//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Custom DAG lowering for SI // //===----------------------------------------------------------------------===// #include "SIISelLowering.h" #include "AMDGPU.h" #include "AMDGPUInstrInfo.h" #include "AMDGPUTargetMachine.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "SIMachineFunctionInfo.h" #include "SIRegisterInfo.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/FloatingPointMode.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/UniformityAnalysis.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/ByteProvider.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/IntrinsicsR600.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/ModRef.h" #include using namespace llvm; #define DEBUG_TYPE "si-lower" STATISTIC(NumTailCalls, "Number of tail calls"); static cl::opt DisableLoopAlignment( "amdgpu-disable-loop-alignment", cl::desc("Do not align and prefetch loops"), cl::init(false)); static cl::opt UseDivergentRegisterIndexing( "amdgpu-use-divergent-register-indexing", cl::Hidden, cl::desc("Use indirect register addressing for divergent indexes"), cl::init(false)); static bool denormalModeIsFlushAllF32(const MachineFunction &MF) { const SIMachineFunctionInfo *Info = MF.getInfo(); return Info->getMode().FP32Denormals == DenormalMode::getPreserveSign(); } static bool denormalModeIsFlushAllF64F16(const MachineFunction &MF) { const SIMachineFunctionInfo *Info = MF.getInfo(); return Info->getMode().FP64FP16Denormals == DenormalMode::getPreserveSign(); } static unsigned findFirstFreeSGPR(CCState &CCInfo) { unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { return AMDGPU::SGPR0 + Reg; } } llvm_unreachable("Cannot allocate sgpr"); } SITargetLowering::SITargetLowering(const TargetMachine &TM, const GCNSubtarget &STI) : AMDGPUTargetLowering(TM, STI), Subtarget(&STI) { addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); const SIRegisterInfo *TRI = STI.getRegisterInfo(); const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class(); addRegisterClass(MVT::f64, V64RegClass); addRegisterClass(MVT::v2f32, V64RegClass); addRegisterClass(MVT::Untyped, V64RegClass); addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96)); addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass); addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass); addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass); addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128)); addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160)); addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass); addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192)); addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass); addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192)); addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass); addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224)); addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass); addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256)); addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass); addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256)); addRegisterClass(MVT::v9i32, &AMDGPU::SGPR_288RegClass); addRegisterClass(MVT::v9f32, TRI->getVGPRClassForBitWidth(288)); addRegisterClass(MVT::v10i32, &AMDGPU::SGPR_320RegClass); addRegisterClass(MVT::v10f32, TRI->getVGPRClassForBitWidth(320)); addRegisterClass(MVT::v11i32, &AMDGPU::SGPR_352RegClass); addRegisterClass(MVT::v11f32, TRI->getVGPRClassForBitWidth(352)); addRegisterClass(MVT::v12i32, &AMDGPU::SGPR_384RegClass); addRegisterClass(MVT::v12f32, TRI->getVGPRClassForBitWidth(384)); addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass); addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512)); addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass); addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512)); addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass); addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024)); if (Subtarget->has16BitInsts()) { if (Subtarget->useRealTrue16Insts()) { addRegisterClass(MVT::i16, &AMDGPU::VGPR_16RegClass); addRegisterClass(MVT::f16, &AMDGPU::VGPR_16RegClass); addRegisterClass(MVT::bf16, &AMDGPU::VGPR_16RegClass); } else { addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass); addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass); addRegisterClass(MVT::bf16, &AMDGPU::SReg_32RegClass); } // Unless there are also VOP3P operations, not operations are really legal. addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass); addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass); addRegisterClass(MVT::v2bf16, &AMDGPU::SReg_32RegClass); addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); addRegisterClass(MVT::v4bf16, &AMDGPU::SReg_64RegClass); addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass); addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass); addRegisterClass(MVT::v8bf16, &AMDGPU::SGPR_128RegClass); addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass); addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass); addRegisterClass(MVT::v16bf16, &AMDGPU::SGPR_256RegClass); addRegisterClass(MVT::v32i16, &AMDGPU::SGPR_512RegClass); addRegisterClass(MVT::v32f16, &AMDGPU::SGPR_512RegClass); addRegisterClass(MVT::v32bf16, &AMDGPU::SGPR_512RegClass); } addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024)); computeRegisterProperties(Subtarget->getRegisterInfo()); // The boolean content concept here is too inflexible. Compares only ever // really produce a 1-bit result. Any copy/extend from these will turn into a // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as // it's what most targets use. setBooleanContents(ZeroOrOneBooleanContent); setBooleanVectorContents(ZeroOrOneBooleanContent); // We need to custom lower vector stores from local memory setOperationAction(ISD::LOAD, {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32, MVT::i1, MVT::v32i32}, Custom); setOperationAction(ISD::STORE, {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32, MVT::i1, MVT::v32i32}, Custom); if (isTypeLegal(MVT::bf16)) { for (unsigned Opc : {ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV, ISD::FREM, ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM, ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FSQRT, ISD::FCBRT, ISD::FSIN, ISD::FCOS, ISD::FPOW, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FEXP10, ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FFLOOR, ISD::FCANONICALIZE, ISD::SETCC}) { // FIXME: The promoted to type shouldn't need to be explicit setOperationAction(Opc, MVT::bf16, Promote); AddPromotedToType(Opc, MVT::bf16, MVT::f32); } setOperationAction(ISD::FP_ROUND, MVT::bf16, Expand); setOperationAction(ISD::SELECT, MVT::bf16, Promote); AddPromotedToType(ISD::SELECT, MVT::bf16, MVT::i16); setOperationAction(ISD::FABS, MVT::bf16, Legal); setOperationAction(ISD::FNEG, MVT::bf16, Legal); setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Legal); // We only need to custom lower because we can't specify an action for bf16 // sources. setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); } setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand); setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand); setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand); setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand); setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand); setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand); setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand); setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand); setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand); setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand); setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom); setOperationAction(ISD::SELECT, MVT::i1, Promote); setOperationAction(ISD::SELECT, MVT::i64, Custom); setOperationAction(ISD::SELECT, MVT::f64, Promote); AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); setOperationAction(ISD::FSQRT, {MVT::f32, MVT::f64}, Custom); setOperationAction(ISD::SELECT_CC, {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand); setOperationAction(ISD::SETCC, MVT::i1, Promote); setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand); AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); setOperationAction(ISD::TRUNCATE, {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32}, Expand); setOperationAction(ISD::FP_ROUND, {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v9f32, MVT::v10f32, MVT::v11f32, MVT::v12f32, MVT::v16f32}, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16, MVT::v3i16, MVT::v4i16, MVT::Other}, Custom); setOperationAction(ISD::BRCOND, MVT::Other, Custom); setOperationAction(ISD::BR_CC, {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand); setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal); setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i32, Legal); setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64, Expand); #if 0 setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i64, Legal); #endif // We only support LOAD/STORE and vector manipulation ops for vectors // with > 4 elements. for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16, MVT::v4bf16, MVT::v3i64, MVT::v3f64, MVT::v6i32, MVT::v6f32, MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64, MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16, MVT::v16bf16, MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32, MVT::v32i16, MVT::v32f16, MVT::v32bf16}) { for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { switch (Op) { case ISD::LOAD: case ISD::STORE: case ISD::BUILD_VECTOR: case ISD::BITCAST: case ISD::UNDEF: case ISD::EXTRACT_VECTOR_ELT: case ISD::INSERT_VECTOR_ELT: case ISD::SCALAR_TO_VECTOR: case ISD::IS_FPCLASS: break; case ISD::EXTRACT_SUBVECTOR: case ISD::INSERT_SUBVECTOR: case ISD::CONCAT_VECTORS: setOperationAction(Op, VT, Custom); break; default: setOperationAction(Op, VT, Expand); break; } } } setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that // is expanded to avoid having two separate loops in case the index is a VGPR. // Most operations are naturally 32-bit vector operations. We only support // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); } for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) { setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32); setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32); setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32); setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32); } for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) { setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32); setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32); setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32); setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32); } for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) { setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32); setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32); setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32); setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32); } for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) { setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32); setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32); setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32); setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32); } setOperationAction(ISD::VECTOR_SHUFFLE, {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}, Expand); setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16, MVT::v4bf16}, Custom); // Avoid stack access for these. // TODO: Generalize to more vector types. setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}, {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v2i8, MVT::v4i8, MVT::v8i8, MVT::v4i16, MVT::v4f16, MVT::v4bf16}, Custom); // Deal with vec3 vector operations when widened to vec4. setOperationAction(ISD::INSERT_SUBVECTOR, {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom); // Deal with vec5/6/7 vector operations when widened to vec8. setOperationAction(ISD::INSERT_SUBVECTOR, {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32, MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32, MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32}, Custom); // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, // and output demarshalling setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom); // We can't return success/failure, only the old value, // let LLVM add the comparison setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64}, Expand); setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom); setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal); // FIXME: This should be narrowed to i32, but that only happens if i64 is // illegal. // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32. setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal); // On SI this is s_memtime and s_memrealtime on VI. setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); if (Subtarget->hasSMemRealTime() || Subtarget->getGeneration() >= AMDGPUSubtarget::GFX11) setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Legal); setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom); if (Subtarget->has16BitInsts()) { setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote); setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom); } else { setOperationAction(ISD::FSQRT, MVT::f16, Custom); } if (Subtarget->hasMadMacF32Insts()) setOperationAction(ISD::FMAD, MVT::f32, Legal); if (!Subtarget->hasBFI()) // fcopysign can be done in a single instruction with BFI. setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand); if (!Subtarget->hasBCNT(32)) setOperationAction(ISD::CTPOP, MVT::i32, Expand); if (!Subtarget->hasBCNT(64)) setOperationAction(ISD::CTPOP, MVT::i64, Expand); if (Subtarget->hasFFBH()) setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom); if (Subtarget->hasFFBL()) setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom); // We only really have 32-bit BFE instructions (and 16-bit on VI). // // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any // effort to match them now. We want this to be false for i64 cases when the // extraction isn't restricted to the upper or lower half. Ideally we would // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that // span the midpoint are probably relatively rare, so don't worry about them // for now. if (Subtarget->hasBFE()) setHasExtractBitsInsn(true); // Clamp modifier on add/sub if (Subtarget->hasIntClamp()) setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal); if (Subtarget->hasAddNoCarry()) setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32}, Legal); setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64}, Custom); // These are really only legal for ieee_mode functions. We should be avoiding // them for functions that don't have ieee_mode enabled, so just say they are // legal. setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, {MVT::f32, MVT::f64}, Legal); if (Subtarget->haveRoundOpsF64()) setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FROUNDEVEN}, MVT::f64, Legal); else setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FROUNDEVEN, ISD::FFLOOR}, MVT::f64, Custom); setOperationAction(ISD::FFLOOR, MVT::f64, Legal); setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, {MVT::f32, MVT::f64}, Legal); setOperationAction(ISD::FFREXP, {MVT::f32, MVT::f64}, Custom); setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom); setOperationAction(ISD::FDIV, MVT::f64, Custom); setOperationAction(ISD::BF16_TO_FP, {MVT::i16, MVT::f32, MVT::f64}, Expand); setOperationAction(ISD::FP_TO_BF16, {MVT::i16, MVT::f32, MVT::f64}, Expand); // Custom lower these because we can't specify a rule based on an illegal // source bf16. setOperationAction({ISD::FP_EXTEND, ISD::STRICT_FP_EXTEND}, MVT::f32, Custom); setOperationAction({ISD::FP_EXTEND, ISD::STRICT_FP_EXTEND}, MVT::f64, Custom); if (Subtarget->has16BitInsts()) { setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT}, MVT::i16, Legal); AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC}, MVT::i16, Expand); setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::BITREVERSE, ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, ISD::CTPOP}, MVT::i16, Promote); setOperationAction(ISD::LOAD, MVT::i16, Custom); setTruncStoreAction(MVT::i64, MVT::i16, Expand); setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom); setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom); setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom); setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i32, Custom); // F16 - Constant Actions. setOperationAction(ISD::ConstantFP, MVT::f16, Legal); setOperationAction(ISD::ConstantFP, MVT::bf16, Legal); // F16 - Load/Store Actions. setOperationAction(ISD::LOAD, MVT::f16, Promote); AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); setOperationAction(ISD::STORE, MVT::f16, Promote); AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); // BF16 - Load/Store Actions. setOperationAction(ISD::LOAD, MVT::bf16, Promote); AddPromotedToType(ISD::LOAD, MVT::bf16, MVT::i16); setOperationAction(ISD::STORE, MVT::bf16, Promote); AddPromotedToType(ISD::STORE, MVT::bf16, MVT::i16); // F16 - VOP1 Actions. setOperationAction({ISD::FP_ROUND, ISD::STRICT_FP_ROUND, ISD::FCOS, ISD::FSIN, ISD::FROUND, ISD::FPTRUNC_ROUND}, MVT::f16, Custom); setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::f16, Promote); setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::bf16, Promote); // F16 - VOP2 Actions. setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, {MVT::f16, MVT::bf16}, Expand); setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, MVT::f16, Custom); setOperationAction(ISD::FFREXP, MVT::f16, Custom); setOperationAction(ISD::FDIV, MVT::f16, Custom); // F16 - VOP3 Actions. setOperationAction(ISD::FMA, MVT::f16, Legal); if (STI.hasMadF16()) setOperationAction(ISD::FMAD, MVT::f16, Legal); for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v4i16, MVT::v4f16, MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16, MVT::v16bf16, MVT::v32i16, MVT::v32f16}) { for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { switch (Op) { case ISD::LOAD: case ISD::STORE: case ISD::BUILD_VECTOR: case ISD::BITCAST: case ISD::UNDEF: case ISD::EXTRACT_VECTOR_ELT: case ISD::INSERT_VECTOR_ELT: case ISD::INSERT_SUBVECTOR: case ISD::EXTRACT_SUBVECTOR: case ISD::SCALAR_TO_VECTOR: case ISD::IS_FPCLASS: break; case ISD::CONCAT_VECTORS: setOperationAction(Op, VT, Custom); break; default: setOperationAction(Op, VT, Expand); break; } } } // v_perm_b32 can handle either of these. setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal); setOperationAction(ISD::BSWAP, MVT::v4i16, Custom); // XXX - Do these do anything? Vector constants turn into build_vector. setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal); setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16, MVT::v2bf16}, Legal); setOperationAction(ISD::STORE, MVT::v2i16, Promote); AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); setOperationAction(ISD::STORE, MVT::v2f16, Promote); AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); setOperationAction(ISD::LOAD, MVT::v2i16, Promote); AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); setOperationAction(ISD::LOAD, MVT::v2f16, Promote); AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); setOperationAction(ISD::AND, MVT::v2i16, Promote); AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); setOperationAction(ISD::OR, MVT::v2i16, Promote); AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); setOperationAction(ISD::XOR, MVT::v2i16, Promote); AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); setOperationAction(ISD::LOAD, MVT::v4i16, Promote); AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); setOperationAction(ISD::LOAD, MVT::v4f16, Promote); AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); setOperationAction(ISD::LOAD, MVT::v4bf16, Promote); AddPromotedToType(ISD::LOAD, MVT::v4bf16, MVT::v2i32); setOperationAction(ISD::STORE, MVT::v4i16, Promote); AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); setOperationAction(ISD::STORE, MVT::v4f16, Promote); AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); setOperationAction(ISD::STORE, MVT::v4bf16, Promote); AddPromotedToType(ISD::STORE, MVT::v4bf16, MVT::v2i32); setOperationAction(ISD::LOAD, MVT::v8i16, Promote); AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32); setOperationAction(ISD::LOAD, MVT::v8f16, Promote); AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32); setOperationAction(ISD::LOAD, MVT::v8bf16, Promote); AddPromotedToType(ISD::LOAD, MVT::v8bf16, MVT::v4i32); setOperationAction(ISD::STORE, MVT::v4i16, Promote); AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); setOperationAction(ISD::STORE, MVT::v4f16, Promote); AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); setOperationAction(ISD::STORE, MVT::v8i16, Promote); AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32); setOperationAction(ISD::STORE, MVT::v8f16, Promote); AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32); setOperationAction(ISD::STORE, MVT::v8bf16, Promote); AddPromotedToType(ISD::STORE, MVT::v8bf16, MVT::v4i32); setOperationAction(ISD::LOAD, MVT::v16i16, Promote); AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32); setOperationAction(ISD::LOAD, MVT::v16f16, Promote); AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32); setOperationAction(ISD::LOAD, MVT::v16bf16, Promote); AddPromotedToType(ISD::LOAD, MVT::v16bf16, MVT::v8i32); setOperationAction(ISD::STORE, MVT::v16i16, Promote); AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32); setOperationAction(ISD::STORE, MVT::v16f16, Promote); AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32); setOperationAction(ISD::STORE, MVT::v16bf16, Promote); AddPromotedToType(ISD::STORE, MVT::v16bf16, MVT::v8i32); setOperationAction(ISD::LOAD, MVT::v32i16, Promote); AddPromotedToType(ISD::LOAD, MVT::v32i16, MVT::v16i32); setOperationAction(ISD::LOAD, MVT::v32f16, Promote); AddPromotedToType(ISD::LOAD, MVT::v32f16, MVT::v16i32); setOperationAction(ISD::LOAD, MVT::v32bf16, Promote); AddPromotedToType(ISD::LOAD, MVT::v32bf16, MVT::v16i32); setOperationAction(ISD::STORE, MVT::v32i16, Promote); AddPromotedToType(ISD::STORE, MVT::v32i16, MVT::v16i32); setOperationAction(ISD::STORE, MVT::v32f16, Promote); AddPromotedToType(ISD::STORE, MVT::v32f16, MVT::v16i32); setOperationAction(ISD::STORE, MVT::v32bf16, Promote); AddPromotedToType(ISD::STORE, MVT::v32bf16, MVT::v16i32); setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, MVT::v2i32, Expand); setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, MVT::v4i32, Expand); setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, MVT::v8i32, Expand); setOperationAction(ISD::BUILD_VECTOR, {MVT::v2i16, MVT::v2f16, MVT::v2bf16}, Subtarget->hasVOP3PInsts() ? Legal : Custom); setOperationAction(ISD::FNEG, MVT::v2f16, Legal); // This isn't really legal, but this avoids the legalizer unrolling it (and // allows matching fneg (fabs x) patterns) setOperationAction(ISD::FABS, MVT::v2f16, Legal); setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom); setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal); setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16}, Custom); setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16}, Expand); for (MVT Vec16 : {MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16, MVT::v16bf16, MVT::v32i16, MVT::v32f16, MVT::v32bf16}) { setOperationAction( {ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR}, Vec16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand); } } if (Subtarget->hasVOP3PInsts()) { setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL, ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT}, MVT::v2i16, Legal); setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE}, MVT::v2f16, Legal); setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2i16, MVT::v2f16, MVT::v2bf16}, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, {MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16, MVT::v16f16, MVT::v16i16, MVT::v32f16, MVT::v32i16}, Custom); for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16, MVT::v32i16}) // Split vector operations. setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB, ISD::MUL, ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT, ISD::SSUBSAT}, VT, Custom); for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16}) // Split vector operations. setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE}, VT, Custom); setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16}, Custom); setOperationAction(ISD::FEXP, MVT::v2f16, Custom); setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16, MVT::v4bf16}, Custom); if (Subtarget->hasPackedFP32Ops()) { setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG}, MVT::v2f32, Legal); setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA}, {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32}, Custom); } } setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom); if (Subtarget->has16BitInsts()) { setOperationAction(ISD::SELECT, MVT::v2i16, Promote); AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); setOperationAction(ISD::SELECT, MVT::v2f16, Promote); AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); } else { // Legalization hack. setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom); setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom); } setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16, MVT::v4bf16, MVT::v2i8, MVT::v4i8, MVT::v8i8, MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16, MVT::v16bf16, MVT::v32i16, MVT::v32f16, MVT::v32bf16}, Custom); setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom); if (Subtarget->hasScalarSMulU64()) setOperationAction(ISD::MUL, MVT::i64, Custom); if (Subtarget->hasMad64_32()) setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom); if (Subtarget->hasPrefetch()) setOperationAction(ISD::PREFETCH, MVT::Other, Custom); if (Subtarget->hasIEEEMinMax()) { setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, {MVT::f16, MVT::f32, MVT::f64, MVT::v2f16}, Legal); setOperationAction({ISD::FMINIMUM, ISD::FMAXIMUM}, {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16}, Custom); } setOperationAction(ISD::INTRINSIC_WO_CHAIN, {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16, MVT::bf16, MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::i128, MVT::i8}, Custom); setOperationAction(ISD::INTRINSIC_W_CHAIN, {MVT::v2f16, MVT::v2i16, MVT::v2bf16, MVT::v3f16, MVT::v3i16, MVT::v4f16, MVT::v4i16, MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::Other, MVT::f16, MVT::i16, MVT::bf16, MVT::i8, MVT::i128}, Custom); setOperationAction(ISD::INTRINSIC_VOID, {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v3i16, MVT::v3f16, MVT::v4f16, MVT::v4i16, MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::f16, MVT::i16, MVT::bf16, MVT::i8, MVT::i128}, Custom); setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom); setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); setOperationAction(ISD::GET_FPENV, MVT::i64, Custom); setOperationAction(ISD::SET_FPENV, MVT::i64, Custom); // TODO: Could move this to custom lowering, could benefit from combines on // extract of relevant bits. setOperationAction(ISD::GET_FPMODE, MVT::i32, Legal); setOperationAction(ISD::MUL, MVT::i1, Promote); setTargetDAGCombine({ISD::ADD, ISD::UADDO_CARRY, ISD::SUB, ISD::USUBO_CARRY, ISD::FADD, ISD::FSUB, ISD::FDIV, ISD::FMINNUM, ISD::FMAXNUM, ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE, ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMA, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::SETCC, ISD::AND, ISD::OR, ISD::XOR, ISD::FSHR, ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FCANONICALIZE, ISD::SCALAR_TO_VECTOR, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND_INREG, ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT, ISD::FCOPYSIGN}); if (Subtarget->has16BitInsts() && !Subtarget->hasMed3_16()) setTargetDAGCombine(ISD::FP_ROUND); // All memory operations. Some folding on the pointer operand is done to help // matching the constant offsets in the addressing modes. setTargetDAGCombine({ISD::LOAD, ISD::STORE, ISD::ATOMIC_LOAD, ISD::ATOMIC_STORE, ISD::ATOMIC_CMP_SWAP, ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, ISD::ATOMIC_SWAP, ISD::ATOMIC_LOAD_ADD, ISD::ATOMIC_LOAD_SUB, ISD::ATOMIC_LOAD_AND, ISD::ATOMIC_LOAD_OR, ISD::ATOMIC_LOAD_XOR, ISD::ATOMIC_LOAD_NAND, ISD::ATOMIC_LOAD_MIN, ISD::ATOMIC_LOAD_MAX, ISD::ATOMIC_LOAD_UMIN, ISD::ATOMIC_LOAD_UMAX, ISD::ATOMIC_LOAD_FADD, ISD::ATOMIC_LOAD_FMIN, ISD::ATOMIC_LOAD_FMAX, ISD::ATOMIC_LOAD_UINC_WRAP, ISD::ATOMIC_LOAD_UDEC_WRAP, ISD::INTRINSIC_VOID, ISD::INTRINSIC_W_CHAIN}); // FIXME: In other contexts we pretend this is a per-function property. setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32); setSchedulingPreference(Sched::RegPressure); } const GCNSubtarget *SITargetLowering::getSubtarget() const { return Subtarget; } ArrayRef SITargetLowering::getRoundingControlRegisters() const { static const MCPhysReg RCRegs[] = {AMDGPU::MODE}; return RCRegs; } //===----------------------------------------------------------------------===// // TargetLowering queries //===----------------------------------------------------------------------===// // v_mad_mix* support a conversion from f16 to f32. // // There is only one special case when denormals are enabled we don't currently, // where this is OK to use. bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, EVT DestVT, EVT SrcVT) const { return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && DestVT.getScalarType() == MVT::f32 && SrcVT.getScalarType() == MVT::f16 && // TODO: This probably only requires no input flushing? denormalModeIsFlushAllF32(DAG.getMachineFunction()); } bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode, LLT DestTy, LLT SrcTy) const { return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) || (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) && DestTy.getScalarSizeInBits() == 32 && SrcTy.getScalarSizeInBits() == 16 && // TODO: This probably only requires no input flushing? denormalModeIsFlushAllF32(*MI.getMF()); } bool SITargetLowering::isShuffleMaskLegal(ArrayRef, EVT) const { // SI has some legal vector types, but no legal vector operations. Say no // shuffles are legal in order to prefer scalarizing some vector operations. return false; } MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const { if (CC == CallingConv::AMDGPU_KERNEL) return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); if (VT.isVector()) { EVT ScalarVT = VT.getScalarType(); unsigned Size = ScalarVT.getSizeInBits(); if (Size == 16) { if (Subtarget->has16BitInsts()) { if (VT.isInteger()) return MVT::v2i16; return (ScalarVT == MVT::bf16 ? MVT::i32 : MVT::v2f16); } return VT.isInteger() ? MVT::i32 : MVT::f32; } if (Size < 16) return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32; return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32; } if (VT.getSizeInBits() > 32) return MVT::i32; return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); } unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const { if (CC == CallingConv::AMDGPU_KERNEL) return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); if (VT.isVector()) { unsigned NumElts = VT.getVectorNumElements(); EVT ScalarVT = VT.getScalarType(); unsigned Size = ScalarVT.getSizeInBits(); // FIXME: Should probably promote 8-bit vectors to i16. if (Size == 16 && Subtarget->has16BitInsts()) return (NumElts + 1) / 2; if (Size <= 32) return NumElts; if (Size > 32) return NumElts * ((Size + 31) / 32); } else if (VT.getSizeInBits() > 32) return (VT.getSizeInBits() + 31) / 32; return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); } unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const { if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { unsigned NumElts = VT.getVectorNumElements(); EVT ScalarVT = VT.getScalarType(); unsigned Size = ScalarVT.getSizeInBits(); // FIXME: We should fix the ABI to be the same on targets without 16-bit // support, but unless we can properly handle 3-vectors, it will be still be // inconsistent. if (Size == 16 && Subtarget->has16BitInsts()) { if (ScalarVT == MVT::bf16) { RegisterVT = MVT::i32; IntermediateVT = MVT::v2bf16; } else { RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; IntermediateVT = RegisterVT; } NumIntermediates = (NumElts + 1) / 2; return NumIntermediates; } if (Size == 32) { RegisterVT = ScalarVT.getSimpleVT(); IntermediateVT = RegisterVT; NumIntermediates = NumElts; return NumIntermediates; } if (Size < 16 && Subtarget->has16BitInsts()) { // FIXME: Should probably form v2i16 pieces RegisterVT = MVT::i16; IntermediateVT = ScalarVT; NumIntermediates = NumElts; return NumIntermediates; } if (Size != 16 && Size <= 32) { RegisterVT = MVT::i32; IntermediateVT = ScalarVT; NumIntermediates = NumElts; return NumIntermediates; } if (Size > 32) { RegisterVT = MVT::i32; IntermediateVT = RegisterVT; NumIntermediates = NumElts * ((Size + 31) / 32); return NumIntermediates; } } return TargetLowering::getVectorTypeBreakdownForCallingConv( Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); } static EVT memVTFromLoadIntrData(const SITargetLowering &TLI, const DataLayout &DL, Type *Ty, unsigned MaxNumLanes) { assert(MaxNumLanes != 0); LLVMContext &Ctx = Ty->getContext(); if (auto *VT = dyn_cast(Ty)) { unsigned NumElts = std::min(MaxNumLanes, VT->getNumElements()); return EVT::getVectorVT(Ctx, TLI.getValueType(DL, VT->getElementType()), NumElts); } return TLI.getValueType(DL, Ty); } // Peek through TFE struct returns to only use the data size. static EVT memVTFromLoadIntrReturn(const SITargetLowering &TLI, const DataLayout &DL, Type *Ty, unsigned MaxNumLanes) { auto *ST = dyn_cast(Ty); if (!ST) return memVTFromLoadIntrData(TLI, DL, Ty, MaxNumLanes); // TFE intrinsics return an aggregate type. assert(ST->getNumContainedTypes() == 2 && ST->getContainedType(1)->isIntegerTy(32)); return memVTFromLoadIntrData(TLI, DL, ST->getContainedType(0), MaxNumLanes); } /// Map address space 7 to MVT::v5i32 because that's its in-memory /// representation. This return value is vector-typed because there is no /// MVT::i160 and it is not clear if one can be added. While this could /// cause issues during codegen, these address space 7 pointers will be /// rewritten away by then. Therefore, we can return MVT::v5i32 in order /// to allow pre-codegen passes that query TargetTransformInfo, often for cost /// modeling, to work. MVT SITargetLowering::getPointerTy(const DataLayout &DL, unsigned AS) const { if (AMDGPUAS::BUFFER_FAT_POINTER == AS && DL.getPointerSizeInBits(AS) == 160) return MVT::v5i32; if (AMDGPUAS::BUFFER_STRIDED_POINTER == AS && DL.getPointerSizeInBits(AS) == 192) return MVT::v6i32; return AMDGPUTargetLowering::getPointerTy(DL, AS); } /// Similarly, the in-memory representation of a p7 is {p8, i32}, aka /// v8i32 when padding is added. /// The in-memory representation of a p9 is {p8, i32, i32}, which is /// also v8i32 with padding. MVT SITargetLowering::getPointerMemTy(const DataLayout &DL, unsigned AS) const { if ((AMDGPUAS::BUFFER_FAT_POINTER == AS && DL.getPointerSizeInBits(AS) == 160) || (AMDGPUAS::BUFFER_STRIDED_POINTER == AS && DL.getPointerSizeInBits(AS) == 192)) return MVT::v8i32; return AMDGPUTargetLowering::getPointerMemTy(DL, AS); } bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &CI, MachineFunction &MF, unsigned IntrID) const { Info.flags = MachineMemOperand::MONone; if (CI.hasMetadata(LLVMContext::MD_invariant_load)) Info.flags |= MachineMemOperand::MOInvariant; if (const AMDGPU::RsrcIntrinsic *RsrcIntr = AMDGPU::lookupRsrcIntrinsic(IntrID)) { AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), (Intrinsic::ID)IntrID); MemoryEffects ME = Attr.getMemoryEffects(); if (ME.doesNotAccessMemory()) return false; // TODO: Should images get their own address space? Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE; const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = nullptr; if (RsrcIntr->IsImage) { const AMDGPU::ImageDimIntrinsicInfo *Intr = AMDGPU::getImageDimIntrinsicInfo(IntrID); BaseOpcode = AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); Info.align.reset(); } Value *RsrcArg = CI.getArgOperand(RsrcIntr->RsrcArg); if (auto *RsrcPtrTy = dyn_cast(RsrcArg->getType())) { if (RsrcPtrTy->getAddressSpace() == AMDGPUAS::BUFFER_RESOURCE) // We conservatively set the memory operand of a buffer intrinsic to the // base resource pointer, so that we can access alias information about // those pointers. Cases like "this points at the same value // but with a different offset" are handled in // areMemAccessesTriviallyDisjoint. Info.ptrVal = RsrcArg; } auto *Aux = cast(CI.getArgOperand(CI.arg_size() - 1)); if (Aux->getZExtValue() & AMDGPU::CPol::VOLATILE) Info.flags |= MachineMemOperand::MOVolatile; Info.flags |= MachineMemOperand::MODereferenceable; if (ME.onlyReadsMemory()) { if (RsrcIntr->IsImage) { unsigned MaxNumLanes = 4; if (!BaseOpcode->Gather4) { // If this isn't a gather, we may have excess loaded elements in the // IR type. Check the dmask for the real number of elements loaded. unsigned DMask = cast(CI.getArgOperand(0))->getZExtValue(); MaxNumLanes = DMask == 0 ? 1 : llvm::popcount(DMask); } Info.memVT = memVTFromLoadIntrReturn(*this, MF.getDataLayout(), CI.getType(), MaxNumLanes); } else { Info.memVT = memVTFromLoadIntrReturn(*this, MF.getDataLayout(), CI.getType(), std::numeric_limits::max()); } // FIXME: What does alignment mean for an image? Info.opc = ISD::INTRINSIC_W_CHAIN; Info.flags |= MachineMemOperand::MOLoad; } else if (ME.onlyWritesMemory()) { Info.opc = ISD::INTRINSIC_VOID; Type *DataTy = CI.getArgOperand(0)->getType(); if (RsrcIntr->IsImage) { unsigned DMask = cast(CI.getArgOperand(1))->getZExtValue(); unsigned DMaskLanes = DMask == 0 ? 1 : llvm::popcount(DMask); Info.memVT = memVTFromLoadIntrData(*this, MF.getDataLayout(), DataTy, DMaskLanes); } else Info.memVT = getValueType(MF.getDataLayout(), DataTy); Info.flags |= MachineMemOperand::MOStore; } else { // Atomic or NoReturn Sampler Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID : ISD::INTRINSIC_W_CHAIN; Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable; switch (IntrID) { default: if (RsrcIntr->IsImage && BaseOpcode->NoReturn) { // Fake memory access type for no return sampler intrinsics Info.memVT = MVT::i32; } else { // XXX - Should this be volatile without known ordering? Info.flags |= MachineMemOperand::MOVolatile; Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); } break; case Intrinsic::amdgcn_raw_buffer_load_lds: case Intrinsic::amdgcn_raw_ptr_buffer_load_lds: case Intrinsic::amdgcn_struct_buffer_load_lds: case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: { unsigned Width = cast(CI.getArgOperand(2))->getZExtValue(); Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); Info.ptrVal = CI.getArgOperand(1); return true; } case Intrinsic::amdgcn_raw_atomic_buffer_load: case Intrinsic::amdgcn_raw_ptr_atomic_buffer_load: { Info.memVT = memVTFromLoadIntrReturn(*this, MF.getDataLayout(), CI.getType(), std::numeric_limits::max()); Info.flags &= ~MachineMemOperand::MOStore; return true; } } } return true; } switch (IntrID) { case Intrinsic::amdgcn_ds_ordered_add: case Intrinsic::amdgcn_ds_ordered_swap: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(CI.getType()); Info.ptrVal = CI.getOperand(0); Info.align.reset(); Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; const ConstantInt *Vol = cast(CI.getOperand(4)); if (!Vol->isZero()) Info.flags |= MachineMemOperand::MOVolatile; return true; } case Intrinsic::amdgcn_ds_add_gs_reg_rtn: case Intrinsic::amdgcn_ds_sub_gs_reg_rtn: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); Info.ptrVal = nullptr; Info.fallbackAddressSpace = AMDGPUAS::STREAMOUT_REGISTER; Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; return true; } case Intrinsic::amdgcn_ds_append: case Intrinsic::amdgcn_ds_consume: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(CI.getType()); Info.ptrVal = CI.getOperand(0); Info.align.reset(); Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; const ConstantInt *Vol = cast(CI.getOperand(1)); if (!Vol->isZero()) Info.flags |= MachineMemOperand::MOVolatile; return true; } case Intrinsic::amdgcn_global_atomic_csub: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(CI.getType()); Info.ptrVal = CI.getOperand(0); Info.align.reset(); Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; return true; } case Intrinsic::amdgcn_image_bvh_intersect_ray: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT? Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE; Info.align.reset(); Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable; return true; } case Intrinsic::amdgcn_global_atomic_fadd: case Intrinsic::amdgcn_global_atomic_fmin: case Intrinsic::amdgcn_global_atomic_fmax: case Intrinsic::amdgcn_global_atomic_fmin_num: case Intrinsic::amdgcn_global_atomic_fmax_num: case Intrinsic::amdgcn_global_atomic_ordered_add_b64: case Intrinsic::amdgcn_flat_atomic_fadd: case Intrinsic::amdgcn_flat_atomic_fmin: case Intrinsic::amdgcn_flat_atomic_fmax: case Intrinsic::amdgcn_flat_atomic_fmin_num: case Intrinsic::amdgcn_flat_atomic_fmax_num: case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: case Intrinsic::amdgcn_atomic_cond_sub_u32: case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(CI.getType()); Info.ptrVal = CI.getOperand(0); Info.align.reset(); Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable | MachineMemOperand::MOVolatile; return true; } case Intrinsic::amdgcn_global_load_tr_b64: case Intrinsic::amdgcn_global_load_tr_b128: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(CI.getType()); Info.ptrVal = CI.getOperand(0); Info.align.reset(); Info.flags |= MachineMemOperand::MOLoad; return true; } case Intrinsic::amdgcn_ds_gws_init: case Intrinsic::amdgcn_ds_gws_barrier: case Intrinsic::amdgcn_ds_gws_sema_v: case Intrinsic::amdgcn_ds_gws_sema_br: case Intrinsic::amdgcn_ds_gws_sema_p: case Intrinsic::amdgcn_ds_gws_sema_release_all: { Info.opc = ISD::INTRINSIC_VOID; const GCNTargetMachine &TM = static_cast(getTargetMachine()); SIMachineFunctionInfo *MFI = MF.getInfo(); Info.ptrVal = MFI->getGWSPSV(TM); // This is an abstract access, but we need to specify a type and size. Info.memVT = MVT::i32; Info.size = 4; Info.align = Align(4); if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) Info.flags |= MachineMemOperand::MOLoad; else Info.flags |= MachineMemOperand::MOStore; return true; } case Intrinsic::amdgcn_global_load_lds: { Info.opc = ISD::INTRINSIC_VOID; unsigned Width = cast(CI.getArgOperand(2))->getZExtValue(); Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); Info.ptrVal = CI.getArgOperand(1); Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; return true; } case Intrinsic::amdgcn_ds_bvh_stack_rtn: { Info.opc = ISD::INTRINSIC_W_CHAIN; const GCNTargetMachine &TM = static_cast(getTargetMachine()); SIMachineFunctionInfo *MFI = MF.getInfo(); Info.ptrVal = MFI->getGWSPSV(TM); // This is an abstract access, but we need to specify a type and size. Info.memVT = MVT::i32; Info.size = 4; Info.align = Align(4); Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; return true; } default: return false; } } void SITargetLowering::CollectTargetIntrinsicOperands( const CallInst &I, SmallVectorImpl &Ops, SelectionDAG &DAG) const { switch (cast(I).getIntrinsicID()) { case Intrinsic::amdgcn_addrspacecast_nonnull: { // The DAG's ValueType loses the addrspaces. // Add them as 2 extra Constant operands "from" and "to". unsigned SrcAS = I.getOperand(0)->getType()->getPointerAddressSpace(); unsigned DstAS = I.getType()->getPointerAddressSpace(); Ops.push_back(DAG.getTargetConstant(SrcAS, SDLoc(), MVT::i32)); Ops.push_back(DAG.getTargetConstant(DstAS, SDLoc(), MVT::i32)); break; } default: break; } } bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, SmallVectorImpl &Ops, Type *&AccessTy) const { Value *Ptr = nullptr; switch (II->getIntrinsicID()) { case Intrinsic::amdgcn_atomic_cond_sub_u32: case Intrinsic::amdgcn_ds_append: case Intrinsic::amdgcn_ds_consume: case Intrinsic::amdgcn_ds_ordered_add: case Intrinsic::amdgcn_ds_ordered_swap: case Intrinsic::amdgcn_flat_atomic_fadd: case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: case Intrinsic::amdgcn_flat_atomic_fmax: case Intrinsic::amdgcn_flat_atomic_fmax_num: case Intrinsic::amdgcn_flat_atomic_fmin: case Intrinsic::amdgcn_flat_atomic_fmin_num: case Intrinsic::amdgcn_global_atomic_csub: case Intrinsic::amdgcn_global_atomic_fadd: case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: case Intrinsic::amdgcn_global_atomic_fmax: case Intrinsic::amdgcn_global_atomic_fmax_num: case Intrinsic::amdgcn_global_atomic_fmin: case Intrinsic::amdgcn_global_atomic_fmin_num: case Intrinsic::amdgcn_global_atomic_ordered_add_b64: case Intrinsic::amdgcn_global_load_tr_b64: case Intrinsic::amdgcn_global_load_tr_b128: Ptr = II->getArgOperand(0); break; case Intrinsic::amdgcn_global_load_lds: Ptr = II->getArgOperand(1); break; default: return false; } AccessTy = II->getType(); Ops.push_back(Ptr); return true; } bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM, unsigned AddrSpace) const { if (!Subtarget->hasFlatInstOffsets()) { // Flat instructions do not have offsets, and only have the register // address. return AM.BaseOffs == 0 && AM.Scale == 0; } decltype(SIInstrFlags::FLAT) FlatVariant = AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ? SIInstrFlags::FlatGlobal : AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ? SIInstrFlags::FlatScratch : SIInstrFlags::FLAT; return AM.Scale == 0 && (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( AM.BaseOffs, AddrSpace, FlatVariant)); } bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { if (Subtarget->hasFlatGlobalInsts()) return isLegalFlatAddressingMode(AM, AMDGPUAS::GLOBAL_ADDRESS); if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { // Assume the we will use FLAT for all global memory accesses // on VI. // FIXME: This assumption is currently wrong. On VI we still use // MUBUF instructions for the r + i addressing mode. As currently // implemented, the MUBUF instructions only work on buffer < 4GB. // It may be possible to support > 4GB buffers with MUBUF instructions, // by setting the stride value in the resource descriptor which would // increase the size limit to (stride * 4GB). However, this is risky, // because it has never been validated. return isLegalFlatAddressingMode(AM, AMDGPUAS::FLAT_ADDRESS); } return isLegalMUBUFAddressingMode(AM); } bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and // additionally can do r + r + i with addr64. 32-bit has more addressing // mode options. Depending on the resource constant, it can also do // (i64 r0) + (i32 r1) * (i14 i). // // Private arrays end up using a scratch buffer most of the time, so also // assume those use MUBUF instructions. Scratch loads / stores are currently // implemented as mubuf instructions with offen bit set, so slightly // different than the normal addr64. const SIInstrInfo *TII = Subtarget->getInstrInfo(); if (!TII->isLegalMUBUFImmOffset(AM.BaseOffs)) return false; // FIXME: Since we can split immediate into soffset and immediate offset, // would it make sense to allow any immediate? switch (AM.Scale) { case 0: // r + i or just i, depending on HasBaseReg. return true; case 1: return true; // We have r + r or r + i. case 2: if (AM.HasBaseReg) { // Reject 2 * r + r. return false; } // Allow 2 * r as r + r // Or 2 * r + i is allowed as r + r + i. return true; default: // Don't allow n * r return false; } } bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { // No global is ever allowed as a base. if (AM.BaseGV) return false; if (AS == AMDGPUAS::GLOBAL_ADDRESS) return isLegalGlobalAddressingMode(AM); if (AS == AMDGPUAS::CONSTANT_ADDRESS || AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || AS == AMDGPUAS::BUFFER_FAT_POINTER || AS == AMDGPUAS::BUFFER_RESOURCE || AS == AMDGPUAS::BUFFER_STRIDED_POINTER) { // If the offset isn't a multiple of 4, it probably isn't going to be // correctly aligned. // FIXME: Can we get the real alignment here? if (AM.BaseOffs % 4 != 0) return isLegalMUBUFAddressingMode(AM); if (!Subtarget->hasScalarSubwordLoads()) { // There are no SMRD extloads, so if we have to do a small type access we // will use a MUBUF load. // FIXME?: We also need to do this if unaligned, but we don't know the // alignment here. if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) return isLegalGlobalAddressingMode(AM); } if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { // SMRD instructions have an 8-bit, dword offset on SI. if (!isUInt<8>(AM.BaseOffs / 4)) return false; } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { // On CI+, this can also be a 32-bit literal constant offset. If it fits // in 8-bits, it can use a smaller encoding. if (!isUInt<32>(AM.BaseOffs / 4)) return false; } else if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX9) { // On VI, these use the SMEM format and the offset is 20-bit in bytes. if (!isUInt<20>(AM.BaseOffs)) return false; } else if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX12) { // On GFX9 the offset is signed 21-bit in bytes (but must not be negative // for S_BUFFER_* instructions). if (!isInt<21>(AM.BaseOffs)) return false; } else { // On GFX12, all offsets are signed 24-bit in bytes. if (!isInt<24>(AM.BaseOffs)) return false; } if ((AS == AMDGPUAS::CONSTANT_ADDRESS || AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && AM.BaseOffs < 0) { // Scalar (non-buffer) loads can only use a negative offset if // soffset+offset is non-negative. Since the compiler can only prove that // in a few special cases, it is safer to claim that negative offsets are // not supported. return false; } if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. return true; if (AM.Scale == 1 && AM.HasBaseReg) return true; return false; } if (AS == AMDGPUAS::PRIVATE_ADDRESS) return Subtarget->enableFlatScratch() ? isLegalFlatAddressingMode(AM, AMDGPUAS::PRIVATE_ADDRESS) : isLegalMUBUFAddressingMode(AM); if (AS == AMDGPUAS::LOCAL_ADDRESS || (AS == AMDGPUAS::REGION_ADDRESS && Subtarget->hasGDS())) { // Basic, single offset DS instructions allow a 16-bit unsigned immediate // field. // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have // an 8-bit dword offset but we don't know the alignment here. if (!isUInt<16>(AM.BaseOffs)) return false; if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. return true; if (AM.Scale == 1 && AM.HasBaseReg) return true; return false; } if (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { // For an unknown address space, this usually means that this is for some // reason being used for pure arithmetic, and not based on some addressing // computation. We don't have instructions that compute pointers with any // addressing modes, so treat them as having no offset like flat // instructions. return isLegalFlatAddressingMode(AM, AMDGPUAS::FLAT_ADDRESS); } // Assume a user alias of global for unknown address spaces. return isLegalGlobalAddressingMode(AM); } bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, const MachineFunction &MF) const { if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) return (MemVT.getSizeInBits() <= 4 * 32); if (AS == AMDGPUAS::PRIVATE_ADDRESS) { unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); return (MemVT.getSizeInBits() <= MaxPrivateBits); } if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) return (MemVT.getSizeInBits() <= 2 * 32); return true; } bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( unsigned Size, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, unsigned *IsFast) const { if (IsFast) *IsFast = 0; if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || AddrSpace == AMDGPUAS::REGION_ADDRESS) { // Check if alignment requirements for ds_read/write instructions are // disabled. if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4)) return false; Align RequiredAlignment(PowerOf2Ceil(Size/8)); // Natural alignment. if (Subtarget->hasLDSMisalignedBug() && Size > 32 && Alignment < RequiredAlignment) return false; // Either, the alignment requirements are "enabled", or there is an // unaligned LDS access related hardware bug though alignment requirements // are "disabled". In either case, we need to check for proper alignment // requirements. // switch (Size) { case 64: // SI has a hardware bug in the LDS / GDS bounds checking: if the base // address is negative, then the instruction is incorrectly treated as // out-of-bounds even if base + offsets is in bounds. Split vectorized // loads here to avoid emitting ds_read2_b32. We may re-combine the // load later in the SILoadStoreOptimizer. if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8)) return false; // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we // can do a 4 byte aligned, 8 byte access in a single operation using // ds_read2/write2_b32 with adjacent offsets. RequiredAlignment = Align(4); if (Subtarget->hasUnalignedDSAccessEnabled()) { // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/ // ds_write2_b32 depending on the alignment. In either case with either // alignment there is no faster way of doing this. // The numbers returned here and below are not additive, it is a 'speed // rank'. They are just meant to be compared to decide if a certain way // of lowering an operation is faster than another. For that purpose // naturally aligned operation gets it bitsize to indicate that "it // operates with a speed comparable to N-bit wide load". With the full // alignment ds128 is slower than ds96 for example. If underaligned it // is comparable to a speed of a single dword access, which would then // mean 32 < 128 and it is faster to issue a wide load regardless. // 1 is simply "slow, don't do it". I.e. comparing an aligned load to a // wider load which will not be aligned anymore the latter is slower. if (IsFast) *IsFast = (Alignment >= RequiredAlignment) ? 64 : (Alignment < Align(4)) ? 32 : 1; return true; } break; case 96: if (!Subtarget->hasDS96AndDS128()) return false; // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on // gfx8 and older. if (Subtarget->hasUnalignedDSAccessEnabled()) { // Naturally aligned access is fastest. However, also report it is Fast // if memory is aligned less than DWORD. A narrow load or store will be // be equally slow as a single ds_read_b96/ds_write_b96, but there will // be more of them, so overall we will pay less penalty issuing a single // instruction. // See comment on the values above. if (IsFast) *IsFast = (Alignment >= RequiredAlignment) ? 96 : (Alignment < Align(4)) ? 32 : 1; return true; } break; case 128: if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128()) return false; // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a // single operation using ds_read2/write2_b64. RequiredAlignment = Align(8); if (Subtarget->hasUnalignedDSAccessEnabled()) { // Naturally aligned access is fastest. However, also report it is Fast // if memory is aligned less than DWORD. A narrow load or store will be // be equally slow as a single ds_read_b128/ds_write_b128, but there // will be more of them, so overall we will pay less penalty issuing a // single instruction. // See comment on the values above. if (IsFast) *IsFast = (Alignment >= RequiredAlignment) ? 128 : (Alignment < Align(4)) ? 32 : 1; return true; } break; default: if (Size > 32) return false; break; } // See comment on the values above. // Note that we have a single-dword or sub-dword here, so if underaligned // it is a slowest possible access, hence returned value is 0. if (IsFast) *IsFast = (Alignment >= RequiredAlignment) ? Size : 0; return Alignment >= RequiredAlignment || Subtarget->hasUnalignedDSAccessEnabled(); } if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { bool AlignedBy4 = Alignment >= Align(4); if (IsFast) *IsFast = AlignedBy4; return AlignedBy4 || Subtarget->enableFlatScratch() || Subtarget->hasUnalignedScratchAccess(); } // FIXME: We have to be conservative here and assume that flat operations // will access scratch. If we had access to the IR function, then we // could determine if any private memory was used in the function. if (AddrSpace == AMDGPUAS::FLAT_ADDRESS && !Subtarget->hasUnalignedScratchAccess()) { bool AlignedBy4 = Alignment >= Align(4); if (IsFast) *IsFast = AlignedBy4; return AlignedBy4; } // So long as they are correct, wide global memory operations perform better // than multiple smaller memory ops -- even when misaligned if (AMDGPU::isExtendedGlobalAddrSpace(AddrSpace)) { if (IsFast) *IsFast = Size; return Alignment >= Align(4) || Subtarget->hasUnalignedBufferAccessEnabled(); } // Smaller than dword value must be aligned. if (Size < 32) return false; // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the // byte-address are ignored, thus forcing Dword alignment. // This applies to private, global, and constant memory. if (IsFast) *IsFast = 1; return Size >= 32 && Alignment >= Align(4); } bool SITargetLowering::allowsMisalignedMemoryAccesses( EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, unsigned *IsFast) const { return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, Alignment, Flags, IsFast); } EVT SITargetLowering::getOptimalMemOpType( const MemOp &Op, const AttributeList &FuncAttributes) const { // FIXME: Should account for address space here. // The default fallback uses the private pointer size as a guess for a type to // use. Make sure we switch these to 64-bit accesses. if (Op.size() >= 16 && Op.isDstAligned(Align(4))) // XXX: Should only do for global return MVT::v4i32; if (Op.size() >= 8 && Op.isDstAligned(Align(4))) return MVT::v2i32; // Use the default. return MVT::Other; } bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { const MemSDNode *MemNode = cast(N); return MemNode->getMemOperand()->getFlags() & MONoClobber; } bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) { return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS; } bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const { // Flat -> private/local is a simple truncate. // Flat -> global is no-op if (SrcAS == AMDGPUAS::FLAT_ADDRESS) return true; const GCNTargetMachine &TM = static_cast(getTargetMachine()); return TM.isNoopAddrSpaceCast(SrcAS, DestAS); } bool SITargetLowering::isMemOpUniform(const SDNode *N) const { const MemSDNode *MemNode = cast(N); return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); } TargetLoweringBase::LegalizeTypeAction SITargetLowering::getPreferredVectorAction(MVT VT) const { if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16)) return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; return TargetLoweringBase::getPreferredVectorAction(VT); } bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const { // FIXME: Could be smarter if called for vector constants. return true; } bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const { if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) return false; // TODO: Add more cases that are cheap. return Index == 0; } bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { if (Subtarget->has16BitInsts() && VT == MVT::i16) { switch (Op) { case ISD::LOAD: case ISD::STORE: // These operations are done with 32-bit instructions anyway. case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::SELECT: // TODO: Extensions? return true; default: return false; } } // SimplifySetCC uses this function to determine whether or not it should // create setcc with i1 operands. We don't have instructions for i1 setcc. if (VT == MVT::i1 && Op == ISD::SETCC) return false; return TargetLowering::isTypeDesirableForOp(Op, VT); } SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, const SDLoc &SL, SDValue Chain, uint64_t Offset) const { const DataLayout &DL = DAG.getDataLayout(); MachineFunction &MF = DAG.getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo(); const ArgDescriptor *InputPtrReg; const TargetRegisterClass *RC; LLT ArgTy; MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); std::tie(InputPtrReg, RC, ArgTy) = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); // We may not have the kernarg segment argument if we have no kernel // arguments. if (!InputPtrReg) return DAG.getConstant(Offset, SL, PtrVT); MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Offset)); } SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, const SDLoc &SL) const { uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), FIRST_IMPLICIT); return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); } SDValue SITargetLowering::getLDSKernelId(SelectionDAG &DAG, const SDLoc &SL) const { Function &F = DAG.getMachineFunction().getFunction(); std::optional KnownSize = AMDGPUMachineFunction::getLDSKernelIdMetadata(F); if (KnownSize.has_value()) return DAG.getConstant(*KnownSize, SL, MVT::i32); return SDValue(); } SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Val, bool Signed, const ISD::InputArg *Arg) const { // First, if it is a widened vector, narrow it. if (VT.isVector() && VT.getVectorNumElements() != MemVT.getVectorNumElements()) { EVT NarrowedVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), VT.getVectorNumElements()); Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, DAG.getConstant(0, SL, MVT::i32)); } // Then convert the vector elements or scalar value. if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && VT.bitsLT(MemVT)) { unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); } if (MemVT.isFloatingPoint()) Val = getFPExtOrFPRound(DAG, Val, SL, VT); else if (Signed) Val = DAG.getSExtOrTrunc(Val, SL, VT); else Val = DAG.getZExtOrTrunc(Val, SL, VT); return Val; } SDValue SITargetLowering::lowerKernargMemParameter( SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain, uint64_t Offset, Align Alignment, bool Signed, const ISD::InputArg *Arg) const { MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); // Try to avoid using an extload by loading earlier than the argument address, // and extracting the relevant bits. The load should hopefully be merged with // the previous argument. if (MemVT.getStoreSize() < 4 && Alignment < 4) { // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). int64_t AlignDownOffset = alignDown(Offset, 4); int64_t OffsetDiff = Offset - AlignDownOffset; EVT IntVT = MemVT.changeTypeToInteger(); // TODO: If we passed in the base kernel offset we could have a better // alignment than 4, but we don't really need it. SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4), MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); } SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment, MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); } SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, const SDLoc &SL, SDValue Chain, const ISD::InputArg &Arg) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); if (Arg.Flags.isByVal()) { unsigned Size = Arg.Flags.getByValSize(); int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); return DAG.getFrameIndex(FrameIdx, MVT::i32); } unsigned ArgOffset = VA.getLocMemOffset(); unsigned ArgSize = VA.getValVT().getStoreSize(); int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); // Create load nodes to retrieve arguments from the stack. SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); SDValue ArgValue; // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; MVT MemVT = VA.getValVT(); switch (VA.getLocInfo()) { default: break; case CCValAssign::BCvt: MemVT = VA.getLocVT(); break; case CCValAssign::SExt: ExtType = ISD::SEXTLOAD; break; case CCValAssign::ZExt: ExtType = ISD::ZEXTLOAD; break; case CCValAssign::AExt: ExtType = ISD::EXTLOAD; break; } ArgValue = DAG.getExtLoad( ExtType, SL, VA.getLocVT(), Chain, FIN, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), MemVT); return ArgValue; } SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, const SIMachineFunctionInfo &MFI, EVT VT, AMDGPUFunctionArgInfo::PreloadedValue PVID) const { const ArgDescriptor *Reg = nullptr; const TargetRegisterClass *RC; LLT Ty; CallingConv::ID CC = DAG.getMachineFunction().getFunction().getCallingConv(); const ArgDescriptor WorkGroupIDX = ArgDescriptor::createRegister(AMDGPU::TTMP9); // If GridZ is not programmed in an entry function then the hardware will set // it to all zeros, so there is no need to mask the GridY value in the low // order bits. const ArgDescriptor WorkGroupIDY = ArgDescriptor::createRegister( AMDGPU::TTMP7, AMDGPU::isEntryFunctionCC(CC) && !MFI.hasWorkGroupIDZ() ? ~0u : 0xFFFFu); const ArgDescriptor WorkGroupIDZ = ArgDescriptor::createRegister(AMDGPU::TTMP7, 0xFFFF0000u); if (Subtarget->hasArchitectedSGPRs() && (AMDGPU::isCompute(CC) || CC == CallingConv::AMDGPU_Gfx)) { switch (PVID) { case AMDGPUFunctionArgInfo::WORKGROUP_ID_X: Reg = &WorkGroupIDX; RC = &AMDGPU::SReg_32RegClass; Ty = LLT::scalar(32); break; case AMDGPUFunctionArgInfo::WORKGROUP_ID_Y: Reg = &WorkGroupIDY; RC = &AMDGPU::SReg_32RegClass; Ty = LLT::scalar(32); break; case AMDGPUFunctionArgInfo::WORKGROUP_ID_Z: Reg = &WorkGroupIDZ; RC = &AMDGPU::SReg_32RegClass; Ty = LLT::scalar(32); break; default: break; } } if (!Reg) std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID); if (!Reg) { if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) { // It's possible for a kernarg intrinsic call to appear in a kernel with // no allocated segment, in which case we do not add the user sgpr // argument, so just return null. return DAG.getConstant(0, SDLoc(), VT); } // It's undefined behavior if a function marked with the amdgpu-no-* // attributes uses the corresponding intrinsic. return DAG.getUNDEF(VT); } return loadInputValue(DAG, RC, VT, SDLoc(DAG.getEntryNode()), *Reg); } static void processPSInputArgs(SmallVectorImpl &Splits, CallingConv::ID CallConv, ArrayRef Ins, BitVector &Skipped, FunctionType *FType, SIMachineFunctionInfo *Info) { for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { const ISD::InputArg *Arg = &Ins[I]; assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && "vector type argument should have been split"); // First check if it's a PS input addr. if (CallConv == CallingConv::AMDGPU_PS && !Arg->Flags.isInReg() && PSInputNum <= 15) { bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); // Inconveniently only the first part of the split is marked as isSplit, // so skip to the end. We only want to increment PSInputNum once for the // entire split argument. if (Arg->Flags.isSplit()) { while (!Arg->Flags.isSplitEnd()) { assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && "unexpected vector split in ps argument type"); if (!SkipArg) Splits.push_back(*Arg); Arg = &Ins[++I]; } } if (SkipArg) { // We can safely skip PS inputs. Skipped.set(Arg->getOrigArgIndex()); ++PSInputNum; continue; } Info->markPSInputAllocated(PSInputNum); if (Arg->Used) Info->markPSInputEnabled(PSInputNum); ++PSInputNum; } Splits.push_back(*Arg); } } // Allocate special inputs passed in VGPRs. void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { const LLT S32 = LLT::scalar(32); MachineRegisterInfo &MRI = MF.getRegInfo(); if (Info.hasWorkItemIDX()) { Register Reg = AMDGPU::VGPR0; MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); CCInfo.AllocateReg(Reg); unsigned Mask = (Subtarget->hasPackedTID() && Info.hasWorkItemIDY()) ? 0x3ff : ~0u; Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); } if (Info.hasWorkItemIDY()) { assert(Info.hasWorkItemIDX()); if (Subtarget->hasPackedTID()) { Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0, 0x3ff << 10)); } else { unsigned Reg = AMDGPU::VGPR1; MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); CCInfo.AllocateReg(Reg); Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); } } if (Info.hasWorkItemIDZ()) { assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY()); if (Subtarget->hasPackedTID()) { Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0, 0x3ff << 20)); } else { unsigned Reg = AMDGPU::VGPR2; MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); CCInfo.AllocateReg(Reg); Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); } } } // Try to allocate a VGPR at the end of the argument list, or if no argument // VGPRs are left allocating a stack slot. // If \p Mask is is given it indicates bitfield position in the register. // If \p Arg is given use it with new ]p Mask instead of allocating new. static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, ArgDescriptor Arg = ArgDescriptor()) { if (Arg.isSet()) return ArgDescriptor::createArg(Arg, Mask); ArrayRef ArgVGPRs = ArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); if (RegIdx == ArgVGPRs.size()) { // Spill to stack required. int64_t Offset = CCInfo.AllocateStack(4, Align(4)); return ArgDescriptor::createStack(Offset, Mask); } unsigned Reg = ArgVGPRs[RegIdx]; Reg = CCInfo.AllocateReg(Reg); assert(Reg != AMDGPU::NoRegister); MachineFunction &MF = CCInfo.getMachineFunction(); Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); return ArgDescriptor::createRegister(Reg, Mask); } static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, const TargetRegisterClass *RC, unsigned NumArgRegs) { ArrayRef ArgSGPRs = ArrayRef(RC->begin(), 32); unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); if (RegIdx == ArgSGPRs.size()) report_fatal_error("ran out of SGPRs for arguments"); unsigned Reg = ArgSGPRs[RegIdx]; Reg = CCInfo.AllocateReg(Reg); assert(Reg != AMDGPU::NoRegister); MachineFunction &MF = CCInfo.getMachineFunction(); MF.addLiveIn(Reg, RC); return ArgDescriptor::createRegister(Reg); } // If this has a fixed position, we still should allocate the register in the // CCInfo state. Technically we could get away with this for values passed // outside of the normal argument range. static void allocateFixedSGPRInputImpl(CCState &CCInfo, const TargetRegisterClass *RC, MCRegister Reg) { Reg = CCInfo.AllocateReg(Reg); assert(Reg != AMDGPU::NoRegister); MachineFunction &MF = CCInfo.getMachineFunction(); MF.addLiveIn(Reg, RC); } static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) { if (Arg) { allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, Arg.getRegister()); } else Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); } static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) { if (Arg) { allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, Arg.getRegister()); } else Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); } /// Allocate implicit function VGPR arguments at the end of allocated user /// arguments. void SITargetLowering::allocateSpecialInputVGPRs( CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { const unsigned Mask = 0x3ff; ArgDescriptor Arg; if (Info.hasWorkItemIDX()) { Arg = allocateVGPR32Input(CCInfo, Mask); Info.setWorkItemIDX(Arg); } if (Info.hasWorkItemIDY()) { Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); Info.setWorkItemIDY(Arg); } if (Info.hasWorkItemIDZ()) Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); } /// Allocate implicit function VGPR arguments in fixed registers. void SITargetLowering::allocateSpecialInputVGPRsFixed( CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31); if (!Reg) report_fatal_error("failed to allocated VGPR for implicit arguments"); const unsigned Mask = 0x3ff; Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10)); Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20)); } void SITargetLowering::allocateSpecialInputSGPRs( CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { auto &ArgInfo = Info.getArgInfo(); const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo(); // TODO: Unify handling with private memory pointers. if (UserSGPRInfo.hasDispatchPtr()) allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr); const Module *M = MF.getFunction().getParent(); if (UserSGPRInfo.hasQueuePtr() && AMDGPU::getAMDHSACodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr); // Implicit arg ptr takes the place of the kernarg segment pointer. This is a // constant offset from the kernarg segment. if (Info.hasImplicitArgPtr()) allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr); if (UserSGPRInfo.hasDispatchID()) allocateSGPR64Input(CCInfo, ArgInfo.DispatchID); // flat_scratch_init is not applicable for non-kernel functions. if (Info.hasWorkGroupIDX()) allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX); if (Info.hasWorkGroupIDY()) allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY); if (Info.hasWorkGroupIDZ()) allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ); if (Info.hasLDSKernelId()) allocateSGPR32Input(CCInfo, ArgInfo.LDSKernelId); } // Allocate special inputs passed in user SGPRs. void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo(); if (UserSGPRInfo.hasImplicitBufferPtr()) { Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); CCInfo.AllocateReg(ImplicitBufferPtrReg); } // FIXME: How should these inputs interact with inreg / custom SGPR inputs? if (UserSGPRInfo.hasPrivateSegmentBuffer()) { Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); CCInfo.AllocateReg(PrivateSegmentBufferReg); } if (UserSGPRInfo.hasDispatchPtr()) { Register DispatchPtrReg = Info.addDispatchPtr(TRI); MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); CCInfo.AllocateReg(DispatchPtrReg); } const Module *M = MF.getFunction().getParent(); if (UserSGPRInfo.hasQueuePtr() && AMDGPU::getAMDHSACodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) { Register QueuePtrReg = Info.addQueuePtr(TRI); MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); CCInfo.AllocateReg(QueuePtrReg); } if (UserSGPRInfo.hasKernargSegmentPtr()) { MachineRegisterInfo &MRI = MF.getRegInfo(); Register InputPtrReg = Info.addKernargSegmentPtr(TRI); CCInfo.AllocateReg(InputPtrReg); Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); } if (UserSGPRInfo.hasDispatchID()) { Register DispatchIDReg = Info.addDispatchID(TRI); MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); CCInfo.AllocateReg(DispatchIDReg); } if (UserSGPRInfo.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) { Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); CCInfo.AllocateReg(FlatScratchInitReg); } if (UserSGPRInfo.hasPrivateSegmentSize()) { Register PrivateSegmentSizeReg = Info.addPrivateSegmentSize(TRI); MF.addLiveIn(PrivateSegmentSizeReg, &AMDGPU::SGPR_32RegClass); CCInfo.AllocateReg(PrivateSegmentSizeReg); } // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read // these from the dispatch pointer. } // Allocate pre-loaded kernel arguemtns. Arguments to be preloading must be // sequential starting from the first argument. void SITargetLowering::allocatePreloadKernArgSGPRs( CCState &CCInfo, SmallVectorImpl &ArgLocs, const SmallVectorImpl &Ins, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { Function &F = MF.getFunction(); unsigned LastExplicitArgOffset = MF.getSubtarget().getExplicitKernelArgOffset(); GCNUserSGPRUsageInfo &SGPRInfo = Info.getUserSGPRInfo(); bool InPreloadSequence = true; unsigned InIdx = 0; for (auto &Arg : F.args()) { if (!InPreloadSequence || !Arg.hasInRegAttr()) break; int ArgIdx = Arg.getArgNo(); // Don't preload non-original args or parts not in the current preload // sequence. if (InIdx < Ins.size() && (!Ins[InIdx].isOrigArg() || (int)Ins[InIdx].getOrigArgIndex() != ArgIdx)) break; for (; InIdx < Ins.size() && Ins[InIdx].isOrigArg() && (int)Ins[InIdx].getOrigArgIndex() == ArgIdx; InIdx++) { assert(ArgLocs[ArgIdx].isMemLoc()); auto &ArgLoc = ArgLocs[InIdx]; const Align KernelArgBaseAlign = Align(16); unsigned ArgOffset = ArgLoc.getLocMemOffset(); Align Alignment = commonAlignment(KernelArgBaseAlign, ArgOffset); unsigned NumAllocSGPRs = alignTo(ArgLoc.getLocVT().getFixedSizeInBits(), 32) / 32; // Arg is preloaded into the previous SGPR. if (ArgLoc.getLocVT().getStoreSize() < 4 && Alignment < 4) { Info.getArgInfo().PreloadKernArgs[InIdx].Regs.push_back( Info.getArgInfo().PreloadKernArgs[InIdx - 1].Regs[0]); continue; } unsigned Padding = ArgOffset - LastExplicitArgOffset; unsigned PaddingSGPRs = alignTo(Padding, 4) / 4; // Check for free user SGPRs for preloading. if (PaddingSGPRs + NumAllocSGPRs + 1 /*Synthetic SGPRs*/ > SGPRInfo.getNumFreeUserSGPRs()) { InPreloadSequence = false; break; } // Preload this argument. const TargetRegisterClass *RC = TRI.getSGPRClassForBitWidth(NumAllocSGPRs * 32); SmallVectorImpl *PreloadRegs = Info.addPreloadedKernArg(TRI, RC, NumAllocSGPRs, InIdx, PaddingSGPRs); if (PreloadRegs->size() > 1) RC = &AMDGPU::SGPR_32RegClass; for (auto &Reg : *PreloadRegs) { assert(Reg); MF.addLiveIn(Reg, RC); CCInfo.AllocateReg(Reg); } LastExplicitArgOffset = NumAllocSGPRs * 4 + ArgOffset; } } } void SITargetLowering::allocateLDSKernelId(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { // Always allocate this last since it is a synthetic preload. if (Info.hasLDSKernelId()) { Register Reg = Info.addLDSKernelId(); MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); CCInfo.AllocateReg(Reg); } } // Allocate special input registers that are initialized per-wave. void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, MachineFunction &MF, SIMachineFunctionInfo &Info, CallingConv::ID CallConv, bool IsShader) const { bool HasArchitectedSGPRs = Subtarget->hasArchitectedSGPRs(); if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) { // Note: user SGPRs are handled by the front-end for graphics shaders // Pad up the used user SGPRs with dead inputs. // TODO: NumRequiredSystemSGPRs computation should be adjusted appropriately // before enabling architected SGPRs for workgroup IDs. assert(!HasArchitectedSGPRs && "Unhandled feature for the subtarget"); unsigned CurrentUserSGPRs = Info.getNumUserSGPRs(); // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to // rely on it to reach 16 since if we end up having no stack usage, it will // not really be added. unsigned NumRequiredSystemSGPRs = Info.hasWorkGroupIDX() + Info.hasWorkGroupIDY() + Info.hasWorkGroupIDZ() + Info.hasWorkGroupInfo(); for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) { Register Reg = Info.addReservedUserSGPR(); MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); CCInfo.AllocateReg(Reg); } } if (!HasArchitectedSGPRs) { if (Info.hasWorkGroupIDX()) { Register Reg = Info.addWorkGroupIDX(); MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); CCInfo.AllocateReg(Reg); } if (Info.hasWorkGroupIDY()) { Register Reg = Info.addWorkGroupIDY(); MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); CCInfo.AllocateReg(Reg); } if (Info.hasWorkGroupIDZ()) { Register Reg = Info.addWorkGroupIDZ(); MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); CCInfo.AllocateReg(Reg); } } if (Info.hasWorkGroupInfo()) { Register Reg = Info.addWorkGroupInfo(); MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); CCInfo.AllocateReg(Reg); } if (Info.hasPrivateSegmentWaveByteOffset()) { // Scratch wave offset passed in system SGPR. unsigned PrivateSegmentWaveByteOffsetReg; if (IsShader) { PrivateSegmentWaveByteOffsetReg = Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); // This is true if the scratch wave byte offset doesn't have a fixed // location. if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); } } else PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); } assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader || Info.getNumPreloadedSGPRs() >= 16); } static void reservePrivateMemoryRegs(const TargetMachine &TM, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) { // Now that we've figured out where the scratch register inputs are, see if // should reserve the arguments and use them directly. MachineFrameInfo &MFI = MF.getFrameInfo(); bool HasStackObjects = MFI.hasStackObjects(); const GCNSubtarget &ST = MF.getSubtarget(); // Record that we know we have non-spill stack objects so we don't need to // check all stack objects later. if (HasStackObjects) Info.setHasNonSpillStackObjects(true); // Everything live out of a block is spilled with fast regalloc, so it's // almost certain that spilling will be required. if (TM.getOptLevel() == CodeGenOptLevel::None) HasStackObjects = true; // For now assume stack access is needed in any callee functions, so we need // the scratch registers to pass in. bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); if (!ST.enableFlatScratch()) { if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { // If we have stack objects, we unquestionably need the private buffer // resource. For the Code Object V2 ABI, this will be the first 4 user // SGPR inputs. We can reserve those and use them directly. Register PrivateSegmentBufferReg = Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); Info.setScratchRSrcReg(PrivateSegmentBufferReg); } else { unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); // We tentatively reserve the last registers (skipping the last registers // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, // we'll replace these with the ones immediately after those which were // really allocated. In the prologue copies will be inserted from the // argument to these reserved registers. // Without HSA, relocations are used for the scratch pointer and the // buffer resource setup is always inserted in the prologue. Scratch wave // offset is still in an input SGPR. Info.setScratchRSrcReg(ReservedBufferReg); } } MachineRegisterInfo &MRI = MF.getRegInfo(); // For entry functions we have to set up the stack pointer if we use it, // whereas non-entry functions get this "for free". This means there is no // intrinsic advantage to using S32 over S34 in cases where we do not have // calls but do need a frame pointer (i.e. if we are requested to have one // because frame pointer elimination is disabled). To keep things simple we // only ever use S32 as the call ABI stack pointer, and so using it does not // imply we need a separate frame pointer. // // Try to use s32 as the SP, but move it if it would interfere with input // arguments. This won't work with calls though. // // FIXME: Move SP to avoid any possible inputs, or find a way to spill input // registers. if (!MRI.isLiveIn(AMDGPU::SGPR32)) { Info.setStackPtrOffsetReg(AMDGPU::SGPR32); } else { assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); if (MFI.hasCalls()) report_fatal_error("call in graphics shader with too many input SGPRs"); for (unsigned Reg : AMDGPU::SGPR_32RegClass) { if (!MRI.isLiveIn(Reg)) { Info.setStackPtrOffsetReg(Reg); break; } } if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) report_fatal_error("failed to find register for SP"); } // hasFP should be accurate for entry functions even before the frame is // finalized, because it does not rely on the known stack size, only // properties like whether variable sized objects are present. if (ST.getFrameLowering()->hasFP(MF)) { Info.setFrameOffsetReg(AMDGPU::SGPR33); } } bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { const SIMachineFunctionInfo *Info = MF->getInfo(); return !Info->isEntryFunction(); } void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { } void SITargetLowering::insertCopiesSplitCSR( MachineBasicBlock *Entry, const SmallVectorImpl &Exits) const { const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); if (!IStart) return; const TargetInstrInfo *TII = Subtarget->getInstrInfo(); MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); MachineBasicBlock::iterator MBBI = Entry->begin(); for (const MCPhysReg *I = IStart; *I; ++I) { const TargetRegisterClass *RC = nullptr; if (AMDGPU::SReg_64RegClass.contains(*I)) RC = &AMDGPU::SGPR_64RegClass; else if (AMDGPU::SReg_32RegClass.contains(*I)) RC = &AMDGPU::SGPR_32RegClass; else llvm_unreachable("Unexpected register class in CSRsViaCopy!"); Register NewVR = MRI->createVirtualRegister(RC); // Create copy from CSR to a virtual register. Entry->addLiveIn(*I); BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) .addReg(*I); // Insert the copy-back instructions right before the terminator. for (auto *Exit : Exits) BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), TII->get(TargetOpcode::COPY), *I) .addReg(NewVR); } } SDValue SITargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); MachineFunction &MF = DAG.getMachineFunction(); const Function &Fn = MF.getFunction(); FunctionType *FType = MF.getFunction().getFunctionType(); SIMachineFunctionInfo *Info = MF.getInfo(); if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) { DiagnosticInfoUnsupported NoGraphicsHSA( Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); DAG.getContext()->diagnose(NoGraphicsHSA); return DAG.getEntryNode(); } SmallVector Splits; SmallVector ArgLocs; BitVector Skipped(Ins.size()); CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); bool IsGraphics = AMDGPU::isGraphics(CallConv); bool IsKernel = AMDGPU::isKernel(CallConv); bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); if (IsGraphics) { const GCNUserSGPRUsageInfo &UserSGPRInfo = Info->getUserSGPRInfo(); assert(!UserSGPRInfo.hasDispatchPtr() && !UserSGPRInfo.hasKernargSegmentPtr() && !Info->hasWorkGroupInfo() && !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()); (void)UserSGPRInfo; if (!Subtarget->enableFlatScratch()) assert(!UserSGPRInfo.hasFlatScratchInit()); if ((CallConv != CallingConv::AMDGPU_CS && CallConv != CallingConv::AMDGPU_Gfx) || !Subtarget->hasArchitectedSGPRs()) assert(!