WQM is entered. const unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; const unsigned WQMOp = ST.isWave32() ? AMDGPU::S_WQM_B32 : AMDGPU::S_WQM_B64; const unsigned MovOp = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; BuildMI(MBB, MI, DL, get(MovOp), MI.getOperand(0).getReg()).addReg(Exec); BuildMI(MBB, MI, DL, get(WQMOp), Exec).addReg(Exec); MI.eraseFromParent(); break; } case AMDGPU::EXIT_STRICT_WWM: case AMDGPU::EXIT_STRICT_WQM: { // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when // WWM/STICT_WQM is exited. MI.setDesc(get(ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64)); break; } case AMDGPU::ENTER_PSEUDO_WM: case AMDGPU::EXIT_PSEUDO_WM: { // These do nothing. MI.eraseFromParent(); break; } case AMDGPU::SI_RETURN: { const MachineFunction *MF = MBB.getParent(); const GCNSubtarget &ST = MF->getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); // Hiding the return address use with SI_RETURN may lead to extra kills in // the function and missing live-ins. We are fine in practice because callee // saved register handling ensures the register value is restored before // RET, but we need the undef flag here to appease the MachineVerifier // liveness checks. MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, get(AMDGPU::S_SETPC_B64_return)) .addReg(TRI->getReturnAddressReg(*MF), RegState::Undef); MIB.copyImplicitOps(MI); MI.eraseFromParent(); break; } case AMDGPU::S_MUL_U64_U32_PSEUDO: case AMDGPU::S_MUL_I64_I32_PSEUDO: MI.setDesc(get(AMDGPU::S_MUL_U64)); break; case AMDGPU::S_GETPC_B64_pseudo: MI.setDesc(get(AMDGPU::S_GETPC_B64)); if (ST.hasGetPCZeroExtension()) { Register Dst = MI.getOperand(0).getReg(); Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1); // Fix up hardware that does not sign-extend the 48-bit PC value by // inserting: s_sext_i32_i16 dsthi, dsthi BuildMI(MBB, std::next(MI.getIterator()), DL, get(AMDGPU::S_SEXT_I32_I16), DstHi) .addReg(DstHi); } break; } return true; } void SIInstrInfo::reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register DestReg, unsigned SubIdx, const MachineInstr &Orig, const TargetRegisterInfo &RI) const { // Try shrinking the instruction to remat only the part needed for current // context. // TODO: Handle more cases. unsigned Opcode = Orig.getOpcode(); switch (Opcode) { case AMDGPU::S_LOAD_DWORDX16_IMM: case AMDGPU::S_LOAD_DWORDX8_IMM: { if (SubIdx != 0) break; if (I == MBB.end()) break; if (I->isBundled()) break; // Look for a single use of the register that is also a subreg. Register RegToFind = Orig.getOperand(0).getReg(); MachineOperand *UseMO = nullptr; for (auto &CandMO : I->operands()) { if (!CandMO.isReg() || CandMO.getReg() != RegToFind || CandMO.isDef()) continue; if (UseMO) { UseMO = nullptr; break; } UseMO = &CandMO; } if (!UseMO || UseMO->getSubReg() == AMDGPU::NoSubRegister) break; unsigned Offset = RI.getSubRegIdxOffset(UseMO->getSubReg()); unsigned SubregSize = RI.getSubRegIdxSize(UseMO->getSubReg()); MachineFunction *MF = MBB.getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); assert(MRI.use_nodbg_empty(DestReg) && "DestReg should have no users yet."); unsigned NewOpcode = -1; if (SubregSize == 256) NewOpcode = AMDGPU::S_LOAD_DWORDX8_IMM; else if (SubregSize == 128) NewOpcode = AMDGPU::S_LOAD_DWORDX4_IMM; else break; const MCInstrDesc &TID = get(NewOpcode); const TargetRegisterClass *NewRC = RI.getAllocatableClass(getRegClass(TID, 0, &RI, *MF)); MRI.setRegClass(DestReg, NewRC); UseMO->setReg(DestReg); UseMO->setSubReg(AMDGPU::NoSubRegister); // Use a smaller load with the desired size, possibly with updated offset. MachineInstr *MI = MF->CloneMachineInstr(&Orig); MI->setDesc(TID); MI->getOperand(0).setReg(DestReg); MI->getOperand(0).setSubReg(AMDGPU::NoSubRegister); if (Offset) { MachineOperand *OffsetMO = getNamedOperand(*MI, AMDGPU::OpName::offset); int64_t FinalOffset = OffsetMO->getImm() + Offset / 8; OffsetMO->setImm(FinalOffset); } SmallVector NewMMOs; for (const MachineMemOperand *MemOp : Orig.memoperands()) NewMMOs.push_back(MF->getMachineMemOperand(MemOp, MemOp->getPointerInfo(), SubregSize / 8)); MI->setMemRefs(*MF, NewMMOs); MBB.insert(I, MI); return; } default: break; } TargetInstrInfo::reMaterialize(MBB, I, DestReg, SubIdx, Orig, RI); } std::pair SIInstrInfo::expandMovDPP64(MachineInstr &MI) const { assert (MI.getOpcode() == AMDGPU::V_MOV_B64_DPP_PSEUDO); if (ST.hasMovB64() && AMDGPU::isLegalDPALU_DPPControl( getNamedOperand(MI, AMDGPU::OpName::dpp_ctrl)->getImm())) { MI.setDesc(get(AMDGPU::V_MOV_B64_dpp)); return std::pair(&MI, nullptr); } MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MBB.findDebugLoc(MI); MachineFunction *MF = MBB.getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); Register Dst = MI.getOperand(0).getReg(); unsigned Part = 0; MachineInstr *Split[2]; for (auto Sub : { AMDGPU::sub0, AMDGPU::sub1 }) { auto MovDPP = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_dpp)); if (Dst.isPhysical()) { MovDPP.addDef(RI.getSubReg(Dst, Sub)); } else { assert(MRI.isSSA()); auto Tmp = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); MovDPP.addDef(Tmp); } for (unsigned I = 1; I <= 2; ++I) { // old and src operands. const MachineOperand &SrcOp = MI.getOperand(I); assert(!SrcOp.isFPImm()); if (SrcOp.isImm()) { APInt Imm(64, SrcOp.getImm()); Imm.ashrInPlace(Part * 32); MovDPP.addImm(Imm.getLoBits(32).getZExtValue()); } else { assert(SrcOp.isReg()); Register Src = SrcOp.getReg(); if (Src.isPhysical()) MovDPP.addReg(RI.getSubReg(Src, Sub)); else MovDPP.addReg(Src, SrcOp.isUndef() ? RegState::Undef : 0, Sub); } } for (const MachineOperand &MO : llvm::drop_begin(MI.explicit_operands(), 3)) MovDPP.addImm(MO.getImm()); Split[Part] = MovDPP; ++Part; } if (Dst.isVirtual()) BuildMI(MBB, MI, DL, get(AMDGPU::REG_SEQUENCE), Dst) .addReg(Split[0]->getOperand(0).getReg()) .addImm(AMDGPU::sub0) .addReg(Split[1]->getOperand(0).getReg()) .addImm(AMDGPU::sub1); MI.eraseFromParent(); return std::pair(Split[0], Split[1]); } std::optional SIInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { if (MI.getOpcode() == AMDGPU::WWM_COPY) return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; return std::nullopt; } bool SIInstrInfo::swapSourceModifiers(MachineInstr &MI, MachineOperand &Src0, unsigned Src0OpName, MachineOperand &Src1, unsigned Src1OpName) const { MachineOperand *Src0Mods = getNamedOperand(MI, Src0OpName); if (!Src0Mods) return false; MachineOperand *Src1Mods = getNamedOperand(MI, Src1OpName); assert(Src1Mods && "All commutable instructions have both src0 and src1 modifiers"); int Src0ModsVal = Src0Mods->getImm(); int Src1ModsVal = Src1Mods->getImm(); Src1Mods->setImm(Src0ModsVal); Src0Mods->setImm(Src1ModsVal); return true; } static MachineInstr *swapRegAndNonRegOperand(MachineInstr &MI, MachineOperand &RegOp, MachineOperand &NonRegOp) { Register Reg = RegOp.getReg(); unsigned SubReg = RegOp.getSubReg(); bool IsKill = RegOp.isKill(); bool IsDead = RegOp.isDead(); bool IsUndef = RegOp.isUndef(); bool IsDebug = RegOp.isDebug(); if (NonRegOp.isImm()) RegOp.ChangeToImmediate(NonRegOp.getImm()); else if (NonRegOp.isFI()) RegOp.ChangeToFrameIndex(NonRegOp.getIndex()); else if (NonRegOp.isGlobal()) { RegOp.ChangeToGA(NonRegOp.getGlobal(), NonRegOp.getOffset(), NonRegOp.getTargetFlags()); } else return nullptr; // Make sure we don't reinterpret a subreg index in the target flags. RegOp.setTargetFlags(NonRegOp.getTargetFlags()); NonRegOp.ChangeToRegister(Reg, false, false, IsKill, IsDead, IsUndef, IsDebug); NonRegOp.setSubReg(SubReg); return &MI; } MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned Src0Idx, unsigned Src1Idx) const { assert(!NewMI && "this should never be used"); unsigned Opc = MI.getOpcode(); int CommutedOpcode = commuteOpcode(Opc); if (CommutedOpcode == -1) return nullptr; if (Src0Idx > Src1Idx) std::swap(Src0Idx, Src1Idx); assert(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0) == static_cast(Src0Idx) && AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) == static_cast(Src1Idx) && "inconsistency with findCommutedOpIndices"); MachineOperand &Src0 = MI.getOperand(Src0Idx); MachineOperand &Src1 = MI.getOperand(Src1Idx); MachineInstr *CommutedMI = nullptr; if (Src0.isReg() && Src1.isReg()) { if (isOperandLegal(MI, Src1Idx, &Src0)) { // Be sure to copy the source modifiers to the right place. CommutedMI = TargetInstrInfo::commuteInstructionImpl(MI, NewMI, Src0Idx, Src1Idx); } } else if (Src0.isReg() && !Src1.isReg()) { // src0 should always be able to support any operand type, so no need to // check operand legality. CommutedMI = swapRegAndNonRegOperand(MI, Src0, Src1); } else if (!Src0.isReg() && Src1.isReg()) { if (isOperandLegal(MI, Src1Idx, &Src0)) CommutedMI = swapRegAndNonRegOperand(MI, Src1, Src0); } else { // FIXME: Found two non registers to commute. This does happen. return nullptr; } if (CommutedMI) { swapSourceModifiers(MI, Src0, AMDGPU::OpName::src0_modifiers, Src1, AMDGPU::OpName::src1_modifiers); CommutedMI->setDesc(get(CommutedOpcode)); } return CommutedMI; } // This needs to be implemented because the source modifiers may be inserted // between the true commutable operands, and the base // TargetInstrInfo::commuteInstruction uses it. bool SIInstrInfo::findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx0, unsigned &SrcOpIdx1) const { return findCommutedOpIndices(MI.getDesc(), SrcOpIdx0, SrcOpIdx1); } bool SIInstrInfo::findCommutedOpIndices(const MCInstrDesc &Desc, unsigned &SrcOpIdx0, unsigned &SrcOpIdx1) const { if (!Desc.isCommutable()) return false; unsigned Opc = Desc.getOpcode(); int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); if (Src0Idx == -1) return false; int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); if (Src1Idx == -1) return false; return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx); } bool SIInstrInfo::isBranchOffsetInRange(unsigned BranchOp, int64_t BrOffset) const { // BranchRelaxation should never have to check s_setpc_b64 because its dest // block is unanalyzable. assert(BranchOp != AMDGPU::S_SETPC_B64); // Convert to dwords. BrOffset /= 4; // The branch instructions do PC += signext(SIMM16 * 4) + 4, so the offset is // from the next instruction. BrOffset -= 1; return isIntN(BranchOffsetBits, BrOffset); } MachineBasicBlock * SIInstrInfo::getBranchDestBlock(const MachineInstr &MI) const { return MI.getOperand(0).getMBB(); } bool SIInstrInfo::hasDivergentBranch(const MachineBasicBlock *MBB) const { for (const MachineInstr &MI : MBB->terminators()) { if (MI.getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO || MI.getOpcode() == AMDGPU::SI_IF || MI.getOpcode() == AMDGPU::SI_ELSE || MI.getOpcode() == AMDGPU::SI_LOOP) return true; } return false; } void SIInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB, MachineBasicBlock &DestBB, MachineBasicBlock &RestoreBB, const DebugLoc &DL, int64_t BrOffset, RegScavenger *RS) const { assert(RS && "RegScavenger required for long branching"); assert(MBB.empty() && "new block should be inserted for expanding unconditional branch"); assert(MBB.pred_size() == 1); assert(RestoreBB.empty() && "restore block should be inserted for restoring clobbered registers"); MachineFunction *MF = MBB.getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); const SIMachineFunctionInfo *MFI = MF->getInfo(); // FIXME: Virtual register workaround for RegScavenger not working with empty // blocks. Register PCReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); auto I = MBB.end(); // We need to compute the offset relative to the instruction immediately after // s_getpc_b64. Insert pc arithmetic code before last terminator. MachineInstr *GetPC = BuildMI(MBB, I, DL, get(AMDGPU::S_GETPC_B64), PCReg); auto &MCCtx = MF->getContext(); MCSymbol *PostGetPCLabel = MCCtx.createTempSymbol("post_getpc", /*AlwaysAddSuffix=*/true); GetPC->setPostInstrSymbol(*MF, PostGetPCLabel); MCSymbol *OffsetLo = MCCtx.createTempSymbol("offset_lo", /*AlwaysAddSuffix=*/true); MCSymbol *OffsetHi = MCCtx.createTempSymbol("offset_hi", /*AlwaysAddSuffix=*/true); BuildMI(MBB, I, DL, get(AMDGPU::S_ADD_U32)) .addReg(PCReg, RegState::Define, AMDGPU::sub0) .addReg(PCReg, 0, AMDGPU::sub0) .addSym(OffsetLo, MO_FAR_BRANCH_OFFSET); BuildMI(MBB, I, DL, get(AMDGPU::S_ADDC_U32)) .addReg(PCReg, RegState::Define, AMDGPU::sub1) .addReg(PCReg, 0, AMDGPU::sub1) .addSym(OffsetHi, MO_FAR_BRANCH_OFFSET); // Insert the indirect branch after the other terminator. BuildMI(&MBB, DL, get(AMDGPU::S_SETPC_B64)) .addReg(PCReg); // If a spill is needed for the pc register pair, we need to insert a spill // restore block right before the destination block, and insert a short branch // into the old destination block's fallthrough predecessor. // e.g.: // // s_cbranch_scc0 skip_long_branch: // // long_branch_bb: // spill s[8:9] // s_getpc_b64 s[8:9] // s_add_u32 s8, s8, restore_bb // s_addc_u32 s9, s9, 0 // s_setpc_b64 s[8:9] // // skip_long_branch: // foo; // // ..... // // dest_bb_fallthrough_predecessor: // bar; // s_branch dest_bb // // restore_bb: // restore s[8:9] // fallthrough dest_bb /// // dest_bb: // buzz; Register LongBranchReservedReg = MFI->getLongBranchReservedReg(); Register Scav; // If we've previously reserved a register for long branches // avoid running the scavenger and just use those registers if (LongBranchReservedReg) { RS->enterBasicBlock(MBB); Scav = LongBranchReservedReg; } else { RS->enterBasicBlockEnd(MBB); Scav = RS->scavengeRegisterBackwards( AMDGPU::SReg_64RegClass, MachineBasicBlock::iterator(GetPC), /* RestoreAfter */ false, 0, /* AllowSpill */ false); } if (Scav) { RS->setRegUsed(Scav); MRI.replaceRegWith(PCReg, Scav); MRI.clearVirtRegs(); } else { // As SGPR needs VGPR to be spilled, we reuse the slot of temporary VGPR for // SGPR spill. const GCNSubtarget &ST = MF->getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); TRI->spillEmergencySGPR(GetPC, RestoreBB, AMDGPU::SGPR0_SGPR1, RS); MRI.replaceRegWith(PCReg, AMDGPU::SGPR0_SGPR1); MRI.clearVirtRegs(); } MCSymbol *DestLabel = Scav ? DestBB.getSymbol() : RestoreBB.getSymbol(); // Now, the distance could be defined. auto *Offset = MCBinaryExpr::createSub( MCSymbolRefExpr::create(DestLabel, MCCtx), MCSymbolRefExpr::create(PostGetPCLabel, MCCtx), MCCtx); // Add offset assignments. auto *Mask = MCConstantExpr::create(0xFFFFFFFFULL, MCCtx); OffsetLo->setVariableValue(MCBinaryExpr::createAnd(Offset, Mask, MCCtx)); auto *ShAmt = MCConstantExpr::create(32, MCCtx); OffsetHi->setVariableValue(MCBinaryExpr::createAShr(Offset, ShAmt, MCCtx)); } unsigned SIInstrInfo::getBranchOpcode(SIInstrInfo::BranchPredicate Cond) { switch (Cond) { case SIInstrInfo::SCC_TRUE: return AMDGPU::S_CBRANCH_SCC1; case SIInstrInfo::SCC_FALSE: return AMDGPU::S_CBRANCH_SCC0; case SIInstrInfo::VCCNZ: return AMDGPU::S_CBRANCH_VCCNZ; case SIInstrInfo::VCCZ: return AMDGPU::S_CBRANCH_VCCZ; case SIInstrInfo::EXECNZ: return AMDGPU::S_CBRANCH_EXECNZ; case SIInstrInfo::EXECZ: return AMDGPU::S_CBRANCH_EXECZ; default: llvm_unreachable("invalid branch predicate"); } } SIInstrInfo::BranchPredicate SIInstrInfo::getBranchPredicate(unsigned Opcode) { switch (Opcode) { case AMDGPU::S_CBRANCH_SCC0: return SCC_FALSE; case AMDGPU::S_CBRANCH_SCC1: return SCC_TRUE; case AMDGPU::S_CBRANCH_VCCNZ: return VCCNZ; case AMDGPU::S_CBRANCH_VCCZ: return VCCZ; case AMDGPU::S_CBRANCH_EXECNZ: return EXECNZ; case AMDGPU::S_CBRANCH_EXECZ: return EXECZ; default: return INVALID_BR; } } bool SIInstrInfo::analyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { if (I->getOpcode() == AMDGPU::S_BRANCH) { // Unconditional Branch TBB = I->getOperand(0).getMBB(); return false; } MachineBasicBlock *CondBB = nullptr; if (I->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) { CondBB = I->getOperand(1).getMBB(); Cond.push_back(I->getOperand(0)); } else { BranchPredicate Pred = getBranchPredicate(I->getOpcode()); if (Pred == INVALID_BR) return true; CondBB = I->getOperand(0).getMBB(); Cond.push_back(MachineOperand::CreateImm(Pred)); Cond.push_back(I->getOperand(1)); // Save the branch register. } ++I; if (I == MBB.end()) { // Conditional branch followed by fall-through. TBB = CondBB; return false; } if (I->getOpcode() == AMDGPU::S_BRANCH) { TBB = CondBB; FBB = I->getOperand(0).getMBB(); return false; } return true; } bool SIInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { MachineBasicBlock::iterator I = MBB.getFirstTerminator(); auto E = MBB.end(); if (I == E) return false; // Skip over the instructions that are artificially terminators for special // exec management. while (I != E && !I->isBranch() && !I->isReturn()) { switch (I->getOpcode()) { case AMDGPU::S_MOV_B64_term: case AMDGPU::S_XOR_B64_term: case AMDGPU::S_OR_B64_term: case AMDGPU::S_ANDN2_B64_term: case AMDGPU::S_AND_B64_term: case AMDGPU::S_AND_SAVEEXEC_B64_term: case AMDGPU::S_MOV_B32_term: case AMDGPU::S_XOR_B32_term: case AMDGPU::S_OR_B32_term: case AMDGPU::S_ANDN2_B32_term: case AMDGPU::S_AND_B32_term: case AMDGPU::S_AND_SAVEEXEC_B32_term: break; case AMDGPU::SI_IF: case AMDGPU::SI_ELSE: case AMDGPU::SI_KILL_I1_TERMINATOR: case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: // FIXME: It's messy that these need to be considered here at all. return true; default: llvm_unreachable("unexpected non-branch terminator inst"); } ++I; } if (I == E) return false; return analyzeBranchImpl(MBB, I, TBB, FBB, Cond, AllowModify); } unsigned SIInstrInfo::removeBranch(MachineBasicBlock &MBB, int *BytesRemoved) const { unsigned Count = 0; unsigned RemovedSize = 0; for (MachineInstr &MI : llvm::make_early_inc_range(MBB.terminators())) { // Skip over artificial terminators when removing instructions. if (MI.isBranch() || MI.isReturn()) { RemovedSize += getInstSizeInBytes(MI); MI.eraseFromParent(); ++Count; } } if (BytesRemoved) *BytesRemoved = RemovedSize; return Count; } // Copy the flags onto the implicit condition register operand. static void preserveCondRegFlags(MachineOperand &CondReg, const MachineOperand &OrigCond) { CondReg.setIsUndef(OrigCond.isUndef()); CondReg.setIsKill(OrigCond.isKill()); } unsigned SIInstrInfo::insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef Cond, const DebugLoc &DL, int *BytesAdded) const { if (!FBB && Cond.empty()) { BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH)) .addMBB(TBB); if (BytesAdded) *BytesAdded = ST.hasOffset3fBug() ? 8 : 4; return 1; } if(Cond.size() == 1 && Cond[0].isReg()) { BuildMI(&MBB, DL, get(AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO)) .add(Cond[0]) .addMBB(TBB); return 1; } assert(TBB && Cond[0].isImm()); unsigned Opcode = getBranchOpcode(static_cast(Cond[0].getImm())); if (!FBB) { MachineInstr *CondBr = BuildMI(&MBB, DL, get(Opcode)) .addMBB(TBB); // Copy the flags onto the implicit condition register operand. preserveCondRegFlags(CondBr->getOperand(1), Cond[1]); fixImplicitOperands(*CondBr); if (BytesAdded) *BytesAdded = ST.hasOffset3fBug() ? 8 : 4; return 1; } assert(TBB && FBB); MachineInstr *CondBr = BuildMI(&MBB, DL, get(Opcode)) .addMBB(TBB); fixImplicitOperands(*CondBr); BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH)) .addMBB(FBB); MachineOperand &CondReg = CondBr->getOperand(1); CondReg.setIsUndef(Cond[1].isUndef()); CondReg.setIsKill(Cond[1].isKill()); if (BytesAdded) *BytesAdded = ST.hasOffset3fBug() ? 16 : 8; return 2; } bool SIInstrInfo::reverseBranchCondition( SmallVectorImpl &Cond) const { if (Cond.size() != 2) { return true; } if (Cond[0].isImm()) { Cond[0].setImm(-Cond[0].getImm()); return false; } return true; } bool SIInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, ArrayRef Cond, Register DstReg, Register TrueReg, Register FalseReg, int &CondCycles, int &TrueCycles, int &FalseCycles) const { switch (Cond[0].getImm()) { case VCCNZ: case VCCZ: { const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const TargetRegisterClass *RC = MRI.getRegClass(TrueReg); if (MRI.getRegClass(FalseReg) != RC) return false; int NumInsts = AMDGPU::getRegBitWidth(*RC) / 32; CondCycles = TrueCycles = FalseCycles = NumInsts; // ??? // Limit to equal cost for branch vs. N v_cndmask_b32s. return RI.hasVGPRs(RC) && NumInsts <= 6; } case SCC_TRUE: case SCC_FALSE: { // FIXME: We could insert for VGPRs if we could replace the original compare // with a vector one. const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const TargetRegisterClass *RC = MRI.getRegClass(TrueReg); if (MRI.getRegClass(FalseReg) != RC) return false; int NumInsts = AMDGPU::getRegBitWidth(*RC) / 32; // Multiples of 8 can do s_cselect_b64 if (NumInsts % 2 == 0) NumInsts /= 2; CondCycles = TrueCycles = FalseCycles = NumInsts; // ??? return RI.isSGPRClass(RC); } default: return false; } } void SIInstrInfo::insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register DstReg, ArrayRef Cond, Register TrueReg, Register FalseReg) const { BranchPredicate Pred = static_cast(Cond[0].getImm()); if (Pred == VCCZ || Pred == SCC_FALSE) { Pred = static_cast(-Pred); std::swap(TrueReg, FalseReg); } MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const TargetRegisterClass *DstRC = MRI.getRegClass(DstReg); unsigned DstSize = RI.getRegSizeInBits(*DstRC); if (DstSize == 32) { MachineInstr *Select; if (Pred == SCC_TRUE) { Select = BuildMI(MBB, I, DL, get(AMDGPU::S_CSELECT_B32), DstReg) .addReg(TrueReg) .addReg(FalseReg); } else { // Instruction's operands are backwards from what is expected. Select = BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e32), DstReg) .addReg(FalseReg) .addReg(TrueReg); } preserveCondRegFlags(Select->getOperand(3), Cond[1]); return; } if (DstSize == 64 && Pred == SCC_TRUE) { MachineInstr *Select = BuildMI(MBB, I, DL, get(AMDGPU::S_CSELECT_B64), DstReg) .addReg(TrueReg) .addReg(FalseReg); preserveCondRegFlags(Select->getOperand(3), Cond[1]); return; } static const int16_t Sub0_15[] = { AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11, AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15, }; static const int16_t Sub0_15_64[] = { AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, AMDGPU::sub4_sub5, AMDGPU::sub6_sub7, AMDGPU::sub8_sub9, AMDGPU::sub10_sub11, AMDGPU::sub12_sub13, AMDGPU::sub14_sub15, }; unsigned SelOp = AMDGPU::V_CNDMASK_B32_e32; const TargetRegisterClass *EltRC = &AMDGPU::VGPR_32RegClass; const int16_t *SubIndices = Sub0_15; int NElts = DstSize / 32; // 64-bit select is only available for SALU. // TODO: Split 96-bit into 64-bit and 32-bit, not 3x 32-bit. if (Pred == SCC_TRUE) { if (NElts % 2) { SelOp = AMDGPU::S_CSELECT_B32; EltRC = &AMDGPU::SGPR_32RegClass; } else { SelOp = AMDGPU::S_CSELECT_B64; EltRC = &AMDGPU::SGPR_64RegClass; SubIndices = Sub0_15_64; NElts /= 2; } } MachineInstrBuilder MIB = BuildMI( MBB, I, DL, get(AMDGPU::REG_SEQUENCE), DstReg); I = MIB->getIterator(); SmallVector Regs; for (int Idx = 0; Idx != NElts; ++Idx) { Register DstElt = MRI.createVirtualRegister(EltRC); Regs.push_back(DstElt); unsigned SubIdx = SubIndices[Idx]; MachineInstr *Select; if (SelOp == AMDGPU::V_CNDMASK_B32_e32) { Select = BuildMI(MBB, I, DL, get(SelOp), DstElt) .addReg(FalseReg, 0, SubIdx) .addReg(TrueReg, 0, SubIdx); } else { Select = BuildMI(MBB, I, DL, get(SelOp), DstElt) .addReg(TrueReg, 0, SubIdx) .addReg(FalseReg, 0, SubIdx); } preserveCondRegFlags(Select->getOperand(3), Cond[1]); fixImplicitOperands(*Select); MIB.addReg(DstElt) .addImm(SubIdx); } } bool SIInstrInfo::isFoldableCopy(const MachineInstr &MI) { switch (MI.getOpcode()) { case AMDGPU::V_MOV_B32_e32: case AMDGPU::V_MOV_B32_e64: case AMDGPU::V_MOV_B64_PSEUDO: case AMDGPU::V_MOV_B64_e32: case AMDGPU::V_MOV_B64_e64: case AMDGPU::S_MOV_B32: case AMDGPU::S_MOV_B64: case AMDGPU::S_MOV_B64_IMM_PSEUDO: case AMDGPU::COPY: case AMDGPU::WWM_COPY: case AMDGPU::V_ACCVGPR_WRITE_B32_e64: case AMDGPU::V_ACCVGPR_READ_B32_e64: case AMDGPU::V_ACCVGPR_MOV_B32: return true; default: return false; } } static constexpr unsigned ModifierOpNames[] = { AMDGPU::OpName::src0_modifiers, AMDGPU::OpName::src1_modifiers, AMDGPU::OpName::src2_modifiers, AMDGPU::OpName::clamp, AMDGPU::OpName::omod, AMDGPU::OpName::op_sel}; void SIInstrInfo::removeModOperands(MachineInstr &MI) const { unsigned Opc = MI.getOpcode(); for (unsigned Name : reverse(ModifierOpNames)) { int Idx = AMDGPU::getNamedOperandIdx(Opc, Name); if (Idx >= 0) MI.removeOperand(Idx); } } bool SIInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg, MachineRegisterInfo *MRI) const { if (!MRI->hasOneNonDBGUse(Reg)) return false; switch (DefMI.getOpcode()) { default: return false; case AMDGPU::V_MOV_B64_e32: case AMDGPU::S_MOV_B64: case AMDGPU::V_MOV_B64_PSEUDO: case AMDGPU::S_MOV_B64_IMM_PSEUDO: case AMDGPU::V_MOV_B32_e32: case AMDGPU::S_MOV_B32: case AMDGPU::V_ACCVGPR_WRITE_B32_e64: break; } const MachineOperand *ImmOp = getNamedOperand(DefMI, AMDGPU::OpName::src0); assert(ImmOp); // FIXME: We could handle FrameIndex values here. if (!ImmOp->isImm()) return false; auto getImmFor = [ImmOp](const MachineOperand &UseOp) -> int64_t { int64_t Imm = ImmOp->getImm(); switch (UseOp.getSubReg()) { default: return Imm; case AMDGPU::sub0: return Lo_32(Imm); case AMDGPU::sub1: return Hi_32(Imm); case AMDGPU::lo16: return APInt(16, Imm).getSExtValue(); case AMDGPU::hi16: return APInt(32, Imm).ashr(16).getSExtValue(); case AMDGPU::sub1_lo16: return APInt(16, Hi_32(Imm)).getSExtValue(); case AMDGPU::sub1_hi16: return APInt(32, Hi_32(Imm)).ashr(16).getSExtValue(); } }; assert(!DefMI.getOperand(0).getSubReg() && "Expected SSA form"); unsigned Opc = UseMI.getOpcode(); if (Opc == AMDGPU::COPY) { assert(!UseMI.getOperand(0).getSubReg() && "Expected SSA form"); Register DstReg = UseMI.getOperand(0).getReg(); unsigned OpSize = getOpSize(UseMI, 0); bool Is16Bit = OpSize == 2; bool Is64Bit = OpSize == 8; bool isVGPRCopy = RI.isVGPR(*MRI, DstReg); unsigned NewOpc = isVGPRCopy ? Is64Bit ? AMDGPU::V_MOV_B64_PSEUDO : AMDGPU::V_MOV_B32_e32 : Is64Bit ? AMDGPU::S_MOV_B64_IMM_PSEUDO : AMDGPU::S_MOV_B32; APInt Imm(Is64Bit ? 