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ()); } if (CallConv == CallingConv::AMDGPU_PS) { processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); // At least one interpolation mode must be enabled or else the GPU will // hang. // // Check PSInputAddr instead of PSInputEnable. The idea is that if the user // set PSInputAddr, the user wants to enable some bits after the compilation // based on run-time states. Since we can't know what the final PSInputEna // will look like, so we shouldn't do anything here and the user should take // responsibility for the correct programming. // // Otherwise, the following restrictions apply: // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be // enabled too. if ((Info->getPSInputAddr() & 0x7F) == 0 || ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) { CCInfo.AllocateReg(AMDGPU::VGPR0); CCInfo.AllocateReg(AMDGPU::VGPR1); Info->markPSInputAllocated(0); Info->markPSInputEnabled(0); } if (Subtarget->isAmdPalOS()) { // For isAmdPalOS, the user does not enable some bits after compilation // based on run-time states; the register values being generated here are // the final ones set in hardware. Therefore we need to apply the // workaround to PSInputAddr and PSInputEnable together. (The case where // a bit is set in PSInputAddr but not PSInputEnable is where the // frontend set up an input arg for a particular interpolation mode, but // nothing uses that input arg. Really we should have an earlier pass // that removes such an arg.) unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); if ((PsInputBits & 0x7F) == 0 || ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1))) Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr())); } } else if (IsKernel) { assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); } else { Splits.append(Ins.begin(), Ins.end()); } if (IsKernel) analyzeFormalArgumentsCompute(CCInfo, Ins); if (IsEntryFunc) { allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); if (IsKernel && Subtarget->hasKernargPreload()) allocatePreloadKernArgSGPRs(CCInfo, ArgLocs, Ins, MF, *TRI, *Info); allocateLDSKernelId(CCInfo, MF, *TRI, *Info); } else if (!IsGraphics) { // For the fixed ABI, pass workitem IDs in the last argument register. allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); // FIXME: Sink this into allocateSpecialInputSGPRs if (!Subtarget->enableFlatScratch()) CCInfo.AllocateReg(Info->getScratchRSrcReg()); allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); } if (!IsKernel) { CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); CCInfo.AnalyzeFormalArguments(Splits, AssignFn); } SmallVector Chains; // FIXME: This is the minimum kernel argument alignment. We should improve // this to the maximum alignment of the arguments. // // FIXME: Alignment of explicit arguments totally broken with non-0 explicit // kern arg offset. const Align KernelArgBaseAlign = Align(16); for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { const ISD::InputArg &Arg = Ins[i]; if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { InVals.push_back(DAG.getUNDEF(Arg.VT)); continue; } CCValAssign &VA = ArgLocs[ArgIdx++]; MVT VT = VA.getLocVT(); if (IsEntryFunc && VA.isMemLoc()) { VT = Ins[i].VT; EVT MemVT = VA.getLocVT(); const uint64_t Offset = VA.getLocMemOffset(); Align Alignment = commonAlignment(KernelArgBaseAlign, Offset); if (Arg.Flags.isByRef()) { SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset); const GCNTargetMachine &TM = static_cast(getTargetMachine()); if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS, Arg.Flags.getPointerAddrSpace())) { Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS, Arg.Flags.getPointerAddrSpace()); } InVals.push_back(Ptr); continue; } SDValue NewArg; if (Arg.isOrigArg() && Info->getArgInfo().PreloadKernArgs.count(i)) { if (MemVT.getStoreSize() < 4 && Alignment < 4) { // In this case the argument is packed into the previous preload SGPR. int64_t AlignDownOffset = alignDown(Offset, 4); int64_t OffsetDiff = Offset - AlignDownOffset; EVT IntVT = MemVT.changeTypeToInteger(); const SIMachineFunctionInfo *Info = MF.getInfo(); MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); Register Reg = Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs[0]; assert(Reg); Register VReg = MRI.getLiveInVirtReg(Reg); SDValue Copy = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i32); SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, DL, MVT::i32); SDValue Extract = DAG.getNode(ISD::SRL, DL, MVT::i32, Copy, ShiftAmt); SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, Extract); ArgVal = DAG.getNode(ISD::BITCAST, DL, MemVT, ArgVal); NewArg = convertArgType(DAG, VT, MemVT, DL, ArgVal, Ins[i].Flags.isSExt(), &Ins[i]); NewArg = DAG.getMergeValues({NewArg, Copy.getValue(1)}, DL); } else { const SIMachineFunctionInfo *Info = MF.getInfo(); MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); const SmallVectorImpl &PreloadRegs = Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs; SDValue Copy; if (PreloadRegs.size() == 1) { Register VReg = MRI.getLiveInVirtReg(PreloadRegs[0]); const TargetRegisterClass *RC = MRI.getRegClass(VReg); NewArg = DAG.getCopyFromReg( Chain, DL, VReg, EVT::getIntegerVT(*DAG.getContext(), TRI->getRegSizeInBits(*RC))); } else { // If the kernarg alignment does not match the alignment of the SGPR // tuple RC that can accommodate this argument, it will be built up // via copies from from the individual SGPRs that the argument was // preloaded to. SmallVector Elts; for (auto Reg : PreloadRegs) { Register VReg = MRI.getLiveInVirtReg(Reg); Copy = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i32); Elts.push_back(Copy); } NewArg = DAG.getBuildVector(EVT::getVectorVT(*DAG.getContext(), MVT::i32, PreloadRegs.size()), DL, Elts); } // If the argument was preloaded to multiple consecutive 32-bit // registers because of misalignment between addressable SGPR tuples // and the argument size, we can still assume that because of kernarg // segment alignment restrictions that NewArg's size is the same as // MemVT and just do a bitcast. If MemVT is less than 32-bits we add a // truncate since we cannot preload to less than a single SGPR and the // MemVT may be smaller. EVT MemVTInt = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); if (MemVT.bitsLT(NewArg.getSimpleValueType())) NewArg = DAG.getNode(ISD::TRUNCATE, DL, MemVTInt, NewArg); NewArg = DAG.getBitcast(MemVT, NewArg); NewArg = convertArgType(DAG, VT, MemVT, DL, NewArg, Ins[i].Flags.isSExt(), &Ins[i]); NewArg = DAG.getMergeValues({NewArg, Chain}, DL); } } else { NewArg = lowerKernargMemParameter(DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]); } Chains.push_back(NewArg.getValue(1)); auto *ParamTy = dyn_cast(FType->getParamType(Ins[i].getOrigArgIndex())); if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { // On SI local pointers are just offsets into LDS, so they are always // less than 16-bits. On CI and newer they could potentially be // real pointers, so we can't guarantee their size. NewArg = DAG.getNode(ISD::AssertZext, DL, NewArg.getValueType(), NewArg, DAG.getValueType(MVT::i16)); } InVals.push_back(NewArg); continue; } if (!IsEntryFunc && VA.isMemLoc()) { SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); InVals.push_back(Val); if (!Arg.Flags.isByVal()) Chains.push_back(Val.getValue(1)); continue; } assert(VA.isRegLoc() && "Parameter must be in a register!"); Register Reg = VA.getLocReg(); const TargetRegisterClass *RC = nullptr; if (AMDGPU::VGPR_32RegClass.contains(Reg)) RC = &AMDGPU::VGPR_32RegClass; else if (AMDGPU::SGPR_32RegClass.contains(Reg)) RC = &AMDGPU::SGPR_32RegClass; else llvm_unreachable("Unexpected register class in LowerFormalArguments!"); EVT ValVT = VA.getValVT(); Reg = MF.addLiveIn(Reg, RC); SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); if (Arg.Flags.isSRet()) { // The return object should be reasonably addressable. // FIXME: This helps when the return is a real sret. If it is a // automatically inserted sret (i.e. CanLowerReturn returns false), an // extra copy is inserted in SelectionDAGBuilder which obscures this. unsigned NumBits = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); } // If this is an 8 or 16-bit value, it is really passed promoted // to 32 bits. Insert an assert[sz]ext to capture this, then // truncate to the right size. switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::BCvt: Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); break; case CCValAssign::SExt: Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, DAG.getValueType(ValVT)); Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); break; case CCValAssign::ZExt: Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, DAG.getValueType(ValVT)); Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); break; case CCValAssign::AExt: Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); break; default: llvm_unreachable("Unknown loc info!"); } InVals.push_back(Val); } // Start adding system SGPRs. if (IsEntryFunc) allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics); // DAG.getPass() returns nullptr when using new pass manager. // TODO: Use DAG.getMFAM() to access analysis result. if (DAG.getPass()) { auto &ArgUsageInfo = DAG.getPass()->getAnalysis(); ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); } unsigned StackArgSize = CCInfo.getStackSize(); Info->setBytesInStackArgArea(StackArgSize); return Chains.empty() ? Chain : DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); } // TODO: If return values can't fit in registers, we should return as many as // possible in registers before passing on stack. bool SITargetLowering::CanLowerReturn( CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { // Replacing returns with sret/stack usage doesn't make sense for shaders. // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn // for shaders. Vector types should be explicitly handled by CC. if (AMDGPU::isEntryFunctionCC(CallConv)) return true; SmallVector RVLocs; CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); if (!CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg))) return false; // We must use the stack if return would require unavailable registers. unsigned MaxNumVGPRs = Subtarget->getMaxNumVGPRs(MF); unsigned TotalNumVGPRs = AMDGPU::VGPR_32RegClass.getNumRegs(); for (unsigned i = MaxNumVGPRs; i < TotalNumVGPRs; ++i) if (CCInfo.isAllocated(AMDGPU::VGPR_32RegClass.getRegister(i))) return false; return true; } SDValue SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &DL, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *Info = MF.getInfo(); if (AMDGPU::isKernel(CallConv)) { return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, OutVals, DL, DAG); } bool IsShader = AMDGPU::isShader(CallConv); Info->setIfReturnsVoid(Outs.empty()); bool IsWaveEnd = Info->returnsVoid() && IsShader; // CCValAssign - represent the assignment of the return value to a location. SmallVector RVLocs; SmallVector Splits; // CCState - Info about the registers and stack slots. CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); // Analyze outgoing return values. CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); SDValue Glue; SmallVector RetOps; RetOps.push_back(Chain); // Operand #0 = Chain (updated below) // Copy the result values into the output registers. for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; ++I, ++RealRVLocIdx) { CCValAssign &VA = RVLocs[I]; assert(VA.isRegLoc() && "Can only return in registers!"); // TODO: Partially return in registers if return values don't fit. SDValue Arg = OutVals[RealRVLocIdx]; // Copied from other backends. switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); break; default: llvm_unreachable("Unknown loc info!"); } Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Glue); Glue = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } // FIXME: Does sret work properly? if (!Info->isEntryFunction()) { const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); const MCPhysReg *I = TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); if (I) { for (; *I; ++I) { if (AMDGPU::SReg_64RegClass.contains(*I)) RetOps.push_back(DAG.getRegister(*I, MVT::i64)); else if (AMDGPU::SReg_32RegClass.contains(*I)) RetOps.push_back(DAG.getRegister(*I, MVT::i32)); else llvm_unreachable("Unexpected register class in CSRsViaCopy!"); } } } // Update chain and glue. RetOps[0] = Chain; if (Glue.getNode()) RetOps.push_back(Glue); unsigned Opc = AMDGPUISD::ENDPGM; if (!IsWaveEnd) Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_GLUE; return DAG.getNode(Opc, DL, MVT::Other, RetOps); } SDValue SITargetLowering::LowerCallResult( SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals, bool IsThisReturn, SDValue ThisVal) const { CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); // Assign locations to each value returned by this call. SmallVector RVLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, RetCC); // Copy all of the result registers out of their specified physreg. for (CCValAssign VA : RVLocs) { SDValue Val; if (VA.isRegLoc()) { Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InGlue); Chain = Val.getValue(1); InGlue = Val.getValue(2); } else if (VA.isMemLoc()) { report_fatal_error("TODO: return values in memory"); } else llvm_unreachable("unknown argument location type"); switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::BCvt: Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); break; case CCValAssign::ZExt: Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, DAG.getValueType(VA.getValVT())); Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); break; case CCValAssign::SExt: Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, DAG.getValueType(VA.getValVT())); Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); break; case CCValAssign::AExt: Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); break; default: llvm_unreachable("Unknown loc info!"); } InVals.push_back(Val); } return Chain; } // Add code to pass special inputs required depending on used features separate // from the explicit user arguments present in the IR. void SITargetLowering::passSpecialInputs( CallLoweringInfo &CLI, CCState &CCInfo, const SIMachineFunctionInfo &Info, SmallVectorImpl> &RegsToPass, SmallVectorImpl &MemOpChains, SDValue Chain) const { // If we don't have a call site, this was a call inserted by // legalization. These can never use special inputs. if (!CLI.CB) return; SelectionDAG &DAG = CLI.DAG; const SDLoc &DL = CLI.DL; const Function &F = DAG.getMachineFunction().getFunction(); const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); const AMDGPUFunctionArgInfo *CalleeArgInfo = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) { // DAG.getPass() returns nullptr when using new pass manager. // TODO: Use DAG.getMFAM() to access analysis result. if (DAG.getPass()) { auto &ArgUsageInfo = DAG.getPass()->getAnalysis(); CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); } } // TODO: Unify with private memory register handling. This is complicated by // the fact that at least in kernels, the input argument is not necessarily // in the same location as the input. static constexpr std::pair ImplicitAttrs[] = { {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"}, {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" }, {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"}, {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"}, {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"}, {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"}, {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"}, {AMDGPUFunctionArgInfo::LDS_KERNEL_ID,"amdgpu-no-lds-kernel-id"}, }; for (auto Attr : ImplicitAttrs) { const ArgDescriptor *OutgoingArg; const TargetRegisterClass *ArgRC; LLT ArgTy; AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first; // If the callee does not use the attribute value, skip copying the value. if (CLI.CB->hasFnAttr(Attr.second)) continue; std::tie(OutgoingArg, ArgRC, ArgTy) = CalleeArgInfo->getPreloadedValue(InputID); if (!OutgoingArg) continue; const ArgDescriptor *IncomingArg; const TargetRegisterClass *IncomingArgRC; LLT Ty; std::tie(IncomingArg, IncomingArgRC, Ty) = CallerArgInfo.getPreloadedValue(InputID); assert(IncomingArgRC == ArgRC); // All special arguments are ints for now. EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; SDValue InputReg; if (IncomingArg) { InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { // The implicit arg ptr is special because it doesn't have a corresponding // input for kernels, and is computed from the kernarg segment pointer. InputReg = getImplicitArgPtr(DAG, DL); } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) { std::optional Id = AMDGPUMachineFunction::getLDSKernelIdMetadata(F); if (Id.has_value()) { InputReg = DAG.getConstant(*Id, DL, ArgVT); } else { InputReg = DAG.getUNDEF(ArgVT); } } else { // We may have proven the input wasn't needed, although the ABI is // requiring it. We just need to allocate the register appropriately. InputReg = DAG.getUNDEF(ArgVT); } if (OutgoingArg->isRegister()) { RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) report_fatal_error("failed to allocate implicit input argument"); } else { unsigned SpecialArgOffset = CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4)); SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, SpecialArgOffset); MemOpChains.push_back(ArgStore); } } // Pack workitem IDs into a single register or pass it as is if already // packed. const ArgDescriptor *OutgoingArg; const TargetRegisterClass *ArgRC; LLT Ty; std::tie(OutgoingArg, ArgRC, Ty) = CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); if (!OutgoingArg) std::tie(OutgoingArg, ArgRC, Ty) = CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); if (!OutgoingArg) std::tie(OutgoingArg, ArgRC, Ty) = CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); if (!OutgoingArg) return; const ArgDescriptor *IncomingArgX = std::get<0>( CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X)); const ArgDescriptor *IncomingArgY = std::get<0>( CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y)); const ArgDescriptor *IncomingArgZ = std::get<0>( CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z)); SDValue InputReg; SDLoc SL; const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x"); const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y"); const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z"); // If incoming ids are not packed we need to pack them. if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && NeedWorkItemIDX) { if (Subtarget->getMaxWorkitemID(F, 0) != 0) { InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); } else { InputReg = DAG.getConstant(0, DL, MVT::i32); } } if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) { SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, DAG.getShiftAmountConstant(10, MVT::i32, SL)); InputReg = InputReg.getNode() ? DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; } if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) { SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, DAG.getShiftAmountConstant(20, MVT::i32, SL)); InputReg = InputReg.getNode() ? DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; } if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) { // We're in a situation where the outgoing function requires the workitem // ID, but the calling function does not have it (e.g a graphics function // calling a C calling convention function). This is illegal, but we need // to produce something. InputReg = DAG.getUNDEF(MVT::i32); } else { // Workitem ids are already packed, any of present incoming arguments // will carry all required fields. ArgDescriptor IncomingArg = ArgDescriptor::createArg( IncomingArgX ? *IncomingArgX : IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u); InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); } } if (OutgoingArg->isRegister()) { if (InputReg) RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); CCInfo.AllocateReg(OutgoingArg->getRegister()); } else { unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4)); if (InputReg) { SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, SpecialArgOffset); MemOpChains.push_back(ArgStore); } } } static bool canGuaranteeTCO(CallingConv::ID CC) { return CC == CallingConv::Fast; } /// Return true if we might ever do TCO for calls with this calling convention. static bool mayTailCallThisCC(CallingConv::ID CC) { switch (CC) { case CallingConv::C: case CallingConv::AMDGPU_Gfx: return true; default: return canGuaranteeTCO(CC); } } bool SITargetLowering::isEligibleForTailCallOptimization( SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SelectionDAG &DAG) const { if (AMDGPU::isChainCC(CalleeCC)) return true; if (!mayTailCallThisCC(CalleeCC)) return false; // For a divergent call target, we need to do a waterfall loop over the // possible callees which precludes us from using a simple jump. if (Callee->isDivergent()) return false; MachineFunction &MF = DAG.getMachineFunction(); const Function &CallerF = MF.getFunction(); CallingConv::ID CallerCC = CallerF.getCallingConv(); const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); // Kernels aren't callable, and don't have a live in return address so it // doesn't make sense to do a tail call with entry functions. if (!CallerPreserved) return false; bool CCMatch = CallerCC == CalleeCC; if (DAG.getTarget().Options.GuaranteedTailCallOpt) { if (canGuaranteeTCO(CalleeCC) && CCMatch) return true; return false; } // TODO: Can we handle var args? if (IsVarArg) return false; for (const Argument &Arg : CallerF.args()) { if (Arg.hasByValAttr()) return false; } LLVMContext &Ctx = *DAG.getContext(); // Check that the call results are passed in the same way. if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, CCAssignFnForCall(CalleeCC, IsVarArg), CCAssignFnForCall(CallerCC, IsVarArg))) return false; // The callee has to preserve all registers the caller needs to preserve. if (!CCMatch) { const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) return false; } // Nothing more to check if the callee is taking no arguments. if (Outs.empty()) return true; SmallVector ArgLocs; CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); const SIMachineFunctionInfo *FuncInfo = MF.getInfo(); // If the stack arguments for this call do not fit into our own save area then // the call cannot be made tail. // TODO: Is this really necessary? if (CCInfo.getStackSize() > FuncInfo->getBytesInStackArgArea()) return false; const MachineRegisterInfo &MRI = MF.getRegInfo(); return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); } bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { if (!CI->isTailCall()) return false; const Function *ParentFn = CI->getParent()->getParent(); if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) return false; return true; } // The wave scratch offset register is used as the global base pointer. SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { CallingConv::ID CallConv = CLI.CallConv; bool IsChainCallConv = AMDGPU::isChainCC(CallConv); SelectionDAG &DAG = CLI.DAG; TargetLowering::ArgListEntry RequestedExec; if (IsChainCallConv) { // The last argument should be the value that we need to put in EXEC. // Pop it out of CLI.Outs and CLI.OutVals before we do any processing so we // don't treat it like the rest of the arguments. RequestedExec = CLI.Args.back(); assert(RequestedExec.Node && "No node for EXEC"); if (!RequestedExec.Ty->isIntegerTy(Subtarget->getWavefrontSize())) return lowerUnhandledCall(CLI, InVals, "Invalid value for EXEC"); assert(CLI.Outs.back().OrigArgIndex == 2 && "Unexpected last arg"); CLI.Outs.pop_back(); CLI.OutVals.pop_back(); if (RequestedExec.Ty->isIntegerTy(64)) { assert(CLI.Outs.back().OrigArgIndex == 2 && "Exec wasn't split up"); CLI.Outs.pop_back(); CLI.OutVals.pop_back(); } assert(CLI.Outs.back().OrigArgIndex != 2 && "Haven't popped all the pieces of the EXEC mask"); } const SDLoc &DL = CLI.DL; SmallVector &Outs = CLI.Outs; SmallVector &OutVals = CLI.OutVals; SmallVector &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &IsTailCall = CLI.IsTailCall; bool IsVarArg = CLI.IsVarArg; bool IsSibCall = false; MachineFunction &MF = DAG.getMachineFunction(); if (Callee.isUndef() || isNullConstant(Callee)) { if (!CLI.IsTailCall) { for (ISD::InputArg &Arg : CLI.Ins) InVals.push_back(DAG.getUNDEF(Arg.VT)); } return Chain; } if (IsVarArg) { return lowerUnhandledCall(CLI, InVals, "unsupported call to variadic function "); } if (!CLI.CB) report_fatal_error("unsupported libcall legalization"); if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { return lowerUnhandledCall(CLI, InVals, "unsupported required tail call to function "); } if (IsTailCall) { IsTailCall = isEligibleForTailCallOptimization( Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); if (!IsTailCall && ((CLI.CB && CLI.CB->isMustTailCall()) || IsChainCallConv)) { report_fatal_error("failed to perform tail call elimination on a call " "site marked musttail or on llvm.amdgcn.cs.chain"); } bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; // A sibling call is one where we're under the usual C ABI and not planning // to change that but can still do a tail call: if (!TailCallOpt && IsTailCall) IsSibCall = true; if (IsTailCall) ++NumTailCalls; } const SIMachineFunctionInfo *Info = MF.getInfo(); SmallVector, 8> RegsToPass; SmallVector MemOpChains; // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); if (CallConv != CallingConv::AMDGPU_Gfx && !AMDGPU::isChainCC(CallConv)) { // With a fixed ABI, allocate fixed registers before user arguments. passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); } CCInfo.AnalyzeCallOperands(Outs, AssignFn); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getStackSize(); if (IsSibCall) { // Since we're not changing the ABI to make this a tail call, the memory // operands are already available in the caller's incoming argument space. NumBytes = 0; } // FPDiff is the byte offset of the call's argument area from the callee's. // Stores to callee stack arguments will be placed in FixedStackSlots offset // by this amount for a tail call. In a sibling call it must be 0 because the // caller will deallocate the entire stack and the callee still expects its // arguments to begin at SP+0. Completely unused for non-tail calls. int32_t FPDiff = 0; MachineFrameInfo &MFI = MF.getFrameInfo(); // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass if (!IsSibCall) Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); if (!IsSibCall || IsChainCallConv) { if (!Subtarget->enableFlatScratch()) { SmallVector CopyFromChains; // In the HSA case, this should be an identity copy. SDValue ScratchRSrcReg = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); RegsToPass.emplace_back(IsChainCallConv ? AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51 : AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); Chain = DAG.getTokenFactor(DL, CopyFromChains); } } MVT PtrVT = MVT::i32; // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[i]; // Promote the value if needed. switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::FPExt: Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); break; default: llvm_unreachable("Unknown loc info!"); } if (VA.isRegLoc()) { RegsToPass.push_back(std::pair(VA.getLocReg(), Arg)); } else { assert(VA.isMemLoc()); SDValue DstAddr; MachinePointerInfo DstInfo; unsigned LocMemOffset = VA.getLocMemOffset(); int32_t Offset = LocMemOffset; SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); MaybeAlign Alignment; if (IsTailCall) { ISD::ArgFlagsTy Flags = Outs[i].Flags; unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() : VA.getValVT().getStoreSize(); // FIXME: We can have better than the minimum byval required alignment. Alignment = Flags.isByVal() ? Flags.getNonZeroByValAlign() : commonAlignment(Subtarget->getStackAlignment(), Offset); Offset = Offset + FPDiff; int FI = MFI.CreateFixedObject(OpSize, Offset, true); DstAddr = DAG.getFrameIndex(FI, PtrVT); DstInfo = MachinePointerInfo::getFixedStack(MF, FI); // Make sure any stack arguments overlapping with where we're storing // are loaded before this eventual operation. Otherwise they'll be // clobbered. // FIXME: Why is this really necessary? This seems to just result in a // lot of code to copy the stack and write them back to the same // locations, which are supposed to be immutable? Chain = addTokenForArgument(Chain, DAG, MFI, FI); } else { // Stores to the argument stack area are relative to the stack pointer. SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(), MVT::i32); DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff); DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); Alignment = commonAlignment(Subtarget->getStackAlignment(), LocMemOffset); } if (Outs[i].Flags.isByVal()) { SDValue SizeNode = DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); SDValue Cpy = DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getNonZeroByValAlign(), /*isVol = */ false, /*AlwaysInline = */ true, /*CI=*/nullptr, std::nullopt, DstInfo, MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS)); MemOpChains.push_back(Cpy); } else { SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment); MemOpChains.push_back(Store); } } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDValue InGlue; for (auto &RegToPass : RegsToPass) { Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, RegToPass.second, InGlue); InGlue = Chain.getValue(1); } // We don't usually want to end the call-sequence here because we would tidy // the frame up *after* the call, however in the ABI-changing tail-call case // we've carefully laid out the parameters so that when sp is reset they'll be // in the correct location. if (IsTailCall && !IsSibCall) { Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL); InGlue = Chain.getValue(1); } std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add a redundant copy of the callee global which will not be legalized, as // we need direct access to the callee later. if (GlobalAddressSDNode *GSD = dyn_cast(Callee)) { const GlobalValue *GV = GSD->getGlobal(); Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); } else { Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64)); } if (IsTailCall) { // Each tail call may have to adjust the stack by a different amount, so // this information must travel along with the operation for eventual // consumption by emitEpilogue. Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); } if (IsChainCallConv) Ops.push_back(RequestedExec.Node); // Add argument registers to the end of the list so that they are known live // into the call. for (auto &RegToPass : RegsToPass) { Ops.push_back(DAG.getRegister(RegToPass.first, RegToPass.second.getValueType())); } // Add a register mask operand representing the call-preserved registers. auto *TRI = static_cast(Subtarget->getRegisterInfo()); const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); if (SDValue Token = CLI.ConvergenceControlToken) { SmallVector GlueOps; GlueOps.push_back(Token); if (InGlue) GlueOps.push_back(InGlue); InGlue = SDValue(DAG.getMachineNode(TargetOpcode::CONVERGENCECTRL_GLUE, DL, MVT::Glue, GlueOps), 0); } if (InGlue) Ops.push_back(InGlue); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); // If we're doing a tall call, use a TC_RETURN here rather than an // actual call instruction. if (IsTailCall) { MFI.setHasTailCall(); unsigned OPC = AMDGPUISD::TC_RETURN; switch (CallConv) { case CallingConv::AMDGPU_Gfx: OPC = AMDGPUISD::TC_RETURN_GFX; break; case CallingConv::AMDGPU_CS_Chain: case CallingConv::AMDGPU_CS_ChainPreserve: OPC = AMDGPUISD::TC_RETURN_CHAIN; break; } return DAG.getNode(OPC, DL, NodeTys, Ops); } // Returns a chain and a flag for retval copy to use. SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); Chain = Call.getValue(0); InGlue = Call.getValue(1); uint64_t CalleePopBytes = NumBytes; Chain = DAG.getCALLSEQ_END(Chain, 0, CalleePopBytes, InGlue, DL); if (!Ins.empty()) InGlue = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG, InVals, /*IsThisReturn=*/false, SDValue()); } // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC, // except for applying the wave size scale to the increment amount. SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl( SDValue Op, SelectionDAG &DAG) const { const MachineFunction &MF = DAG.getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo(); SDLoc dl(Op); EVT VT = Op.getValueType(); SDValue Tmp1 = Op; SDValue Tmp2 = Op.getValue(1); SDValue Tmp3 = Op.getOperand(2); SDValue Chain = Tmp1.getOperand(0); Register SPReg = Info->getStackPtrOffsetReg(); // Chain the dynamic stack allocation so that it doesn't modify the stack // pointer when other instructions are using the stack. Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); SDValue Size = Tmp2.getOperand(1); SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); Chain = SP.getValue(1); MaybeAlign Alignment = cast(Tmp3)->getMaybeAlignValue(); const TargetFrameLowering *TFL = Subtarget->getFrameLowering(); unsigned Opc = TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? ISD::ADD : ISD::SUB; SDValue ScaledSize = DAG.getNode( ISD::SHL, dl, VT, Size, DAG.getConstant(Subtarget->getWavefrontSizeLog2(), dl, MVT::i32)); Align StackAlign = TFL->getStackAlign(); Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value if (Alignment && *Alignment > StackAlign) { Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, DAG.getConstant(-(uint64_t)Alignment->value() << Subtarget->getWavefrontSizeLog2(), dl, VT)); } Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain Tmp2 = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl); return DAG.getMergeValues({Tmp1, Tmp2}, dl); } SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { // We only handle constant sizes here to allow non-entry block, static sized // allocas. A truly dynamic value is more difficult to support because we // don't know if the size value is uniform or not. If the size isn't uniform, // we would need to do a wave reduction to get the maximum size to know how // much to increment the uniform stack pointer. SDValue Size = Op.getOperand(1); if (isa(Size)) return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion. return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG); } SDValue SITargetLowering::LowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const { if (Op.getValueType() != MVT::i32) return Op; // Defer to cannot select error. Register SP = getStackPointerRegisterToSaveRestore(); SDLoc SL(Op); SDValue CopyFromSP = DAG.getCopyFromReg(Op->getOperand(0), SL, SP, MVT::i32); // Convert from wave uniform to swizzled vector address. This should protect // from any edge cases where the stacksave result isn't directly used with // stackrestore. SDValue VectorAddress = DAG.getNode(AMDGPUISD::WAVE_ADDRESS, SL, MVT::i32, CopyFromSP); return DAG.getMergeValues({VectorAddress, CopyFromSP.getValue(1)}, SL); } SDValue SITargetLowering::lowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); assert(Op.getValueType() == MVT::i32); uint32_t BothRoundHwReg = AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_MODE, 0, 4); SDValue GetRoundBothImm = DAG.getTargetConstant(BothRoundHwReg, SL, MVT::i32); SDValue IntrinID = DAG.getTargetConstant(Intrinsic::amdgcn_s_getreg, SL, MVT::i32); SDValue GetReg = DAG.getNode(ISD::INTRINSIC_W_CHAIN, SL, Op->getVTList(), Op.getOperand(0), IntrinID, GetRoundBothImm); // There are two rounding modes, one for f32 and one for f64/f16. We only // report in the standard value range if both are the same. // // The raw values also differ from the expected FLT_ROUNDS values. Nearest // ties away from zero is not supported, and the other values are rotated by // 1. // // If the two rounding modes are not the same, report a target defined value. // Mode register rounding mode fields: // // [1:0] Single-precision round mode. // [3:2] Double/Half-precision round mode. // // 0=nearest even; 1= +infinity; 2= -infinity, 3= toward zero. // // Hardware Spec // Toward-0 3 0 // Nearest Even 0 1 // +Inf 1 2 // -Inf 2 3 // NearestAway0 N/A 4 // // We have to handle 16 permutations of a 4-bit value, so we create a 64-bit // table we can index by the raw hardware mode. // // (trunc (FltRoundConversionTable >> MODE.fp_round)) & 0xf SDValue BitTable = DAG.getConstant(AMDGPU::FltRoundConversionTable, SL, MVT::i64); SDValue Two = DAG.getConstant(2, SL, MVT::i32); SDValue RoundModeTimesNumBits = DAG.getNode(ISD::SHL, SL, MVT::i32, GetReg, Two); // TODO: We could possibly avoid a 64-bit shift and use a simpler table if we // knew only one mode was demanded. SDValue TableValue = DAG.getNode(ISD::SRL, SL, MVT::i64, BitTable, RoundModeTimesNumBits); SDValue TruncTable = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, TableValue); SDValue EntryMask = DAG.getConstant(0xf, SL, MVT::i32); SDValue TableEntry = DAG.getNode(ISD::AND, SL, MVT::i32, TruncTable, EntryMask); // There's a gap in the 4-bit encoded table and actual enum values, so offset // if it's an extended value. SDValue Four = DAG.getConstant(4, SL, MVT::i32); SDValue IsStandardValue = DAG.getSetCC(SL, MVT::i1, TableEntry, Four, ISD::SETULT); SDValue EnumOffset = DAG.getNode(ISD::ADD, SL, MVT::i32, TableEntry, Four); SDValue Result = DAG.getNode(ISD::SELECT, SL, MVT::i32, IsStandardValue, TableEntry, EnumOffset); return DAG.getMergeValues({Result, GetReg.getValue(1)}, SL); } SDValue SITargetLowering::lowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue NewMode = Op.getOperand(1); assert(NewMode.getValueType() == MVT::i32); // Index a table of 4-bit entries mapping from the C FLT_ROUNDS values to the // hardware MODE.fp_round values. if (auto *ConstMode = dyn_cast(NewMode)) { uint32_t ClampedVal = std::min( static_cast(ConstMode->getZExtValue()), static_cast(AMDGPU::TowardZeroF32_TowardNegativeF64)); NewMode = DAG.getConstant( AMDGPU::decodeFltRoundToHWConversionTable(ClampedVal), SL, MVT::i32); } else { // If we know the input can only be one of the supported standard modes in // the range 0-3, we can use a simplified mapping to hardware values. KnownBits KB = DAG.computeKnownBits(NewMode); const bool UseReducedTable = KB.countMinLeadingZeros() >= 30; // The supported standard values are 0-3. The extended values start at 8. We // need to offset by 4 if the value is in the extended range. if (UseReducedTable) { // Truncate to the low 32-bits. SDValue BitTable = DAG.getConstant( AMDGPU::FltRoundToHWConversionTable & 0xffff, SL, MVT::i32); SDValue Two = DAG.getConstant(2, SL, MVT::i32); SDValue RoundModeTimesNumBits = DAG.getNode(ISD::SHL, SL, MVT::i32, NewMode, Two); NewMode = DAG.getNode(ISD::SRL, SL, MVT::i32, BitTable, RoundModeTimesNumBits); // TODO: SimplifyDemandedBits on the setreg source here can likely reduce // the table extracted bits into inline immediates. } else { // table_index = umin(value, value - 4) // MODE.fp_round = (bit_table >> (table_index << 2)) & 0xf SDValue BitTable = DAG.getConstant(AMDGPU::FltRoundToHWConversionTable, SL, MVT::i64); SDValue Four = DAG.getConstant(4, SL, MVT::i32); SDValue OffsetEnum = DAG.getNode(ISD::SUB, SL, MVT::i32, NewMode, Four); SDValue IndexVal = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewMode, OffsetEnum); SDValue Two = DAG.getConstant(2, SL, MVT::i32); SDValue RoundModeTimesNumBits = DAG.getNode(ISD::SHL, SL, MVT::i32, IndexVal, Two); SDValue TableValue = DAG.getNode(ISD::SRL, SL, MVT::i64, BitTable, RoundModeTimesNumBits); SDValue TruncTable = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, TableValue); // No need to mask out the high bits since the setreg will ignore them // anyway. NewMode = TruncTable; } // Insert a readfirstlane in case the value is a VGPR. We could do this // earlier and keep more operations scalar, but that interferes with // combining the source. SDValue ReadFirstLaneID = DAG.getTargetConstant(Intrinsic::amdgcn_readfirstlane, SL, MVT::i32); NewMode = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32, ReadFirstLaneID, NewMode); } // N.B. The setreg will be later folded into s_round_mode on supported // targets. SDValue IntrinID = DAG.getTargetConstant(Intrinsic::amdgcn_s_setreg, SL, MVT::i32); uint32_t BothRoundHwReg = AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_MODE, 0, 4); SDValue RoundBothImm = DAG.getTargetConstant(BothRoundHwReg, SL, MVT::i32); SDValue SetReg = DAG.getNode(ISD::INTRINSIC_VOID, SL, Op->getVTList(), Op.getOperand(0), IntrinID, RoundBothImm, NewMode); return SetReg; } SDValue SITargetLowering::lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const { if (Op->isDivergent()) return SDValue(); switch (cast(Op)->getAddressSpace()) { case AMDGPUAS::FLAT_ADDRESS: case AMDGPUAS::GLOBAL_ADDRESS: case AMDGPUAS::CONSTANT_ADDRESS: case AMDGPUAS::CONSTANT_ADDRESS_32BIT: break; default: return SDValue(); } return Op; } // Work around DAG legality rules only based on the result type. SDValue SITargetLowering::lowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { bool IsStrict = Op.getOpcode() == ISD::STRICT_FP_EXTEND; SDValue Src = Op.getOperand(IsStrict ? 