64 : 32, getImmFor(UseMI.getOperand(1))); if (RI.isAGPR(*MRI, DstReg)) { if (Is64Bit || !isInlineConstant(Imm)) return false; NewOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64; } if (Is16Bit) { if (isVGPRCopy) return false; // Do not clobber vgpr_hi16 if (DstReg.isVirtual() && UseMI.getOperand(0).getSubReg() != AMDGPU::lo16) return false; UseMI.getOperand(0).setSubReg(0); if (DstReg.isPhysical()) { DstReg = RI.get32BitRegister(DstReg); UseMI.getOperand(0).setReg(DstReg); } assert(UseMI.getOperand(1).getReg().isVirtual()); } const MCInstrDesc &NewMCID = get(NewOpc); if (DstReg.isPhysical() && !RI.getRegClass(NewMCID.operands()[0].RegClass)->contains(DstReg)) return false; UseMI.setDesc(NewMCID); UseMI.getOperand(1).ChangeToImmediate(Imm.getSExtValue()); UseMI.addImplicitDefUseOperands(*UseMI.getParent()->getParent()); return true; } if (Opc == AMDGPU::V_MAD_F32_e64 || Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAD_F16_e64 || Opc == AMDGPU::V_MAC_F16_e64 || Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMA_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e64 || Opc == AMDGPU::V_FMAC_F16_t16_e64) { // Don't fold if we are using source or output modifiers. The new VOP2 // instructions don't have them. if (hasAnyModifiersSet(UseMI)) return false; // If this is a free constant, there's no reason to do this. // TODO: We could fold this here instead of letting SIFoldOperands do it // later. MachineOperand *Src0 = getNamedOperand(UseMI, AMDGPU::OpName::src0); // Any src operand can be used for the legality check. if (isInlineConstant(UseMI, *Src0, *ImmOp)) return false; bool IsF32 = Opc == AMDGPU::V_MAD_F32_e64 || Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64; bool IsFMA = Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMA_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e64 || Opc == AMDGPU::V_FMAC_F16_t16_e64; MachineOperand *Src1 = getNamedOperand(UseMI, AMDGPU::OpName::src1); MachineOperand *Src2 = getNamedOperand(UseMI, AMDGPU::OpName::src2); // Multiplied part is the constant: Use v_madmk_{f16, f32}. if ((Src0->isReg() && Src0->getReg() == Reg) || (Src1->isReg() && Src1->getReg() == Reg)) { MachineOperand *RegSrc = Src1->isReg() && Src1->getReg() == Reg ? Src0 : Src1; if (!RegSrc->isReg()) return false; if (RI.isSGPRClass(MRI->getRegClass(RegSrc->getReg())) && ST.getConstantBusLimit(Opc) < 2) return false; if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Src2->getReg()))) return false; // If src2 is also a literal constant then we have to choose which one to // fold. In general it is better to choose madak so that the other literal // can be materialized in an sgpr instead of a vgpr: // s_mov_b32 s0, literal // v_madak_f32 v0, s0, v0, literal // Instead of: // v_mov_b32 v1, literal // v_madmk_f32 v0, v0, literal, v1 MachineInstr *Def = MRI->getUniqueVRegDef(Src2->getReg()); if (Def && Def->isMoveImmediate() && !isInlineConstant(Def->getOperand(1))) return false; unsigned NewOpc = IsFMA ? (IsF32 ? AMDGPU::V_FMAMK_F32 : ST.hasTrue16BitInsts() ? AMDGPU::V_FMAMK_F16_t16 : AMDGPU::V_FMAMK_F16) : (IsF32 ? AMDGPU::V_MADMK_F32 : AMDGPU::V_MADMK_F16); if (pseudoToMCOpcode(NewOpc) == -1) return false; // V_FMAMK_F16_t16 takes VGPR_32_Lo128 operands, so the rewrite // would also require restricting their register classes. For now // just bail out. if (NewOpc == AMDGPU::V_FMAMK_F16_t16) return false; const int64_t Imm = getImmFor(RegSrc == Src1 ? *Src0 : *Src1); // FIXME: This would be a lot easier if we could return a new instruction // instead of having to modify in place. Register SrcReg = RegSrc->getReg(); unsigned SrcSubReg = RegSrc->getSubReg(); Src0->setReg(SrcReg); Src0->setSubReg(SrcSubReg); Src0->setIsKill(RegSrc->isKill()); if (Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_t16_e64 || Opc == AMDGPU::V_FMAC_F16_e64) UseMI.untieRegOperand( AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); Src1->ChangeToImmediate(Imm); removeModOperands(UseMI); UseMI.setDesc(get(NewOpc)); bool DeleteDef = MRI->use_nodbg_empty(Reg); if (DeleteDef) DefMI.eraseFromParent(); return true; } // Added part is the constant: Use v_madak_{f16, f32}. if (Src2->isReg() && Src2->getReg() == Reg) { if (ST.getConstantBusLimit(Opc) < 2) { // Not allowed to use constant bus for another operand. // We can however allow an inline immediate as src0. bool Src0Inlined = false; if (Src0->isReg()) { // Try to inline constant if possible. // If the Def moves immediate and the use is single // We are saving VGPR here. MachineInstr *Def = MRI->getUniqueVRegDef(Src0->getReg()); if (Def && Def->isMoveImmediate() && isInlineConstant(Def->getOperand(1)) && MRI->hasOneUse(Src0->getReg())) { Src0->ChangeToImmediate(Def->getOperand(1).getImm()); Src0Inlined = true; } else if (ST.getConstantBusLimit(Opc) <= 1 && RI.isSGPRReg(*MRI, Src0->getReg())) { return false; } // VGPR is okay as Src0 - fallthrough } if (Src1->isReg() && !Src0Inlined) { // We have one slot for inlinable constant so far - try to fill it MachineInstr *Def = MRI->getUniqueVRegDef(Src1->getReg()); if (Def && Def->isMoveImmediate() && isInlineConstant(Def->getOperand(1)) && MRI->hasOneUse(Src1->getReg()) && commuteInstruction(UseMI)) Src0->ChangeToImmediate(Def->getOperand(1).getImm()); else if (RI.isSGPRReg(*MRI, Src1->getReg())) return false; // VGPR is okay as Src1 - fallthrough } } unsigned NewOpc = IsFMA ? (IsF32 ? AMDGPU::V_FMAAK_F32 : ST.hasTrue16BitInsts() ? AMDGPU::V_FMAAK_F16_t16 : AMDGPU::V_FMAAK_F16) : (IsF32 ? AMDGPU::V_MADAK_F32 : AMDGPU::V_MADAK_F16); if (pseudoToMCOpcode(NewOpc) == -1) return false; // V_FMAAK_F16_t16 takes VGPR_32_Lo128 operands, so the rewrite // would also require restricting their register classes. For now // just bail out. if (NewOpc == AMDGPU::V_FMAAK_F16_t16) return false; // FIXME: This would be a lot easier if we could return a new instruction // instead of having to modify in place. if (Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_t16_e64 || Opc == AMDGPU::V_FMAC_F16_e64) UseMI.untieRegOperand( AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); // ChangingToImmediate adds Src2 back to the instruction. Src2->ChangeToImmediate(getImmFor(*Src2)); // These come before src2. removeModOperands(UseMI); UseMI.setDesc(get(NewOpc)); // It might happen that UseMI was commuted // and we now have SGPR as SRC1. If so 2 inlined // constant and SGPR are illegal. legalizeOperands(UseMI); bool DeleteDef = MRI->use_nodbg_empty(Reg); if (DeleteDef) DefMI.eraseFromParent(); return true; } } return false; } static bool memOpsHaveSameBaseOperands(ArrayRef BaseOps1, ArrayRef BaseOps2) { if (BaseOps1.size() != BaseOps2.size()) return false; for (size_t I = 0, E = BaseOps1.size(); I < E; ++I) { if (!BaseOps1[I]->isIdenticalTo(*BaseOps2[I])) return false; } return true; } static bool offsetsDoNotOverlap(int WidthA, int OffsetA, int WidthB, int OffsetB) { int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; return LowOffset + LowWidth <= HighOffset; } bool SIInstrInfo::checkInstOffsetsDoNotOverlap(const MachineInstr &MIa, const MachineInstr &MIb) const { SmallVector BaseOps0, BaseOps1; int64_t Offset0, Offset1; unsigned Dummy0, Dummy1; bool Offset0IsScalable, Offset1IsScalable; if (!getMemOperandsWithOffsetWidth(MIa, BaseOps0, Offset0, Offset0IsScalable, Dummy0, &RI) || !getMemOperandsWithOffsetWidth(MIb, BaseOps1, Offset1, Offset1IsScalable, Dummy1, &RI)) return false; if (!memOpsHaveSameBaseOperands(BaseOps0, BaseOps1)) return false; if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) { // FIXME: Handle ds_read2 / ds_write2. return false; } unsigned Width0 = MIa.memoperands().front()->getSize(); unsigned Width1 = MIb.memoperands().front()->getSize(); return offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1); } bool SIInstrInfo::areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, const MachineInstr &MIb) const { assert(MIa.mayLoadOrStore() && "MIa must load from or modify a memory location"); assert(MIb.mayLoadOrStore() && "MIb must load from or modify a memory location"); if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects()) return false; // XXX - Can we relax this between address spaces? if (MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) return false; if (isLDSDMA(MIa) || isLDSDMA(MIb)) return false; // TODO: Should we check the address space from the MachineMemOperand? That // would allow us to distinguish objects we know don't alias based on the // underlying address space, even if it was lowered to a different one, // e.g. private accesses lowered to use MUBUF instructions on a scratch // buffer. if (isDS(MIa)) { if (isDS(MIb)) return checkInstOffsetsDoNotOverlap(MIa, MIb); return !isFLAT(MIb) || isSegmentSpecificFLAT(MIb); } if (isMUBUF(MIa) || isMTBUF(MIa)) { if (isMUBUF(MIb) || isMTBUF(MIb)) return checkInstOffsetsDoNotOverlap(MIa, MIb); if (isFLAT(MIb)) return isFLATScratch(MIb); return !isSMRD(MIb); } if (isSMRD(MIa)) { if (isSMRD(MIb)) return checkInstOffsetsDoNotOverlap(MIa, MIb); if (isFLAT(MIb)) return isFLATScratch(MIb); return !isMUBUF(MIb) && !isMTBUF(MIb); } if (isFLAT(MIa)) { if (isFLAT(MIb)) { if ((isFLATScratch(MIa) && isFLATGlobal(MIb)) || (isFLATGlobal(MIa) && isFLATScratch(MIb))) return true; return checkInstOffsetsDoNotOverlap(MIa, MIb); } return false; } return false; } static bool getFoldableImm(Register Reg, const MachineRegisterInfo &MRI, int64_t &Imm, MachineInstr **DefMI = nullptr) { if (Reg.isPhysical()) return false; auto *Def = MRI.getUniqueVRegDef(Reg); if (Def && SIInstrInfo::isFoldableCopy(*Def) && Def->getOperand(1).isImm()) { Imm = Def->getOperand(1).getImm(); if (DefMI) *DefMI = Def; return true; } return false; } static bool getFoldableImm(const MachineOperand *MO, int64_t &Imm, MachineInstr **DefMI = nullptr) { if (!MO->isReg()) return false; const MachineFunction *MF = MO->getParent()->getParent()->getParent(); const MachineRegisterInfo &MRI = MF->getRegInfo(); return getFoldableImm(MO->getReg(), MRI, Imm, DefMI); } static void updateLiveVariables(LiveVariables *LV, MachineInstr &MI, MachineInstr &NewMI) { if (LV) { unsigned NumOps = MI.getNumOperands(); for (unsigned I = 1; I < NumOps; ++I) { MachineOperand &Op = MI.getOperand(I); if (Op.isReg() && Op.isKill()) LV->replaceKillInstruction(Op.getReg(), MI, NewMI); } } } MachineInstr *SIInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, LiveIntervals *LIS) const { MachineBasicBlock &MBB = *MI.getParent(); unsigned Opc = MI.getOpcode(); // Handle MFMA. int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(Opc); if (NewMFMAOpc != -1) { MachineInstrBuilder MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewMFMAOpc)); for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) MIB.add(MI.getOperand(I)); updateLiveVariables(LV, MI, *MIB); if (LIS) LIS->ReplaceMachineInstrInMaps(MI, *MIB); return MIB; } if (SIInstrInfo::isWMMA(MI)) { unsigned NewOpc = AMDGPU::mapWMMA2AddrTo3AddrOpcode(MI.getOpcode()); MachineInstrBuilder MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) .setMIFlags(MI.getFlags()); for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) MIB->addOperand(MI.getOperand(I)); updateLiveVariables(LV, MI, *MIB); if (LIS) LIS->ReplaceMachineInstrInMaps(MI, *MIB); return MIB; } assert(Opc != AMDGPU::V_FMAC_F16_t16_e32 && "V_FMAC_F16_t16_e32 is not supported and not expected to be present " "pre-RA"); // Handle MAC/FMAC. bool IsF16 = Opc == AMDGPU::V_MAC_F16_e32 || Opc == AMDGPU::V_MAC_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e32 || Opc == AMDGPU::V_FMAC_F16_e64 || Opc == AMDGPU::V_FMAC_F16_t16_e64; bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e32 || Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_LEGACY_F32_e32 || Opc == AMDGPU::V_FMAC_LEGACY_F32_e64 || Opc == AMDGPU::V_FMAC_F16_e32 || Opc == AMDGPU::V_FMAC_F16_e64 || Opc == AMDGPU::V_FMAC_F16_t16_e64 || Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64; bool IsF64 = Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64; bool IsLegacy = Opc == AMDGPU::V_MAC_LEGACY_F32_e32 || Opc == AMDGPU::V_MAC_LEGACY_F32_e64 || Opc == AMDGPU::V_FMAC_LEGACY_F32_e32 || Opc == AMDGPU::V_FMAC_LEGACY_F32_e64; bool Src0Literal = false; switch (Opc) { default: return nullptr; case AMDGPU::V_MAC_F16_e64: case AMDGPU::V_FMAC_F16_e64: case AMDGPU::V_FMAC_F16_t16_e64: case AMDGPU::V_MAC_F32_e64: case AMDGPU::V_MAC_LEGACY_F32_e64: case AMDGPU::V_FMAC_F32_e64: case AMDGPU::V_FMAC_LEGACY_F32_e64: case AMDGPU::V_FMAC_F64_e64: break; case AMDGPU::V_MAC_F16_e32: case AMDGPU::V_FMAC_F16_e32: case AMDGPU::V_MAC_F32_e32: case AMDGPU::V_MAC_LEGACY_F32_e32: case AMDGPU::V_FMAC_F32_e32: case AMDGPU::V_FMAC_LEGACY_F32_e32: case AMDGPU::V_FMAC_F64_e32: { int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); const MachineOperand *Src0 = &MI.getOperand(Src0Idx); if (!Src0->isReg() && !Src0->isImm()) return nullptr; if (Src0->isImm() && !isInlineConstant(MI, Src0Idx, *Src0)) Src0Literal = true; break; } } MachineInstrBuilder MIB; const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0); const MachineOperand *Src0Mods = getNamedOperand(MI, AMDGPU::OpName::src0_modifiers); const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1); const MachineOperand *Src1Mods = getNamedOperand(MI, AMDGPU::OpName::src1_modifiers); const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2); const MachineOperand *Src2Mods = getNamedOperand(MI, AMDGPU::OpName::src2_modifiers); const MachineOperand *Clamp = getNamedOperand(MI, AMDGPU::OpName::clamp); const MachineOperand *Omod = getNamedOperand(MI, AMDGPU::OpName::omod); const MachineOperand *OpSel = getNamedOperand(MI, AMDGPU::OpName::op_sel); if (!Src0Mods && !Src1Mods && !Src2Mods && !Clamp && !Omod && !IsF64 && !IsLegacy && // If we have an SGPR input, we will violate the constant bus restriction. (ST.getConstantBusLimit(Opc) > 1 || !Src0->isReg() || !RI.isSGPRReg(MBB.getParent()->getRegInfo(), Src0->getReg()))) { MachineInstr *DefMI; const auto killDef = [&]() -> void { const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); // The only user is the instruction which will be killed. Register DefReg = DefMI->getOperand(0).getReg(); if (!MRI.hasOneNonDBGUse(DefReg)) return; // We cannot just remove the DefMI here, calling pass will crash. DefMI->setDesc(get(AMDGPU::IMPLICIT_DEF)); for (unsigned I = DefMI->getNumOperands() - 1; I != 0; --I) DefMI->removeOperand(I); if (LV) LV->getVarInfo(DefReg).AliveBlocks.clear(); }; int64_t Imm; if (!Src0Literal && getFoldableImm(Src2, Imm, &DefMI)) { unsigned NewOpc = IsFMA ? (IsF16 ? (ST.hasTrue16BitInsts() ? AMDGPU::V_FMAAK_F16_t16 : AMDGPU::V_FMAAK_F16) : AMDGPU::V_FMAAK_F32) : (IsF16 ? AMDGPU::V_MADAK_F16 : AMDGPU::V_MADAK_F32); if (pseudoToMCOpcode(NewOpc) != -1) { MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) .add(*Dst) .add(*Src0) .add(*Src1) .addImm(Imm); updateLiveVariables(LV, MI, *MIB); if (LIS) LIS->ReplaceMachineInstrInMaps(MI, *MIB); killDef(); return MIB; } } unsigned NewOpc = IsFMA ? (IsF16 ? (ST.hasTrue16BitInsts() ? AMDGPU::V_FMAMK_F16_t16 : AMDGPU::V_FMAMK_F16) : AMDGPU::V_FMAMK_F32) : (IsF16 ? AMDGPU::V_MADMK_F16 : AMDGPU::V_MADMK_F32); if (!Src0Literal && getFoldableImm(Src1, Imm, &DefMI)) { if (pseudoToMCOpcode(NewOpc) != -1) { MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) .add(*Dst) .add(*Src0) .addImm(Imm) .add(*Src2); updateLiveVariables(LV, MI, *MIB); if (LIS) LIS->ReplaceMachineInstrInMaps(MI, *MIB); killDef(); return MIB; } } if (Src0Literal || getFoldableImm(Src0, Imm, &DefMI)) { if (Src0Literal) { Imm = Src0->getImm(); DefMI = nullptr; } if (pseudoToMCOpcode(NewOpc) != -1 && isOperandLegal( MI, AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::src0), Src1)) { MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) .add(*Dst) .add(*Src1) .addImm(Imm) .add(*Src2); updateLiveVariables(LV, MI, *MIB); if (LIS) LIS->ReplaceMachineInstrInMaps(MI, *MIB); if (DefMI) killDef(); return MIB; } } } // VOP2 mac/fmac with a literal operand cannot be converted to VOP3 mad/fma // if VOP3 does not allow a literal operand. if (Src0Literal && !ST.hasVOP3Literal()) return nullptr; unsigned NewOpc = IsFMA ? IsF16 ? AMDGPU::V_FMA_F16_gfx9_e64 : IsF64 ? AMDGPU::V_FMA_F64_e64 : IsLegacy ? AMDGPU::V_FMA_LEGACY_F32_e64 : AMDGPU::V_FMA_F32_e64 : IsF16 ? AMDGPU::V_MAD_F16_e64 : IsLegacy ? AMDGPU::V_MAD_LEGACY_F32_e64 : AMDGPU::V_MAD_F32_e64; if (pseudoToMCOpcode(NewOpc) == -1) return nullptr; MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) .add(*Dst) .addImm(Src0Mods ? Src0Mods->getImm() : 0) .add(*Src0) .addImm(Src1Mods ? Src1Mods->getImm() : 0) .add(*Src1) .addImm(Src2Mods ? Src2Mods->getImm() : 0) .add(*Src2) .addImm(Clamp ? Clamp->getImm() : 0) .addImm(Omod ? Omod->getImm() : 0); if (AMDGPU::hasNamedOperand(NewOpc, AMDGPU::OpName::op_sel)) MIB.addImm(OpSel ? OpSel->getImm() : 0); updateLiveVariables(LV, MI, *MIB); if (LIS) LIS->ReplaceMachineInstrInMaps(MI, *MIB); return MIB; } // It's not generally safe to move VALU instructions across these since it will // start using the register as a base index rather than directly. // XXX - Why isn't hasSideEffects sufficient for these? static bool changesVGPRIndexingMode(const MachineInstr &MI) { switch (MI.getOpcode()) { case AMDGPU::S_SET_GPR_IDX_ON: case AMDGPU::S_SET_GPR_IDX_MODE: case AMDGPU::S_SET_GPR_IDX_OFF: return true; default: return false; } } bool SIInstrInfo::isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const { // Skipping the check for SP writes in the base implementation. The reason it // was added was apparently due to compile time concerns. // // TODO: Do we really want this barrier? It triggers unnecessary hazard nops // but is probably avoidable. // Copied from base implementation. // Terminators and labels can't be scheduled around. if (MI.isTerminator() || MI.isPosition()) return true; // INLINEASM_BR can jump to another block if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) return true; if (MI.getOpcode() == AMDGPU::SCHED_BARRIER && MI.getOperand(0).getImm() == 0) return true; // Target-independent instructions do not have an implicit-use of EXEC, even // when they operate on VGPRs. Treating EXEC modifications as scheduling // boundaries prevents incorrect movements of such instructions. return MI.modifiesRegister(AMDGPU::EXEC, &RI) || MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 || MI.getOpcode() == AMDGPU::S_SETREG_B32 || MI.getOpcode() == AMDGPU::S_SETPRIO || changesVGPRIndexingMode(MI); } bool SIInstrInfo::isAlwaysGDS(uint16_t Opcode) const { return Opcode == AMDGPU::DS_ORDERED_COUNT || isGWS(Opcode); } bool SIInstrInfo::modifiesModeRegister(const MachineInstr &MI) { // Skip the full operand and register alias search modifiesRegister // does. There's only a handful of instructions that touch this, it's only an // implicit def, and doesn't alias any other registers. return is_contained(MI.getDesc().implicit_defs(), AMDGPU::MODE); } bool SIInstrInfo::hasUnwantedEffectsWhenEXECEmpty(const MachineInstr &MI) const { unsigned Opcode = MI.getOpcode(); if (MI.mayStore() && isSMRD(MI)) return true; // scalar store or atomic // This will terminate the function when other lanes may need to continue. if (MI.isReturn()) return true; // These instructions cause shader I/O that may cause hardware lockups // when executed with an empty EXEC mask. // // Note: exp with VM = DONE = 0 is automatically skipped by hardware when // EXEC = 0, but checking for that case here seems not worth it // given the typical code patterns. if (Opcode == AMDGPU::S_SENDMSG || Opcode == AMDGPU::S_SENDMSGHALT || isEXP(Opcode) || Opcode == AMDGPU::DS_ORDERED_COUNT || Opcode == AMDGPU::S_TRAP || Opcode == AMDGPU::DS_GWS_INIT || Opcode == AMDGPU::DS_GWS_BARRIER) return true; if (MI.isCall() || MI.isInlineAsm()) return true; // conservative assumption // A mode change is a scalar operation that influences vector instructions. if (modifiesModeRegister(MI)) return true; // These are like SALU instructions in terms of effects, so it's questionable // whether we should return true for those. // // However, executing them with EXEC = 0 causes them to operate on undefined // data, which we avoid by returning true here. if (Opcode == AMDGPU::V_READFIRSTLANE_B32 || Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32 || Opcode == AMDGPU::SI_RESTORE_S32_FROM_VGPR || Opcode == AMDGPU::SI_SPILL_S32_TO_VGPR) return true; return false; } bool SIInstrInfo::mayReadEXEC(const MachineRegisterInfo &MRI, const MachineInstr &MI) const { if (MI.isMetaInstruction()) return false; // This won't read exec if this is an SGPR->SGPR copy. if (MI.isCopyLike()) { if (!RI.isSGPRReg(MRI, MI.getOperand(0).getReg())) return true; // Make sure this isn't copying exec as a normal operand return MI.readsRegister(AMDGPU::EXEC, &RI); } // Make a conservative assumption about the callee. if (MI.isCall()) return true; // Be conservative with any unhandled generic opcodes. if (!isTargetSpecificOpcode(MI.getOpcode())) return true; return !isSALU(MI) || MI.readsRegister(AMDGPU::EXEC, &RI); } bool SIInstrInfo::isInlineConstant(const APInt &Imm) const { switch (Imm.getBitWidth()) { case 1: // This likely will be a condition code mask. return true; case 32: return AMDGPU::isInlinableLiteral32(Imm.getSExtValue(), ST.hasInv2PiInlineImm()); case 64: return AMDGPU::isInlinableLiteral64(Imm.getSExtValue(), ST.hasInv2PiInlineImm()); case 16: return ST.has16BitInsts() && AMDGPU::isInlinableLiteral16(Imm.getSExtValue(), ST.hasInv2PiInlineImm()); default: llvm_unreachable("invalid bitwidth"); } } bool SIInstrInfo::isInlineConstant(const MachineOperand &MO, uint8_t OperandType) const { assert(!MO.isReg() && "isInlineConstant called on register operand!"); if (!MO.isImm()) return false; // MachineOperand provides no way to tell the true operand size, since it only // records a 64-bit value. We need to know the size to determine if a 32-bit // floating point immediate bit pattern is legal for an integer immediate. It // would be for any 32-bit integer operand, but would not be for a 64-bit one. int64_t Imm = MO.getImm(); switch (OperandType) { case AMDGPU::OPERAND_REG_IMM_INT32: case AMDGPU::OPERAND_REG_IMM_FP32: case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED: case AMDGPU::OPERAND_REG_INLINE_C_INT32: case AMDGPU::OPERAND_REG_INLINE_C_FP32: case AMDGPU::OPERAND_REG_IMM_V2FP32: case AMDGPU::OPERAND_REG_INLINE_C_V2FP32: case AMDGPU::OPERAND_REG_IMM_V2INT32: case AMDGPU::OPERAND_REG_INLINE_C_V2INT32: case AMDGPU::OPERAND_REG_INLINE_AC_INT32: case AMDGPU::OPERAND_REG_INLINE_AC_FP32: case AMDGPU::OPERAND_INLINE_SPLIT_BARRIER_INT32: { int32_t Trunc = static_cast(Imm); return AMDGPU::isInlinableLiteral32(Trunc, ST.hasInv2PiInlineImm()); } case AMDGPU::OPERAND_REG_IMM_INT64: case AMDGPU::OPERAND_REG_IMM_FP64: case AMDGPU::OPERAND_REG_INLINE_C_INT64: case AMDGPU::OPERAND_REG_INLINE_C_FP64: case AMDGPU::OPERAND_REG_INLINE_AC_FP64: return AMDGPU::isInlinableLiteral64(MO.getImm(), ST.hasInv2PiInlineImm()); case AMDGPU::OPERAND_REG_IMM_INT16: case AMDGPU::OPERAND_REG_INLINE_C_INT16: case AMDGPU::OPERAND_REG_INLINE_AC_INT16: // We would expect inline immediates to not be concerned with an integer/fp // distinction. However, in the case of 16-bit integer operations, the // "floating point" values appear to not work. It seems read the low 16-bits // of 32-bit immediates, which happens to always work for the integer // values. // // See llvm bugzilla 46302. // // TODO: Theoretically we could use op-sel to use the high bits of the // 32-bit FP values. return AMDGPU::isInlinableIntLiteral(Imm); case AMDGPU::OPERAND_REG_IMM_V2INT16: case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: return AMDGPU::isInlinableLiteralV2I16(Imm); case AMDGPU::OPERAND_REG_IMM_V2FP16: case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: return AMDGPU::isInlinableLiteralV2F16(Imm); case AMDGPU::OPERAND_REG_IMM_FP16: case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED: case AMDGPU::OPERAND_REG_INLINE_C_FP16: case AMDGPU::OPERAND_REG_INLINE_AC_FP16: { if (isInt<16>(Imm) || isUInt<16>(Imm)) { // A few special case instructions have 16-bit operands on subtargets // where 16-bit instructions are not legal. // TODO: Do the 32-bit immediates work? We shouldn't really need to handle // constants in these cases int16_t Trunc = static_cast(Imm); return ST.has16BitInsts() && AMDGPU::isInlinableLiteral16(Trunc, ST.hasInv2PiInlineImm()); } return false; } case AMDGPU::OPERAND_KIMM32: case AMDGPU::OPERAND_KIMM16: return false; case AMDGPU::OPERAND_INPUT_MODS: case MCOI::OPERAND_IMMEDIATE: // Always embedded in the instruction for free. return true; case MCOI::OPERAND_UNKNOWN: case MCOI::OPERAND_REGISTER: case MCOI::OPERAND_PCREL: case MCOI::OPERAND_GENERIC_0: case MCOI::OPERAND_GENERIC_1: case MCOI::OPERAND_GENERIC_2: case MCOI::OPERAND_GENERIC_3: case MCOI::OPERAND_GENERIC_4: case MCOI::OPERAND_GENERIC_5: // Just ignore anything else. return true; default: llvm_unreachable("invalid operand type"); } } static bool compareMachineOp(const MachineOperand &Op0, const MachineOperand &Op1) { if (Op0.getType() != Op1.getType()) return false; switch (Op0.getType()) { case MachineOperand::MO_Register: return Op0.getReg() == Op1.getReg(); case MachineOperand::MO_Immediate: return Op0.getImm() == Op1.getImm(); default: llvm_unreachable("Didn't expect to be comparing these operand types"); } } bool SIInstrInfo::isImmOperandLegal(const MachineInstr &MI, unsigned OpNo, const MachineOperand &MO) const { const MCInstrDesc &InstDesc = MI.getDesc(); const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo]; assert(MO.isImm() || MO.isTargetIndex() || MO.isFI() || MO.isGlobal()); if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE) return true; if (OpInfo.RegClass < 0) return false; if (MO.isImm() && isInlineConstant(MO, OpInfo)) { if (isMAI(MI) && ST.hasMFMAInlineLiteralBug() && OpNo ==(unsigned)AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src2)) return false; return RI.opCanUseInlineConstant(OpInfo.OperandType); } if (!RI.opCanUseLiteralConstant(OpInfo.OperandType)) return false; if (!isVOP3(MI) || !AMDGPU::isSISrcOperand(InstDesc, OpNo)) return true; return ST.hasVOP3Literal(); } bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const { // GFX90A does not have V_MUL_LEGACY_F32_e32. if (Opcode == AMDGPU::V_MUL_LEGACY_F32_e64 && ST.hasGFX90AInsts()) return false; int Op32 = AMDGPU::getVOPe32(Opcode); if (Op32 == -1) return false; return pseudoToMCOpcode(Op32) != -1; } bool SIInstrInfo::hasModifiers(unsigned Opcode) const { // The src0_modifier operand is present on all instructions // that have modifiers. return AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src0_modifiers); } bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI, unsigned OpName) const { const MachineOperand *Mods = getNamedOperand(MI, OpName); return Mods && Mods->getImm(); } bool SIInstrInfo::hasAnyModifiersSet(const MachineInstr &MI) const { return any_of(ModifierOpNames, [&](unsigned Name) { return hasModifiersSet(MI, Name); }); } bool SIInstrInfo::canShrink(const MachineInstr &MI, const MachineRegisterInfo &MRI) const { const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2); // Can't shrink instruction with three operands. if (Src2) { switch (MI.getOpcode()) { default: return false; case AMDGPU::V_ADDC_U32_e64: case AMDGPU::V_SUBB_U32_e64: case AMDGPU::V_SUBBREV_U32_e64: { const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1); if (!Src1->isReg() || !RI.isVGPR(MRI, Src1->getReg())) return false; // Additional verification is needed for sdst/src2. return true; } case AMDGPU::V_MAC_F16_e64: case AMDGPU::V_MAC_F32_e64: case AMDGPU::V_MAC_LEGACY_F32_e64: case AMDGPU::V_FMAC_F16_e64: case AMDGPU::V_FMAC_F16_t16_e64: case AMDGPU::V_FMAC_F32_e64: case AMDGPU::V_FMAC_F64_e64: case AMDGPU::V_FMAC_LEGACY_F32_e64: if (!Src2->isReg() || !RI.isVGPR(MRI, Src2->getReg()) || hasModifiersSet(MI, AMDGPU::OpName::src2_modifiers)) return false; break; case AMDGPU::V_CNDMASK_B32_e64: break; } } const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1); if (Src1 && (!Src1->isReg() || !RI.isVGPR(MRI, Src1->getReg()) || hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers))) return false; // We don't need to check src0, all input types are legal, so just make sure // src0 isn't using any modifiers. if (hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers)) return false; // Can it be shrunk to a valid 32 bit opcode? if (!hasVALU32BitEncoding(MI.getOpcode())) return false; // Check output modifiers return !hasModifiersSet(MI, AMDGPU::OpName::omod) && !hasModifiersSet(MI, AMDGPU::OpName::clamp); } // Set VCC operand with all flags from \p Orig, except for setting it as // implicit. static void copyFlagsToImplicitVCC(MachineInstr &MI, const MachineOperand &Orig) { for (MachineOperand &Use : MI.implicit_operands()) { if (Use.isUse() && (Use.getReg() == AMDGPU::VCC || Use.getReg() == AMDGPU::VCC_LO)) { Use.setIsUndef(Orig.isUndef()); Use.setIsKill(Orig.isKill()); return; } } } MachineInstr *SIInstrInfo::buildShrunkInst(MachineInstr &MI, unsigned Op32) const { MachineBasicBlock *MBB = MI.getParent(); MachineInstrBuilder Inst32 = BuildMI(*MBB, MI, MI.getDebugLoc(), get(Op32)) .setMIFlags(MI.getFlags()); // Add the dst operand if the 32-bit encoding also has an explicit $vdst. // For VOPC instructions, this is replaced by an implicit def of vcc. if (AMDGPU::hasNamedOperand(Op32, AMDGPU::OpName::vdst)) { // dst Inst32.add(MI.getOperand(0)); } else if (AMDGPU::hasNamedOperand(Op32, AMDGPU::OpName::sdst)) { // VOPCX instructions won't be writing to an explicit dst, so this should // not fail for these instructions. assert(((MI.getOperand(0).getReg() == AMDGPU::VCC) || (MI.getOperand(0).getReg() == AMDGPU::VCC_LO)) && "Unexpected case"); } Inst32.add(*getNamedOperand(MI, AMDGPU::OpName::src0)); const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1); if (Src1) Inst32.add(*Src1); const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2); if (Src2) { int Op32Src2Idx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::src2); if (Op32Src2Idx != -1) { Inst32.add(*Src2); } else { // In the case of V_CNDMASK_B32_e32, the explicit operand src2 is // replaced with an implicit read of vcc or vcc_lo. The implicit read // of vcc was already added during the initial BuildMI, but we // 1) may need to change vcc to vcc_lo to preserve the original register // 2) have to preserve the original flags. fixImplicitOperands(*Inst32); copyFlagsToImplicitVCC(*Inst32, *Src2); } } return Inst32; } bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI, const MachineOperand &MO, const MCOperandInfo &OpInfo) const { // Literal constants use the constant bus. if (!MO.isReg()) return !isInlineConstant(MO, OpInfo); if (!MO.isUse()) return false; if (MO.getReg().isVirtual()) return RI.isSGPRClass(MRI.getRegClass(MO.getReg())); // Null is free if (MO.getReg() == AMDGPU::SGPR_NULL || MO.getReg() == AMDGPU::SGPR_NULL64) return false; // SGPRs use the constant bus if (MO.isImplicit()) { return MO.getReg() == AMDGPU::M0 || MO.getReg() == AMDGPU::VCC || MO.getReg() == AMDGPU::VCC_LO; } else { return AMDGPU::SReg_32RegClass.contains(MO.getReg()) || AMDGPU::SReg_64RegClass.contains(MO.getReg()); } } static Register findImplicitSGPRRead(const MachineInstr &MI) { for (const MachineOperand &MO : MI.implicit_operands()) { // We only care about reads. if (MO.isDef()) continue; switch (MO.getReg()) { case AMDGPU::VCC: case AMDGPU::VCC_LO: case AMDGPU::VCC_HI: case AMDGPU::M0: case AMDGPU::FLAT_SCR: return MO.getReg(); default: break; } } return Register(); } static bool shouldReadExec(const MachineInstr &MI) { if (SIInstrInfo::isVALU(MI)) { switch (MI.getOpcode()) { case AMDGPU::V_READLANE_B32: case AMDGPU::SI_RESTORE_S32_FROM_VGPR: case AMDGPU::V_WRITELANE_B32: case AMDGPU::SI_SPILL_S32_TO_VGPR: return false; } return true; } if (MI.isPreISelOpcode() || SIInstrInfo::isGenericOpcode(MI.getOpcode()) || SIInstrInfo::isSALU(MI) || SIInstrInfo::isSMRD(MI)) return false; return true; } static bool isSubRegOf(const SIRegisterInfo &TRI, const MachineOperand &SuperVec, const MachineOperand &SubReg) { if (SubReg.getReg().isPhysical()) return TRI.isSubRegister(SuperVec.getReg(), SubReg.getReg()); return SubReg.getSubReg() != AMDGPU::NoSubRegister && SubReg.getReg() == SuperVec.getReg(); } bool SIInstrInfo::verifyInstruction(const MachineInstr &MI, StringRef &ErrInfo) const { uint16_t Opcode = MI.getOpcode(); if (SIInstrInfo::isGenericOpcode(MI.getOpcode())) return true; const MachineFunction *MF = MI.getParent()->getParent(); const MachineRegisterInfo &MRI = MF->getRegInfo(); int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0); int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1); int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2); int Src3Idx = -1; if (Src0Idx == -1) { // VOPD V_DUAL_* instructions use different operand names. Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0X); Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vsrc1X); Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0Y); Src3Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vsrc1Y); } // Make sure the number of operands is correct. const MCInstrDesc &Desc = get(Opcode); if (!Desc.isVariadic() && Desc.getNumOperands() != MI.getNumExplicitOperands()) { ErrInfo = "Instruction has wrong number of operands."; return false; } if (MI.isInlineAsm()) { // Verify register classes for inlineasm constraints. for (unsigned I = InlineAsm::MIOp_FirstOperand, E = MI.getNumOperands(); I != E; ++I) { const TargetRegisterClass *RC = MI.getRegClassConstraint(I, this, &RI); if (!RC) continue; const MachineOperand &Op = MI.getOperand(I); if (!Op.isReg()) continue; Register Reg = Op.getReg(); if (!Reg.isVirtual() && !RC->contains(Reg)) { ErrInfo = "inlineasm operand has incorrect register class."; return false; } } return true; } if (isImage(MI) && MI.memoperands_empty() && MI.mayLoadOrStore()) { ErrInfo = "missing memory operand from image instruction."; return false; } // Make sure the register classes are correct. for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (MO.isFPImm()) { ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast " "all fp values to integers."; return false; } int RegClass = Desc.operands()[i].RegClass; switch (Desc.operands()[i].OperandType) { case MCOI::OPERAND_REGISTER: if (MI.getOperand(i).isImm() || MI.getOperand(i).isGlobal()) { ErrInfo = "Illegal immediate value for operand."; return false; } break; case AMDGPU::OPERAND_REG_IMM_INT32: case AMDGPU::OPERAND_REG_IMM_FP32: case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED: case AMDGPU::OPERAND_REG_IMM_V2FP32: break; case AMDGPU::OPERAND_REG_INLINE_C_INT32: case AMDGPU::OPERAND_REG_INLINE_C_FP32: case AMDGPU::OPERAND_REG_INLINE_C_INT64: case AMDGPU::OPERAND_REG_INLINE_C_FP64: case AMDGPU::OPERAND_REG_INLINE_C_INT16: case AMDGPU::OPERAND_REG_INLINE_C_FP16: case AMDGPU::OPERAND_REG_INLINE_AC_INT32: case AMDGPU::OPERAND_REG_INLINE_AC_FP32: case AMDGPU::OPERAND_REG_INLINE_AC_INT16: case AMDGPU::OPERAND_REG_INLINE_AC_FP16: case AMDGPU::OPERAND_REG_INLINE_AC_FP64: { if (!MO.isReg() && (!MO.isImm() || !isInlineConstant(MI, i))) { ErrInfo = "Illegal immediate value for operand."; return false; } break; } case AMDGPU::OPERAND_INLINE_SPLIT_BARRIER_INT32: if (!MI.getOperand(i).isImm() || !isInlineConstant(MI, i)) { ErrInfo = "Expected inline constant for operand."; return false; } break; case MCOI::OPERAND_IMMEDIATE: case AMDGPU::OPERAND_KIMM32: // Check if this operand is an immediate. // FrameIndex operands will be replaced by immediates, so they are // allowed. if (!MI.getOperand(i).isImm() && !MI.getOperand(i).isFI()) { ErrInfo = "Expected immediate, but got non-immediate"; return false; } [[fallthrough]]; default: continue; } if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (!Reg) continue; // FIXME: Ideally we would have separate instruction definitions with the // aligned register constraint. // FIXME: We do not verify inline asm operands, but custom inline asm // verification is broken anyway if (ST.needsAlignedVGPRs()) { const TargetRegisterClass *RC = RI.getRegClassForReg(MRI, Reg); if (RI.hasVectorRegisters(RC) && MO.getSubReg()) { const TargetRegisterClass *SubRC = RI.getSubRegisterClass(RC, MO.getSubReg()); RC = RI.getCompatibleSubRegClass(RC, SubRC, MO.getSubReg()); if (RC) RC = SubRC; } // Check that this is the aligned version of the class. if (!RC || !RI.isProperlyAlignedRC(*RC)) { ErrInfo = "Subtarget requires even aligned vector registers"; return false; } } if (RegClass != -1) { if (Reg.isVirtual()) continue; const TargetRegisterClass *RC = RI.getRegClass(RegClass); if (!RC->contains(Reg)) { ErrInfo = "Operand has incorrect register class."; return false; } } } // Verify SDWA if (isSDWA(MI)) { if (!ST.hasSDWA()) { ErrInfo = "SDWA is not supported on this target"; return false; } int DstIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdst); for (int OpIdx : {DstIdx, Src0Idx, Src1Idx, Src2Idx}) { if (OpIdx == -1) continue; const MachineOperand &MO = MI.getOperand(OpIdx); if (!ST.hasSDWAScalar()) { // Only VGPRS on VI if (!MO.isReg() || !RI.hasVGPRs(RI.getRegClassForReg(MRI, MO.getReg()))) { ErrInfo = "Only VGPRs allowed as operands in SDWA instructions on VI"; return false; } } else { // No immediates on GFX9 if (!MO.isReg()) { ErrInfo = "Only reg allowed as operands in SDWA instructions on GFX9+"; return false; } } } if (!ST.hasSDWAOmod()) { // No omod allowed on VI const MachineOperand *OMod = getNamedOperand(MI, AMDGPU::OpName::omod); if (OMod != nullptr && (!OMod->isImm() || OMod->getImm() != 0)) { ErrInfo = "OMod not allowed in SDWA instructions on VI"; return false; } } uint16_t BasicOpcode = AMDGPU::getBasicFromSDWAOp(Opcode); if (isVOPC(BasicOpcode)) { if (!ST.hasSDWASdst() && DstIdx != -1) { // Only vcc allowed as dst on VI for VOPC const MachineOperand &Dst = MI.getOperand(DstIdx); if (!Dst.isReg() || Dst.getReg() != AMDGPU::VCC) { ErrInfo = "Only VCC allowed as dst in SDWA instructions on VI"; return false; } } else if (!ST.hasSDWAOutModsVOPC()) { // No clamp allowed on GFX9 for VOPC const MachineOperand *Clamp = getNamedOperand(MI, AMDGPU::OpName::clamp); if (Clamp && (!Clamp->isImm() || Clamp->getImm() != 0)) { ErrInfo = "Clamp not allowed in VOPC SDWA instructions on VI"; return false; } // No omod allowed on GFX9 for VOPC const MachineOperand *OMod = getNamedOperand(MI, AMDGPU::OpName::omod); if (OMod && (!OMod->isImm() || OMod->getImm() != 0)) { ErrInfo = "OMod not allowed in VOPC SDWA instructions on VI"; return false; } } } const MachineOperand *DstUnused = getNamedOperand(MI, AMDGPU::OpName::dst_unused); if (DstUnused && DstUnused->isImm() && DstUnused->getImm() == AMDGPU::SDWA::UNUSED_PRESERVE) { const MachineOperand &Dst = MI.getOperand(DstIdx); if (!Dst.isReg() || !Dst.isTied()) { ErrInfo = "Dst register should have tied register"; return false; } const MachineOperand &TiedMO = MI.getOperand(MI.findTiedOperandIdx(DstIdx)); if (!TiedMO.isReg() || !TiedMO.isImplicit() || !TiedMO.isUse()) { ErrInfo = "Dst register should be tied to implicit use of preserved register"; return false; } else if (TiedMO.getReg().isPhysical() && Dst.getReg() != TiedMO.getReg()) { ErrInfo = "Dst register should use same physical register as preserved"; return false; } } } // Verify MIMG / VIMAGE / VSAMPLE if (isImage(MI.getOpcode()) && !MI.mayStore()) { // Ensure that the return type used is large enough for all the options // being used TFE/LWE require an extra result register. const MachineOperand *DMask = getNamedOperand(MI, AMDGPU::OpName::dmask); if (DMask) { uint64_t DMaskImm = DMask->getImm(); uint32_t RegCount = isGather4(MI.getOpcode()) ? 4 : llvm::popcount(DMaskImm); const MachineOperand *TFE = getNamedOperand(MI, AMDGPU::OpName::tfe); const MachineOperand *LWE = getNamedOperand(MI, AMDGPU::OpName::lwe); const MachineOperand *D16 = getNamedOperand(MI, AMDGPU::OpName::d16); // Adjust for packed 16 bit values if (D16 && D16->getImm() && !ST.hasUnpackedD16VMem()) RegCount = divideCeil(RegCount, 2); // Adjust if using LWE or TFE if ((LWE && LWE->getImm()) || (TFE && TFE->getImm())) RegCount += 1; const uint32_t DstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); const MachineOperand &Dst = MI.getOperand(DstIdx); if (Dst.isReg()) { const TargetRegisterClass *DstRC = getOpRegClass(MI, DstIdx); uint32_t DstSize = RI.getRegSizeInBits(*DstRC) / 32; if (RegCount > DstSize) { ErrInfo = "Image instruction returns too many registers for dst " "register class"; return false; } } } } // Verify VOP*. Ignore multiple sgpr operands on writelane. if (isVALU(MI) && Desc.getOpcode() != AMDGPU::V_WRITELANE_B32) { unsigned ConstantBusCount = 0; bool UsesLiteral = false; const MachineOperand *LiteralVal = nullptr; int ImmIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::imm); if (ImmIdx != -1) { ++ConstantBusCount; UsesLiteral = true; LiteralVal = &MI.getOperand(ImmIdx); } SmallVector SGPRsUsed; Register SGPRUsed; // Only look at the true operands. Only a real operand can use the constant // bus, and we don't want to check pseudo-operands like the source modifier // flags. for (int OpIdx : {Src0Idx, Src1Idx, Src2Idx, Src3Idx}) { if (OpIdx == -1) continue; const MachineOperand &MO = MI.getOperand(OpIdx); if (usesConstantBus(MRI, MO, MI.getDesc().operands()[OpIdx])) { if (MO.isReg()) { SGPRUsed = MO.getReg(); if (!llvm::is_contained(SGPRsUsed, SGPRUsed)) { ++ConstantBusCount; SGPRsUsed.push_back(SGPRUsed); } } else { if (!UsesLiteral) { ++ConstantBusCount; UsesLiteral = true; LiteralVal = &MO; } else if (!MO.isIdenticalTo(*LiteralVal)) { assert(isVOP2(MI) || isVOP3(MI)); ErrInfo = "VOP2/VOP3 instruction uses more than one literal"; return false; } } } } SGPRUsed = findImplicitSGPRRead(MI); if (SGPRUsed) { // Implicit uses may safely overlap true operands if (llvm::all_of(SGPRsUsed, [this, SGPRUsed](unsigned SGPR) { return !RI.regsOverlap(SGPRUsed, SGPR); })) { ++ConstantBusCount; SGPRsUsed.push_back(SGPRUsed); } } // v_writelane_b32 is an exception from constant bus restriction: // vsrc0 can be sgpr, const or m0 and lane select sgpr, m0 or inline-const if (ConstantBusCount > ST.getConstantBusLimit(Opcode) && Opcode != AMDGPU::V_WRITELANE_B32) { ErrInfo = "VOP* instruction violates constant bus restriction"; return false; } if (isVOP3(MI) && UsesLiteral && !ST.hasVOP3Literal()) { ErrInfo = "VOP3 instruction uses literal"; return false; } } // Special case for writelane - this can break the multiple constant bus rule, // but still can't use more than one SGPR register if (Desc.getOpcode() == AMDGPU::V_WRITELANE_B32) { unsigned SGPRCount = 0; Register SGPRUsed; for (int OpIdx : {Src0Idx, Src1Idx}) { if (OpIdx == -1) break; const MachineOperand &MO = MI.getOperand(OpIdx); if (usesConstantBus(MRI, MO, MI.getDesc().operands()[OpIdx])) { if (MO.isReg() && MO.getReg() != AMDGPU::M0) { if (MO.getReg() != SGPRUsed) ++SGPRCount; SGPRUsed = MO.getReg(); } } if (SGPRCount > ST.getConstantBusLimit(Opcode)) { ErrInfo = "WRITELANE instruction violates constant bus restriction"; return false; } } } // Verify misc. restrictions on specific instructions. if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32_e64 || Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64_e64) { const MachineOperand &Src0 = MI.getOperand(Src0Idx); const MachineOperand &Src1 = MI.getOperand(Src1Idx); const MachineOperand &Src2 = MI.getOperand(Src2Idx); if (Src0.isReg() && Src1.isReg() && Src2.isReg()) { if (!compareMachineOp(Src0, Src1) && !compareMachineOp(Src0, Src2)) { ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2"; return false; } } if ((getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm() & SISrcMods::ABS) || (getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm() & SISrcMods::ABS) || (getNamedOperand(MI, AMDGPU::OpName::src2_modifiers)->getImm() & SISrcMods::ABS)) { ErrInfo = "ABS not allowed in VOP3B instructions"; return false; } } if (isSOP2(MI) || isSOPC(MI)) { const MachineOperand &Src0 = MI.getOperand(Src0Idx); const MachineOperand &Src1 = MI.getOperand(Src1Idx); if (!Src0.isReg() && !Src1.isReg() && !isInlineConstant(Src0, Desc.operands()[Src0Idx]) && !isInlineConstant(Src1, Desc.operands()[Src1Idx]) && !Src0.isIdenticalTo(Src1)) { ErrInfo = "SOP2/SOPC instruction requires too many immediate constants"; return false; } } if (isSOPK(MI)) { auto Op = getNamedOperand(MI, AMDGPU::OpName::simm16); if (Desc.isBranch()) { if (!Op->isMBB()) { ErrInfo = "invalid branch target for SOPK instruction"; return false; } } else { uint64_t Imm = Op->getImm(); if (sopkIsZext(MI)) { if (!isUInt<16>(Imm)) { ErrInfo = "invalid immediate for SOPK instruction"; return false; } } else { if (!isInt<16>(Imm)) { ErrInfo = "invalid immediate for SOPK instruction"; return false; } } } } if (Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e32 || Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e64 || Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 || Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64) { const bool IsDst = Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 || Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64; const unsigned StaticNumOps = Desc.getNumOperands() + Desc.implicit_uses().size(); const unsigned NumImplicitOps = IsDst ? 2 : 1; // Allow additional implicit operands. This allows a fixup done by the post // RA scheduler where the main implicit operand is killed and implicit-defs // are added for sub-registers that remain live after this instruction. if (MI.getNumOperands() < StaticNumOps + NumImplicitOps) { ErrInfo = "missing implicit register operands"; return false; } const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); if (IsDst) { if (!Dst->isUse()) { ErrInfo = "v_movreld_b32 vdst should be a use operand"; return false; } unsigned UseOpIdx; if (!MI.isRegTiedToUseOperand(StaticNumOps, &UseOpIdx) || UseOpIdx != StaticNumOps + 1) { ErrInfo = "movrel implicit operands should be tied"; return false; } } const MachineOperand &Src0 = MI.getOperand(Src0Idx); const MachineOperand &ImpUse = MI.getOperand(StaticNumOps + NumImplicitOps - 1); if (!ImpUse.isReg() || !ImpUse.isUse() || !isSubRegOf(RI, ImpUse, IsDst ? *Dst : Src0)) { ErrInfo = "src0 should be subreg of implicit vector use"; return false; } } // Make sure we aren't losing exec uses in the td files. This mostly requires // being careful when using let Uses to try to add other use registers. if (shouldReadExec(MI)) { if (!MI.hasRegisterImplicitUseOperand(AMDGPU::EXEC)) { ErrInfo = "VALU instruction does not implicitly read exec mask"; return false; } } if (isSMRD(MI)) { if (MI.mayStore() && ST.getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) { // The register offset form of scalar stores may only use m0 as the // soffset register. const MachineOperand *Soff = getNamedOperand(MI, AMDGPU::OpName::soffset); if (Soff && Soff->getReg() != AMDGPU::M0) { ErrInfo = "scalar stores must use m0 as offset register"; return false; } } } if (isFLAT(MI) && !ST.hasFlatInstOffsets()) { const MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset); if (Offset->getImm() != 0) { ErrInfo = "subtarget does not support offsets in flat instructions"; return false; } } if (isDS(MI) && !ST.hasGDS()) { const MachineOperand *GDSOp = getNamedOperand(MI, AMDGPU::OpName::gds); if (GDSOp && GDSOp->getImm() != 0) { ErrInfo = "GDS is not supported on this subtarget"; return false; } } if (isImage(MI)) { const MachineOperand *DimOp = getNamedOperand(MI, AMDGPU::OpName::dim); if (DimOp) { int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vaddr0); int RSrcOpName = isMIMG(MI) ? AMDGPU::OpName::srsrc : AMDGPU::OpName::rsrc; int RsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, RSrcOpName); const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Opcode); const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); const AMDGPU::MIMGDimInfo *Dim = AMDGPU::getMIMGDimInfoByEncoding(DimOp->getImm()); if (!Dim) { ErrInfo = "dim is out of range"; return false; } bool IsA16 = false; if (ST.hasR128A16()) { const MachineOperand *R128A16 = getNamedOperand(MI, AMDGPU::OpName::r128); IsA16 = R128A16->getImm() != 0; } else if (ST.hasA16()) { const MachineOperand *A16 = getNamedOperand(MI, AMDGPU::OpName::a16); IsA16 = A16->getImm() != 0; } bool IsNSA = RsrcIdx - VAddr0Idx > 1; unsigned AddrWords = AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, ST.hasG16()); unsigned VAddrWords; if (IsNSA) { VAddrWords = RsrcIdx - VAddr0Idx; if (ST.hasPartialNSAEncoding() && AddrWords > ST.getNSAMaxSize(isVSAMPLE(MI))) { unsigned LastVAddrIdx = RsrcIdx - 1; VAddrWords += getOpSize(MI, LastVAddrIdx) / 4 - 1; } } else { VAddrWords = getOpSize(MI, VAddr0Idx) / 4; if (AddrWords > 12) AddrWords = 16; } if (VAddrWords != AddrWords) { LLVM_DEBUG(dbgs() << "bad vaddr size, expected " << AddrWords << " but got " << VAddrWords << "\n"); ErrInfo = "bad vaddr size"; return false; } } } const MachineOperand *DppCt = getNamedOperand(MI, AMDGPU::OpName::dpp_ctrl); if (DppCt) { using namespace AMDGPU::DPP; unsigned DC = DppCt->getImm(); if (DC == DppCtrl::DPP_UNUSED1 || DC == DppCtrl::DPP_UNUSED2 || DC == DppCtrl::DPP_UNUSED3 || DC > DppCtrl::DPP_LAST || (DC >= DppCtrl::DPP_UNUSED4_FIRST && DC <= DppCtrl::DPP_UNUSED4_LAST) || (DC >= DppCtrl::DPP_UNUSED5_FIRST && DC <= DppCtrl::DPP_UNUSED5_LAST) || (DC >= DppCtrl::DPP_UNUSED6_FIRST && DC <= DppCtrl::DPP_UNUSED6_LAST) || (DC >= DppCtrl::DPP_UNUSED7_FIRST && DC <= DppCtrl::DPP_UNUSED7_LAST) || (DC >= DppCtrl::DPP_UNUSED8_FIRST && DC <= DppCtrl::DPP_UNUSED8_LAST)) { ErrInfo = "Invalid dpp_ctrl value"; return false; } if (DC >= DppCtrl::WAVE_SHL1 && DC <= DppCtrl::WAVE_ROR1 && ST.getGeneration() >= AMDGPUSubtarget::GFX10) { ErrInfo = "Invalid dpp_ctrl value: " "wavefront shifts are not supported on GFX10+"; return false; } if (DC >= DppCtrl::BCAST15 && DC <= DppCtrl::BCAST31 && ST.getGeneration() >= AMDGPUSubtarget::GFX10) { ErrInfo = "Invalid dpp_ctrl value: " "broadcasts are not supported on GFX10+"; return false; } if (DC >= DppCtrl::ROW_SHARE_FIRST && DC <= DppCtrl::ROW_XMASK_LAST && ST.getGeneration() < AMDGPUSubtarget::GFX10) { if (DC >= DppCtrl::ROW_NEWBCAST_FIRST && DC <= DppCtrl::ROW_NEWBCAST_LAST && !ST.hasGFX90AInsts()) { ErrInfo = "Invalid dpp_ctrl value: " "row_newbroadcast/row_share is not supported before " "GFX90A/GFX10"; return false; } else if (DC > DppCtrl::ROW_NEWBCAST_LAST || !ST.hasGFX90AInsts()) { ErrInfo = "Invalid dpp_ctrl value: " "row_share and row_xmask are not supported before GFX10"; return false; } } if (Opcode != AMDGPU::V_MOV_B64_DPP_PSEUDO && !AMDGPU::isLegalDPALU_DPPControl(DC) && AMDGPU::isDPALU_DPP(Desc)) { ErrInfo = "Invalid dpp_ctrl value: " "DP ALU dpp only support row_newbcast"; return false; } } if ((MI.mayStore() || MI.mayLoad()) && !isVGPRSpill(MI)) { const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); uint16_t DataNameIdx = isDS(Opcode) ? AMDGPU::OpName::data0 : AMDGPU::OpName::vdata; const MachineOperand *Data = getNamedOperand(MI, DataNameIdx); const MachineOperand *Data2 = getNamedOperand(MI, AMDGPU::OpName::data1); if (Data && !Data->isReg()) Data = nullptr; if (ST.hasGFX90AInsts()) { if (Dst && Data && (RI.isAGPR(MRI, Dst->getReg()) != RI.isAGPR(MRI, Data->getReg()))) { ErrInfo = "Invalid register class: " "vdata and vdst should be both VGPR or AGPR"; return false; } if (Data && Data2 && (RI.isAGPR(MRI, Data->getReg()) != RI.isAGPR(MRI, Data2->getReg()))) { ErrInfo = "Invalid register class: " "both data operands should be VGPR or AGPR"; return false; } } else { if ((Dst && RI.isAGPR(MRI, Dst->getReg())) || (Data && RI.isAGPR(MRI, Data->getReg())) || (Data2 && RI.isAGPR(MRI, Data2->getReg()))) { ErrInfo = "Invalid register class: " "agpr loads and stores not supported on this GPU"; return false; } } } if (ST.needsAlignedVGPRs()) { const auto isAlignedReg = [&MI, &MRI, this](unsigned OpName) -> bool { const MachineOperand *Op = getNamedOperand(MI, OpName); if (!Op) return true; Register Reg = Op->getReg(); if (Reg.isPhysical()) return !(RI.getHWRegIndex(Reg) & 1); const TargetRegisterClass &RC = *MRI.getRegClass(Reg); return RI.getRegSizeInBits(RC) > 32 && RI.isProperlyAlignedRC(RC) && !(RI.getChannelFromSubReg(Op->getSubReg()) & 1); }; if (MI.getOpcode() == AMDGPU::DS_GWS_INIT || MI.getOpcode() == AMDGPU::DS_GWS_SEMA_BR || MI.getOpcode() == AMDGPU::DS_GWS_BARRIER) { if (!isAlignedReg(AMDGPU::OpName::data0)) { ErrInfo = "Subtarget requires even aligned vector registers " "for DS_GWS instructions"; return false; } } if (isMIMG(MI)) { if (!isAlignedReg(AMDGPU::OpName::vaddr)) { ErrInfo = "Subtarget requires even aligned vector registers " "for vaddr operand of image instructions"; return false; } } } if (MI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 && !ST.hasGFX90AInsts()) { const MachineOperand *Src = getNamedOperand(MI, AMDGPU::OpName::src0); if (Src->isReg() && RI.isSGPRReg(MRI, Src->getReg())) { ErrInfo = "Invalid register class: " "v_accvgpr_write with an SGPR is not supported on this GPU"; return false; } } if (Desc.getOpcode() == AMDGPU::G_AMDGPU_WAVE_ADDRESS) { const MachineOperand &SrcOp = MI.getOperand(1); if (!SrcOp.isReg() || SrcOp.getReg().isVirtual()) { ErrInfo = "pseudo expects only physical SGPRs"; return false; } } return true; } // It is more readable to list mapped opcodes on the same line. // clang-format off unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) const { switch (MI.getOpcode()) { default: return AMDGPU::INSTRUCTION_LIST_END; case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE; case AMDGPU::COPY: return AMDGPU::COPY; case AMDGPU::PHI: return AMDGPU::PHI; case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG; case AMDGPU::WQM: return AMDGPU::WQM; case AMDGPU::SOFT_WQM: return AMDGPU::SOFT_WQM; case AMDGPU::STRICT_WWM: return AMDGPU::STRICT_WWM; case AMDGPU::STRICT_WQM: return AMDGPU::STRICT_WQM; case AMDGPU::S_MOV_B32: { const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); return MI.getOperand(1).isReg() || RI.isAGPR(MRI, MI.getOperand(0).getReg()) ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32; } case AMDGPU::S_ADD_I32: return ST.hasAddNoCarry() ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_ADD_CO_U32_e32; case AMDGPU::S_ADDC_U32: return AMDGPU::V_ADDC_U32_e32; case AMDGPU::S_SUB_I32: return ST.hasAddNoCarry() ? AMDGPU::V_SUB_U32_e64 : AMDGPU::V_SUB_CO_U32_e32; // FIXME: These are not consistently handled, and selected when the carry is // used. case AMDGPU::S_ADD_U32: return AMDGPU::V_ADD_CO_U32_e32; case AMDGPU::S_SUB_U32: return AMDGPU::V_SUB_CO_U32_e32; case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32; case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_U32_e64; case AMDGPU::S_MUL_HI_U32: return AMDGPU::V_MUL_HI_U32_e64; case AMDGPU::S_MUL_HI_I32: return AMDGPU::V_MUL_HI_I32_e64; case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e64; case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e64; case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e64; case AMDGPU::S_XNOR_B32: return ST.hasDLInsts() ? AMDGPU::V_XNOR_B32_e64 : AMDGPU::INSTRUCTION_LIST_END; case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e64; case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e64; case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e64; case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e64; case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32; case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64_e64; case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32; case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64_e64; case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32; case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64_e64; case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32_e64; case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32_e64; case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32_e64; case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32_e64; case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64; case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32; case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32; case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32; case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e64; case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e64; case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e64; case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e64; case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e64; case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e64; case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e64; case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e64; case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e64; case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e64; case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e64; case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e64; case AMDGPU::S_CMP_EQ_U64: return AMDGPU::V_CMP_EQ_U64_e64; case AMDGPU::S_CMP_LG_U64: return AMDGPU::V_CMP_NE_U64_e64; case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64; case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32; case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32; case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64; case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ; case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ; case AMDGPU::S_CVT_F32_I32: return AMDGPU::V_CVT_F32_I32_e64; case AMDGPU::S_CVT_F32_U32: return AMDGPU::V_CVT_F32_U32_e64; case AMDGPU::S_CVT_I32_F32: return AMDGPU::V_CVT_I32_F32_e64; case AMDGPU::S_CVT_U32_F32: return AMDGPU::V_CVT_U32_F32_e64; case AMDGPU::S_CVT_F32_F16: return AMDGPU::V_CVT_F32_F16_t16_e64; case AMDGPU::S_CVT_HI_F32_F16: return AMDGPU::V_CVT_F32_F16_t16_e64; case AMDGPU::S_CVT_F16_F32: return AMDGPU::V_CVT_F16_F32_t16_e64; case AMDGPU::S_CEIL_F32: return AMDGPU::V_CEIL_F32_e64; case AMDGPU::S_FLOOR_F32: return AMDGPU::V_FLOOR_F32_e64; case AMDGPU::S_TRUNC_F32: return AMDGPU::V_TRUNC_F32_e64; case AMDGPU::S_RNDNE_F32: return AMDGPU::V_RNDNE_F32_e64; case AMDGPU::S_CEIL_F16: return ST.useRealTrue16Insts() ? AMDGPU::V_CEIL_F16_t16_e64 : AMDGPU::V_CEIL_F16_fake16_e64; case AMDGPU::S_FLOOR_F16: return ST.useRealTrue16Insts() ? AMDGPU::V_FLOOR_F16_t16_e64 : AMDGPU::V_FLOOR_F16_fake16_e64; case AMDGPU::S_TRUNC_F16: return AMDGPU::V_TRUNC_F16_fake16_e64; case AMDGPU::S_RNDNE_F16: return AMDGPU::V_RNDNE_F16_fake16_e64; case AMDGPU::S_ADD_F32: return AMDGPU::V_ADD_F32_e64; case AMDGPU::S_SUB_F32: return AMDGPU::V_SUB_F32_e64; case AMDGPU::S_MIN_F32: return AMDGPU::V_MIN_F32_e64; case AMDGPU::S_MAX_F32: return AMDGPU::V_MAX_F32_e64; case AMDGPU::S_MINIMUM_F32: return AMDGPU::V_MINIMUM_F32_e64; case AMDGPU::S_MAXIMUM_F32: return AMDGPU::V_MAXIMUM_F32_e64; case AMDGPU::S_MUL_F32: return AMDGPU::V_MUL_F32_e64; case AMDGPU::S_ADD_F16: return AMDGPU::V_ADD_F16_fake16_e64; case AMDGPU::S_SUB_F16: return AMDGPU::V_SUB_F16_fake16_e64; case AMDGPU::S_MIN_F16: return AMDGPU::V_MIN_F16_fake16_e64; case AMDGPU::S_MAX_F16: return AMDGPU::V_MAX_F16_fake16_e64; case AMDGPU::S_MINIMUM_F16: return AMDGPU::V_MINIMUM_F16_e64; case AMDGPU::S_MAXIMUM_F16: return AMDGPU::V_MAXIMUM_F16_e64; case AMDGPU::S_MUL_F16: return AMDGPU::V_MUL_F16_fake16_e64; case AMDGPU::S_CVT_PK_RTZ_F16_F32: return AMDGPU::V_CVT_PKRTZ_F16_F32_e64; case AMDGPU::S_FMAC_F32: return AMDGPU::V_FMAC_F32_e64; case AMDGPU::S_FMAC_F16: return AMDGPU::V_FMAC_F16_t16_e64; case AMDGPU::S_FMAMK_F32: return AMDGPU::V_FMAMK_F32; case AMDGPU::S_FMAAK_F32: return AMDGPU::V_FMAAK_F32; case AMDGPU::S_CMP_LT_F32: return AMDGPU::V_CMP_LT_F32_e64; case AMDGPU::S_CMP_EQ_F32: return AMDGPU::V_CMP_EQ_F32_e64; case AMDGPU::S_CMP_LE_F32: return AMDGPU::V_CMP_LE_F32_e64; case AMDGPU::S_CMP_GT_F32: return AMDGPU::V_CMP_GT_F32_e64; case AMDGPU::S_CMP_LG_F32: return AMDGPU::V_CMP_LG_F32_e64; case AMDGPU::S_CMP_GE_F32: return AMDGPU::V_CMP_GE_F32_e64; case AMDGPU::S_CMP_O_F32: return AMDGPU::V_CMP_O_F32_e64; case AMDGPU::S_CMP_U_F32: return AMDGPU::V_CMP_U_F32_e64; case AMDGPU::S_CMP_NGE_F32: return AMDGPU::V_CMP_NGE_F32_e64; case AMDGPU::S_CMP_NLG_F32: return AMDGPU::V_CMP_NLG_F32_e64; case AMDGPU::S_CMP_NGT_F32: return AMDGPU::V_CMP_NGT_F32_e64; case AMDGPU::S_CMP_NLE_F32: return AMDGPU::V_CMP_NLE_F32_e64; case AMDGPU::S_CMP_NEQ_F32: return AMDGPU::V_CMP_NEQ_F32_e64; case AMDGPU::S_CMP_NLT_F32: return AMDGPU::V_CMP_NLT_F32_e64; case AMDGPU::S_CMP_LT_F16: return AMDGPU::V_CMP_LT_F16_t16_e64; case AMDGPU::S_CMP_EQ_F16: return AMDGPU::V_CMP_EQ_F16_t16_e64; case AMDGPU::S_CMP_LE_F16: return AMDGPU::V_CMP_LE_F16_t16_e64; case AMDGPU::S_CMP_GT_F16: return AMDGPU::V_CMP_GT_F16_t16_e64; case AMDGPU::S_CMP_LG_F16: return AMDGPU::V_CMP_LG_F16_t16_e64; case AMDGPU::S_CMP_GE_F16: return AMDGPU::V_CMP_GE_F16_t16_e64; case AMDGPU::S_CMP_O_F16: return AMDGPU::V_CMP_O_F16_t16_e64; case AMDGPU::S_CMP_U_F16: return AMDGPU::V_CMP_U_F16_t16_e64; case AMDGPU::S_CMP_NGE_F16: return AMDGPU::V_CMP_NGE_F16_t16_e64; case AMDGPU::S_CMP_NLG_F16: return AMDGPU::V_CMP_NLG_F16_t16_e64; case AMDGPU::S_CMP_NGT_F16: return AMDGPU::V_CMP_NGT_F16_t16_e64; case AMDGPU::S_CMP_NLE_F16: return AMDGPU::V_CMP_NLE_F16_t16_e64; case AMDGPU::S_CMP_NEQ_F16: return AMDGPU::V_CMP_NEQ_F16_t16_e64; case AMDGPU::S_CMP_NLT_F16: return AMDGPU::V_CMP_NLT_F16_t16_e64; case AMDGPU::V_S_EXP_F32_e64: return AMDGPU::V_EXP_F32_e64; case AMDGPU::V_S_EXP_F16_e64: return AMDGPU::V_EXP_F16_fake16_e64; case AMDGPU::V_S_LOG_F32_e64: return AMDGPU::V_LOG_F32_e64; case AMDGPU::V_S_LOG_F16_e64: return AMDGPU::V_LOG_F16_fake16_e64; case AMDGPU::V_S_RCP_F32_e64: return AMDGPU::V_RCP_F32_e64; case AMDGPU::V_S_RCP_F16_e64: return AMDGPU::V_RCP_F16_fake16_e64; case AMDGPU::V_S_RSQ_F32_e64: return AMDGPU::V_RSQ_F32_e64; case AMDGPU::V_S_RSQ_F16_e64: return AMDGPU::V_RSQ_F16_fake16_e64; case AMDGPU::V_S_SQRT_F32_e64: return AMDGPU::V_SQRT_F32_e64; case AMDGPU::V_S_SQRT_F16_e64: return AMDGPU::V_SQRT_F16_fake16_e64; } llvm_unreachable( "Unexpected scalar opcode without corresponding vector one!"); } // clang-format on void SIInstrInfo::insertScratchExecCopy(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, Register Reg, bool IsSCCLive, SlotIndexes *Indexes) const { const GCNSubtarget &ST = MF.getSubtarget(); const SIInstrInfo *TII = ST.getInstrInfo(); bool IsWave32 = ST.isWave32(); if (IsSCCLive) { // Insert two move instructions, one to save the original value of EXEC and // the other to turn on all bits in EXEC. This is required as we can't use // the single instruction S_OR_SAVEEXEC that clobbers SCC. unsigned MovOpc = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; MCRegister Exec = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC; auto StoreExecMI = BuildMI(MBB, MBBI, DL, TII->get(MovOpc), Reg) .addReg(Exec, RegState::Kill); auto FlipExecMI = BuildMI(MBB, MBBI, DL, TII->get(MovOpc), Exec).addImm(-1); if (Indexes) { Indexes->insertMachineInstrInMaps(*StoreExecMI); Indexes->insertMachineInstrInMaps(*FlipExecMI); } } else { const unsigned OrSaveExec = IsWave32 ? AMDGPU::S_OR_SAVEEXEC_B32 : AMDGPU::S_OR_SAVEEXEC_B64; auto SaveExec = BuildMI(MBB, MBBI, DL, TII->get(OrSaveExec), Reg).addImm(-1); SaveExec->getOperand(3).setIsDead(); // Mark SCC as dead. if (Indexes) Indexes->insertMachineInstrInMaps(*SaveExec); } } void SIInstrInfo::restoreExec(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, Register Reg, SlotIndexes *Indexes) const { unsigned ExecMov = isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; MCRegister Exec = isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; auto ExecRestoreMI = BuildMI(MBB, MBBI, DL, get(ExecMov), Exec).addReg(Reg, RegState::Kill); if (Indexes) Indexes->insertMachineInstrInMaps(*ExecRestoreMI); } static const TargetRegisterClass * adjustAllocatableRegClass(const GCNSubtarget &ST, const SIRegisterInfo &RI, const MachineRegisterInfo &MRI, const MCInstrDesc &TID, unsigned RCID, bool IsAllocatable) { if ((IsAllocatable || !ST.hasGFX90AInsts() || !MRI.reservedRegsFrozen()) && (((TID.mayLoad() || TID.mayStore()) && !(TID.TSFlags & SIInstrFlags::VGPRSpill)) || (TID.TSFlags & (SIInstrFlags::DS | SIInstrFlags::MIMG)))) { switch (RCID) { case AMDGPU::AV_32RegClassID: RCID = AMDGPU::VGPR_32RegClassID; break; case AMDGPU::AV_64RegClassID: RCID = AMDGPU::VReg_64RegClassID; break; case AMDGPU::AV_96RegClassID: RCID = AMDGPU::VReg_96RegClassID; break; case AMDGPU::AV_128RegClassID: RCID = AMDGPU::VReg_128RegClassID; break; case AMDGPU::AV_160RegClassID: RCID = AMDGPU::VReg_160RegClassID; break; case AMDGPU::AV_512RegClassID: RCID = AMDGPU::VReg_512RegClassID; break; default: break; } } return RI.getProperlyAlignedRC(RI.getRegClass(RCID)); } const TargetRegisterClass *SIInstrInfo::getRegClass(const MCInstrDesc &TID, unsigned OpNum, const TargetRegisterInfo *TRI, const MachineFunction &MF) const { if (OpNum >= TID.getNumOperands()) return nullptr; auto RegClass = TID.operands()[OpNum].RegClass; bool IsAllocatable = false; if (TID.TSFlags & (SIInstrFlags::DS | SIInstrFlags::FLAT)) { // vdst and vdata should be both VGPR or AGPR, same for the DS instructions // with two data operands. Request register class constrained to VGPR only // of both operands present as Machine Copy Propagation can not check this // constraint and possibly other passes too. // // The check is limited to FLAT and DS because atomics in non-flat encoding // have their vdst and vdata tied to be the same register. const int VDstIdx = AMDGPU::getNamedOperandIdx(TID.Opcode, AMDGPU::OpName::vdst); const int DataIdx = AMDGPU::getNamedOperandIdx(TID.Opcode, (TID.TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 : AMDGPU::OpName::vdata); if (DataIdx != -1) { IsAllocatable = VDstIdx != -1 || AMDGPU::hasNamedOperand( TID.Opcode, AMDGPU::OpName::data1); } } return adjustAllocatableRegClass(ST, RI, MF.getRegInfo(), TID, RegClass, IsAllocatable); } const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI, unsigned OpNo) const { const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); const MCInstrDesc &Desc = get(MI.getOpcode()); if (MI.isVariadic() || OpNo >= Desc.getNumOperands() || Desc.operands()[OpNo].RegClass == -1) { Register Reg = MI.getOperand(OpNo).getReg(); if (Reg.isVirtual()) return MRI.getRegClass(Reg); return RI.getPhysRegBaseClass(Reg); } unsigned RCID = Desc.operands()[OpNo].RegClass; return adjustAllocatableRegClass(ST, RI, MRI, Desc, RCID, true); } void SIInstrInfo::legalizeOpWithMove(MachineInstr &MI, unsigned OpIdx) const { MachineBasicBlock::iterator I = MI; MachineBasicBlock *MBB = MI.getParent(); MachineOperand &MO = MI.getOperand(OpIdx); MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); unsigned RCID = get(MI.getOpcode()).operands()[OpIdx].RegClass; const TargetRegisterClass *RC = RI.getRegClass(RCID); unsigned Size = RI.getRegSizeInBits(*RC); unsigned Opcode = (Size == 64) ? AMDGPU::V_MOV_B64_PSEUDO : AMDGPU::V_MOV_B32_e32; if (MO.isReg()) Opcode = AMDGPU::COPY; else if (RI.isSGPRClass(RC)) Opcode = (Size == 64) ? AMDGPU::S_MOV_B64 : AMDGPU::S_MOV_B32; const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC); Register Reg = MRI.createVirtualRegister(VRC); DebugLoc DL = MBB->findDebugLoc(I); BuildMI(*MI.getParent(), I, DL, get(Opcode), Reg).add(MO); MO.ChangeToRegister(Reg, false); } unsigned SIInstrInfo::buildExtractSubReg( MachineBasicBlock::iterator MI, MachineRegisterInfo &MRI, const MachineOperand &SuperReg, const TargetRegisterClass *SuperRC, unsigned SubIdx, const TargetRegisterClass *SubRC) const { MachineBasicBlock *MBB = MI->getParent(); DebugLoc DL = MI->getDebugLoc(); Register SubReg = MRI.createVirtualRegister(SubRC); if (SuperReg.getSubReg() == AMDGPU::NoSubRegister) { BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg) .addReg(SuperReg.getReg(), 0, SubIdx); return SubReg; } // Just in case the super register is itself a sub-register, copy it to a new // value so we don't need to worry about merging its subreg index with the // SubIdx passed to this function. The register coalescer should be able to // eliminate this extra copy. Register NewSuperReg = MRI.createVirtualRegister(SuperRC); BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg) .addReg(SuperReg.getReg(), 0, SuperReg.getSubReg()); BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg) .addReg(NewSuperReg, 0, SubIdx); return SubReg; } MachineOperand SIInstrInfo::buildExtractSubRegOrImm( MachineBasicBlock::iterator MII, MachineRegisterInfo &MRI, const MachineOperand &Op, const TargetRegisterClass *SuperRC, unsigned SubIdx, const TargetRegisterClass *SubRC) const { if (Op.isImm()) { if (SubIdx == AMDGPU::sub0) return MachineOperand::CreateImm(static_cast(Op.getImm())); if (SubIdx == AMDGPU::sub1) return MachineOperand::CreateImm(static_cast(Op.getImm() >> 32)); llvm_unreachable("Unhandled register index for immediate"); } unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC, SubIdx, SubRC); return MachineOperand::CreateReg(SubReg, false); } // Change the order of operands from (0, 1, 2) to (0, 2, 1) void SIInstrInfo::swapOperands(MachineInstr &Inst) const { assert(Inst.getNumExplicitOperands() == 3); MachineOperand Op1 = Inst.getOperand(1); Inst.removeOperand(1); Inst.addOperand(Op1); } bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI, const MCOperandInfo &OpInfo, const MachineOperand &MO) const { if (!MO.isReg()) return false; Register Reg = MO.getReg(); const TargetRegisterClass *DRC = RI.getRegClass(OpInfo.RegClass); if (Reg.isPhysical()) return DRC->contains(Reg); const TargetRegisterClass *RC = MRI.getRegClass(Reg); if (MO.getSubReg()) { const MachineFunction *MF = MO.getParent()->getParent()->getParent(); const TargetRegisterClass *SuperRC = RI.getLargestLegalSuperClass(RC, *MF); if (!SuperRC) return false; DRC = RI.getMatchingSuperRegClass(SuperRC, DRC, MO.getSubReg()); if (!DRC) return false; } return RC->hasSuperClassEq(DRC); } bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI, const MCOperandInfo &OpInfo, const MachineOperand &MO) const { if (MO.isReg()) return isLegalRegOperand(MRI, OpInfo, MO); // Handle non-register types that are treated like immediates. assert(MO.isImm() || MO.isTargetIndex() || MO.isFI() || MO.isGlobal()); return true; } bool SIInstrInfo::isOperandLegal(const MachineInstr &MI, unsigned OpIdx, const MachineOperand *MO) const { const MachineFunction &MF = *MI.getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); const MCInstrDesc &InstDesc = MI.getDesc(); const MCOperandInfo &OpInfo = InstDesc.operands()[OpIdx]; const TargetRegisterClass *DefinedRC = OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr; if (!MO) MO = &MI.getOperand(OpIdx); int ConstantBusLimit = ST.getConstantBusLimit(MI.getOpcode()); int LiteralLimit = !isVOP3(MI) || ST.hasVOP3Literal() ? 1 : 0; if (isVALU(MI) && usesConstantBus(MRI, *MO, OpInfo)) { if (!MO->isReg() && !isInlineConstant(*MO, OpInfo) && !LiteralLimit--) return false; SmallDenseSet SGPRsUsed; if (MO->isReg()) SGPRsUsed.insert(RegSubRegPair(MO->getReg(), MO->getSubReg())); for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { if (i == OpIdx) continue; const MachineOperand &Op = MI.getOperand(i); if (Op.isReg()) { RegSubRegPair SGPR(Op.getReg(), Op.getSubReg()); if (!SGPRsUsed.count(SGPR) && // FIXME: This can access off the end of the operands() array. usesConstantBus(MRI, Op, InstDesc.operands().begin()[i])) { if (--ConstantBusLimit <= 0) return false; SGPRsUsed.insert(SGPR); } } else if (AMDGPU::isSISrcOperand(InstDesc, i) && !isInlineConstant(Op, InstDesc.operands()[i])) { if (!LiteralLimit--) return false; if (--ConstantBusLimit <= 0) return false; } } } if (MO->isReg()) { if (!DefinedRC) return OpInfo.OperandType == MCOI::OPERAND_UNKNOWN; if (!isLegalRegOperand(MRI, OpInfo, *MO)) return false; bool IsAGPR = RI.isAGPR(MRI, MO->getReg()); if (IsAGPR && !ST.hasMAIInsts()) return false; unsigned Opc = MI.getOpcode(); if (IsAGPR && (!ST.hasGFX90AInsts() || !MRI.reservedRegsFrozen()) && (MI.mayLoad() || MI.mayStore() || isDS(Opc) || isMIMG(Opc))) return false; // Atomics should have both vdst and vdata either vgpr or agpr. const int VDstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); const int DataIdx = AMDGPU::getNamedOperandIdx(Opc, isDS(Opc) ? AMDGPU::OpName::data0 : AMDGPU::OpName::vdata); if ((int)OpIdx == VDstIdx && DataIdx != -1 && MI.getOperand(DataIdx).isReg() && RI.isAGPR(MRI, MI.getOperand(DataIdx).getReg()) != IsAGPR) return false; if ((int)OpIdx == DataIdx) { if (VDstIdx != -1 && RI.isAGPR(MRI, MI.getOperand(VDstIdx).getReg()) != IsAGPR) return false; // DS instructions with 2 src operands also must have tied RC. const int Data1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); if (Data1Idx != -1 && MI.getOperand(Data1Idx).isReg() && RI.isAGPR(MRI, MI.getOperand(Data1Idx).getReg()) != IsAGPR) return false; } if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64 && !ST.hasGFX90AInsts() && (int)OpIdx == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0) && RI.isSGPRReg(MRI, MO->getReg())) return false; return true; } if (MO->isImm()) { uint64_t Imm = MO->getImm(); bool Is64BitFPOp = OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_FP64; bool Is64BitOp = Is64BitFPOp || OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_INT64 || OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_V2INT32 || OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_V2FP32; if (Is64BitOp && !AMDGPU::isInlinableLiteral64(Imm, ST.hasInv2PiInlineImm())) { if (!AMDGPU::isValid32BitLiteral(Imm, Is64BitFPOp)) return false; // FIXME: We can use sign extended 64-bit literals, but only for signed // operands. At the moment we do not know if an operand is signed. // Such operand will be encoded as its low 32 bits and then either // correctly sign extended or incorrectly zero extended by HW. if (!Is64BitFPOp && (int32_t)Imm < 0) return false; } } // Handle non-register types that are treated like immediates. assert(MO->isImm() || MO->isTargetIndex() || MO->isFI() || MO->isGlobal()); if (!DefinedRC) { // This operand expects an immediate. return true; } return isImmOperandLegal(MI, OpIdx, *MO); } void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI, MachineInstr &MI) const { unsigned Opc = MI.getOpcode(); const MCInstrDesc &InstrDesc = get(Opc); int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); MachineOperand &Src0 = MI.getOperand(Src0Idx); int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); MachineOperand &Src1 = MI.getOperand(Src1Idx); // If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32 // we need to only have one constant bus use before GFX10. bool HasImplicitSGPR = findImplicitSGPRRead(MI); if (HasImplicitSGPR && ST.getConstantBusLimit(Opc) <= 1 && Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg())) legalizeOpWithMove(MI, Src0Idx); // Special case: V_WRITELANE_B32 accepts only immediate or SGPR operands for // both the value to write (src0) and lane select (src1). Fix up non-SGPR // src0/src1 with V_READFIRSTLANE. if (Opc == AMDGPU::V_WRITELANE_B32) { const DebugLoc &DL = MI.getDebugLoc(); if (Src0.isReg() && RI.isVGPR(MRI, Src0.getReg())) { Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) .add(Src0); Src0.ChangeToRegister(Reg, false); } if (Src1.isReg() && RI.isVGPR(MRI, Src1.getReg())) { Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); const DebugLoc &DL = MI.getDebugLoc(); BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) .add(Src1); Src1.ChangeToRegister(Reg, false); } return; } // No VOP2 instructions support AGPRs. if (Src0.isReg() && RI.isAGPR(MRI, Src0.getReg())) legalizeOpWithMove(MI, Src0Idx); if (Src1.isReg() && RI.isAGPR(MRI, Src1.getReg())) legalizeOpWithMove(MI, Src1Idx); // Special case: V_FMAC_F32 and V_FMAC_F16 have src2. if (Opc == AMDGPU::V_FMAC_F32_e32 || Opc == AMDGPU::V_FMAC_F16_e32) { int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); if (!RI.isVGPR(MRI, MI.getOperand(Src2Idx).getReg())) legalizeOpWithMove(MI, Src2Idx); } // VOP2 src0 instructions support all operand types, so we don't need to check // their legality. If src1 is already legal, we don't need to do anything. if (isLegalRegOperand(MRI, InstrDesc.operands()[Src1Idx], Src1)) return; // Special case: V_READLANE_B32 accepts only immediate or SGPR operands for // lane select. Fix up using V_READFIRSTLANE, since we assume that the lane // select is uniform. if (Opc == AMDGPU::V_READLANE_B32 && Src1.isReg() && RI.isVGPR(MRI, Src1.getReg())) { Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); const DebugLoc &DL = MI.getDebugLoc(); BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) .add(Src1); Src1.ChangeToRegister(Reg, false); return; } // We do not use commuteInstruction here because it is too aggressive and will // commute if it is possible. We only want to commute here if it improves // legality. This can be called a fairly large number of times so don't waste // compile time pointlessly swapping and checking legality again. if (HasImplicitSGPR || !MI.isCommutable()) { legalizeOpWithMove(MI, Src1Idx); return; } // If src0 can be used as src1, commuting will make the operands legal. // Otherwise we have to give up and insert a move. // // TODO: Other immediate-like operand kinds could be commuted if there was a // MachineOperand::ChangeTo* for them. if ((!Src1.isImm() && !Src1.isReg()) || !isLegalRegOperand(MRI, InstrDesc.operands()[Src1Idx], Src0)) { legalizeOpWithMove(MI, Src1Idx); return; } int CommutedOpc = commuteOpcode(MI); if (CommutedOpc == -1) { legalizeOpWithMove(MI, Src1Idx); return; } MI.setDesc(get(CommutedOpc)); Register Src0Reg = Src0.getReg(); unsigned Src0SubReg = Src0.getSubReg(); bool Src0Kill = Src0.isKill(); if (Src1.isImm()) Src0.ChangeToImmediate(Src1.getImm()); else if (Src1.isReg()) { Src0.ChangeToRegister(Src1.getReg(), false, false, Src1.isKill()); Src0.setSubReg(Src1.getSubReg()); } else llvm_unreachable("Should only have register or immediate operands"); Src1.ChangeToRegister(Src0Reg, false, false, Src0Kill); Src1.setSubReg(Src0SubReg); fixImplicitOperands(MI); } // Legalize VOP3 operands. All operand types are supported for any operand // but only one literal constant and only starting from GFX10. void SIInstrInfo::legalizeOperandsVOP3(MachineRegisterInfo &MRI, MachineInstr &MI) const { unsigned Opc = MI.getOpcode(); int VOP3Idx[3] = { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1), AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2) }; if (Opc == AMDGPU::V_PERMLANE16_B32_e64 || Opc == AMDGPU::V_PERMLANEX16_B32_e64) { // src1 and src2 must be scalar MachineOperand &Src1 = MI.getOperand(VOP3Idx[1]); MachineOperand &Src2 = MI.getOperand(VOP3Idx[2]); const DebugLoc &DL = MI.getDebugLoc(); if (Src1.isReg() && !RI.isSGPRClass(MRI.getRegClass(Src1.getReg()))) { Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) .add(Src1); Src1.ChangeToRegister(Reg, false); } if (Src2.isReg() && !RI.isSGPRClass(MRI.getRegClass(Src2.getReg()))) { Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) .add(Src2); Src2.ChangeToRegister(Reg, false); } } // Find the one SGPR operand we are allowed to use. int ConstantBusLimit = ST.getConstantBusLimit(Opc); int LiteralLimit = ST.hasVOP3Literal() ? 1 : 0; SmallDenseSet SGPRsUsed; Register SGPRReg = findUsedSGPR(MI, VOP3Idx); if (SGPRReg) { SGPRsUsed.insert(SGPRReg); --ConstantBusLimit; } for (int Idx : VOP3Idx) { if (Idx == -1) break; MachineOperand &MO = MI.getOperand(Idx); if (!MO.isReg()) { if (isInlineConstant(MO, get(Opc).operands()[Idx])) continue; if (LiteralLimit > 0 && ConstantBusLimit > 0) { --LiteralLimit; --ConstantBusLimit; continue; } --LiteralLimit; --ConstantBusLimit; legalizeOpWithMove(MI, Idx); continue; } if (RI.hasAGPRs(RI.getRegClassForReg(MRI, MO.getReg())) && !isOperandLegal(MI, Idx, &MO)) { legalizeOpWithMove(MI, Idx); continue; } if (!RI.isSGPRClass(RI.getRegClassForReg(MRI, MO.getReg()))) continue; // VGPRs are legal // We can use one SGPR in each VOP3 instruction prior to GFX10 // and two starting from GFX10. if (SGPRsUsed.count(MO.getReg())) continue; if (ConstantBusLimit > 0) { SGPRsUsed.insert(MO.getReg()); --ConstantBusLimit; continue; } // If we make it this far, then the operand is not legal and we must // legalize it. legalizeOpWithMove(MI, Idx); } // Special case: V_FMAC_F32 and V_FMAC_F16 have src2 tied to vdst. if ((Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_e64) && !RI.isVGPR(MRI, MI.getOperand(VOP3Idx[2]).getReg())) legalizeOpWithMove(MI, VOP3Idx[2]); } Register SIInstrInfo::readlaneVGPRToSGPR(Register SrcReg, MachineInstr &UseMI, MachineRegisterInfo &MRI) const { const TargetRegisterClass *VRC = MRI.getRegClass(SrcReg); const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC); Register DstReg = MRI.createVirtualRegister(SRC); unsigned SubRegs = RI.getRegSizeInBits(*VRC) / 32; if (RI.hasAGPRs(VRC)) { VRC = RI.getEquivalentVGPRClass(VRC); Register NewSrcReg = MRI.createVirtualRegister(VRC); BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(TargetOpcode::COPY), NewSrcReg) .addReg(SrcReg); SrcReg = NewSrcReg; } if (SubRegs == 1) { BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(AMDGPU::V_READFIRSTLANE_B32), DstReg) .addReg(SrcReg); return DstReg; } SmallVector SRegs; for (unsigned i = 0; i < SubRegs; ++i) { Register SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(AMDGPU::V_READFIRSTLANE_B32), SGPR) .addReg(SrcReg, 0, RI.getSubRegFromChannel(i)); SRegs.push_back(SGPR); } MachineInstrBuilder MIB = BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), DstReg); for (unsigned i = 0; i < SubRegs; ++i) { MIB.addReg(SRegs[i]); MIB.addImm(RI.getSubRegFromChannel(i)); } return DstReg; } void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI, MachineInstr &MI) const { // If the pointer is store in VGPRs, then we need to move them to // SGPRs using v_readfirstlane. This is safe because we only select // loads with uniform pointers to SMRD instruction so we know the // pointer value is uniform. MachineOperand *SBase = getNamedOperand(MI, AMDGPU::OpName::sbase); if (SBase && !RI.isSGPRClass(MRI.getRegClass(SBase->getReg()))) { Register SGPR = readlaneVGPRToSGPR(SBase->getReg(), MI, MRI); SBase->setReg(SGPR); } MachineOperand *SOff = getNamedOperand(MI, AMDGPU::OpName::soffset); if (SOff && !RI.isSGPRClass(MRI.getRegClass(SOff->getReg()))) { Register SGPR = readlaneVGPRToSGPR(SOff->getReg(), MI, MRI); SOff->setReg(SGPR); } } bool SIInstrInfo::moveFlatAddrToVGPR(MachineInstr &Inst) const { unsigned Opc = Inst.getOpcode(); int OldSAddrIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr); if (OldSAddrIdx < 0) return false; assert(isSegmentSpecificFLAT(Inst)); int NewOpc = AMDGPU::getGlobalVaddrOp(Opc); if (NewOpc < 0) NewOpc = AMDGPU::getFlatScratchInstSVfromSS(Opc); if (NewOpc < 0) return false; MachineRegisterInfo &MRI = Inst.getMF()->getRegInfo(); MachineOperand &SAddr = Inst.getOperand(OldSAddrIdx); if (RI.isSGPRReg(MRI, SAddr.getReg())) return false; int NewVAddrIdx = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vaddr); if (NewVAddrIdx < 0) return false; int OldVAddrIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); // Check vaddr, it shall be zero or absent. MachineInstr *VAddrDef = nullptr; if (OldVAddrIdx >= 0) { MachineOperand &VAddr = Inst.getOperand(OldVAddrIdx); VAddrDef = MRI.getUniqueVRegDef(VAddr.getReg()); if (!VAddrDef || VAddrDef->getOpcode() != AMDGPU::V_MOV_B32_e32 || !VAddrDef->getOperand(1).isImm() || VAddrDef->getOperand(1).getImm() != 0) return false; } const MCInstrDesc &NewDesc = get(NewOpc); Inst.setDesc(NewDesc); // Callers expect iterator to be valid after this call, so modify the // instruction in place. if (OldVAddrIdx == NewVAddrIdx) { MachineOperand &NewVAddr = Inst.getOperand(NewVAddrIdx); // Clear use list from the old vaddr holding a zero register. MRI.removeRegOperandFromUseList(&NewVAddr); MRI.moveOperands(&NewVAddr, &SAddr, 1); Inst.removeOperand(OldSAddrIdx); // Update the use list with the pointer we have just moved from vaddr to // saddr position. Otherwise new vaddr will be missing from the use list. MRI.removeRegOperandFromUseList(&NewVAddr); MRI.addRegOperandToUseList(&NewVAddr); } else { assert(OldSAddrIdx == NewVAddrIdx); if (OldVAddrIdx >= 0) { int NewVDstIn = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vdst_in); // removeOperand doesn't try to fixup tied operand indexes at it goes, so // it asserts. Untie the operands for now and retie them afterwards. if (NewVDstIn != -1) { int OldVDstIn = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in); Inst.untieRegOperand(OldVDstIn); } Inst.removeOperand(OldVAddrIdx); if (NewVDstIn != -1) { int NewVDst = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vdst); Inst.tieOperands(NewVDst, NewVDstIn); } } } if (VAddrDef && MRI.use_nodbg_empty(VAddrDef->getOperand(0).getReg())) VAddrDef->eraseFromParent(); return true; } // FIXME: Remove this when SelectionDAG is obsoleted. void SIInstrInfo::legalizeOperandsFLAT(MachineRegisterInfo &MRI, MachineInstr &MI) const { if (!isSegmentSpecificFLAT(MI)) return; // Fixup SGPR operands in VGPRs. We only select these when the DAG divergence // thinks they are uniform, so a readfirstlane should be valid. MachineOperand *SAddr = getNamedOperand(MI, AMDGPU::OpName::saddr); if (!SAddr || RI.isSGPRClass(MRI.getRegClass(SAddr->getReg()))) return; if (moveFlatAddrToVGPR(MI)) return; Register ToSGPR = readlaneVGPRToSGPR(SAddr->getReg(), MI, MRI); SAddr->setReg(ToSGPR); } void SIInstrInfo::legalizeGenericOperand(MachineBasicBlock &InsertMBB, MachineBasicBlock::iterator I, const TargetRegisterClass *DstRC, MachineOperand &Op, MachineRegisterInfo &MRI, const DebugLoc &DL) const { Register OpReg = Op.getReg(); unsigned OpSubReg = Op.getSubReg(); const TargetRegisterClass *OpRC = RI.getSubClassWithSubReg( RI.getRegClassForReg(MRI, OpReg), OpSubReg); // Check if operand is already the correct register class. if (DstRC == OpRC) return; Register DstReg = MRI.createVirtualRegister(DstRC); auto Copy = BuildMI(InsertMBB, I, DL, get(AMDGPU::COPY), DstReg).add(Op); Op.setReg(DstReg); Op.setSubReg(0); MachineInstr *Def = MRI.getVRegDef(OpReg); if (!Def) return; // Try to eliminate the copy if it is copying an immediate value. if (Def->isMoveImmediate() && DstRC != &AMDGPU::VReg_1RegClass) FoldImmediate(*Copy, *Def, OpReg, &MRI); bool ImpDef = Def->isImplicitDef(); while (!ImpDef && Def && Def->isCopy()) { if (Def->getOperand(1).getReg().isPhysical()) break; Def = MRI.getUniqueVRegDef(Def->getOperand(1).getReg()); ImpDef = Def && Def->isImplicitDef(); } if (!RI.isSGPRClass(DstRC) && !Copy->readsRegister(AMDGPU::EXEC, &RI) && !ImpDef) Copy.addReg(AMDGPU::EXEC, RegState::Implicit); } // Emit the actual waterfall loop, executing the wrapped instruction for each // unique value of \p ScalarOps across all lanes. In the best case we execute 1 // iteration, in the worst case we execute 64 (once per lane). static void emitLoadScalarOpsFromVGPRLoop( const SIInstrInfo &TII, MachineRegisterInfo &MRI, MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, MachineBasicBlock &BodyBB, const DebugLoc &DL, ArrayRef ScalarOps) { MachineFunction &MF = *OrigBB.getParent(); const GCNSubtarget &ST = MF.getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; unsigned SaveExecOpc = ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64; unsigned XorTermOpc = ST.isWave32() ? AMDGPU::S_XOR_B32_term : AMDGPU::S_XOR_B64_term; unsigned AndOpc = ST.isWave32() ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64; const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); MachineBasicBlock::iterator I = LoopBB.begin(); SmallVector ReadlanePieces; Register CondReg; for (MachineOperand *ScalarOp : ScalarOps) { unsigned RegSize = TRI->getRegSizeInBits(ScalarOp->getReg(), MRI); unsigned NumSubRegs = RegSize / 32; Register VScalarOp = ScalarOp->getReg(); if (NumSubRegs == 1) { Register CurReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurReg) .addReg(VScalarOp); Register NewCondReg = MRI.createVirtualRegister(BoolXExecRC); BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_CMP_EQ_U32_e64), NewCondReg) .addReg(CurReg) .addReg(VScalarOp); // Combine the comparison results with AND. if (!CondReg) // First. CondReg = NewCondReg; else { // If not the first, we create an AND. Register AndReg = MRI.createVirtualRegister(BoolXExecRC); BuildMI(LoopBB, I, DL, TII.get(AndOpc), AndReg) .addReg(CondReg) .addReg(NewCondReg); CondReg = AndReg; } // Update ScalarOp operand to use the SGPR ScalarOp. ScalarOp->setReg(CurReg); ScalarOp->setIsKill(); } else { unsigned VScalarOpUndef = getUndefRegState(ScalarOp->isUndef()); assert(NumSubRegs % 2 == 0 && NumSubRegs <= 32 && "Unhandled register size"); for (unsigned Idx = 0; Idx < NumSubRegs; Idx += 2) { Register CurRegLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); Register CurRegHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); // Read the next variant <- also loop target. BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurRegLo) .addReg(VScalarOp, VScalarOpUndef, TRI->getSubRegFromChannel(Idx)); // Read the next variant <- also loop target. BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurRegHi) .addReg(VScalarOp, VScalarOpUndef, TRI->getSubRegFromChannel(Idx + 1)); ReadlanePieces.push_back(CurRegLo); ReadlanePieces.push_back(CurRegHi); // Comparison is to be done as 64-bit. Register CurReg = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass); BuildMI(LoopBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), CurReg) .addReg(CurRegLo) .addImm(AMDGPU::sub0) .addReg(CurRegHi) .addImm(AMDGPU::sub1); Register NewCondReg = MRI.createVirtualRegister(BoolXExecRC); auto Cmp = BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_CMP_EQ_U64_e64), NewCondReg) .addReg(CurReg); if (NumSubRegs <= 2) Cmp.addReg(VScalarOp); else Cmp.addReg(VScalarOp, VScalarOpUndef, TRI->getSubRegFromChannel(Idx, 2)); // Combine the comparison results with AND. if (!CondReg) // First. CondReg = NewCondReg; else { // If not the first, we create an AND. Register AndReg = MRI.createVirtualRegister(BoolXExecRC); BuildMI(LoopBB, I, DL, TII.get(AndOpc), AndReg) .addReg(CondReg) .addReg(NewCondReg); CondReg = AndReg; } } // End for loop. auto SScalarOpRC = TRI->getEquivalentSGPRClass(MRI.getRegClass(VScalarOp)); Register SScalarOp = MRI.createVirtualRegister(SScalarOpRC); // Build scalar ScalarOp. auto Merge = BuildMI(LoopBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), SScalarOp); unsigned Channel = 0; for (Register Piece : ReadlanePieces) { Merge.addReg(Piece).addImm(TRI->getSubRegFromChannel(Channel++)); } // Update ScalarOp operand to use the SGPR ScalarOp. ScalarOp->setReg(SScalarOp); ScalarOp->setIsKill(); } } Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); MRI.setSimpleHint(SaveExec, CondReg); // Update EXEC to matching lanes, saving original to SaveExec. BuildMI(LoopBB, I, DL, TII.get(SaveExecOpc), SaveExec) .addReg(CondReg, RegState::Kill); // The original instruction is here; we insert the terminators after it. I = BodyBB.end(); // Update EXEC, switch all done bits to 0 and all todo bits to 1. BuildMI(BodyBB, I, DL, TII.get(XorTermOpc), Exec) .addReg(Exec) .addReg(SaveExec); BuildMI(BodyBB, I, DL, TII.get(AMDGPU::SI_WATERFALL_LOOP)).addMBB(&LoopBB); } // Build a waterfall loop around \p MI, replacing the VGPR \p ScalarOp register // with SGPRs by iterating over all unique values across all lanes. // Returns the loop basic block that now contains \p MI. static MachineBasicBlock * loadMBUFScalarOperandsFromVGPR(const SIInstrInfo &TII, MachineInstr &MI, ArrayRef ScalarOps, MachineDominatorTree *MDT, MachineBasicBlock::iterator Begin = nullptr, MachineBasicBlock::iterator End = nullptr) { MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); const GCNSubtarget &ST = MF.getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); if (!Begin.isValid()) Begin = &MI; if (!End.isValid()) { End = &MI; ++End; } const DebugLoc &DL = MI.getDebugLoc(); unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); // Save SCC. Waterfall Loop may overwrite SCC. Register SaveSCCReg; bool SCCNotDead = (MBB.computeRegisterLiveness(TRI, AMDGPU::SCC, MI, 30) != MachineBasicBlock::LQR_Dead); if (SCCNotDead) { SaveSCCReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(MBB, Begin, DL, TII.get(AMDGPU::S_CSELECT_B32), SaveSCCReg) .addImm(1) .addImm(0); } Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); // Save the EXEC mask BuildMI(MBB, Begin, DL, TII.get(MovExecOpc), SaveExec).addReg(Exec); // Killed uses in the instruction we are waterfalling around will be // incorrect due to the added control-flow. MachineBasicBlock::iterator AfterMI = MI; ++AfterMI; for (auto I = Begin; I != AfterMI; I++) { for (auto &MO : I->all_uses()) MRI.clearKillFlags(MO.getReg()); } // To insert the loop we need to split the block. Move everything after this // point to a new block, and insert a new empty block between the two. MachineBasicBlock *LoopBB = MF.CreateMachineBasicBlock(); MachineBasicBlock *BodyBB = MF.CreateMachineBasicBlock(); MachineBasicBlock *RemainderBB = MF.CreateMachineBasicBlock(); MachineFunction::iterator MBBI(MBB); ++MBBI; MF.insert(MBBI, LoopBB); MF.insert(MBBI, BodyBB); MF.insert(MBBI, RemainderBB); LoopBB->addSuccessor(BodyBB); BodyBB->addSuccessor(LoopBB); BodyBB->addSuccessor(RemainderBB); // Move Begin to MI to the BodyBB, and the remainder of the block to // RemainderBB. RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); RemainderBB->splice(RemainderBB->begin(), &MBB, End, MBB.end()); BodyBB->splice(BodyBB->begin(), &MBB, Begin, MBB.end()); MBB.addSuccessor(LoopBB); // Update dominators. We know that MBB immediately dominates LoopBB, that // LoopBB immediately dominates BodyBB, and BodyBB immediately dominates // RemainderBB. RemainderBB immediately dominates all of the successors // transferred to it from MBB that MBB used to properly dominate. if (MDT) { MDT->addNewBlock(LoopBB, &MBB); MDT->addNewBlock(BodyBB, LoopBB); MDT->addNewBlock(RemainderBB, BodyBB); for (auto &Succ : RemainderBB->successors()) { if (MDT->properlyDominates(&MBB, Succ)) { MDT->changeImmediateDominator(Succ, RemainderBB); } } } emitLoadScalarOpsFromVGPRLoop(TII, MRI, MBB, *LoopBB, *BodyBB, DL, ScalarOps); MachineBasicBlock::iterator First = RemainderBB->begin(); // Restore SCC if (SCCNotDead) { BuildMI(*RemainderBB, First, DL, TII.get(AMDGPU::S_CMP_LG_U32)) .addReg(SaveSCCReg, RegState::Kill) .addImm(0); } // Restore the EXEC mask BuildMI(*RemainderBB, First, DL, TII.get(MovExecOpc), Exec).addReg(SaveExec); return BodyBB; } // Extract pointer from Rsrc and return a zero-value Rsrc replacement. static std::tuple extractRsrcPtr(const SIInstrInfo &TII, MachineInstr &MI, MachineOperand &Rsrc) { MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); // Extract the ptr from the resource descriptor. unsigned RsrcPtr = TII.buildExtractSubReg(MI, MRI, Rsrc, &AMDGPU::VReg_128RegClass, AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass); // Create an empty resource descriptor Register Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); Register SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); Register SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); Register NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SGPR_128RegClass); uint64_t RsrcDataFormat = TII.getDefaultRsrcDataFormat(); // Zero64 = 0 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B64), Zero64) .addImm(0); // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0} BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), SRsrcFormatLo) .addImm(RsrcDataFormat & 0xFFFFFFFF); // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32} BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), SRsrcFormatHi) .addImm(RsrcDataFormat >> 32); // NewSRsrc = {Zero64, SRsrcFormat} BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::REG_SEQUENCE), NewSRsrc) .addReg(Zero64) .addImm(AMDGPU::sub0_sub1) .addReg(SRsrcFormatLo) .addImm(AMDGPU::sub2) .addReg(SRsrcFormatHi) .addImm(AMDGPU::sub3); return std::tuple(RsrcPtr, NewSRsrc); } MachineBasicBlock * SIInstrInfo::legalizeOperands(MachineInstr &MI, MachineDominatorTree *MDT) const { MachineFunction &MF = *MI.getParent()->getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); MachineBasicBlock *CreatedBB = nullptr; // Legalize VOP2 if (isVOP2(MI) || isVOPC(MI)) { legalizeOperandsVOP2(MRI, MI); return CreatedBB; } // Legalize VOP3 if (isVOP3(MI)) { legalizeOperandsVOP3(MRI, MI); return CreatedBB; } // Legalize SMRD if (isSMRD(MI)) { legalizeOperandsSMRD(MRI, MI); return CreatedBB; } // Legalize FLAT if (isFLAT(MI)) { legalizeOperandsFLAT(MRI, MI); return CreatedBB; } // Legalize REG_SEQUENCE and PHI // The register class of the operands much be the same type as the register // class of the output. if (MI.getOpcode() == AMDGPU::PHI) { const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr; for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { if (!MI.getOperand(i).isReg() || !MI.getOperand(i).getReg().isVirtual()) continue; const TargetRegisterClass *OpRC = MRI.getRegClass(MI.getOperand(i).getReg()); if (RI.hasVectorRegisters(OpRC)) { VRC = OpRC; } else { SRC = OpRC; } } // If any of the operands are VGPR registers, then they all most be // otherwise we will create illegal VGPR->SGPR copies when legalizing // them. if (VRC || !RI.isSGPRClass(getOpRegClass(MI, 0))) { if (!VRC) { assert(SRC); if (getOpRegClass(MI, 0) == &AMDGPU::VReg_1RegClass) { VRC = &AMDGPU::VReg_1RegClass; } else VRC = RI.isAGPRClass(getOpRegClass(MI, 0)) ? RI.getEquivalentAGPRClass(SRC) : RI.getEquivalentVGPRClass(SRC); } else { VRC = RI.isAGPRClass(getOpRegClass(MI, 0)) ? RI.getEquivalentAGPRClass(VRC) : RI.getEquivalentVGPRClass(VRC); } RC = VRC; } else { RC = SRC; } // Update all the operands so they have the same type. for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { MachineOperand &Op = MI.getOperand(I); if (!Op.isReg() || !Op.getReg().isVirtual()) continue; // MI is a PHI instruction. MachineBasicBlock *InsertBB = MI.getOperand(I + 1).getMBB(); MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator(); // Avoid creating no-op copies with the same src and dst reg class. These // confuse some of the machine passes. legalizeGenericOperand(*InsertBB, Insert, RC, Op, MRI, MI.getDebugLoc()); } } // REG_SEQUENCE doesn't really require operand legalization, but if one has a // VGPR dest type and SGPR sources, insert copies so all operands are // VGPRs. This seems to help operand folding / the register coalescer. if (MI.getOpcode() == AMDGPU::REG_SEQUENCE) { MachineBasicBlock *MBB = MI.getParent(); const TargetRegisterClass *DstRC = getOpRegClass(MI, 0); if (RI.hasVGPRs(DstRC)) { // Update all the operands so they are VGPR register classes. These may // not be the same register class because REG_SEQUENCE supports mixing // subregister index types e.g. sub0_sub1 + sub2 + sub3 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { MachineOperand &Op = MI.getOperand(I); if (!Op.isReg() || !Op.getReg().isVirtual()) continue; const TargetRegisterClass *OpRC = MRI.getRegClass(Op.getReg()); const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC); if (VRC == OpRC) continue; legalizeGenericOperand(*MBB, MI, VRC, Op, MRI, MI.getDebugLoc()); Op.setIsKill(); } } return CreatedBB; } // Legalize INSERT_SUBREG // src0 must have the same register class as dst if (MI.getOpcode() == AMDGPU::INSERT_SUBREG) { Register Dst = MI.getOperand(0).getReg(); Register Src0 = MI.getOperand(1).getReg(); const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0); if (DstRC != Src0RC) { MachineBasicBlock *MBB = MI.getParent(); MachineOperand &Op = MI.getOperand(1); legalizeGenericOperand(*MBB, MI, DstRC, Op, MRI, MI.getDebugLoc()); } return CreatedBB; } // Legalize SI_INIT_M0 if (MI.getOpcode() == AMDGPU::SI_INIT_M0) { MachineOperand &Src = MI.getOperand(0); if (Src.isReg() && RI.hasVectorRegisters(MRI.getRegClass(Src.getReg()))) Src.setReg(readlaneVGPRToSGPR(Src.getReg(), MI, MRI)); return CreatedBB; } // Legalize S_BITREPLICATE, S_QUADMASK and S_WQM if (MI.getOpcode() == AMDGPU::S_BITREPLICATE_B64_B32 || MI.getOpcode() == AMDGPU::S_QUADMASK_B32 || MI.getOpcode() == AMDGPU::S_QUADMASK_B64 || MI.getOpcode() == AMDGPU::S_WQM_B32 || MI.getOpcode() == AMDGPU::S_WQM_B64) { MachineOperand &Src = MI.getOperand(1); if (Src.isReg() && RI.hasVectorRegisters(MRI.getRegClass(Src.getReg()))) Src.setReg(readlaneVGPRToSGPR(Src.getReg(), MI, MRI)); return CreatedBB; } // Legalize MIMG/VIMAGE/VSAMPLE and MUBUF/MTBUF for shaders. // // Shaders only generate MUBUF/MTBUF instructions via intrinsics or via // scratch memory access. In both cases, the legalization never involves // conversion to the addr64 form. if (isImage(MI) || (AMDGPU::isGraphics(MF.getFunction().getCallingConv()) && (isMUBUF(MI) || isMTBUF(MI)))) { int RSrcOpName = (isVIMAGE(MI) || isVSAMPLE(MI)) ? AMDGPU::OpName::rsrc : AMDGPU::OpName::srsrc; MachineOperand *SRsrc = getNamedOperand(MI, RSrcOpName); if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(SRsrc->getReg()))) CreatedBB = loadMBUFScalarOperandsFromVGPR(*this, MI, {SRsrc}, MDT); int SampOpName = isMIMG(MI) ? AMDGPU::OpName::ssamp : AMDGPU::OpName::samp; MachineOperand *SSamp = getNamedOperand(MI, SampOpName); if (SSamp && !RI.isSGPRClass(MRI.getRegClass(SSamp->getReg()))) CreatedBB = loadMBUFScalarOperandsFromVGPR(*this, MI, {SSamp}, MDT); return CreatedBB; } // Legalize SI_CALL if (MI.getOpcode() == AMDGPU::SI_CALL_ISEL) { MachineOperand *Dest = &MI.getOperand(0); if (!RI.isSGPRClass(MRI.getRegClass(Dest->getReg()))) { // Move everything between ADJCALLSTACKUP and ADJCALLSTACKDOWN and // following copies, we also need to move copies from and to physical // registers into the loop block. unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); // Also move the copies to physical registers into the loop block MachineBasicBlock &MBB = *MI.getParent(); MachineBasicBlock::iterator Start(&MI); while (Start->getOpcode() != FrameSetupOpcode) --Start; MachineBasicBlock::iterator End(&MI); while (End->getOpcode() != FrameDestroyOpcode) ++End; // Also include following copies of the return value ++End; while (End != MBB.end() && End->isCopy() && End->getOperand(1).isReg() && MI.definesRegister(End->getOperand(1).getReg())) ++End; CreatedBB = loadMBUFScalarOperandsFromVGPR(*this, MI, {Dest}, MDT, Start, End); } } // Legalize s_sleep_var. if (MI.getOpcode() == AMDGPU::S_SLEEP_VAR) { const DebugLoc &DL = MI.getDebugLoc(); Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); MachineOperand &Src0 = MI.getOperand(Src0Idx); BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) .add(Src0); Src0.ChangeToRegister(Reg, false); return nullptr; } // Legalize MUBUF instructions. bool isSoffsetLegal = true; int SoffsetIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::soffset); if (SoffsetIdx != -1) { MachineOperand *Soffset = &MI.getOperand(SoffsetIdx); if (Soffset->isReg() && Soffset->getReg().isVirtual() && !RI.isSGPRClass(MRI.getRegClass(Soffset->getReg()))) { isSoffsetLegal = false; } } bool isRsrcLegal = true; int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); if (RsrcIdx != -1) { MachineOperand *Rsrc = &MI.getOperand(RsrcIdx); if (Rsrc->isReg() && !RI.isSGPRClass(MRI.getRegClass(Rsrc->getReg()))) { isRsrcLegal = false; } } // The operands are legal. if (isRsrcLegal && isSoffsetLegal) return CreatedBB; if (!isRsrcLegal) { // Legalize a VGPR Rsrc // // If the instruction is _ADDR64, we can avoid a waterfall by extracting // the base pointer from the VGPR Rsrc, adding it to the VAddr, then using // a zero-value SRsrc. // // If the instruction is _OFFSET (both idxen and offen disabled), and we // support ADDR64 instructions, we can convert to ADDR64 and do the same as // above. // // Otherwise we are on non-ADDR64 hardware, and/or we have // idxen/offen/bothen and we fall back to a waterfall loop. MachineOperand *Rsrc = &MI.getOperand(RsrcIdx); MachineBasicBlock &MBB = *MI.getParent(); MachineOperand *VAddr = getNamedOperand(MI, AMDGPU::OpName::vaddr); if (VAddr && AMDGPU::getIfAddr64Inst(MI.getOpcode()) != -1) { // This is already an ADDR64 instruction so we need to add the pointer // extracted from the resource descriptor to the current value of VAddr. Register NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); const auto *BoolXExecRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID); Register CondReg0 = MRI.createVirtualRegister(BoolXExecRC); Register CondReg1 = MRI.createVirtualRegister(BoolXExecRC); unsigned RsrcPtr, NewSRsrc; std::tie(RsrcPtr, NewSRsrc) = extractRsrcPtr(*this, MI, *Rsrc); // NewVaddrLo = RsrcPtr:sub0 + VAddr:sub0 const DebugLoc &DL = MI.getDebugLoc(); BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_CO_U32_e64), NewVAddrLo) .addDef(CondReg0) .addReg(RsrcPtr, 0, AMDGPU::sub0) .addReg(VAddr->getReg(), 0, AMDGPU::sub0) .addImm(0); // NewVaddrHi = RsrcPtr:sub1 + VAddr:sub1 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e64), NewVAddrHi) .addDef(CondReg1, RegState::Dead) .addReg(RsrcPtr, 0, AMDGPU::sub1) .addReg(VAddr->getReg(), 0, AMDGPU::sub1) .addReg(CondReg0, RegState::Kill) .addImm(0); // NewVaddr = {NewVaddrHi, NewVaddrLo} BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr) .addReg(NewVAddrLo) .addImm(AMDGPU::sub0) .addReg(NewVAddrHi) .addImm(AMDGPU::sub1); VAddr->setReg(NewVAddr); Rsrc->setReg(NewSRsrc); } else if (!VAddr && ST.hasAddr64()) { // This instructions is the _OFFSET variant, so we need to convert it to // ADDR64. assert(ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS && "FIXME: Need to emit flat atomics here"); unsigned RsrcPtr, NewSRsrc; std::tie(RsrcPtr, NewSRsrc) = extractRsrcPtr(*this, MI, *Rsrc); Register NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); MachineOperand *VData = getNamedOperand(MI, AMDGPU::OpName::vdata); MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset); MachineOperand *SOffset = getNamedOperand(MI, AMDGPU::OpName::soffset); unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI.getOpcode()); // Atomics with return have an additional tied operand and are // missing some of the special bits. MachineOperand *VDataIn = getNamedOperand(MI, AMDGPU::OpName::vdata_in); MachineInstr *Addr64; if (!VDataIn) { // Regular buffer load / store. MachineInstrBuilder MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode)) .add(*VData) .addReg(NewVAddr) .addReg(NewSRsrc) .add(*SOffset) .add(*Offset); if (const MachineOperand *CPol = getNamedOperand(MI, AMDGPU::OpName::cpol)) { MIB.addImm(CPol->getImm()); } if (const MachineOperand *TFE = getNamedOperand(MI, AMDGPU::OpName::tfe)) { MIB.addImm(TFE->getImm()); } MIB.addImm(getNamedImmOperand(MI, AMDGPU::OpName::swz)); MIB.cloneMemRefs(MI); Addr64 = MIB; } else { // Atomics with return. Addr64 = BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode)) .add(*VData) .add(*VDataIn) .addReg(NewVAddr) .addReg(NewSRsrc) .add(*SOffset) .add(*Offset) .addImm(getNamedImmOperand(MI, AMDGPU::OpName::cpol)) .cloneMemRefs(MI); } MI.removeFromParent(); // NewVaddr = {NewVaddrHi, NewVaddrLo} BuildMI(MBB, Addr64, Addr64->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr) .addReg(RsrcPtr, 0, AMDGPU::sub0) .addImm(AMDGPU::sub0) .addReg(RsrcPtr, 0, AMDGPU::sub1) .addImm(AMDGPU::sub1); } else { // Legalize a VGPR Rsrc and soffset together. if (!isSoffsetLegal) { MachineOperand *Soffset = getNamedOperand(MI, AMDGPU::OpName::soffset); CreatedBB = loadMBUFScalarOperandsFromVGPR(*this, MI, {Rsrc, Soffset}, MDT); return CreatedBB; } CreatedBB = loadMBUFScalarOperandsFromVGPR(*this, MI, {Rsrc}, MDT); return CreatedBB; } } // Legalize a VGPR soffset. if (!isSoffsetLegal) { MachineOperand *Soffset = getNamedOperand(MI, AMDGPU::OpName::soffset); CreatedBB = loadMBUFScalarOperandsFromVGPR(*this, MI, {Soffset}, MDT); return CreatedBB; } return CreatedBB; } void SIInstrWorklist::insert(MachineInstr *MI) { InstrList.insert(MI); // Add MBUF instructiosn to deferred list. int RsrcIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::srsrc); if (RsrcIdx != -1) { DeferredList.insert(MI); } } bool SIInstrWorklist::isDeferred(MachineInstr *MI) { return DeferredList.contains(MI); } void SIInstrInfo::moveToVALU(SIInstrWorklist &Worklist, MachineDominatorTree *MDT) const { while (!Worklist.empty()) { MachineInstr &Inst = *Worklist.top(); Worklist.erase_top(); // Skip MachineInstr in the deferred list. if (Worklist.isDeferred(&Inst)) continue; moveToVALUImpl(Worklist, MDT, Inst); } // Deferred list of instructions will be processed once // all the MachineInstr in the worklist are done. for (MachineInstr *Inst : Worklist.getDeferredList()) { moveToVALUImpl(Worklist, MDT, *Inst); assert(Worklist.empty() && "Deferred MachineInstr are not supposed to re-populate worklist"); } } void SIInstrInfo::moveToVALUImpl(SIInstrWorklist &Worklist, MachineDominatorTree *MDT, MachineInstr &Inst) const { MachineBasicBlock *MBB = Inst.getParent(); if (!MBB) return; MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); unsigned Opcode = Inst.getOpcode(); unsigned NewOpcode = getVALUOp(Inst); // Handle some special cases switch (Opcode) { default: break; case AMDGPU::S_ADD_U64_PSEUDO: NewOpcode = AMDGPU::V_ADD_U64_PSEUDO; break; case AMDGPU::S_SUB_U64_PSEUDO: NewOpcode = AMDGPU::V_SUB_U64_PSEUDO; break; case AMDGPU::S_ADD_I32: case AMDGPU::S_SUB_I32: { // FIXME: The u32 versions currently selected use the carry. bool Changed; MachineBasicBlock *CreatedBBTmp = nullptr; std::tie(Changed, CreatedBBTmp) = moveScalarAddSub(Worklist, Inst, MDT); if (Changed) return; // Default handling break; } case AMDGPU::S_MUL_U64: // Split s_mul_u64 in 32-bit vector multiplications. splitScalarSMulU64(Worklist, Inst, MDT); Inst.eraseFromParent(); return; case AMDGPU::S_MUL_U64_U32_PSEUDO: case AMDGPU::S_MUL_I64_I32_PSEUDO: // This is a special case of s_mul_u64 where all the operands are either // zero extended or sign extended. splitScalarSMulPseudo(Worklist, Inst, MDT); Inst.eraseFromParent(); return; case AMDGPU::S_AND_B64: splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_AND_B32, MDT); Inst.eraseFromParent(); return; case AMDGPU::S_OR_B64: splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_OR_B32, MDT); Inst.eraseFromParent(); return; case AMDGPU::S_XOR_B64: splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XOR_B32, MDT); Inst.eraseFromParent(); return; case AMDGPU::S_NAND_B64: splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_NAND_B32, MDT); Inst.eraseFromParent(); return; case AMDGPU::S_NOR_B64: splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_NOR_B32, MDT); Inst.eraseFromParent(); return; case AMDGPU::S_XNOR_B64: if (ST.hasDLInsts()) splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XNOR_B32, MDT); else splitScalar64BitXnor(Worklist, Inst, MDT); Inst.eraseFromParent(); return; case AMDGPU::S_ANDN2_B64: splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_ANDN2_B32, MDT); Inst.eraseFromParent(); return; case AMDGPU::S_ORN2_B64: splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_ORN2_B32, MDT); Inst.eraseFromParent(); return; case AMDGPU::S_BREV_B64: splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_BREV_B32, true); Inst.eraseFromParent(); return; case AMDGPU::S_NOT_B64: splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_NOT_B32); Inst.eraseFromParent(); return; case AMDGPU::S_BCNT1_I32_B64: splitScalar64BitBCNT(Worklist, Inst); Inst.eraseFromParent(); return; case AMDGPU::S_BFE_I64: splitScalar64BitBFE(Worklist, Inst); Inst.eraseFromParent(); return; case AMDGPU::S_FLBIT_I32_B64: splitScalar64BitCountOp(Worklist, Inst, AMDGPU::V_FFBH_U32_e32); Inst.eraseFromParent(); return; case AMDGPU::S_FF1_I32_B64: splitScalar64BitCountOp(Worklist, Inst, AMDGPU::V_FFBL_B32_e32); Inst.eraseFromParent(); return; case AMDGPU::S_LSHL_B32: if (ST.hasOnlyRevVALUShifts()) { NewOpcode = AMDGPU::V_LSHLREV_B32_e64; swapOperands(Inst); } break; case AMDGPU::S_ASHR_I32: if (ST.hasOnlyRevVALUShifts()) { NewOpcode = AMDGPU::V_ASHRREV_I32_e64; swapOperands(Inst); } break; case AMDGPU::S_LSHR_B32: if (ST.hasOnlyRevVALUShifts()) { NewOpcode = AMDGPU::V_LSHRREV_B32_e64; swapOperands(Inst); } break; case AMDGPU::S_LSHL_B64: if (ST.hasOnlyRevVALUShifts()) { NewOpcode = ST.getGeneration() >= AMDGPUSubtarget::GFX12 ? AMDGPU::V_LSHLREV_B64_pseudo_e64 : AMDGPU::V_LSHLREV_B64_e64; swapOperands(Inst); } break; case AMDGPU::S_ASHR_I64: if (ST.hasOnlyRevVALUShifts()) { NewOpcode = AMDGPU::V_ASHRREV_I64_e64; swapOperands(Inst); } break; case AMDGPU::S_LSHR_B64: if (ST.hasOnlyRevVALUShifts()) { NewOpcode = AMDGPU::V_LSHRREV_B64_e64; swapOperands(Inst); } break; case AMDGPU::S_ABS_I32: lowerScalarAbs(Worklist, Inst); Inst.eraseFromParent(); return; case AMDGPU::S_CBRANCH_SCC0: case AMDGPU::S_CBRANCH_SCC1: { // Clear unused bits of vcc Register CondReg = Inst.getOperand(1).getReg(); bool IsSCC = CondReg == AMDGPU::SCC; Register VCC = RI.getVCC(); Register EXEC = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; unsigned Opc = ST.isWave32() ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64; BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(Opc), VCC) .addReg(EXEC) .addReg(IsSCC ? VCC : CondReg); Inst.removeOperand(1); } break; case AMDGPU::S_BFE_U64: case AMDGPU::S_BFM_B64: llvm_unreachable("Moving this op to VALU not implemented"); case AMDGPU::S_PACK_LL_B32_B16: case AMDGPU::S_PACK_LH_B32_B16: case AMDGPU::S_PACK_HL_B32_B16: case AMDGPU::S_PACK_HH_B32_B16: movePackToVALU(Worklist, MRI, Inst); Inst.eraseFromParent(); return; case AMDGPU::S_XNOR_B32: lowerScalarXnor(Worklist, Inst); Inst.eraseFromParent(); return; case AMDGPU::S_NAND_B32: splitScalarNotBinop(Worklist, Inst, AMDGPU::S_AND_B32); Inst.eraseFromParent(); return; case AMDGPU::S_NOR_B32: splitScalarNotBinop(Worklist, Inst, AMDGPU::S_OR_B32); Inst.eraseFromParent(); return; case AMDGPU::S_ANDN2_B32: splitScalarBinOpN2(Worklist, Inst, AMDGPU::S_AND_B32); Inst.eraseFromParent(); return; case AMDGPU::S_ORN2_B32: splitScalarBinOpN2(Worklist, Inst, AMDGPU::S_OR_B32); Inst.eraseFromParent(); return; // TODO: remove as soon as everything is ready // to replace VGPR to SGPR copy with V_READFIRSTLANEs. // S_ADD/SUB_CO_PSEUDO as well as S_UADDO/USUBO_PSEUDO // can only be selected from the uniform SDNode. case AMDGPU::S_ADD_CO_PSEUDO: case AMDGPU::S_SUB_CO_PSEUDO: { unsigned Opc = (Inst.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; const auto *CarryRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID); Register CarryInReg = Inst.getOperand(4).getReg(); if (!MRI.constrainRegClass(CarryInReg, CarryRC)) { Register NewCarryReg = MRI.createVirtualRegister(CarryRC); BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(AMDGPU::COPY), NewCarryReg) .addReg(CarryInReg); } Register CarryOutReg = Inst.getOperand(1).getReg(); Register DestReg = MRI.createVirtualRegister(RI.getEquivalentVGPRClass( MRI.getRegClass(Inst.getOperand(0).getReg()))); MachineInstr *CarryOp = BuildMI(*MBB, &Inst, Inst.getDebugLoc(), get(Opc), DestReg) .addReg(CarryOutReg, RegState::Define) .add(Inst.getOperand(2)) .add(Inst.getOperand(3)) .addReg(CarryInReg) .addImm(0); legalizeOperands(*CarryOp); MRI.replaceRegWith(Inst.getOperand(0).getReg(), DestReg); addUsersToMoveToVALUWorklist(DestReg, MRI, Worklist); Inst.eraseFromParent(); } return; case AMDGPU::S_UADDO_PSEUDO: case AMDGPU::S_USUBO_PSEUDO: { const DebugLoc &DL = Inst.getDebugLoc(); MachineOperand &Dest0 = Inst.getOperand(0); MachineOperand &Dest1 = Inst.getOperand(1); MachineOperand &Src0 = Inst.getOperand(2); MachineOperand &Src1 = Inst.getOperand(3); unsigned Opc = (Inst.getOpcode() == AMDGPU::S_UADDO_PSEUDO) ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; const TargetRegisterClass *NewRC = RI.getEquivalentVGPRClass(MRI.getRegClass(Dest0.getReg())); Register DestReg = MRI.createVirtualRegister(NewRC); MachineInstr *NewInstr = BuildMI(*MBB, &Inst, DL, get(Opc), DestReg) .addReg(Dest1.getReg(), RegState::Define) .add(Src0) .add(Src1) .addImm(0); // clamp bit legalizeOperands(*NewInstr, MDT); MRI.replaceRegWith(Dest0.getReg(), DestReg); addUsersToMoveToVALUWorklist(NewInstr->getOperand(0).getReg(), MRI, Worklist); Inst.eraseFromParent(); } return; case AMDGPU::S_CSELECT_B32: case AMDGPU::S_CSELECT_B64: lowerSelect(Worklist, Inst, MDT); Inst.eraseFromParent(); return; case AMDGPU::S_CMP_EQ_I32: case AMDGPU::S_CMP_LG_I32: case AMDGPU::S_CMP_GT_I32: case AMDGPU::S_CMP_GE_I32: case AMDGPU::S_CMP_LT_I32: case AMDGPU::S_CMP_LE_I32: case AMDGPU::S_CMP_EQ_U32: case AMDGPU::S_CMP_LG_U32: case AMDGPU::S_CMP_GT_U32: case AMDGPU::S_CMP_GE_U32: case AMDGPU::S_CMP_LT_U32: case AMDGPU::S_CMP_LE_U32: case AMDGPU::S_CMP_EQ_U64: case AMDGPU::S_CMP_LG_U64: case AMDGPU::S_CMP_LT_F32: case AMDGPU::S_CMP_EQ_F32: case AMDGPU::S_CMP_LE_F32: case AMDGPU::S_CMP_GT_F32: case AMDGPU::S_CMP_LG_F32: case AMDGPU::S_CMP_GE_F32: case AMDGPU::S_CMP_O_F32: case AMDGPU::S_CMP_U_F32: case AMDGPU::S_CMP_NGE_F32: case AMDGPU::S_CMP_NLG_F32: case AMDGPU::S_CMP_NGT_F32: case AMDGPU::S_CMP_NLE_F32: case AMDGPU::S_CMP_NEQ_F32: case AMDGPU::S_CMP_NLT_F32: case AMDGPU::S_CMP_LT_F16: case AMDGPU::S_CMP_EQ_F16: case AMDGPU::S_CMP_LE_F16: case AMDGPU::S_CMP_GT_F16: case AMDGPU::S_CMP_LG_F16: case AMDGPU::S_CMP_GE_F16: case AMDGPU::S_CMP_O_F16: case AMDGPU::S_CMP_U_F16: case AMDGPU::S_CMP_NGE_F16: case AMDGPU::S_CMP_NLG_F16: case AMDGPU::S_CMP_NGT_F16: case AMDGPU::S_CMP_NLE_F16: case AMDGPU::S_CMP_NEQ_F16: case AMDGPU::S_CMP_NLT_F16: { Register CondReg = MRI.createVirtualRegister(RI.getWaveMaskRegClass()); auto NewInstr = BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(NewOpcode), CondReg) .setMIFlags(Inst.getFlags()); if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src0_modifiers) >= 0) { NewInstr .addImm(0) // src0_modifiers .add(Inst.getOperand(0)) // src0 .addImm(0) // src1_modifiers .add(Inst.getOperand(1)) // src1 .addImm(0); // clamp } else { NewInstr .add(Inst.getOperand(0)) .add(Inst.getOperand(1)); } legalizeOperands(*NewInstr, MDT); int SCCIdx = Inst.findRegisterDefOperandIdx(AMDGPU::SCC); MachineOperand SCCOp = Inst.getOperand(SCCIdx); addSCCDefUsersToVALUWorklist(SCCOp, Inst, Worklist, CondReg); Inst.eraseFromParent(); return; } case AMDGPU::S_CVT_HI_F32_F16: { const DebugLoc &DL = Inst.getDebugLoc(); Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register NewDst = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg) .addImm(16) .add(Inst.getOperand(1)); BuildMI(*MBB, Inst, DL, get(NewOpcode), NewDst) .addImm(0) // src0_modifiers .addReg(TmpReg) .addImm(0) // clamp .addImm(0); // omod MRI.replaceRegWith(Inst.getOperand(0).getReg(), NewDst); addUsersToMoveToVALUWorklist(NewDst, MRI, Worklist); Inst.eraseFromParent(); return; } case AMDGPU::S_MINIMUM_F32: case AMDGPU::S_MAXIMUM_F32: case AMDGPU::S_MINIMUM_F16: case AMDGPU::S_MAXIMUM_F16: { const DebugLoc &DL = Inst.getDebugLoc(); Register NewDst = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); MachineInstr *NewInstr = BuildMI(*MBB, Inst, DL, get(NewOpcode), NewDst) .addImm(0) // src0_modifiers .add(Inst.getOperand(1)) .addImm(0) // src1_modifiers .add(Inst.getOperand(2)) .addImm(0) // clamp .addImm(0); // omod MRI.replaceRegWith(Inst.getOperand(0).getReg(), NewDst); legalizeOperands(*NewInstr, MDT); addUsersToMoveToVALUWorklist(NewDst, MRI, Worklist); Inst.eraseFromParent(); return; } } if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) { // We cannot move this instruction to the VALU, so we should try to // legalize its operands instead. legalizeOperands(Inst, MDT); return; } // Handle converting generic instructions like COPY-to-SGPR into // COPY-to-VGPR. if (NewOpcode == Opcode) { Register DstReg = Inst.getOperand(0).getReg(); const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(Inst); // If it's a copy of a VGPR to a physical SGPR, insert a V_READFIRSTLANE and // hope for the best. if (Inst.isCopy() && DstReg.isPhysical() && RI.isVGPR(MRI, Inst.getOperand(1).getReg())) { // TODO: Only works for 32 bit registers. BuildMI(*Inst.getParent(), &Inst, Inst.getDebugLoc(), get(AMDGPU::V_READFIRSTLANE_B32), Inst.getOperand(0).getReg()) .add(Inst.getOperand(1)); Inst.eraseFromParent(); return; } if (Inst.isCopy() && Inst.getOperand(1).getReg().isVirtual() && NewDstRC == RI.getRegClassForReg(MRI, Inst.getOperand(1).getReg())) { // Instead of creating a copy where src and dst are the same register // class, we just replace all uses of dst with src. These kinds of // copies interfere with the heuristics MachineSink uses to decide // whether or not to split a critical edge. Since the pass assumes // that copies will end up as machine instructions and not be // eliminated. addUsersToMoveToVALUWorklist(DstReg, MRI, Worklist); MRI.replaceRegWith(DstReg, Inst.getOperand(1).getReg()); MRI.clearKillFlags(Inst.getOperand(1).getReg()); Inst.getOperand(0).setReg(DstReg); // Make sure we don't leave around a dead VGPR->SGPR copy. Normally // these are deleted later, but at -O0 it would leave a suspicious // looking illegal copy of an undef register. for (unsigned I = Inst.getNumOperands() - 1; I != 0; --I) Inst.removeOperand(I); Inst.setDesc(get(AMDGPU::IMPLICIT_DEF)); return; } Register NewDstReg = MRI.createVirtualRegister(NewDstRC); MRI.replaceRegWith(DstReg, NewDstReg); legalizeOperands(Inst, MDT); addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist); return; } // Use the new VALU Opcode. auto NewInstr = BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(NewOpcode)) .setMIFlags(Inst.getFlags()); if (isVOP3(NewOpcode) && !isVOP3(Opcode)) { // Intersperse VOP3 modifiers among the SALU operands. NewInstr->addOperand(Inst.getOperand(0)); if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src0_modifiers) >= 0) NewInstr.addImm(0); if (AMDGPU::hasNamedOperand(NewOpcode, AMDGPU::OpName::src0)) { MachineOperand Src = Inst.getOperand(1); if (AMDGPU::isTrue16Inst(NewOpcode) && ST.useRealTrue16Insts() && Src.isReg() && RI.isVGPR(MRI, Src.getReg())) NewInstr.addReg(Src.getReg(), 0, AMDGPU::lo16); else NewInstr->addOperand(Src); } if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) { // We are converting these to a BFE, so we need to add the missing // operands for the size and offset. unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16; NewInstr.addImm(0); NewInstr.addImm(Size); } else if (Opcode == AMDGPU::S_BCNT1_I32_B32) { // The VALU version adds the second operand to the result, so insert an // extra 0 operand. NewInstr.addImm(0); } else if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) { const MachineOperand &OffsetWidthOp = Inst.getOperand(2); // If we need to move this to VGPRs, we need to unpack the second // operand back into the 2 separate ones for bit offset and width. assert(OffsetWidthOp.isImm() && "Scalar BFE is only implemented for constant width and offset"); uint32_t Imm = OffsetWidthOp.getImm(); uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. NewInstr.addImm(Offset); NewInstr.addImm(BitWidth); } else { if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src1_modifiers) >= 0) NewInstr.addImm(0); if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src1) >= 0) NewInstr->addOperand(Inst.getOperand(2)); if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src2_modifiers) >= 0) NewInstr.addImm(0); if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src2) >= 0) NewInstr->addOperand(Inst.getOperand(3)); if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::clamp) >= 0) NewInstr.addImm(0); if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::omod) >= 0) NewInstr.addImm(0); if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::op_sel) >= 0) NewInstr.addImm(0); } } else { // Just copy the SALU operands. for (const MachineOperand &Op : Inst.explicit_operands()) NewInstr->addOperand(Op); } // Remove any references to SCC. Vector instructions can't read from it, and // We're just about to add the implicit use / defs of VCC, and we don't want // both. for (MachineOperand &Op : Inst.implicit_operands()) { if (Op.getReg() == AMDGPU::SCC) { // Only propagate through live-def of SCC. if (Op.isDef() && !Op.isDead()) addSCCDefUsersToVALUWorklist(Op, Inst, Worklist); if (Op.isUse()) addSCCDefsToVALUWorklist(NewInstr, Worklist); } } Inst.eraseFromParent(); Register NewDstReg; if (NewInstr->getOperand(0).isReg() && NewInstr->getOperand(0).isDef()) { Register DstReg = NewInstr->getOperand(0).getReg(); assert(DstReg.isVirtual()); // Update the destination register class. const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(*NewInstr); assert(NewDstRC); NewDstReg = MRI.createVirtualRegister(NewDstRC); MRI.replaceRegWith(DstReg, NewDstReg); } fixImplicitOperands(*NewInstr); // Legalize the operands legalizeOperands(*NewInstr, MDT); if (NewDstReg) addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist); } // Add/sub require special handling to deal with carry outs. std::pair SIInstrInfo::moveScalarAddSub(SIInstrWorklist &Worklist, MachineInstr &Inst, MachineDominatorTree *MDT) const { if (ST.hasAddNoCarry()) { // Assume there is no user of scc since we don't select this in that case. // Since scc isn't used, it doesn't really matter if the i32 or u32 variant // is used. MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); Register OldDstReg = Inst.getOperand(0).getReg(); Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); unsigned Opc = Inst.getOpcode(); assert(Opc == AMDGPU::S_ADD_I32 || Opc == AMDGPU::S_SUB_I32); unsigned NewOpc = Opc == AMDGPU::S_ADD_I32 ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_SUB_U32_e64; assert(Inst.getOperand(3).getReg() == AMDGPU::SCC); Inst.removeOperand(3); Inst.setDesc(get(NewOpc)); Inst.addOperand(MachineOperand::CreateImm(0)); // clamp bit Inst.addImplicitDefUseOperands(*MBB.getParent()); MRI.replaceRegWith(OldDstReg, ResultReg); MachineBasicBlock *NewBB = legalizeOperands(Inst, MDT); addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); return std::pair(true, NewBB); } return std::pair(false, nullptr); } void SIInstrInfo::lowerSelect(SIInstrWorklist &Worklist, MachineInstr &Inst, MachineDominatorTree *MDT) const { MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); MachineBasicBlock::iterator MII = Inst; DebugLoc DL = Inst.getDebugLoc(); MachineOperand &Dest = Inst.getOperand(0); MachineOperand &Src0 = Inst.getOperand(1); MachineOperand &Src1 = Inst.getOperand(2); MachineOperand &Cond = Inst.getOperand(3); Register CondReg = Cond.getReg(); bool IsSCC = (CondReg == AMDGPU::SCC); // If this is a trivial select where the condition is effectively not SCC // (CondReg is a source of copy to SCC), then the select is semantically // equivalent to copying CondReg. Hence, there is no need to create // V_CNDMASK, we can just use that and bail out. if (!IsSCC && Src0.isImm() && (Src0.getImm() == -1) && Src1.isImm() && (Src1.getImm() == 0)) { MRI.replaceRegWith(Dest.getReg(), CondReg); return; } Register NewCondReg = CondReg; if (IsSCC) { const TargetRegisterClass *TC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID); NewCondReg = MRI.createVirtualRegister(TC); // Now look for the closest SCC def if it is a copy // replacing the CondReg with the COPY source register bool CopyFound = false; for (MachineInstr &CandI : make_range(std::next(MachineBasicBlock::reverse_iterator(Inst)), Inst.getParent()->rend())) { if (CandI.findRegisterDefOperandIdx(AMDGPU::SCC, false, false, &RI) != -1) { if (CandI.isCopy() && CandI.getOperand(0).getReg() == AMDGPU::SCC) { BuildMI(MBB, MII, DL, get(AMDGPU::COPY), NewCondReg) .addReg(CandI.getOperand(1).getReg()); CopyFound = true; } break; } } if (!CopyFound) { // SCC def is not a copy // Insert a trivial select instead of creating a copy, because a copy from // SCC would semantically mean just copying a single bit, but we may need // the result to be a vector condition mask that needs preserving. unsigned Opcode = (ST.getWavefrontSize() == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32; auto NewSelect = BuildMI(MBB, MII, DL, get(Opcode), NewCondReg).addImm(-1).addImm(0); NewSelect->getOperand(3).setIsUndef(Cond.isUndef()); } } Register NewDestReg = MRI.createVirtualRegister( RI.getEquivalentVGPRClass(MRI.getRegClass(Dest.getReg()))); MachineInstr *NewInst; if (Inst.getOpcode() == AMDGPU::S_CSELECT_B32) { NewInst = BuildMI(MBB, MII, DL, get(AMDGPU::V_CNDMASK_B32_e64), NewDestReg) .addImm(0) .add(Src1) // False .addImm(0) .add(Src0) // True .addReg(NewCondReg); } else { NewInst = BuildMI(MBB, MII, DL, get(AMDGPU::V_CNDMASK_B64_PSEUDO), NewDestReg) .add(Src1) // False .add(Src0) // True .addReg(NewCondReg); } MRI.replaceRegWith(Dest.getReg(), NewDestReg); legalizeOperands(*NewInst, MDT); addUsersToMoveToVALUWorklist(NewDestReg, MRI, Worklist); } void SIInstrInfo::lowerScalarAbs(SIInstrWorklist &Worklist, MachineInstr &Inst) const { MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); MachineBasicBlock::iterator MII = Inst; DebugLoc DL = Inst.getDebugLoc(); MachineOperand &Dest = Inst.getOperand(0); MachineOperand &Src = Inst.getOperand(1); Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); unsigned SubOp = ST.hasAddNoCarry() ? AMDGPU::V_SUB_U32_e32 : AMDGPU::V_SUB_CO_U32_e32; BuildMI(MBB, MII, DL, get(SubOp), TmpReg) .addImm(0) .addReg(Src.getReg()); BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg) .addReg(Src.getReg()) .addReg(TmpReg); MRI.replaceRegWith(Dest.getReg(), ResultReg); addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); } void SIInstrInfo::lowerScalarXnor(SIInstrWorklist &Worklist, MachineInstr &Inst) const { MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); MachineBasicBlock::iterator MII = Inst; const DebugLoc &DL = Inst.getDebugLoc(); MachineOperand &Dest = Inst.getOperand(0); MachineOperand &Src0 = Inst.getOperand(1); MachineOperand &Src1 = Inst.getOperand(2); if (ST.hasDLInsts()) { Register NewDest = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); legalizeGenericOperand(MBB, MII, &AMDGPU::VGPR_32RegClass, Src0, MRI, DL); legalizeGenericOperand(MBB, MII, &AMDGPU::VGPR_32RegClass, Src1, MRI, DL); BuildMI(MBB, MII, DL, get(AMDGPU::V_XNOR_B32_e64), NewDest) .add(Src0) .add(Src1); MRI.replaceRegWith(Dest.getReg(), NewDest); addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); } else { // Using the identity !(x ^ y) == (!x ^ y) == (x ^ !y), we can // invert either source and then perform the XOR. If either source is a // scalar register, then we can leave the inversion on the scalar unit to // achieve a better distribution of scalar and vector instructions. bool Src0IsSGPR = Src0.isReg() && RI.isSGPRClass(MRI.getRegClass(Src0.getReg())); bool Src1IsSGPR = Src1.isReg() && RI.isSGPRClass(MRI.getRegClass(Src1.getReg())); MachineInstr *Xor; Register Temp = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); // Build a pair of scalar instructions and add them to the work list. // The next iteration over the work list will lower these to the vector // unit as necessary. if (Src0IsSGPR) { BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Temp).add(Src0); Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), NewDest) .addReg(Temp) .add(Src1); } else if (Src1IsSGPR) { BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Temp).add(Src1); Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), NewDest) .add(Src0) .addReg(Temp); } else { Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), Temp) .add(Src0) .add(Src1); MachineInstr *Not = BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), NewDest).addReg(Temp); Worklist.insert(Not); } MRI.replaceRegWith(Dest.getReg(), NewDest); Worklist.insert(Xor); addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); } } void SIInstrInfo::splitScalarNotBinop(SIInstrWorklist &Worklist, MachineInstr &Inst, unsigned Opcode) const { MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); MachineBasicBlock::iterator MII = Inst; const DebugLoc &DL = Inst.getDebugLoc(); MachineOperand &Dest = Inst.getOperand(0); MachineOperand &Src0 = Inst.getOperand(1); MachineOperand &Src1 = Inst.getOperand(2); Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); MachineInstr &Op = *BuildMI(MBB, MII, DL, get(Opcode), Interm) .add(Src0) .add(Src1); MachineInstr &Not = *BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), NewDest) .addReg(Interm); Worklist.insert(&Op); Worklist.insert(&Not); MRI.replaceRegWith(Dest.getReg(), NewDest); addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); } void SIInstrInfo::splitScalarBinOpN2(SIInstrWorklist &Worklist, MachineInstr &Inst, unsigned Opcode) const { MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); MachineBasicBlock::iterator MII = Inst; const DebugLoc &DL = Inst.getDebugLoc(); MachineOperand &Dest = Inst.getOperand(0); MachineOperand &Src0 = Inst.getOperand(1); MachineOperand &Src1 = Inst.getOperand(2); Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); MachineInstr &Not = *BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Interm) .add(Src1); MachineInstr &Op = *BuildMI(MBB, MII, DL, get(Opcode), NewDest) .add(Src0) .addReg(Interm); Worklist.insert(&Not); Worklist.insert(&Op); MRI.replaceRegWith(Dest.getReg(), NewDest); addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); } void SIInstrInfo::splitScalar64BitUnaryOp(SIInstrWorklist &Worklist, MachineInstr &Inst, unsigned Opcode, bool Swap) const { MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); MachineOperand &Dest = Inst.getOperand(0); MachineOperand &Src0 = Inst.getOperand(1); DebugLoc DL = Inst.getDebugLoc(); MachineBasicBlock::iterator MII = Inst; const MCInstrDesc &InstDesc = get(Opcode); const TargetRegisterClass *Src0RC = Src0.isReg() ? MRI.getRegClass(Src0.getReg()) : &AMDGPU::SGPR_32RegClass; const TargetRegisterClass *Src0SubRC = RI.getSubRegisterClass(Src0RC, AMDGPU::sub0); MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); const TargetRegisterClass *NewDestSubRC = RI.getSubRegisterClass(NewDestRC, AMDGPU::sub0); Register DestSub0 = MRI.createVirtualRegister(NewDestSubRC); MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0).add(SrcReg0Sub0); MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); Register DestSub1 = MRI.createVirtualRegister(NewDestSubRC); MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1).add(SrcReg0Sub1); if (Swap) std::swap(DestSub0, DestSub1); Register FullDestReg = MRI.createVirtualRegister(NewDestRC); BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) .addReg(DestSub0) .addImm(AMDGPU::sub0) .addReg(DestSub1) .addImm(AMDGPU::sub1); MRI.replaceRegWith(Dest.getReg(), FullDestReg); Worklist.insert(&LoHalf); Worklist.insert(&HiHalf); // We don't need to legalizeOperands here because for a single operand, src0 // will support any kind of input. // Move all users of this moved value. addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); } // There is not a vector equivalent of s_mul_u64. For this reason, we need to // split the s_mul_u64 in 32-bit vector multiplications. void SIInstrInfo::splitScalarSMulU64(SIInstrWorklist &Worklist, MachineInstr &Inst, MachineDominatorTree *MDT) const { MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); Register FullDestReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); MachineOperand &Dest = Inst.getOperand(0); MachineOperand &Src0 = Inst.getOperand(1); MachineOperand &Src1 = Inst.getOperand(2); const DebugLoc &DL = Inst.getDebugLoc(); MachineBasicBlock::iterator MII = Inst; const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0.getReg()); const TargetRegisterClass *Src1RC = MRI.getRegClass(Src1.getReg()); const TargetRegisterClass *Src0SubRC = RI.getSubRegisterClass(Src0RC, AMDGPU::sub0); if (RI.isSGPRClass(Src0SubRC)) Src0SubRC = RI.getEquivalentVGPRClass(Src0SubRC); const TargetRegisterClass *Src1SubRC = RI.getSubRegisterClass(Src1RC, AMDGPU::sub0); if (RI.isSGPRClass(Src1SubRC)) Src1SubRC = RI.getEquivalentVGPRClass(Src1SubRC); // First, we extract the low 32-bit and high 32-bit values from each of the // operands. MachineOperand Op0L = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); MachineOperand Op1L = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); MachineOperand Op0H = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); MachineOperand Op1H = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); // The multilication is done as follows: // // Op1H Op1L // * Op0H Op0L // -------------------- // Op1H*Op0L Op1L*Op0L // + Op1H*Op0H Op1L*Op0H // ----------------------------------------- // (Op1H*Op0L + Op1L*Op0H + carry) Op1L*Op0L // // We drop Op1H*Op0H because the result of the multiplication is a 64-bit // value and that would overflow. // The low 32-bit value is Op1L*Op0L. // The high 32-bit value is Op1H*Op0L + Op1L*Op0H + carry (from Op1L*Op0L). Register Op1L_Op0H_Reg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); MachineInstr *Op1L_Op0H = BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), Op1L_Op0H_Reg) .add(Op1L) .add(Op0H); Register Op1H_Op0L_Reg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); MachineInstr *Op1H_Op0L = BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), Op1H_Op0L_Reg) .add(Op1H) .add(Op0L); Register CarryReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); MachineInstr *Carry = BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_HI_U32_e64), CarryReg) .add(Op1L) .add(Op0L); MachineInstr *LoHalf = BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), DestSub0) .add(Op1L) .add(Op0L); Register AddReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); MachineInstr *Add = BuildMI(MBB, MII, DL, get(AMDGPU::V_ADD_U32_e32), AddReg) .addReg(Op1L_Op0H_Reg) .addReg(Op1H_Op0L_Reg); MachineInstr *HiHalf = BuildMI(MBB, MII, DL, get(AMDGPU::V_ADD_U32_e32), DestSub1) .addReg(AddReg) .addReg(CarryReg); BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) .addReg(DestSub0) .addImm(AMDGPU::sub0) .addReg(DestSub1) .addImm(AMDGPU::sub1); MRI.replaceRegWith(Dest.getReg(), FullDestReg); // Try to legalize the operands in case we need to swap the order to keep it // valid. legalizeOperands(*Op1L_Op0H, MDT); legalizeOperands(*Op1H_Op0L, MDT); legalizeOperands(*Carry, MDT); legalizeOperands(*LoHalf, MDT); legalizeOperands(*Add, MDT); legalizeOperands(*HiHalf, MDT); // Move all users of this moved value. addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); } // Lower S_MUL_U64_U32_PSEUDO/S_MUL_I64_I32_PSEUDO in two 32-bit vector // multiplications. void SIInstrInfo::splitScalarSMulPseudo(SIInstrWorklist &Worklist, MachineInstr &Inst, MachineDominatorTree *MDT) const { MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); Register FullDestReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); MachineOperand &Dest = Inst.getOperand(0); MachineOperand &Src0 = Inst.getOperand(1); MachineOperand &Src1 = Inst.getOperand(2); const DebugLoc &DL = Inst.getDebugLoc(); MachineBasicBlock::iterator MII = Inst; const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0.getReg()); const TargetRegisterClass *Src1RC = MRI.getRegClass(Src1.getReg()); const TargetRegisterClass *Src0SubRC = RI.getSubRegisterClass(Src0RC, AMDGPU::sub0); if (RI.isSGPRClass(Src0SubRC)) Src0SubRC = RI.getEquivalentVGPRClass(Src0SubRC); const TargetRegisterClass *Src1SubRC = RI.getSubRegisterClass(Src1RC, AMDGPU::sub0); if (RI.isSGPRClass(Src1SubRC)) Src1SubRC = RI.getEquivalentVGPRClass(Src1SubRC); // First, we extract the low 32-bit and high 32-bit values from each of the // operands. MachineOperand Op0L = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); MachineOperand Op1L = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); unsigned Opc = Inst.getOpcode(); unsigned NewOpc = Opc == AMDGPU::S_MUL_U64_U32_PSEUDO ? AMDGPU::V_MUL_HI_U32_e64 : AMDGPU::V_MUL_HI_I32_e64; MachineInstr *HiHalf = BuildMI(MBB, MII, DL, get(NewOpc), DestSub1).add(Op1L).add(Op0L); MachineInstr *LoHalf = BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), DestSub0) .add(Op1L) .add(Op0L); BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) .addReg(DestSub0) .addImm(AMDGPU::sub0) .addReg(DestSub1) .addImm(AMDGPU::sub1); MRI.replaceRegWith(Dest.getReg(), FullDestReg); // Try to legalize the operands in case we need to swap the order to keep it // valid. legalizeOperands(*HiHalf, MDT); legalizeOperands(*LoHalf, MDT); // Move all users of this moved value. addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); } void SIInstrInfo::splitScalar64BitBinaryOp(SIInstrWorklist &Worklist, MachineInstr &Inst, unsigned Opcode, MachineDominatorTree *MDT) const { MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); MachineOperand &Dest = Inst.getOperand(0); MachineOperand &Src0 = Inst.getOperand(1); MachineOperand &Src1 = Inst.getOperand(2); DebugLoc DL = Inst.getDebugLoc(); MachineBasicBlock::iterator MII = Inst; const MCInstrDesc &InstDesc = get(Opcode); const TargetRegisterClass *Src0RC = Src0.isReg() ? MRI.getRegClass(Src0.getReg()) : &AMDGPU::SGPR_32RegClass; const TargetRegisterClass *Src0SubRC = RI.getSubRegisterClass(Src0RC, AMDGPU::sub0); const TargetRegisterClass *Src1RC = Src1.isReg() ? MRI.getRegClass(Src1.getReg()) : &AMDGPU::SGPR_32RegClass; const TargetRegisterClass *Src1SubRC = RI.getSubRegisterClass(Src1RC, AMDGPU::sub0); MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); const TargetRegisterClass *NewDestSubRC = RI.getSubRegisterClass(NewDestRC, AMDGPU::sub0); Register DestSub0 = MRI.createVirtualRegister(NewDestSubRC); MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0) .add(SrcReg0Sub0) .add(SrcReg1Sub0); Register DestSub1 = MRI.createVirtualRegister(NewDestSubRC); MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1) .add(SrcReg0Sub1) .add(SrcReg1Sub1); Register FullDestReg = MRI.createVirtualRegister(NewDestRC); BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) .addReg(DestSub0) .addImm(AMDGPU::sub0) .addReg(DestSub1) .addImm(AMDGPU::sub1); MRI.replaceRegWith(Dest.getReg(), FullDestReg); Worklist.insert(&LoHalf); Worklist.insert(&HiHalf); // Move all users of this moved value. addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); } void SIInstrInfo::splitScalar64BitXnor(SIInstrWorklist &Worklist, MachineInstr &Inst, MachineDominatorTree *MDT) const { MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); MachineOperand &Dest = Inst.getOperand(0); MachineOperand &Src0 = Inst.getOperand(1); MachineOperand &Src1 = Inst.getOperand(2); const DebugLoc &DL = Inst.getDebugLoc(); MachineBasicBlock::iterator MII = Inst; const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); MachineOperand* Op0; MachineOperand* Op1; if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg())) { Op0 = &Src0; Op1 = &Src1; } else { Op0 = &Src1; Op1 = &Src0; } BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B64), Interm) .add(*Op0); Register NewDest = MRI.createVirtualRegister(DestRC); MachineInstr &Xor = *BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B64), NewDest) .addReg(Interm) .add(*Op1); MRI.replaceRegWith(Dest.getReg(), NewDest); Worklist.insert(&Xor); } void SIInstrInfo::splitScalar64BitBCNT(SIInstrWorklist &Worklist, MachineInstr &Inst) const { MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); MachineBasicBlock::iterator MII = Inst; const DebugLoc &DL = Inst.getDebugLoc(); MachineOperand &Dest = Inst.getOperand(0); MachineOperand &Src = Inst.getOperand(1); const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64); const TargetRegisterClass *SrcRC = Src.isReg() ? MRI.getRegClass(Src.getReg()) : &AMDGPU::SGPR_32RegClass; Register MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); const TargetRegisterClass *SrcSubRC = RI.getSubRegisterClass(SrcRC, AMDGPU::sub0); MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, AMDGPU::sub0, SrcSubRC); MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, AMDGPU::sub1, SrcSubRC); BuildMI(MBB, MII, DL, InstDesc, MidReg).add(SrcRegSub0).addImm(0); BuildMI(MBB, MII, DL, InstDesc, ResultReg).add(SrcRegSub1).addReg(MidReg); MRI.replaceRegWith(Dest.getReg(), ResultReg); // We don't need to legalize operands here. src0 for either instruction can be // an SGPR, and the second input is unused or determined here. addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); } void SIInstrInfo::splitScalar64BitBFE(SIInstrWorklist &Worklist, MachineInstr &Inst) const { MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); MachineBasicBlock::iterator MII = Inst; const DebugLoc &DL = Inst.getDebugLoc(); MachineOperand &Dest = Inst.getOperand(0); uint32_t Imm = Inst.getOperand(2).getImm(); uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. (void) Offset; // Only sext_inreg cases handled. assert(Inst.getOpcode() == AMDGPU::S_BFE_I64 && BitWidth <= 32 && Offset == 0 && "Not implemented"); if (BitWidth < 32) { Register MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32_e64), MidRegLo) .addReg(Inst.getOperand(1).getReg(), 0, AMDGPU::sub0) .addImm(0) .addImm(BitWidth); BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi) .addImm(31) .addReg(MidRegLo); BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) .addReg(MidRegLo) .addImm(AMDGPU::sub0) .addReg(MidRegHi) .addImm(AMDGPU::sub1); MRI.replaceRegWith(Dest.getReg(), ResultReg); addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); return; } MachineOperand &Src = Inst.getOperand(1); Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg) .addImm(31) .addReg(Src.getReg(), 0, AMDGPU::sub0); BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) .addReg(Src.getReg(), 0, AMDGPU::sub0) .addImm(AMDGPU::sub0) .addReg(TmpReg) .addImm(AMDGPU::sub1); MRI.replaceRegWith(Dest.getReg(), ResultReg); addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); } void SIInstrInfo::splitScalar64BitCountOp(SIInstrWorklist &Worklist, MachineInstr &Inst, unsigned Opcode, MachineDominatorTree *MDT) const { // (S_FLBIT_I32_B64 hi:lo) -> // -> (umin (V_FFBH_U32_e32 hi), (uaddsat (V_FFBH_U32_e32 lo), 32)) // (S_FF1_I32_B64 hi:lo) -> // ->(umin (uaddsat (V_FFBL_B32_e32 hi), 32) (V_FFBL_B32_e32 lo)) MachineBasicBlock &MBB = *Inst.getParent(); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); MachineBasicBlock::iterator MII = Inst; const DebugLoc &DL = Inst.getDebugLoc(); MachineOperand &Dest = Inst.getOperand(0); MachineOperand &Src = Inst.getOperand(1); const MCInstrDesc &InstDesc = get(Opcode); bool IsCtlz = Opcode == AMDGPU::V_FFBH_U32_e32; unsigned OpcodeAdd = ST.hasAddNoCarry() ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_ADD_CO_U32_e32; const TargetRegisterClass *SrcRC = Src.isReg() ? MRI.getRegClass(Src.getReg()) : &AMDGPU::SGPR_32RegClass; const TargetRegisterClass *SrcSubRC = RI.getSubRegisterClass(SrcRC, AMDGPU::sub0); MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, AMDGPU::sub0, SrcSubRC); MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, AMDGPU::sub1, SrcSubRC); Register MidReg1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register MidReg2 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register MidReg3 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register MidReg4 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); BuildMI(MBB, MII, DL, InstDesc, MidReg1).add(SrcRegSub0); BuildMI(MBB, MII, DL, InstDesc, MidReg2).add(SrcRegSub1); BuildMI(MBB, MII, DL, get(OpcodeAdd), MidReg3) .addReg(IsCtlz ? MidReg1 : MidReg2) .addImm(32) .addImm(1); // enable clamp BuildMI(MBB, MII, DL, get(AMDGPU::V_MIN_U32_e64), MidReg4) .addReg(MidReg3) .addReg(IsCtlz ? MidReg2 : MidReg1); MRI.replaceRegWith(Dest.getReg(), MidReg4); addUsersToMoveToVALUWorklist(MidReg4, MRI, Worklist); } void SIInstrInfo::addUsersToMoveToVALUWorklist( Register DstReg, MachineRegisterInfo &MRI, SIInstrWorklist &Worklist) const { for (MachineRegisterInfo::use_iterator I = MRI.use_begin(DstReg), E = MRI.use_end(); I != E;) { MachineInstr &UseMI = *I->getParent(); unsigned OpNo = 0; switch (UseMI.getOpcode()) { case AMDGPU::COPY: case AMDGPU::WQM: case AMDGPU::SOFT_WQM: case AMDGPU::STRICT_WWM: case AMDGPU::STRICT_WQM: case AMDGPU::REG_SEQUENCE: case AMDGPU::PHI: case AMDGPU::INSERT_SUBREG: break; default: OpNo = I.getOperandNo(); break; } if (!RI.hasVectorRegisters(getOpRegClass(UseMI, OpNo))) { Worklist.insert(&UseMI); do { ++I; } while (I != E && I->getParent() == &UseMI); } else { ++I; } } } void SIInstrInfo::movePackToVALU(SIInstrWorklist &Worklist, MachineRegisterInfo &MRI, MachineInstr &Inst) const { Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); MachineBasicBlock *MBB = Inst.getParent(); MachineOperand &Src0 = Inst.getOperand(1); MachineOperand &Src1 = Inst.getOperand(2); const DebugLoc &DL = Inst.getDebugLoc(); switch (Inst.getOpcode()) { case AMDGPU::S_PACK_LL_B32_B16: { Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); // FIXME: Can do a lot better if we know the high bits of src0 or src1 are // 0. BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg) .addImm(0xffff); BuildMI(*MBB, Inst, DL, get(AMDGPU::V_AND_B32_e64), TmpReg) .addReg(ImmReg, RegState::Kill) .add(Src0); BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHL_OR_B32_e64), ResultReg) .add(Src1) .addImm(16) .addReg(TmpReg, RegState::Kill); break; } case AMDGPU::S_PACK_LH_B32_B16: { Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg) .addImm(0xffff); BuildMI(*MBB, Inst, DL, get(AMDGPU::V_BFI_B32_e64), ResultReg) .addReg(ImmReg, RegState::Kill) .add(Src0) .add(Src1); break; } case AMDGPU::S_PACK_HL_B32_B16: { Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg) .addImm(16) .add(Src0); BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHL_OR_B32_e64), ResultReg) .add(Src1) .addImm(16) .addReg(TmpReg, RegState::Kill); break; } case AMDGPU::S_PACK_HH_B32_B16: { Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg) .addImm(16) .add(Src0); BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg) .addImm(0xffff0000); BuildMI(*MBB, Inst, DL, get(AMDGPU::V_AND_OR_B32_e64), ResultReg) .add(Src1) .addReg(ImmReg, RegState::Kill) .addReg(TmpReg, RegState::Kill); break; } default: llvm_unreachable("unhandled s_pack_* instruction"); } MachineOperand &Dest = Inst.getOperand(0); MRI.replaceRegWith(Dest.getReg(), ResultReg); addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); } void SIInstrInfo::addSCCDefUsersToVALUWorklist(MachineOperand &Op, MachineInstr &SCCDefInst, SIInstrWorklist &Worklist, Register NewCond) const { // Ensure that def inst defines SCC, which is still live. assert(Op.isReg() && Op.getReg() == AMDGPU::SCC && Op.isDef() && !Op.isDead() && Op.getParent() == &SCCDefInst); SmallVector CopyToDelete; // This assumes that all the users of SCC are in the same block // as the SCC def. for (MachineInstr &MI : // Skip the def inst itself. make_range(std::next(MachineBasicBlock::iterator(SCCDefInst)), SCCDefInst.getParent()->end())) { // Check if SCC is used first. int SCCIdx = MI.findRegisterUseOperandIdx(AMDGPU::SCC, false, &RI); if (SCCIdx != -1) { if (MI.isCopy()) { MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); Register DestReg = MI.getOperand(0).getReg(); MRI.replaceRegWith(DestReg, NewCond); CopyToDelete.push_back(&MI); } else { if (NewCond.isValid()) MI.getOperand(SCCIdx).setReg(NewCond); Worklist.insert(&MI); } } // Exit if we find another SCC def. if (MI.findRegisterDefOperandIdx(AMDGPU::SCC, false, false, &RI) != -1) break; } for (auto &Copy : CopyToDelete) Copy->eraseFromParent(); } // Instructions that use SCC may be converted to VALU instructions. When that // happens, the SCC register is changed to VCC_LO. The instruction that defines // SCC must be changed to an instruction that defines VCC. This function makes // sure that the instruction that defines SCC is added to the moveToVALU // worklist. void SIInstrInfo::addSCCDefsToVALUWorklist(MachineInstr *SCCUseInst, SIInstrWorklist &Worklist) const { // Look for a preceding instruction that either defines VCC or SCC. If VCC // then there is nothing to do because the defining instruction has been // converted to a VALU already. If SCC then that instruction needs to be // converted to a VALU. for (MachineInstr &MI : make_range(std::next(MachineBasicBlock::reverse_iterator(SCCUseInst)), SCCUseInst->getParent()->rend())) { if (MI.modifiesRegister(AMDGPU::VCC, &RI)) break; if (MI.definesRegister(AMDGPU::SCC, &RI)) { Worklist.insert(&MI); break; } } } const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass( const MachineInstr &Inst) const { const TargetRegisterClass *NewDstRC = getOpRegClass(Inst, 0); switch (Inst.getOpcode()) { // For target instructions, getOpRegClass just returns the virtual register // class associated with the operand, so we need to find an equivalent VGPR // register class in order to move the instruction to the VALU. case AMDGPU::COPY: case AMDGPU::PHI: case AMDGPU::REG_SEQUENCE: case AMDGPU::INSERT_SUBREG: case AMDGPU::WQM: case AMDGPU::SOFT_WQM: case AMDGPU::STRICT_WWM: case AMDGPU::STRICT_WQM: { const TargetRegisterClass *SrcRC = getOpRegClass(Inst, 1); if (RI.isAGPRClass(SrcRC)) { if (RI.isAGPRClass(NewDstRC)) return nullptr; switch (Inst.getOpcode()) { case AMDGPU::PHI: case AMDGPU::REG_SEQUENCE: case AMDGPU::INSERT_SUBREG: NewDstRC = RI.getEquivalentAGPRClass(NewDstRC); break; default: NewDstRC = RI.getEquivalentVGPRClass(NewDstRC); } if (!NewDstRC) return nullptr; } else { if (RI.isVGPRClass(NewDstRC) || NewDstRC == &AMDGPU::VReg_1RegClass) return nullptr; NewDstRC = RI.getEquivalentVGPRClass(NewDstRC); if (!NewDstRC) return nullptr; } return NewDstRC; } default: return NewDstRC; } } // Find the one SGPR operand we are allowed to use. Register SIInstrInfo::findUsedSGPR(const MachineInstr &MI, int OpIndices[3]) const { const MCInstrDesc &Desc = MI.getDesc(); // Find the one SGPR operand we are allowed to use. // // First we need to consider the instruction's operand requirements before // legalizing. Some operands are required to be SGPRs, such as implicit uses // of VCC, but we are still bound by the constant bus requirement to only use // one. // // If the operand's class is an SGPR, we can never move it. Register SGPRReg = findImplicitSGPRRead(MI); if (SGPRReg) return SGPRReg; Register UsedSGPRs[3] = {Register()}; const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); for (unsigned i = 0; i < 3; ++i) { int Idx = OpIndices[i]; if (Idx == -1) break; const MachineOperand &MO = MI.getOperand(Idx); if (!MO.isReg()) continue; // Is this operand statically required to be an SGPR based on the operand // constraints? const TargetRegisterClass *OpRC = RI.getRegClass(Desc.operands()[Idx].RegClass); bool IsRequiredSGPR = RI.isSGPRClass(OpRC); if (IsRequiredSGPR) return MO.getReg(); // If this could be a VGPR or an SGPR, Check the dynamic register class. Register Reg = MO.getReg(); const TargetRegisterClass *RegRC = MRI.getRegClass(Reg); if (RI.isSGPRClass(RegRC)) UsedSGPRs[i] = Reg; } // We don't have a required SGPR operand, so we have a bit more freedom in // selecting operands to move. // Try to select the most used SGPR. If an SGPR is equal to one of the // others, we choose that. // // e.g. // V_FMA_F32 v0, s0, s0, s0 -> No moves // V_FMA_F32 v0, s0, s1, s0 -> Move s1 // TODO: If some of the operands are 64-bit SGPRs and some 32, we should // prefer those. if (UsedSGPRs[0]) { if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2]) SGPRReg = UsedSGPRs[0]; } if (!SGPRReg && UsedSGPRs[1]) { if (UsedSGPRs[1] == UsedSGPRs[2]) SGPRReg = UsedSGPRs[1]; } return SGPRReg; } MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI, unsigned OperandName) const { int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName); if (Idx == -1) return nullptr; return &MI.getOperand(Idx); } uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const { if (ST.getGeneration() >= AMDGPUSubtarget::GFX10) { int64_t Format = ST.getGeneration() >= AMDGPUSubtarget::GFX11 ? (int64_t)AMDGPU::UfmtGFX11::UFMT_32_FLOAT : (int64_t)AMDGPU::UfmtGFX10::UFMT_32_FLOAT; return (Format << 44) | (1ULL << 56) | // RESOURCE_LEVEL = 1 (3ULL << 60); // OOB_SELECT = 3 } uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT; if (ST.isAmdHsaOS()) { // Set ATC = 1. GFX9 doesn't have this bit. if (ST.getGeneration() <= AMDGPUSubtarget::VOLCANIC_ISLANDS) RsrcDataFormat |= (1ULL << 56); // Set MTYPE = 2 (MTYPE_UC = uncached). GFX9 doesn't have this. // BTW, it disables TC L2 and therefore decreases performance. if (ST.getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) RsrcDataFormat |= (2ULL << 59); } return RsrcDataFormat; } uint64_t SIInstrInfo::getScratchRsrcWords23() const { uint64_t Rsrc23 = getDefaultRsrcDataFormat() | AMDGPU::RSRC_TID_ENABLE | 0xffffffff; // Size; // GFX9 doesn't have ELEMENT_SIZE. if (ST.getGeneration() <= AMDGPUSubtarget::VOLCANIC_ISLANDS) { uint64_t EltSizeValue = Log2_32(ST.getMaxPrivateElementSize(true)) - 1; Rsrc23 |= EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT; } // IndexStride = 64 / 32. uint64_t IndexStride = ST.getWavefrontSize() == 64 ? 3 : 2; Rsrc23 |= IndexStride << AMDGPU::RSRC_INDEX_STRIDE_SHIFT; // If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17]. // Clear them unless we want a huge stride. if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && ST.getGeneration() <= AMDGPUSubtarget::GFX9) Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT; return Rsrc23; } bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr &MI) const { unsigned Opc = MI.getOpcode(); return isSMRD(Opc); } bool SIInstrInfo::isHighLatencyDef(int Opc) const { return get(Opc).mayLoad() && (isMUBUF(Opc) || isMTBUF(Opc) || isMIMG(Opc) || isFLAT(Opc)); } unsigned SIInstrInfo::isStackAccess(const MachineInstr &MI, int &FrameIndex) const { const MachineOperand *Addr = getNamedOperand(MI, AMDGPU::OpName::vaddr); if (!Addr || !Addr->isFI()) return Register(); assert(!MI.memoperands_empty() && (*MI.memoperands_begin())->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS); FrameIndex = Addr->getIndex(); return getNamedOperand(MI, AMDGPU::OpName::vdata)->getReg(); } unsigned SIInstrInfo::isSGPRStackAccess(const MachineInstr &MI, int &FrameIndex) const { const MachineOperand *Addr = getNamedOperand(MI, AMDGPU::OpName::addr); assert(Addr && Addr->isFI()); FrameIndex = Addr->getIndex(); return getNamedOperand(MI, AMDGPU::OpName::data)->getReg(); } unsigned SIInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const { if (!MI.mayLoad()) return Register(); if (isMUBUF(MI) || isVGPRSpill(MI)) return isStackAccess(MI, FrameIndex); if (isSGPRSpill(MI)) return isSGPRStackAccess(MI, FrameIndex); return Register(); } unsigned SIInstrInfo::isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const { if (!MI.mayStore()) return Register(); if (isMUBUF(MI) || isVGPRSpill(MI)) return isStackAccess(MI, FrameIndex); if (isSGPRSpill(MI)) return isSGPRStackAccess(MI, FrameIndex); return Register(); } unsigned SIInstrInfo::getInstBundleSize(const MachineInstr &MI) const { unsigned Size = 0; MachineBasicBlock::const_instr_iterator I = MI.getIterator(); MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); while (++I != E && I->isInsideBundle()) { assert(!I->isBundle() && "No nested bundle!"); Size += getInstSizeInBytes(*I); } return Size; } unsigned SIInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { unsigned Opc = MI.getOpcode(); const MCInstrDesc &Desc = getMCOpcodeFromPseudo(Opc); unsigned DescSize = Desc.getSize(); // If we have a definitive size, we can use it. Otherwise we need to inspect // the operands to know the size. if (isFixedSize(MI)) { unsigned Size = DescSize; // If we hit the buggy offset, an extra nop will be inserted in MC so // estimate the worst case. if (MI.isBranch() && ST.hasOffset3fBug()) Size += 4; return Size; } // Instructions may have a 32-bit literal encoded after them. Check // operands that could ever be literals. if (isVALU(MI) || isSALU(MI)) { if (isDPP(MI)) return DescSize; bool HasLiteral = false; for (int I = 0, E = MI.getNumExplicitOperands(); I != E; ++I) { const MachineOperand &Op = MI.getOperand(I); const MCOperandInfo &OpInfo = Desc.operands()[I]; if (!Op.isReg() && !isInlineConstant(Op, OpInfo)) { HasLiteral = true; break; } } return HasLiteral ? DescSize + 4 : DescSize; } // Check whether we have extra NSA words. if (isMIMG(MI)) { int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0); if (VAddr0Idx < 0) return 8; int RSrcIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc); return 8 + 4 * ((RSrcIdx - VAddr0Idx + 2) / 4); } switch (Opc) { case TargetOpcode::BUNDLE: return getInstBundleSize(MI); case TargetOpcode::INLINEASM: case TargetOpcode::INLINEASM_BR: { const MachineFunction *MF = MI.getParent()->getParent(); const char *AsmStr = MI.getOperand(0).getSymbolName(); return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo(), &ST); } default: if (MI.isMetaInstruction()) return 0; return DescSize; } } bool SIInstrInfo::mayAccessFlatAddressSpace(const MachineInstr &MI) const { if (!isFLAT(MI)) return false; if (MI.memoperands_empty()) return true; for (const MachineMemOperand *MMO : MI.memoperands()) { if (MMO->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS) return true; } return false; } bool SIInstrInfo::isNonUniformBranchInstr(MachineInstr &Branch) const { return Branch.getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO; } void SIInstrInfo::convertNonUniformIfRegion(MachineBasicBlock *IfEntry, MachineBasicBlock *IfEnd) const { MachineBasicBlock::iterator TI = IfEntry->getFirstTerminator(); assert(TI != IfEntry->end()); MachineInstr *Branch = &(*TI); MachineFunction *MF = IfEntry->getParent(); MachineRegisterInfo &MRI = IfEntry->getParent()->getRegInfo(); if (Branch->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) { Register DstReg = MRI.createVirtualRegister(RI.getBoolRC()); MachineInstr *SIIF = BuildMI(*MF, Branch->getDebugLoc(), get(AMDGPU::SI_IF), DstReg) .add(Branch->getOperand(0)) .add(Branch->getOperand(1)); MachineInstr *SIEND = BuildMI(*MF, Branch->getDebugLoc(), get(AMDGPU::SI_END_CF)) .addReg(DstReg); IfEntry->erase(TI); IfEntry->insert(IfEntry->end(), SIIF); IfEnd->insert(IfEnd->getFirstNonPHI(), SIEND); } } void SIInstrInfo::convertNonUniformLoopRegion( MachineBasicBlock *LoopEntry, MachineBasicBlock *LoopEnd) const { MachineBasicBlock::iterator TI = LoopEnd->getFirstTerminator(); // We expect 2 terminators, one conditional and one unconditional. assert(TI != LoopEnd->end()); MachineInstr *Branch = &(*TI); MachineFunction *MF = LoopEnd->getParent(); MachineRegisterInfo &MRI = LoopEnd->getParent()->getRegInfo(); if (Branch->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) { Register DstReg = MRI.createVirtualRegister(RI.getBoolRC()); Register BackEdgeReg = MRI.createVirtualRegister(RI.getBoolRC()); MachineInstrBuilder HeaderPHIBuilder = BuildMI(*(MF), Branch->getDebugLoc(), get(TargetOpcode::PHI), DstReg); for (MachineBasicBlock *PMBB : LoopEntry->predecessors()) { if (PMBB == LoopEnd) { HeaderPHIBuilder.addReg(BackEdgeReg); } else { Register ZeroReg = MRI.createVirtualRegister(RI.getBoolRC()); materializeImmediate(*PMBB, PMBB->getFirstTerminator(), DebugLoc(), ZeroReg, 0); HeaderPHIBuilder.addReg(ZeroReg); } HeaderPHIBuilder.addMBB(PMBB); } MachineInstr *HeaderPhi = HeaderPHIBuilder; MachineInstr *SIIFBREAK = BuildMI(*(MF), Branch->getDebugLoc(), get(AMDGPU::SI_IF_BREAK), BackEdgeReg) .addReg(DstReg) .add(Branch->getOperand(0)); MachineInstr *SILOOP = BuildMI(*(MF), Branch->getDebugLoc(), get(AMDGPU::SI_LOOP)) .addReg(BackEdgeReg) .addMBB(LoopEntry); LoopEntry->insert(LoopEntry->begin(), HeaderPhi); LoopEnd->erase(TI); LoopEnd->insert(LoopEnd->end(), SIIFBREAK); LoopEnd->insert(LoopEnd->end(), SILOOP); } } ArrayRef> SIInstrInfo::getSerializableTargetIndices() const { static const std::pair TargetIndices[] = { {AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"}, {AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"}, {AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"}, {AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"}, {AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}}; return ArrayRef(TargetIndices); } /// This is used by the post-RA scheduler (SchedulePostRAList.cpp). The /// post-RA version of misched uses CreateTargetMIHazardRecognizer. ScheduleHazardRecognizer * SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, const ScheduleDAG *DAG) const { return new GCNHazardRecognizer(DAG->MF); } /// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer /// pass. ScheduleHazardRecognizer * SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { return new GCNHazardRecognizer(MF); } // Called during: // - pre-RA scheduling and post-RA scheduling ScheduleHazardRecognizer * SIInstrInfo::CreateTargetMIHazardRecognizer(const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { // Borrowed from Arm Target // We would like to restrict this hazard recognizer to only // post-RA scheduling; we can tell that we're post-RA because we don't // track VRegLiveness. if (!DAG->hasVRegLiveness()) return new GCNHazardRecognizer(DAG->MF); return TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG); } std::pair SIInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { return std::pair(TF & MO_MASK, TF & ~MO_MASK); } ArrayRef> SIInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { static const std::pair TargetFlags[] = { { MO_GOTPCREL, "amdgpu-gotprel" }, { MO_GOTPCREL32_LO, "amdgpu-gotprel32-lo" }, { MO_GOTPCREL32_HI, "amdgpu-gotprel32-hi" }, { MO_REL32_LO, "amdgpu-rel32-lo" }, { MO_REL32_HI, "amdgpu-rel32-hi" }, { MO_ABS32_LO, "amdgpu-abs32-lo" }, { MO_ABS32_HI, "amdgpu-abs32-hi" }, }; return ArrayRef(TargetFlags); } ArrayRef> SIInstrInfo::getSerializableMachineMemOperandTargetFlags() const { static const std::pair TargetFlags[] = { {MONoClobber, "amdgpu-noclobber"}, {MOLastUse, "amdgpu-last-use"}, }; return ArrayRef(TargetFlags); } unsigned SIInstrInfo::getLiveRangeSplitOpcode(Register SrcReg, const MachineFunction &MF) const { const SIMachineFunctionInfo *MFI = MF.getInfo(); assert(SrcReg.isVirtual()); if (MFI->checkFlag(SrcReg, AMDGPU::VirtRegFlag::WWM_REG)) return AMDGPU::WWM_COPY; return AMDGPU::COPY; } bool SIInstrInfo::isBasicBlockPrologue(const MachineInstr &MI, Register Reg) const { // We need to handle instructions which may be inserted during register // allocation to handle the prolog. The initial prolog instruction may have // been separated from the start of the block by spills and copies inserted // needed by the prolog. However, the insertions for scalar registers can // always be placed at the BB top as they are independent of the exec mask // value. bool IsNullOrVectorRegister = true; if (Reg) { const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); IsNullOrVectorRegister = !RI.isSGPRClass(RI.getRegClassForReg(MRI, Reg)); } uint16_t Opc = MI.getOpcode(); // FIXME: Copies inserted in the block prolog for live-range split should also // be included. return IsNullOrVectorRegister && (isSpillOpcode(Opc) || (!MI.isTerminator() && Opc != AMDGPU::COPY && MI.modifiesRegister(AMDGPU::EXEC, &RI))); } MachineInstrBuilder SIInstrInfo::getAddNoCarry(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register DestReg) const { if (ST.hasAddNoCarry()) return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_U32_e64), DestReg); MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); Register UnusedCarry = MRI.createVirtualRegister(RI.getBoolRC()); MRI.setRegAllocationHint(UnusedCarry, 0, RI.getVCC()); return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_CO_U32_e64), DestReg) .addReg(UnusedCarry, RegState::Define | RegState::Dead); } MachineInstrBuilder SIInstrInfo::getAddNoCarry(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register DestReg, RegScavenger &RS) const { if (ST.hasAddNoCarry()) return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_U32_e32), DestReg); // If available, prefer to use vcc. Register UnusedCarry = !RS.isRegUsed(AMDGPU::VCC) ? Register(RI.getVCC()) : RS.scavengeRegisterBackwards( *RI.getBoolRC(), I, /* RestoreAfter */ false, 0, /* AllowSpill */ false); // TODO: Users need to deal with this. if (!UnusedCarry.isValid()) return MachineInstrBuilder(); return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_CO_U32_e64), DestReg) .addReg(UnusedCarry, RegState::Define | RegState::Dead); } bool SIInstrInfo::isKillTerminator(unsigned Opcode) { switch (Opcode) { case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: case AMDGPU::SI_KILL_I1_TERMINATOR: return true; default: return false; } } const MCInstrDesc &SIInstrInfo::getKillTerminatorFromPseudo(unsigned Opcode) const { switch (Opcode) { case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: return get(AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR); case AMDGPU::SI_KILL_I1_PSEUDO: return get(AMDGPU::SI_KILL_I1_TERMINATOR); default: llvm_unreachable("invalid opcode, expected SI_KILL_*_PSEUDO"); } } bool SIInstrInfo::isLegalMUBUFImmOffset(unsigned Imm) const { return Imm <= getMaxMUBUFImmOffset(ST); } unsigned SIInstrInfo::getMaxMUBUFImmOffset(const GCNSubtarget &ST) { // GFX12 field is non-negative 24-bit signed byte offset. const unsigned OffsetBits = ST.getGeneration() >= AMDGPUSubtarget::GFX12 ? 23 : 12; return (1 << OffsetBits) - 1; } void SIInstrInfo::fixImplicitOperands(MachineInstr &MI) const { if (!ST.isWave32()) return; if (MI.isInlineAsm()) return; for (auto &Op : MI.implicit_operands()) { if (Op.isReg() && Op.getReg() == AMDGPU::VCC) Op.setReg(AMDGPU::VCC_LO); } } bool SIInstrInfo::isBufferSMRD(const MachineInstr &MI) const { if (!isSMRD(MI)) return false; // Check that it is using a buffer resource. int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sbase); if (Idx == -1) // e.g. s_memtime return false; const auto RCID = MI.getDesc().operands()[Idx].RegClass; return RI.getRegClass(RCID)->hasSubClassEq(&AMDGPU::SGPR_128RegClass); } // Given Imm, split it into the values to put into the SOffset and ImmOffset // fields in an MUBUF instruction. Return false if it is not possible (due to a // hardware bug needing a workaround). // // The required alignment ensures that individual address components remain // aligned if they are aligned to begin with. It also ensures that additional // offsets within the given alignment can be added to the resulting ImmOffset. bool SIInstrInfo::splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, Align Alignment) const { const uint32_t MaxOffset = SIInstrInfo::getMaxMUBUFImmOffset(ST); const uint32_t MaxImm = alignDown(MaxOffset, Alignment.value()); uint32_t Overflow = 0; if (Imm > MaxImm) { if (Imm <= MaxImm + 64) { // Use an SOffset inline constant for 4..64 Overflow = Imm - MaxImm; Imm = MaxImm; } else { // Try to keep the same value in SOffset for adjacent loads, so that // the corresponding register contents can be re-used. // // Load values with all low-bits (except for alignment bits) set into // SOffset, so that a larger range of values can be covered using // s_movk_i32. // // Atomic operations fail to work correctly when individual address // components are unaligned, even if their sum is aligned. uint32_t High = (Imm + Alignment.value()) & ~MaxOffset; uint32_t Low = (Imm + Alignment.value()) & MaxOffset; Imm = Low; Overflow = High - Alignment.value(); } } if (Overflow > 0) { // There is a hardware bug in SI and CI which prevents address clamping in // MUBUF instructions from working correctly with SOffsets. The immediate // offset is unaffected. if (ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) return false; // It is not possible to set immediate in SOffset field on some targets. if (ST.hasRestrictedSOffset()) return false; } ImmOffset = Imm; SOffset = Overflow; return true; } // Depending on the used address space and instructions, some immediate offsets // are allowed and some are not. // Pre-GFX12, flat instruction offsets can only be non-negative, global and // scratch instruction offsets can also be negative. On GFX12, offsets can be // negative for all variants. // // There are several bugs related to these offsets: // On gfx10.1, flat instructions that go into the global address space cannot // use an offset. // // For scratch instructions, the address can be either an SGPR or a VGPR. // The following offsets can be used, depending on the architecture (x means // cannot be used): // +----------------------------+------+------+ // | Address-Mode | SGPR | VGPR | // +----------------------------+------+------+ // | gfx9 | | | // | negative, 4-aligned offset | x | ok | // | negative, unaligned offset | x | ok | // +----------------------------+------+------+ // | gfx10 | | | // | negative, 4-aligned offset | ok | ok | // | negative, unaligned offset | ok | x | // +----------------------------+------+------+ // | gfx10.3 | | | // | negative, 4-aligned offset | ok | ok | // | negative, unaligned offset | ok | ok | // +----------------------------+------+------+ // // This function ignores the addressing mode, so if an offset cannot be used in // one addressing mode, it is considered illegal. bool SIInstrInfo::isLegalFLATOffset(int64_t Offset, unsigned AddrSpace, uint64_t FlatVariant) const { // TODO: Should 0 be special cased? if (!ST.hasFlatInstOffsets()) return false; if (ST.hasFlatSegmentOffsetBug() && FlatVariant == SIInstrFlags::FLAT && (AddrSpace == AMDGPUAS::FLAT_ADDRESS || AddrSpace == AMDGPUAS::GLOBAL_ADDRESS)) return false; if (ST.hasNegativeUnalignedScratchOffsetBug() && FlatVariant == SIInstrFlags::FlatScratch && Offset < 0 && (Offset % 4) != 0) { return false; } bool AllowNegative = allowNegativeFlatOffset(FlatVariant); unsigned N = AMDGPU::getNumFlatOffsetBits(ST); return isIntN(N, Offset) && (AllowNegative || Offset >= 0); } // See comment on SIInstrInfo::isLegalFLATOffset for what is legal and what not. std::pair SIInstrInfo::splitFlatOffset(int64_t COffsetVal, unsigned AddrSpace, uint64_t FlatVariant) const { int64_t RemainderOffset = COffsetVal; int64_t ImmField = 0; bool AllowNegative = allowNegativeFlatOffset(FlatVariant); const unsigned NumBits = AMDGPU::getNumFlatOffsetBits(ST) - 1; if (AllowNegative) { // Use signed division by a power of two to truncate towards 0. int64_t D = 1LL << NumBits; RemainderOffset = (COffsetVal / D) * D; ImmField = COffsetVal - RemainderOffset; if (ST.hasNegativeUnalignedScratchOffsetBug() && FlatVariant == SIInstrFlags::FlatScratch && ImmField < 0 && (ImmField % 4) != 0) { // Make ImmField a multiple of 4 RemainderOffset += ImmField % 4; ImmField -= ImmField % 4; } } else if (COffsetVal >= 0) { ImmField = COffsetVal & maskTrailingOnes(NumBits); RemainderOffset = COffsetVal - ImmField; } assert(isLegalFLATOffset(ImmField, AddrSpace, FlatVariant)); assert(RemainderOffset + ImmField == COffsetVal); return {ImmField, RemainderOffset}; } bool SIInstrInfo::allowNegativeFlatOffset(uint64_t FlatVariant) const { if (ST.hasNegativeScratchOffsetBug() && FlatVariant == SIInstrFlags::FlatScratch) return false; return FlatVariant != SIInstrFlags::FLAT || AMDGPU::isGFX12Plus(ST); } static unsigned subtargetEncodingFamily(const GCNSubtarget &ST) { switch (ST.getGeneration()) { default: break; case AMDGPUSubtarget::SOUTHERN_ISLANDS: case AMDGPUSubtarget::SEA_ISLANDS: return SIEncodingFamily::SI; case AMDGPUSubtarget::VOLCANIC_ISLANDS: case AMDGPUSubtarget::GFX9: return SIEncodingFamily::VI; case AMDGPUSubtarget::GFX10: return SIEncodingFamily::GFX10; case AMDGPUSubtarget::GFX11: return SIEncodingFamily::GFX11; case AMDGPUSubtarget::GFX12: return SIEncodingFamily::GFX12; } llvm_unreachable("Unknown subtarget generation!"); } bool SIInstrInfo::isAsmOnlyOpcode(int MCOp) const { switch(MCOp) { // These opcodes use indirect register addressing so // they need special handling by codegen (currently missing). // Therefore it is too risky to allow these opcodes // to be selected by dpp combiner or sdwa peepholer. case AMDGPU::V_MOVRELS_B32_dpp_gfx10: case AMDGPU::V_MOVRELS_B32_sdwa_gfx10: case AMDGPU::V_MOVRELD_B32_dpp_gfx10: case AMDGPU::V_MOVRELD_B32_sdwa_gfx10: case AMDGPU::V_MOVRELSD_B32_dpp_gfx10: case AMDGPU::V_MOVRELSD_B32_sdwa_gfx10: case AMDGPU::V_MOVRELSD_2_B32_dpp_gfx10: case AMDGPU::V_MOVRELSD_2_B32_sdwa_gfx10: return true; default: return false; } } int SIInstrInfo::pseudoToMCOpcode(int Opcode) const { Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(Opcode); unsigned Gen = subtargetEncodingFamily(ST); if ((get(Opcode).TSFlags & SIInstrFlags::renamedInGFX9) != 0 && ST.getGeneration() == AMDGPUSubtarget::GFX9) Gen = SIEncodingFamily::GFX9; // Adjust the encoding family to GFX80 for D16 buffer instructions when the // subtarget has UnpackedD16VMem feature. // TODO: remove this when we discard GFX80 encoding. if (ST.hasUnpackedD16VMem() && (get(Opcode).TSFlags & SIInstrFlags::D16Buf)) Gen = SIEncodingFamily::GFX80; if (get(Opcode).TSFlags & SIInstrFlags::SDWA) { switch (ST.getGeneration()) { default: Gen = SIEncodingFamily::SDWA; break; case AMDGPUSubtarget::GFX9: Gen = SIEncodingFamily::SDWA9; break; case AMDGPUSubtarget::GFX10: Gen = SIEncodingFamily::SDWA10; break; } } if (isMAI(Opcode)) { int MFMAOp = AMDGPU::getMFMAEarlyClobberOp(Opcode); if (MFMAOp != -1) Opcode = MFMAOp; } int MCOp = AMDGPU::getMCOpcode(Opcode, Gen); // -1 means that Opcode is already a native instruction. if (MCOp == -1) return Opcode; if (ST.hasGFX90AInsts()) { uint16_t NMCOp = (uint16_t)-1; if (ST.hasGFX940Insts()) NMCOp = AMDGPU::getMCOpcode(Opcode, SIEncodingFamily::GFX940); if (NMCOp == (uint16_t)-1) NMCOp = AMDGPU::getMCOpcode(Opcode, SIEncodingFamily::GFX90A); if (NMCOp == (uint16_t)-1) NMCOp = AMDGPU::getMCOpcode(Opcode, SIEncodingFamily::GFX9); if (NMCOp != (uint16_t)-1) MCOp = NMCOp; } // (uint16_t)-1 means that Opcode is a pseudo instruction that has // no encoding in the given subtarget generation. if (MCOp == (uint16_t)-1) return -1; if (isAsmOnlyOpcode(MCOp)) return -1; return MCOp; } static TargetInstrInfo::RegSubRegPair getRegOrUndef(const MachineOperand &RegOpnd) { assert(RegOpnd.isReg()); return RegOpnd.isUndef() ? TargetInstrInfo::RegSubRegPair() : getRegSubRegPair(RegOpnd); } TargetInstrInfo::RegSubRegPair llvm::getRegSequenceSubReg(MachineInstr &MI, unsigned SubReg) { assert(MI.isRegSequence()); for (unsigned I = 0, E = (MI.getNumOperands() - 1)/ 2; I < E; ++I) if (MI.getOperand(1 + 2 * I + 1).getImm() == SubReg) { auto &RegOp = MI.getOperand(1 + 2 * I); return getRegOrUndef(RegOp); } return TargetInstrInfo::RegSubRegPair(); } // Try to find the definition of reg:subreg in subreg-manipulation pseudos // Following a subreg of reg:subreg isn't supported static bool followSubRegDef(MachineInstr &MI, TargetInstrInfo::RegSubRegPair &RSR) { if (!RSR.SubReg) return false; switch (MI.getOpcode()) { default: break; case AMDGPU::REG_SEQUENCE: RSR = getRegSequenceSubReg(MI, RSR.SubReg); return true; // EXTRACT_SUBREG ins't supported as this would follow a subreg of subreg case AMDGPU::INSERT_SUBREG: if (RSR.SubReg == (unsigned)MI.getOperand(3).getImm()) // inserted the subreg we're looking for RSR = getRegOrUndef(MI.getOperand(2)); else { // the subreg in the rest of the reg auto R1 = getRegOrUndef(MI.getOperand(1)); if (R1.SubReg) // subreg of subreg isn't supported return false; RSR.Reg = R1.Reg; } return true; } return false; } MachineInstr *llvm::getVRegSubRegDef(const TargetInstrInfo::RegSubRegPair &P, MachineRegisterInfo &MRI) { assert(MRI.isSSA()); if (!P.Reg.isVirtual()) return nullptr; auto RSR = P; auto *DefInst = MRI.getVRegDef(RSR.Reg); while (auto *MI = DefInst) { DefInst = nullptr; switch (MI->getOpcode()) { case AMDGPU::COPY: case AMDGPU::V_MOV_B32_e32: { auto &Op1 = MI->getOperand(1); if (Op1.isReg() && Op1.getReg().isVirtual()) { if (Op1.isUndef()) return nullptr; RSR = getRegSubRegPair(Op1); DefInst = MRI.getVRegDef(RSR.Reg); } break; } default: if (followSubRegDef(*MI, RSR)) { if (!RSR.Reg) return nullptr; DefInst = MRI.getVRegDef(RSR.Reg); } } if (!DefInst) return MI; } return nullptr; } bool llvm::execMayBeModifiedBeforeUse(const MachineRegisterInfo &MRI, Register VReg, const MachineInstr &DefMI, const MachineInstr &UseMI) { assert(MRI.isSSA() && "Must be run on SSA"); auto *TRI = MRI.getTargetRegisterInfo(); auto *DefBB = DefMI.getParent(); // Don't bother searching between blocks, although it is possible this block // doesn't modify exec. if (UseMI.getParent() != DefBB) return true; const int MaxInstScan = 20; int NumInst = 0; // Stop scan at the use. auto E = UseMI.getIterator(); for (auto I = std::next(DefMI.getIterator()); I != E; ++I) { if (I->isDebugInstr()) continue; if (++NumInst > MaxInstScan) return true; if (I->modifiesRegister(AMDGPU::EXEC, TRI)) return true; } return false; } bool llvm::execMayBeModifiedBeforeAnyUse(const MachineRegisterInfo &MRI, Register VReg, const MachineInstr &DefMI) { assert(MRI.isSSA() && "Must be run on SSA"); auto *TRI = MRI.getTargetRegisterInfo(); auto *DefBB = DefMI.getParent(); const int MaxUseScan = 10; int NumUse = 0; for (auto &Use : MRI.use_nodbg_operands(VReg)) { auto &UseInst = *Use.getParent(); // Don't bother searching between blocks, although it is possible this block // doesn't modify exec. if (UseInst.getParent() != DefBB || UseInst.isPHI()) return true; if (++NumUse > MaxUseScan) return true; } if (NumUse == 0) return false; const int MaxInstScan = 20; int NumInst = 0; // Stop scan when we have seen all the uses. for (auto I = std::next(DefMI.getIterator()); ; ++I) { assert(I != DefBB->end()); if (I->isDebugInstr()) continue; if (++NumInst > MaxInstScan) return true; for (const MachineOperand &Op : I->operands()) { // We don't check reg masks here as they're used only on calls: // 1. EXEC is only considered const within one BB // 2. Call should be a terminator instruction if present in a BB if (!Op.isReg()) continue; Register Reg = Op.getReg(); if (Op.isUse()) { if (Reg == VReg && --NumUse == 0) return false; } else if (TRI->regsOverlap(Reg, AMDGPU::EXEC)) return true; } } } MachineInstr *SIInstrInfo::createPHIDestinationCopy( MachineBasicBlock &MBB, MachineBasicBlock::iterator LastPHIIt, const DebugLoc &DL, Register Src, Register Dst) const { auto Cur = MBB.begin(); if (Cur != MBB.end()) do { if (!Cur->isPHI() && Cur->readsRegister(Dst)) return BuildMI(MBB, Cur, DL, get(TargetOpcode::COPY), Dst).addReg(Src); ++Cur; } while (Cur != MBB.end() && Cur != LastPHIIt); return TargetInstrInfo::createPHIDestinationCopy(MBB, LastPHIIt, DL, Src, Dst); } MachineInstr *SIInstrInfo::createPHISourceCopy( MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt, const DebugLoc &DL, Register Src, unsigned SrcSubReg, Register Dst) const { if (InsPt != MBB.end() && (InsPt->getOpcode() == AMDGPU::SI_IF || InsPt->getOpcode() == AMDGPU::SI_ELSE || InsPt->getOpcode() == AMDGPU::SI_IF_BREAK) && InsPt->definesRegister(Src)) { InsPt++; return BuildMI(MBB, InsPt, DL, get(ST.isWave32() ? AMDGPU::S_MOV_B32_term : AMDGPU::S_MOV_B64_term), Dst) .addReg(Src, 0, SrcSubReg) .addReg(AMDGPU::EXEC, RegState::Implicit); } return TargetInstrInfo::createPHISourceCopy(MBB, InsPt, DL, Src, SrcSubReg, Dst); } bool llvm::SIInstrInfo::isWave32() const { return ST.isWave32(); } MachineInstr *SIInstrInfo::foldMemoryOperandImpl( MachineFunction &MF, MachineInstr &MI, ArrayRef Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS, VirtRegMap *VRM) const { // This is a bit of a hack (copied from AArch64). Consider this instruction: // // %0:sreg_32 = COPY $m0 // // We explicitly chose SReg_32 for the virtual register so such a copy might // be eliminated by RegisterCoalescer. However, that may not be possible, and // %0 may even spill. We can't spill $m0 normally (it would require copying to // a numbered SGPR anyway), and since it is in the SReg_32 register class, // TargetInstrInfo::foldMemoryOperand() is going to try. // A similar issue also exists with spilling and reloading $exec registers. // // To prevent that, constrain the %0 register class here. if (isFullCopyInstr(MI)) { Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); if ((DstReg.isVirtual() || SrcReg.isVirtual()) && (DstReg.isVirtual() != SrcReg.isVirtual())) { MachineRegisterInfo &MRI = MF.getRegInfo(); Register VirtReg = DstReg.isVirtual() ? DstReg : SrcReg; const TargetRegisterClass *RC = MRI.getRegClass(VirtReg); if (RC->hasSuperClassEq(&AMDGPU::SReg_32RegClass)) { MRI.constrainRegClass(VirtReg, &AMDGPU::SReg_32_XM0_XEXECRegClass); return nullptr; } else if (RC->hasSuperClassEq(&AMDGPU::SReg_64RegClass)) { MRI.constrainRegClass(VirtReg, &AMDGPU::SReg_64_XEXECRegClass); return nullptr; } } } return nullptr; } unsigned SIInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr &MI, unsigned *PredCost) const { if (MI.isBundle()) { MachineBasicBlock::const_instr_iterator I(MI.getIterator()); MachineBasicBlock::const_instr_iterator E(MI.getParent()->instr_end()); unsigned Lat = 0, Count = 0; for (++I; I != E && I->isBundledWithPred(); ++I) { ++Count; Lat = std::max(Lat, SchedModel.computeInstrLatency(&*I)); } return Lat + Count - 1; } return SchedModel.computeInstrLatency(&MI); } InstructionUniformity SIInstrInfo::getGenericInstructionUniformity(const MachineInstr &MI) const { unsigned opcode = MI.getOpcode(); if (auto *GI = dyn_cast(&MI)) { auto IID = GI->getIntrinsicID(); if (AMDGPU::isIntrinsicSourceOfDivergence(IID)) return InstructionUniformity::NeverUniform; if (AMDGPU::isIntrinsicAlwaysUniform(IID)) return InstructionUniformity::AlwaysUniform; switch (IID) { case Intrinsic::amdgcn_if: case Intrinsic::amdgcn_else: // FIXME: Uniform if second result break; } return InstructionUniformity::Default; } // Loads from the private and flat address spaces are divergent, because // threads can execute the load instruction with the same inputs and get // different results. // // All other loads are not divergent, because if threads issue loads with the // same arguments, they will always get the same result. if (opcode == AMDGPU::G_LOAD) { if (MI.memoperands_empty()) return InstructionUniformity::NeverUniform; // conservative assumption if (llvm::any_of(MI.memoperands(), [](const MachineMemOperand *mmo) { return mmo->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS || mmo->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS; })) { // At least one MMO in a non-global address space. return InstructionUniformity::NeverUniform; } return InstructionUniformity::Default; } if (SIInstrInfo::isGenericAtomicRMWOpcode(opcode) || opcode == AMDGPU::G_ATOMIC_CMPXCHG || opcode == AMDGPU::G_ATOMIC_CMPXCHG_WITH_SUCCESS || AMDGPU::isGenericAtomic(opcode)) { return InstructionUniformity::NeverUniform; } return InstructionUniformity::Default; } InstructionUniformity SIInstrInfo::getInstructionUniformity(const MachineInstr &MI) const { if (isNeverUniform(MI)) return InstructionUniformity::NeverUniform; unsigned opcode = MI.getOpcode(); if (opcode == AMDGPU::V_READLANE_B32 || opcode == AMDGPU::V_READFIRSTLANE_B32 || opcode == AMDGPU::SI_RESTORE_S32_FROM_VGPR) return InstructionUniformity::AlwaysUniform; if (isCopyInstr(MI)) { const MachineOperand &srcOp = MI.getOperand(1); if (srcOp.isReg() && srcOp.getReg().isPhysical()) { const TargetRegisterClass *regClass = RI.getPhysRegBaseClass(srcOp.getReg()); return RI.isSGPRClass(regClass) ? InstructionUniformity::AlwaysUniform : InstructionUniformity::NeverUniform; } return InstructionUniformity::Default; } // GMIR handling if (MI.isPreISelOpcode()) return SIInstrInfo::getGenericInstructionUniformity(MI); // Atomics are divergent because they are executed sequentially: when an // atomic operation refers to the same address in each thread, then each // thread after the first sees the value written by the previous thread as // original value. if (isAtomic(MI)) return InstructionUniformity::NeverUniform; // Loads from the private and flat address spaces are divergent, because // threads can execute the load instruction with the same inputs and get // different results. if (isFLAT(MI) && MI.mayLoad()) { if (MI.memoperands_empty()) return InstructionUniformity::NeverUniform; // conservative assumption if (llvm::any_of(MI.memoperands(), [](const MachineMemOperand *mmo) { return mmo->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS || mmo->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS; })) { // At least one MMO in a non-global address space. return InstructionUniformity::NeverUniform; } return InstructionUniformity::Default; } const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); const AMDGPURegisterBankInfo *RBI = ST.getRegBankInfo(); // FIXME: It's conceptually broken to report this for an instruction, and not // a specific def operand. For inline asm in particular, there could be mixed // uniform and divergent results. for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { const MachineOperand &SrcOp = MI.getOperand(I); if (!SrcOp.isReg()) continue; Register Reg = SrcOp.getReg(); if (!Reg || !SrcOp.readsReg()) continue; // If RegBank is null, this is unassigned or an unallocatable special // register, which are all scalars. const RegisterBank *RegBank = RBI->getRegBank(Reg, MRI, RI); if (RegBank && RegBank->getID() != AMDGPU::SGPRRegBankID) return InstructionUniformity::NeverUniform; } // TODO: Uniformity check condtions above can be rearranged for more // redability // TODO: amdgcn.{ballot, [if]cmp} should be AlwaysUniform, but they are // currently turned into no-op COPYs by SelectionDAG ISel and are // therefore no longer recognizable. return InstructionUniformity::Default; } unsigned SIInstrInfo::getDSShaderTypeValue(const MachineFunction &MF) { switch (MF.getFunction().getCallingConv()) { case CallingConv::AMDGPU_PS: return 1; case CallingConv::AMDGPU_VS: return 2; case CallingConv::AMDGPU_GS: return 3; case CallingConv::AMDGPU_HS: case CallingConv::AMDGPU_LS: case CallingConv::AMDGPU_ES: report_fatal_error("ds_ordered_count unsupported for this calling conv"); case CallingConv::AMDGPU_CS: case CallingConv::AMDGPU_KERNEL: case CallingConv::C: case CallingConv::Fast: default: // Assume other calling conventions are various compute callable functions return 0; } } bool SIInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &CmpMask, int64_t &CmpValue) const { if (!MI.getOperand(0).isReg() || MI.getOperand(0).getSubReg()) return false; switch (MI.getOpcode()) { default: break; case AMDGPU::S_CMP_EQ_U32: case AMDGPU::S_CMP_EQ_I32: case AMDGPU::S_CMP_LG_U32: case AMDGPU::S_CMP_LG_I32: case AMDGPU::S_CMP_LT_U32: case AMDGPU::S_CMP_LT_I32: case AMDGPU::S_CMP_GT_U32: case AMDGPU::S_CMP_GT_I32: case AMDGPU::S_CMP_LE_U32: case AMDGPU::S_CMP_LE_I32: case AMDGPU::S_CMP_GE_U32: case AMDGPU::S_CMP_GE_I32: case AMDGPU::S_CMP_EQ_U64: case AMDGPU::S_CMP_LG_U64: SrcReg = MI.getOperand(0).getReg(); if (MI.getOperand(1).isReg()) { if (MI.getOperand(1).getSubReg()) return false; SrcReg2 = MI.getOperand(1).getReg(); CmpValue = 0; } else if (MI.getOperand(1).isImm()) { SrcReg2 = Register(); CmpValue = MI.getOperand(1).getImm(); } else { return false; } CmpMask = ~0; return true; case AMDGPU::S_CMPK_EQ_U32: case AMDGPU::S_CMPK_EQ_I32: case AMDGPU::S_CMPK_LG_U32: case AMDGPU::S_CMPK_LG_I32: case AMDGPU::S_CMPK_LT_U32: case AMDGPU::S_CMPK_LT_I32: case AMDGPU::S_CMPK_GT_U32: case AMDGPU::S_CMPK_GT_I32: case AMDGPU::S_CMPK_LE_U32: case AMDGPU::S_CMPK_LE_I32: case AMDGPU::S_CMPK_GE_U32: case AMDGPU::S_CMPK_GE_I32: SrcReg = MI.getOperand(0).getReg(); SrcReg2 = Register(); CmpValue = MI.getOperand(1).getImm(); CmpMask = ~0; return true; } return false; } bool SIInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask, int64_t CmpValue, const MachineRegisterInfo *MRI) const { if (!SrcReg || SrcReg.isPhysical()) return false; if (SrcReg2 && !getFoldableImm(SrcReg2, *MRI, CmpValue)) return false; const auto optimizeCmpAnd = [&CmpInstr, SrcReg, CmpValue, MRI, this](int64_t ExpectedValue, unsigned SrcSize, bool IsReversible, bool IsSigned) -> bool { // s_cmp_eq_u32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n // s_cmp_eq_i32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n // s_cmp_ge_u32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n // s_cmp_ge_i32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n // s_cmp_eq_u64 (s_and_b64 $src, 1 << n), 1 << n => s_and_b64 $src, 1 << n // s_cmp_lg_u32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n // s_cmp_lg_i32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n // s_cmp_gt_u32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n // s_cmp_gt_i32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n // s_cmp_lg_u64 (s_and_b64 $src, 1 << n), 0 => s_and_b64 $src, 1 << n // // Signed ge/gt are not used for the sign bit. // // If result of the AND is unused except in the compare: // s_and_b(32|64) $src, 1 << n => s_bitcmp1_b(32|64) $src, n // // s_cmp_eq_u32 (s_and_b32 $src, 1 << n), 0 => s_bitcmp0_b32 $src, n // s_cmp_eq_i32 (s_and_b32 $src, 1 << n), 0 => s_bitcmp0_b32 $src, n // s_cmp_eq_u64 (s_and_b64 $src, 1 << n), 0 => s_bitcmp0_b64 $src, n // s_cmp_lg_u32 (s_and_b32 $src, 1 << n), 1 << n => s_bitcmp0_b32 $src, n // s_cmp_lg_i32 (s_and_b32 $src, 1 << n), 1 << n => s_bitcmp0_b32 $src, n // s_cmp_lg_u64 (s_and_b64 $src, 1 << n), 1 << n => s_bitcmp0_b64 $src, n MachineInstr *Def = MRI->getUniqueVRegDef(SrcReg); if (!Def || Def->getParent() != CmpInstr.getParent()) return false; if (Def->getOpcode() != AMDGPU::S_AND_B32 && Def->getOpcode() != AMDGPU::S_AND_B64) return false; int64_t Mask; const auto isMask = [&Mask, SrcSize](const MachineOperand *MO) -> bool { if (MO->isImm()) Mask = MO->getImm(); else if (!getFoldableImm(MO, Mask)) return false; Mask &= maxUIntN(SrcSize); return isPowerOf2_64(Mask); }; MachineOperand *SrcOp = &Def->getOperand(1); if (isMask(SrcOp)) SrcOp = &Def->getOperand(2); else if (isMask(&Def->getOperand(2))) SrcOp = &Def->getOperand(1); else return false; unsigned BitNo = llvm::countr_zero((uint64_t)Mask); if (IsSigned && BitNo == SrcSize - 1) return false; ExpectedValue <<= BitNo; bool IsReversedCC = false; if (CmpValue != ExpectedValue) { if (!IsReversible) return false; IsReversedCC = CmpValue == (ExpectedValue ^ Mask); if (!IsReversedCC) return false; } Register DefReg = Def->getOperand(0).getReg(); if (IsReversedCC && !MRI->hasOneNonDBGUse(DefReg)) return false; for (auto I = std::next(Def->getIterator()), E = CmpInstr.getIterator(); I != E; ++I) { if (I->modifiesRegister(AMDGPU::SCC, &RI) || I->killsRegister(AMDGPU::SCC, &RI)) return false; } MachineOperand *SccDef = Def->findRegisterDefOperand(AMDGPU::SCC); SccDef->setIsDead(false); CmpInstr.eraseFromParent(); if (!MRI->use_nodbg_empty(DefReg)) { assert(!IsReversedCC); return true; } // Replace AND with unused result with a S_BITCMP. MachineBasicBlock *MBB = Def->getParent(); unsigned NewOpc = (SrcSize == 32) ? IsReversedCC ? AMDGPU::S_BITCMP0_B32 : AMDGPU::S_BITCMP1_B32 : IsReversedCC ? AMDGPU::S_BITCMP0_B64 : AMDGPU::S_BITCMP1_B64; BuildMI(*MBB, Def, Def->getDebugLoc(), get(NewOpc)) .add(*SrcOp) .addImm(BitNo); Def->eraseFromParent(); return true; }; switch (CmpInstr.getOpcode()) { default: break; case AMDGPU::S_CMP_EQ_U32: case AMDGPU::S_CMP_EQ_I32: case AMDGPU::S_CMPK_EQ_U32: case AMDGPU::S_CMPK_EQ_I32: return optimizeCmpAnd(1, 32, true, false); case AMDGPU::S_CMP_GE_U32: case AMDGPU::S_CMPK_GE_U32: return optimizeCmpAnd(1, 32, false, false); case AMDGPU::S_CMP_GE_I32: case AMDGPU::S_CMPK_GE_I32: return optimizeCmpAnd(1, 32, false, true); case AMDGPU::S_CMP_EQ_U64: return optimizeCmpAnd(1, 64, true, false); case AMDGPU::S_CMP_LG_U32: case AMDGPU::S_CMP_LG_I32: case AMDGPU::S_CMPK_LG_U32: case AMDGPU::S_CMPK_LG_I32: return optimizeCmpAnd(0, 32, true, false); case AMDGPU::S_CMP_GT_U32: case AMDGPU::S_CMPK_GT_U32: return optimizeCmpAnd(0, 32, false, false); case AMDGPU::S_CMP_GT_I32: case AMDGPU::S_CMPK_GT_I32: return optimizeCmpAnd(0, 32, false, true); case AMDGPU::S_CMP_LG_U64: return optimizeCmpAnd(0, 64, true, false); } return false; } void SIInstrInfo::enforceOperandRCAlignment(MachineInstr &MI, unsigned OpName) const { if (!ST.needsAlignedVGPRs()) return; int OpNo = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OpName); if (OpNo < 0) return; MachineOperand &Op = MI.getOperand(OpNo); if (getOpSize(MI, OpNo) > 4) return; // Add implicit aligned super-reg to force alignment on the data operand. const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock *BB = MI.getParent(); MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); Register DataReg = Op.getReg(); bool IsAGPR = RI.isAGPR(MRI, DataReg); Register Undef = MRI.createVirtualRegister( IsAGPR ? &AMDGPU::AGPR_32RegClass : &AMDGPU::VGPR_32RegClass); BuildMI(*BB, MI, DL, get(AMDGPU::IMPLICIT_DEF), Undef); Register NewVR = MRI.createVirtualRegister(IsAGPR ? &AMDGPU::AReg_64_Align2RegClass : &AMDGPU::VReg_64_Align2RegClass); BuildMI(*BB, MI, DL, get(AMDGPU::REG_SEQUENCE), NewVR) .addReg(DataReg, 0, Op.getSubReg()) .addImm(AMDGPU::sub0) .addReg(Undef) .addImm(AMDGPU::sub1); Op.setReg(NewVR); Op.setSubReg(AMDGPU::sub0); MI.addOperand(MachineOperand::CreateReg(NewVR, false, true)); }