1 : 0); EVT SrcVT = Src.getValueType(); if (SrcVT.getScalarType() != MVT::bf16) return Op; SDLoc SL(Op); SDValue BitCast = DAG.getNode(ISD::BITCAST, SL, SrcVT.changeTypeToInteger(), Src); EVT DstVT = Op.getValueType(); if (IsStrict) llvm_unreachable("Need STRICT_BF16_TO_FP"); return DAG.getNode(ISD::BF16_TO_FP, SL, DstVT, BitCast); } SDValue SITargetLowering::lowerGET_FPENV(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); if (Op.getValueType() != MVT::i64) return Op; uint32_t ModeHwReg = AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_MODE, 0, 23); SDValue ModeHwRegImm = DAG.getTargetConstant(ModeHwReg, SL, MVT::i32); uint32_t TrapHwReg = AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_TRAPSTS, 0, 5); SDValue TrapHwRegImm = DAG.getTargetConstant(TrapHwReg, SL, MVT::i32); SDVTList VTList = DAG.getVTList(MVT::i32, MVT::Other); SDValue IntrinID = DAG.getTargetConstant(Intrinsic::amdgcn_s_getreg, SL, MVT::i32); SDValue GetModeReg = DAG.getNode(ISD::INTRINSIC_W_CHAIN, SL, VTList, Op.getOperand(0), IntrinID, ModeHwRegImm); SDValue GetTrapReg = DAG.getNode(ISD::INTRINSIC_W_CHAIN, SL, VTList, Op.getOperand(0), IntrinID, TrapHwRegImm); SDValue TokenReg = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, GetModeReg.getValue(1), GetTrapReg.getValue(1)); SDValue CvtPtr = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, GetModeReg, GetTrapReg); SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr); return DAG.getMergeValues({Result, TokenReg}, SL); } SDValue SITargetLowering::lowerSET_FPENV(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); if (Op.getOperand(1).getValueType() != MVT::i64) return Op; SDValue Input = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op.getOperand(1)); SDValue NewModeReg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Input, DAG.getConstant(0, SL, MVT::i32)); SDValue NewTrapReg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Input, DAG.getConstant(1, SL, MVT::i32)); SDValue ReadFirstLaneID = DAG.getTargetConstant(Intrinsic::amdgcn_readfirstlane, SL, MVT::i32); NewModeReg = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32, ReadFirstLaneID, NewModeReg); NewTrapReg = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32, ReadFirstLaneID, NewTrapReg); unsigned ModeHwReg = AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_MODE, 0, 23); SDValue ModeHwRegImm = DAG.getTargetConstant(ModeHwReg, SL, MVT::i32); unsigned TrapHwReg = AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_TRAPSTS, 0, 5); SDValue TrapHwRegImm = DAG.getTargetConstant(TrapHwReg, SL, MVT::i32); SDValue IntrinID = DAG.getTargetConstant(Intrinsic::amdgcn_s_setreg, SL, MVT::i32); SDValue SetModeReg = DAG.getNode(ISD::INTRINSIC_VOID, SL, MVT::Other, Op.getOperand(0), IntrinID, ModeHwRegImm, NewModeReg); SDValue SetTrapReg = DAG.getNode(ISD::INTRINSIC_VOID, SL, MVT::Other, Op.getOperand(0), IntrinID, TrapHwRegImm, NewTrapReg); return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, SetTrapReg, SetModeReg); } Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const { Register Reg = StringSwitch(RegName) .Case("m0", AMDGPU::M0) .Case("exec", AMDGPU::EXEC) .Case("exec_lo", AMDGPU::EXEC_LO) .Case("exec_hi", AMDGPU::EXEC_HI) .Case("flat_scratch", AMDGPU::FLAT_SCR) .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) .Default(Register()); if (Reg == AMDGPU::NoRegister) { report_fatal_error(Twine("invalid register name \"" + StringRef(RegName) + "\".")); } if (!Subtarget->hasFlatScrRegister() && Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { report_fatal_error(Twine("invalid register \"" + StringRef(RegName) + "\" for subtarget.")); } switch (Reg) { case AMDGPU::M0: case AMDGPU::EXEC_LO: case AMDGPU::EXEC_HI: case AMDGPU::FLAT_SCR_LO: case AMDGPU::FLAT_SCR_HI: if (VT.getSizeInBits() == 32) return Reg; break; case AMDGPU::EXEC: case AMDGPU::FLAT_SCR: if (VT.getSizeInBits() == 64) return Reg; break; default: llvm_unreachable("missing register type checking"); } report_fatal_error(Twine("invalid type for register \"" + StringRef(RegName) + "\".")); } // If kill is not the last instruction, split the block so kill is always a // proper terminator. MachineBasicBlock * SITargetLowering::splitKillBlock(MachineInstr &MI, MachineBasicBlock *BB) const { MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); return SplitBB; } // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, // \p MI will be the only instruction in the loop body block. Otherwise, it will // be the first instruction in the remainder block. // /// \returns { LoopBody, Remainder } static std::pair splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { MachineFunction *MF = MBB.getParent(); MachineBasicBlock::iterator I(&MI); // To insert the loop we need to split the block. Move everything after this // point to a new block, and insert a new empty block between the two. MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); MachineFunction::iterator MBBI(MBB); ++MBBI; MF->insert(MBBI, LoopBB); MF->insert(MBBI, RemainderBB); LoopBB->addSuccessor(LoopBB); LoopBB->addSuccessor(RemainderBB); // Move the rest of the block into a new block. RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); if (InstInLoop) { auto Next = std::next(I); // Move instruction to loop body. LoopBB->splice(LoopBB->begin(), &MBB, I, Next); // Move the rest of the block. RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); } else { RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); } MBB.addSuccessor(LoopBB); return std::pair(LoopBB, RemainderBB); } /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { MachineBasicBlock *MBB = MI.getParent(); const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); auto I = MI.getIterator(); auto E = std::next(I); BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) .addImm(0); MIBundleBuilder Bundler(*MBB, I, E); finalizeBundle(*MBB, Bundler.begin()); } MachineBasicBlock * SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, MachineBasicBlock *BB) const { const DebugLoc &DL = MI.getDebugLoc(); MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); MachineBasicBlock *LoopBB; MachineBasicBlock *RemainderBB; const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); // Apparently kill flags are only valid if the def is in the same block? if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) Src->setIsKill(false); std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); MachineBasicBlock::iterator I = LoopBB->end(); const unsigned EncodedReg = AMDGPU::Hwreg::HwregEncoding::encode( AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); // Clear TRAP_STS.MEM_VIOL BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) .addImm(0) .addImm(EncodedReg); bundleInstWithWaitcnt(MI); Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); // Load and check TRAP_STS.MEM_VIOL BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) .addImm(EncodedReg); // FIXME: Do we need to use an isel pseudo that may clobber scc? BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) .addReg(Reg, RegState::Kill) .addImm(0); BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) .addMBB(LoopBB); return RemainderBB; } // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the // wavefront. If the value is uniform and just happens to be in a VGPR, this // will only do one iteration. In the worst case, this will loop 64 times. // // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, const DebugLoc &DL, const MachineOperand &Idx, unsigned InitReg, unsigned ResultReg, unsigned PhiReg, unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, Register &SGPRIdxReg) { MachineFunction *MF = OrigBB.getParent(); const GCNSubtarget &ST = MF->getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); MachineBasicBlock::iterator I = LoopBB.begin(); const TargetRegisterClass *BoolRC = TRI->getBoolRC(); Register PhiExec = MRI.createVirtualRegister(BoolRC); Register NewExec = MRI.createVirtualRegister(BoolRC); Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); Register CondReg = MRI.createVirtualRegister(BoolRC); BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) .addReg(InitReg) .addMBB(&OrigBB) .addReg(ResultReg) .addMBB(&LoopBB); BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) .addReg(InitSaveExecReg) .addMBB(&OrigBB) .addReg(NewExec) .addMBB(&LoopBB); // Read the next variant <- also loop target. BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef())); // Compare the just read M0 value to all possible Idx values. BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) .addReg(CurrentIdxReg) .addReg(Idx.getReg(), 0, Idx.getSubReg()); // Update EXEC, save the original EXEC value to VCC. BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64), NewExec) .addReg(CondReg, RegState::Kill); MRI.setSimpleHint(NewExec, CondReg); if (UseGPRIdxMode) { if (Offset == 0) { SGPRIdxReg = CurrentIdxReg; } else { SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg) .addReg(CurrentIdxReg, RegState::Kill) .addImm(Offset); } } else { // Move index from VCC into M0 if (Offset == 0) { BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) .addReg(CurrentIdxReg, RegState::Kill); } else { BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) .addReg(CurrentIdxReg, RegState::Kill) .addImm(Offset); } } // Update EXEC, switch all done bits to 0 and all todo bits to 1. unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; MachineInstr *InsertPt = BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term : AMDGPU::S_XOR_B64_term), Exec) .addReg(Exec) .addReg(NewExec); // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use // s_cbranch_scc0? // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) .addMBB(&LoopBB); return InsertPt->getIterator(); } // This has slightly sub-optimal regalloc when the source vector is killed by // the read. The register allocator does not understand that the kill is // per-workitem, so is kept alive for the whole loop so we end up not re-using a // subregister from it, using 1 more VGPR than necessary. This was saved when // this was expanded after register allocation. static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, unsigned InitResultReg, unsigned PhiReg, int Offset, bool UseGPRIdxMode, Register &SGPRIdxReg) { MachineFunction *MF = MBB.getParent(); const GCNSubtarget &ST = MF->getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); MachineRegisterInfo &MRI = MF->getRegInfo(); const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock::iterator I(&MI); const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); Register DstReg = MI.getOperand(0).getReg(); Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); // Save the EXEC mask BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) .addReg(Exec); MachineBasicBlock *LoopBB; MachineBasicBlock *RemainderBB; std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, InitResultReg, DstReg, PhiReg, TmpExec, Offset, UseGPRIdxMode, SGPRIdxReg); MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock(); MachineFunction::iterator MBBI(LoopBB); ++MBBI; MF->insert(MBBI, LandingPad); LoopBB->removeSuccessor(RemainderBB); LandingPad->addSuccessor(RemainderBB); LoopBB->addSuccessor(LandingPad); MachineBasicBlock::iterator First = LandingPad->begin(); BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec) .addReg(SaveExec); return InsPt; } // Returns subreg index, offset static std::pair computeIndirectRegAndOffset(const SIRegisterInfo &TRI, const TargetRegisterClass *SuperRC, unsigned VecReg, int Offset) { int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; // Skip out of bounds offsets, or else we would end up using an undefined // register. if (Offset >= NumElts || Offset < 0) return std::pair(AMDGPU::sub0, Offset); return std::pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0); } static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineInstr &MI, int Offset) { MachineBasicBlock *MBB = MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock::iterator I(&MI); const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); assert(Idx->getReg() != AMDGPU::NoRegister); if (Offset == 0) { BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx); } else { BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) .add(*Idx) .addImm(Offset); } } static Register getIndirectSGPRIdx(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineInstr &MI, int Offset) { MachineBasicBlock *MBB = MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock::iterator I(&MI); const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); if (Offset == 0) return Idx->getReg(); Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) .add(*Idx) .addImm(Offset); return Tmp; } static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, MachineBasicBlock &MBB, const GCNSubtarget &ST) { const SIInstrInfo *TII = ST.getInstrInfo(); const SIRegisterInfo &TRI = TII->getRegisterInfo(); MachineFunction *MF = MBB.getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); Register Dst = MI.getOperand(0).getReg(); const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); unsigned SubReg; std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); const bool UseGPRIdxMode = ST.useVGPRIndexMode(); // Check for a SGPR index. if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { MachineBasicBlock::iterator I(&MI); const DebugLoc &DL = MI.getDebugLoc(); if (UseGPRIdxMode) { // TODO: Look at the uses to avoid the copy. This may require rescheduling // to avoid interfering with other uses, so probably requires a new // optimization pass. Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); const MCInstrDesc &GPRIDXDesc = TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); BuildMI(MBB, I, DL, GPRIDXDesc, Dst) .addReg(SrcReg) .addReg(Idx) .addImm(SubReg); } else { setM0ToIndexFromSGPR(TII, MRI, MI, Offset); BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) .addReg(SrcReg, 0, SubReg) .addReg(SrcReg, RegState::Implicit); } MI.eraseFromParent(); return &MBB; } // Control flow needs to be inserted if indexing with a VGPR. const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock::iterator I(&MI); Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); Register SGPRIdxReg; auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, UseGPRIdxMode, SGPRIdxReg); MachineBasicBlock *LoopBB = InsPt->getParent(); if (UseGPRIdxMode) { const MCInstrDesc &GPRIDXDesc = TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) .addReg(SrcReg) .addReg(SGPRIdxReg) .addImm(SubReg); } else { BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) .addReg(SrcReg, 0, SubReg) .addReg(SrcReg, RegState::Implicit); } MI.eraseFromParent(); return LoopBB; } static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, MachineBasicBlock &MBB, const GCNSubtarget &ST) { const SIInstrInfo *TII = ST.getInstrInfo(); const SIRegisterInfo &TRI = TII->getRegisterInfo(); MachineFunction *MF = MBB.getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); Register Dst = MI.getOperand(0).getReg(); const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); // This can be an immediate, but will be folded later. assert(Val->getReg()); unsigned SubReg; std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, SrcVec->getReg(), Offset); const bool UseGPRIdxMode = ST.useVGPRIndexMode(); if (Idx->getReg() == AMDGPU::NoRegister) { MachineBasicBlock::iterator I(&MI); const DebugLoc &DL = MI.getDebugLoc(); assert(Offset == 0); BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) .add(*SrcVec) .add(*Val) .addImm(SubReg); MI.eraseFromParent(); return &MBB; } // Check for a SGPR index. if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { MachineBasicBlock::iterator I(&MI); const DebugLoc &DL = MI.getDebugLoc(); if (UseGPRIdxMode) { Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); const MCInstrDesc &GPRIDXDesc = TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); BuildMI(MBB, I, DL, GPRIDXDesc, Dst) .addReg(SrcVec->getReg()) .add(*Val) .addReg(Idx) .addImm(SubReg); } else { setM0ToIndexFromSGPR(TII, MRI, MI, Offset); const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( TRI.getRegSizeInBits(*VecRC), 32, false); BuildMI(MBB, I, DL, MovRelDesc, Dst) .addReg(SrcVec->getReg()) .add(*Val) .addImm(SubReg); } MI.eraseFromParent(); return &MBB; } // Control flow needs to be inserted if indexing with a VGPR. if (Val->isReg()) MRI.clearKillFlags(Val->getReg()); const DebugLoc &DL = MI.getDebugLoc(); Register PhiReg = MRI.createVirtualRegister(VecRC); Register SGPRIdxReg; auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset, UseGPRIdxMode, SGPRIdxReg); MachineBasicBlock *LoopBB = InsPt->getParent(); if (UseGPRIdxMode) { const MCInstrDesc &GPRIDXDesc = TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) .addReg(PhiReg) .add(*Val) .addReg(SGPRIdxReg) .addImm(SubReg); } else { const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( TRI.getRegSizeInBits(*VecRC), 32, false); BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst) .addReg(PhiReg) .add(*Val) .addImm(SubReg); } MI.eraseFromParent(); return LoopBB; } static MachineBasicBlock *lowerWaveReduce(MachineInstr &MI, MachineBasicBlock &BB, const GCNSubtarget &ST, unsigned Opc) { MachineRegisterInfo &MRI = BB.getParent()->getRegInfo(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); const DebugLoc &DL = MI.getDebugLoc(); const SIInstrInfo *TII = ST.getInstrInfo(); // Reduction operations depend on whether the input operand is SGPR or VGPR. Register SrcReg = MI.getOperand(1).getReg(); bool isSGPR = TRI->isSGPRClass(MRI.getRegClass(SrcReg)); Register DstReg = MI.getOperand(0).getReg(); MachineBasicBlock *RetBB = nullptr; if (isSGPR) { // These operations with a uniform value i.e. SGPR are idempotent. // Reduced value will be same as given sgpr. BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MOV_B32), DstReg).addReg(SrcReg); RetBB = &BB; } else { // TODO: Implement DPP Strategy and switch based on immediate strategy // operand. For now, for all the cases (default, Iterative and DPP we use // iterative approach by default.) // To reduce the VGPR using iterative approach, we need to iterate // over all the active lanes. Lowering consists of ComputeLoop, // which iterate over only active lanes. We use copy of EXEC register // as induction variable and every active lane modifies it using bitset0 // so that we will get the next active lane for next iteration. MachineBasicBlock::iterator I = BB.end(); Register SrcReg = MI.getOperand(1).getReg(); // Create Control flow for loop // Split MI's Machine Basic block into For loop auto [ComputeLoop, ComputeEnd] = splitBlockForLoop(MI, BB, true); // Create virtual registers required for lowering. const TargetRegisterClass *WaveMaskRegClass = TRI->getWaveMaskRegClass(); const TargetRegisterClass *DstRegClass = MRI.getRegClass(DstReg); Register LoopIterator = MRI.createVirtualRegister(WaveMaskRegClass); Register InitalValReg = MRI.createVirtualRegister(DstRegClass); Register AccumulatorReg = MRI.createVirtualRegister(DstRegClass); Register ActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass); Register NewActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass); Register FF1Reg = MRI.createVirtualRegister(DstRegClass); Register LaneValueReg = MRI.createVirtualRegister(DstRegClass); bool IsWave32 = ST.isWave32(); unsigned MovOpc = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; unsigned ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC; // Create initail values of induction variable from Exec, Accumulator and // insert branch instr to newly created ComputeBlockk uint32_t InitalValue = (Opc == AMDGPU::S_MIN_U32) ? std::numeric_limits::max() : 0; auto TmpSReg = BuildMI(BB, I, DL, TII->get(MovOpc), LoopIterator).addReg(ExecReg); BuildMI(BB, I, DL, TII->get(AMDGPU::S_MOV_B32), InitalValReg) .addImm(InitalValue); BuildMI(BB, I, DL, TII->get(AMDGPU::S_BRANCH)).addMBB(ComputeLoop); // Start constructing ComputeLoop I = ComputeLoop->end(); auto Accumulator = BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), AccumulatorReg) .addReg(InitalValReg) .addMBB(&BB); auto ActiveBits = BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), ActiveBitsReg) .addReg(TmpSReg->getOperand(0).getReg()) .addMBB(&BB); // Perform the computations unsigned SFFOpc = IsWave32 ? AMDGPU::S_FF1_I32_B32 : AMDGPU::S_FF1_I32_B64; auto FF1 = BuildMI(*ComputeLoop, I, DL, TII->get(SFFOpc), FF1Reg) .addReg(ActiveBits->getOperand(0).getReg()); auto LaneValue = BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::V_READLANE_B32), LaneValueReg) .addReg(SrcReg) .addReg(FF1->getOperand(0).getReg()); auto NewAccumulator = BuildMI(*ComputeLoop, I, DL, TII->get(Opc), DstReg) .addReg(Accumulator->getOperand(0).getReg()) .addReg(LaneValue->getOperand(0).getReg()); // Manipulate the iterator to get the next active lane unsigned BITSETOpc = IsWave32 ? AMDGPU::S_BITSET0_B32 : AMDGPU::S_BITSET0_B64; auto NewActiveBits = BuildMI(*ComputeLoop, I, DL, TII->get(BITSETOpc), NewActiveBitsReg) .addReg(FF1->getOperand(0).getReg()) .addReg(ActiveBits->getOperand(0).getReg()); // Add phi nodes Accumulator.addReg(NewAccumulator->getOperand(0).getReg()) .addMBB(ComputeLoop); ActiveBits.addReg(NewActiveBits->getOperand(0).getReg()) .addMBB(ComputeLoop); // Creating branching unsigned CMPOpc = IsWave32 ? AMDGPU::S_CMP_LG_U32 : AMDGPU::S_CMP_LG_U64; BuildMI(*ComputeLoop, I, DL, TII->get(CMPOpc)) .addReg(NewActiveBits->getOperand(0).getReg()) .addImm(0); BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) .addMBB(ComputeLoop); RetBB = ComputeEnd; } MI.eraseFromParent(); return RetBB; } MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( MachineInstr &MI, MachineBasicBlock *BB) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); MachineFunction *MF = BB->getParent(); SIMachineFunctionInfo *MFI = MF->getInfo(); switch (MI.getOpcode()) { case AMDGPU::WAVE_REDUCE_UMIN_PSEUDO_U32: return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MIN_U32); case AMDGPU::WAVE_REDUCE_UMAX_PSEUDO_U32: return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MAX_U32); case AMDGPU::S_UADDO_PSEUDO: case AMDGPU::S_USUBO_PSEUDO: { const DebugLoc &DL = MI.getDebugLoc(); MachineOperand &Dest0 = MI.getOperand(0); MachineOperand &Dest1 = MI.getOperand(1); MachineOperand &Src0 = MI.getOperand(2); MachineOperand &Src1 = MI.getOperand(3); unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO) ? AMDGPU::S_ADD_I32 : AMDGPU::S_SUB_I32; BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1); BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg()) .addImm(1) .addImm(0); MI.eraseFromParent(); return BB; } case AMDGPU::S_ADD_U64_PSEUDO: case AMDGPU::S_SUB_U64_PSEUDO: { // For targets older than GFX12, we emit a sequence of 32-bit operations. // For GFX12, we emit s_add_u64 and s_sub_u64. const GCNSubtarget &ST = MF->getSubtarget(); MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); const DebugLoc &DL = MI.getDebugLoc(); MachineOperand &Dest = MI.getOperand(0); MachineOperand &Src0 = MI.getOperand(1); MachineOperand &Src1 = MI.getOperand(2); bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); if (Subtarget->hasScalarAddSub64()) { unsigned Opc = IsAdd ? AMDGPU::S_ADD_U64 : AMDGPU::S_SUB_U64; BuildMI(*BB, MI, DL, TII->get(Opc), Dest.getReg()) .add(Src0) .add(Src1); } else { const SIRegisterInfo *TRI = ST.getRegisterInfo(); const TargetRegisterClass *BoolRC = TRI->getBoolRC(); Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) .add(Src0Sub0) .add(Src1Sub0); BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) .add(Src0Sub1) .add(Src1Sub1); BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) .addReg(DestSub0) .addImm(AMDGPU::sub0) .addReg(DestSub1) .addImm(AMDGPU::sub1); } MI.eraseFromParent(); return BB; } case AMDGPU::V_ADD_U64_PSEUDO: case AMDGPU::V_SUB_U64_PSEUDO: { MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); const GCNSubtarget &ST = MF->getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); const DebugLoc &DL = MI.getDebugLoc(); bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO); MachineOperand &Dest = MI.getOperand(0); MachineOperand &Src0 = MI.getOperand(1); MachineOperand &Src1 = MI.getOperand(2); if (IsAdd && ST.hasLshlAddB64()) { auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64), Dest.getReg()) .add(Src0) .addImm(0) .add(Src1); TII->legalizeOperands(*Add); MI.eraseFromParent(); return BB; } const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register CarryReg = MRI.createVirtualRegister(CarryRC); Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); const TargetRegisterClass *Src0RC = Src0.isReg() ? MRI.getRegClass(Src0.getReg()) : &AMDGPU::VReg_64RegClass; const TargetRegisterClass *Src1RC = Src1.isReg() ? MRI.getRegClass(Src1.getReg()) : &AMDGPU::VReg_64RegClass; const TargetRegisterClass *Src0SubRC = TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0); const TargetRegisterClass *Src1SubRC = TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1); MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm( MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm( MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm( MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm( MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) .addReg(CarryReg, RegState::Define) .add(SrcReg0Sub0) .add(SrcReg1Sub0) .addImm(0); // clamp bit unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; MachineInstr *HiHalf = BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) .addReg(DeadCarryReg, RegState::Define | RegState::Dead) .add(SrcReg0Sub1) .add(SrcReg1Sub1) .addReg(CarryReg, RegState::Kill) .addImm(0); // clamp bit BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) .addReg(DestSub0) .addImm(AMDGPU::sub0) .addReg(DestSub1) .addImm(AMDGPU::sub1); TII->legalizeOperands(*LoHalf); TII->legalizeOperands(*HiHalf); MI.eraseFromParent(); return BB; } case AMDGPU::S_ADD_CO_PSEUDO: case AMDGPU::S_SUB_CO_PSEUDO: { // This pseudo has a chance to be selected // only from uniform add/subcarry node. All the VGPR operands // therefore assumed to be splat vectors. MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); const GCNSubtarget &ST = MF->getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); MachineBasicBlock::iterator MII = MI; const DebugLoc &DL = MI.getDebugLoc(); MachineOperand &Dest = MI.getOperand(0); MachineOperand &CarryDest = MI.getOperand(1); MachineOperand &Src0 = MI.getOperand(2); MachineOperand &Src1 = MI.getOperand(3); MachineOperand &Src2 = MI.getOperand(4); unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) { Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0) .addReg(Src0.getReg()); Src0.setReg(RegOp0); } if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) { Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1) .addReg(Src1.getReg()); Src1.setReg(RegOp1); } Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); if (TRI->isVectorRegister(MRI, Src2.getReg())) { BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2) .addReg(Src2.getReg()); Src2.setReg(RegOp2); } const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg()); unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC); assert(WaveSize == 64 || WaveSize == 32); if (WaveSize == 64) { if (ST.hasScalarCompareEq64()) { BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64)) .addReg(Src2.getReg()) .addImm(0); } else { const TargetRegisterClass *SubRC = TRI->getSubRegisterClass(Src2RC, AMDGPU::sub0); MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm( MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC); MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm( MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC); Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32) .add(Src2Sub0) .add(Src2Sub1); BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) .addReg(Src2_32, RegState::Kill) .addImm(0); } } else { BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) .addReg(Src2.getReg()) .addImm(0); } BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1); unsigned SelOpc = (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32; BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg()) .addImm(-1) .addImm(0); MI.eraseFromParent(); return BB; } case AMDGPU::SI_INIT_M0: { BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) .add(MI.getOperand(0)); MI.eraseFromParent(); return BB; } case AMDGPU::GET_GROUPSTATICSIZE: { assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); DebugLoc DL = MI.getDebugLoc(); BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) .add(MI.getOperand(0)) .addImm(MFI->getLDSSize()); MI.eraseFromParent(); return BB; } case AMDGPU::GET_SHADERCYCLESHILO: { assert(MF->getSubtarget().hasShaderCyclesHiLoRegisters()); MachineRegisterInfo &MRI = MF->getRegInfo(); const DebugLoc &DL = MI.getDebugLoc(); // The algorithm is: // // hi1 = getreg(SHADER_CYCLES_HI) // lo1 = getreg(SHADER_CYCLES_LO) // hi2 = getreg(SHADER_CYCLES_HI) // // If hi1 == hi2 then there was no overflow and the result is hi2:lo1. // Otherwise there was overflow and the result is hi2:0. In both cases the // result should represent the actual time at some point during the sequence // of three getregs. using namespace AMDGPU::Hwreg; Register RegHi1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegHi1) .addImm(HwregEncoding::encode(ID_SHADER_CYCLES_HI, 0, 32)); Register RegLo1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegLo1) .addImm(HwregEncoding::encode(ID_SHADER_CYCLES, 0, 32)); Register RegHi2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegHi2) .addImm(HwregEncoding::encode(ID_SHADER_CYCLES_HI, 0, 32)); BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CMP_EQ_U32)) .addReg(RegHi1) .addReg(RegHi2); Register RegLo = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B32), RegLo) .addReg(RegLo1) .addImm(0); BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE)) .add(MI.getOperand(0)) .addReg(RegLo) .addImm(AMDGPU::sub0) .addReg(RegHi2) .addImm(AMDGPU::sub1); MI.eraseFromParent(); return BB; } case AMDGPU::SI_INDIRECT_SRC_V1: case AMDGPU::SI_INDIRECT_SRC_V2: case AMDGPU::SI_INDIRECT_SRC_V4: case AMDGPU::SI_INDIRECT_SRC_V8: case AMDGPU::SI_INDIRECT_SRC_V9: case AMDGPU::SI_INDIRECT_SRC_V10: case AMDGPU::SI_INDIRECT_SRC_V11: case AMDGPU::SI_INDIRECT_SRC_V12: case AMDGPU::SI_INDIRECT_SRC_V16: case AMDGPU::SI_INDIRECT_SRC_V32: return emitIndirectSrc(MI, *BB, *getSubtarget()); case AMDGPU::SI_INDIRECT_DST_V1: case AMDGPU::SI_INDIRECT_DST_V2: case AMDGPU::SI_INDIRECT_DST_V4: case AMDGPU::SI_INDIRECT_DST_V8: case AMDGPU::SI_INDIRECT_DST_V9: case AMDGPU::SI_INDIRECT_DST_V10: case AMDGPU::SI_INDIRECT_DST_V11: case AMDGPU::SI_INDIRECT_DST_V12: case AMDGPU::SI_INDIRECT_DST_V16: case AMDGPU::SI_INDIRECT_DST_V32: return emitIndirectDst(MI, *BB, *getSubtarget()); case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: case AMDGPU::SI_KILL_I1_PSEUDO: return splitKillBlock(MI, BB); case AMDGPU::V_CNDMASK_B64_PSEUDO: { MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); const GCNSubtarget &ST = MF->getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); Register Dst = MI.getOperand(0).getReg(); const MachineOperand &Src0 = MI.getOperand(1); const MachineOperand &Src1 = MI.getOperand(2); const DebugLoc &DL = MI.getDebugLoc(); Register SrcCond = MI.getOperand(3).getReg(); Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); Register SrcCondCopy = MRI.createVirtualRegister(CondRC); const TargetRegisterClass *Src0RC = Src0.isReg() ? MRI.getRegClass(Src0.getReg()) : &AMDGPU::VReg_64RegClass; const TargetRegisterClass *Src1RC = Src1.isReg() ? MRI.getRegClass(Src1.getReg()) : &AMDGPU::VReg_64RegClass; const TargetRegisterClass *Src0SubRC = TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0); const TargetRegisterClass *Src1SubRC = TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1); MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) .addReg(SrcCond); BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) .addImm(0) .add(Src0Sub0) .addImm(0) .add(Src1Sub0) .addReg(SrcCondCopy); BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) .addImm(0) .add(Src0Sub1) .addImm(0) .add(Src1Sub1) .addReg(SrcCondCopy); BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) .addReg(DstLo) .addImm(AMDGPU::sub0) .addReg(DstHi) .addImm(AMDGPU::sub1); MI.eraseFromParent(); return BB; } case AMDGPU::SI_BR_UNDEF: { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); const DebugLoc &DL = MI.getDebugLoc(); MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) .add(MI.getOperand(0)); Br->getOperand(1).setIsUndef(); // read undef SCC MI.eraseFromParent(); return BB; } case AMDGPU::ADJCALLSTACKUP: case AMDGPU::ADJCALLSTACKDOWN: { const SIMachineFunctionInfo *Info = MF->getInfo(); MachineInstrBuilder MIB(*MF, &MI); MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit); return BB; } case AMDGPU::SI_CALL_ISEL: { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); const DebugLoc &DL = MI.getDebugLoc(); unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); MachineInstrBuilder MIB; MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); for (const MachineOperand &MO : MI.operands()) MIB.add(MO); MIB.cloneMemRefs(MI); MI.eraseFromParent(); return BB; } case AMDGPU::V_ADD_CO_U32_e32: case AMDGPU::V_SUB_CO_U32_e32: case AMDGPU::V_SUBREV_CO_U32_e32: { // TODO: Define distinct V_*_I32_Pseudo instructions instead. const DebugLoc &DL = MI.getDebugLoc(); unsigned Opc = MI.getOpcode(); bool NeedClampOperand = false; if (TII->pseudoToMCOpcode(Opc) == -1) { Opc = AMDGPU::getVOPe64(Opc); NeedClampOperand = true; } auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); if (TII->isVOP3(*I)) { const GCNSubtarget &ST = MF->getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); I.addReg(TRI->getVCC(), RegState::Define); } I.add(MI.getOperand(1)) .add(MI.getOperand(2)); if (NeedClampOperand) I.addImm(0); // clamp bit for e64 encoding TII->legalizeOperands(*I); MI.eraseFromParent(); return BB; } case AMDGPU::V_ADDC_U32_e32: case AMDGPU::V_SUBB_U32_e32: case AMDGPU::V_SUBBREV_U32_e32: // These instructions have an implicit use of vcc which counts towards the // constant bus limit. TII->legalizeOperands(MI); return BB; case AMDGPU::DS_GWS_INIT: case AMDGPU::DS_GWS_SEMA_BR: case AMDGPU::DS_GWS_BARRIER: TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0); [[fallthrough]]; case AMDGPU::DS_GWS_SEMA_V: case AMDGPU::DS_GWS_SEMA_P: case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: // A s_waitcnt 0 is required to be the instruction immediately following. if (getSubtarget()->hasGWSAutoReplay()) { bundleInstWithWaitcnt(MI); return BB; } return emitGWSMemViolTestLoop(MI, BB); case AMDGPU::S_SETREG_B32: { // Try to optimize cases that only set the denormal mode or rounding mode. // // If the s_setreg_b32 fully sets all of the bits in the rounding mode or // denormal mode to a constant, we can use s_round_mode or s_denorm_mode // instead. // // FIXME: This could be predicates on the immediate, but tablegen doesn't // allow you to have a no side effect instruction in the output of a // sideeffecting pattern. auto [ID, Offset, Width] = AMDGPU::Hwreg::HwregEncoding::decode(MI.getOperand(1).getImm()); if (ID != AMDGPU::Hwreg::ID_MODE) return BB; const unsigned WidthMask = maskTrailingOnes(Width); const unsigned SetMask = WidthMask << Offset; if (getSubtarget()->hasDenormModeInst()) { unsigned SetDenormOp = 0; unsigned SetRoundOp = 0; // The dedicated instructions can only set the whole denorm or round mode // at once, not a subset of bits in either. if (SetMask == (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) { // If this fully sets both the round and denorm mode, emit the two // dedicated instructions for these. SetRoundOp = AMDGPU::S_ROUND_MODE; SetDenormOp = AMDGPU::S_DENORM_MODE; } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) { SetRoundOp = AMDGPU::S_ROUND_MODE; } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) { SetDenormOp = AMDGPU::S_DENORM_MODE; } if (SetRoundOp || SetDenormOp) { MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg()); if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) { unsigned ImmVal = Def->getOperand(1).getImm(); if (SetRoundOp) { BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp)) .addImm(ImmVal & 0xf); // If we also have the denorm mode, get just the denorm mode bits. ImmVal >>= 4; } if (SetDenormOp) { BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp)) .addImm(ImmVal & 0xf); } MI.eraseFromParent(); return BB; } } } // If only FP bits are touched, used the no side effects pseudo. if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask) MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode)); return BB; } case AMDGPU::S_INVERSE_BALLOT_U32: case AMDGPU::S_INVERSE_BALLOT_U64: // These opcodes only exist to let SIFixSGPRCopies insert a readfirstlane if // necessary. After that they are equivalent to a COPY. MI.setDesc(TII->get(AMDGPU::COPY)); return BB; case AMDGPU::ENDPGM_TRAP: { const DebugLoc &DL = MI.getDebugLoc(); if (BB->succ_empty() && std::next(MI.getIterator()) == BB->end()) { MI.setDesc(TII->get(AMDGPU::S_ENDPGM)); MI.addOperand(MachineOperand::CreateImm(0)); return BB; } // We need a block split to make the real endpgm a terminator. We also don't // want to break phis in successor blocks, so we can't just delete to the // end of the block. MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); MF->push_back(TrapBB); BuildMI(*TrapBB, TrapBB->end(), DL, TII->get(AMDGPU::S_ENDPGM)) .addImm(0); BuildMI(*BB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) .addMBB(TrapBB); BB->addSuccessor(TrapBB); MI.eraseFromParent(); return SplitBB; } case AMDGPU::SIMULATED_TRAP: { assert(Subtarget->hasPrivEnabledTrap2NopBug()); MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); MachineBasicBlock *SplitBB = TII->insertSimulatedTrap(MRI, *BB, MI, MI.getDebugLoc()); MI.eraseFromParent(); return SplitBB; } default: if (TII->isImage(MI) || TII->isMUBUF(MI)) { if (!MI.mayStore()) AddMemOpInit(MI); return BB; } return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); } } bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { // This currently forces unfolding various combinations of fsub into fma with // free fneg'd operands. As long as we have fast FMA (controlled by // isFMAFasterThanFMulAndFAdd), we should perform these. // When fma is quarter rate, for f64 where add / sub are at best half rate, // most of these combines appear to be cycle neutral but save on instruction // count / code size. return true; } bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; } EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, EVT VT) const { if (!VT.isVector()) { return MVT::i1; } return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); } MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { // TODO: Should i16 be used always if legal? For now it would force VALU // shifts. return (VT == MVT::i16) ? MVT::i16 : MVT::i32; } LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const { return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts()) ? Ty.changeElementSize(16) : Ty.changeElementSize(32); } // Answering this is somewhat tricky and depends on the specific device which // have different rates for fma or all f64 operations. // // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other // regardless of which device (although the number of cycles differs between // devices), so it is always profitable for f64. // // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable // only on full rate devices. Normally, we should prefer selecting v_mad_f32 // which we can always do even without fused FP ops since it returns the same // result as the separate operations and since it is always full // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 // however does not support denormals, so we do report fma as faster if we have // a fast fma device and require denormals. // bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const { VT = VT.getScalarType(); switch (VT.getSimpleVT().SimpleTy) { case MVT::f32: { // If mad is not available this depends only on if f32 fma is full rate. if (!Subtarget->hasMadMacF32Insts()) return Subtarget->hasFastFMAF32(); // Otherwise f32 mad is always full rate and returns the same result as // the separate operations so should be preferred over fma. // However does not support denormals. if (!denormalModeIsFlushAllF32(MF)) return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); } case MVT::f64: return true; case MVT::f16: return Subtarget->has16BitInsts() && !denormalModeIsFlushAllF64F16(MF); default: break; } return false; } bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, LLT Ty) const { switch (Ty.getScalarSizeInBits()) { case 16: return isFMAFasterThanFMulAndFAdd(MF, MVT::f16); case 32: return isFMAFasterThanFMulAndFAdd(MF, MVT::f32); case 64: return isFMAFasterThanFMulAndFAdd(MF, MVT::f64); default: break; } return false; } bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const { if (!Ty.isScalar()) return false; if (Ty.getScalarSizeInBits() == 16) return Subtarget->hasMadF16() && denormalModeIsFlushAllF64F16(*MI.getMF()); if (Ty.getScalarSizeInBits() == 32) return Subtarget->hasMadMacF32Insts() && denormalModeIsFlushAllF32(*MI.getMF()); return false; } bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const { // TODO: Check future ftz flag // v_mad_f32/v_mac_f32 do not support denormals. EVT VT = N->getValueType(0); if (VT == MVT::f32) return Subtarget->hasMadMacF32Insts() && denormalModeIsFlushAllF32(DAG.getMachineFunction()); if (VT == MVT::f16) { return Subtarget->hasMadF16() && denormalModeIsFlushAllF64F16(DAG.getMachineFunction()); } return false; } //===----------------------------------------------------------------------===// // Custom DAG Lowering Operations //===----------------------------------------------------------------------===// // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the // wider vector type is legal. SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, SelectionDAG &DAG) const { unsigned Opc = Op.getOpcode(); EVT VT = Op.getValueType(); assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16); SDValue Lo, Hi; std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); SDLoc SL(Op); SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, Op->getFlags()); SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, Op->getFlags()); return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); } // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the // wider vector type is legal. SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, SelectionDAG &DAG) const { unsigned Opc = Op.getOpcode(); EVT VT = Op.getValueType(); assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16); SDValue Lo0, Hi0; std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); SDValue Lo1, Hi1; std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); SDLoc SL(Op); SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Op->getFlags()); SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Op->getFlags()); return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); } SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, SelectionDAG &DAG) const { unsigned Opc = Op.getOpcode(); EVT VT = Op.getValueType(); assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32 || VT == MVT::v32f16 || VT == MVT::v32i16 || VT == MVT::v4bf16 || VT == MVT::v8bf16 || VT == MVT::v16bf16 || VT == MVT::v32bf16); SDValue Lo0, Hi0; SDValue Op0 = Op.getOperand(0); std::tie(Lo0, Hi0) = Op0.getValueType().isVector() ? DAG.SplitVectorOperand(Op.getNode(), 0) : std::pair(Op0, Op0); SDValue Lo1, Hi1; std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); SDValue Lo2, Hi2; std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); SDLoc SL(Op); auto ResVT = DAG.GetSplitDestVTs(VT); SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2, Op->getFlags()); SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2, Op->getFlags()); return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); } SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); case ISD::BRCOND: return LowerBRCOND(Op, DAG); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::LOAD: { SDValue Result = LowerLOAD(Op, DAG); assert((!Result.getNode() || Result.getNode()->getNumValues() == 2) && "Load should return a value and a chain"); return Result; } case ISD::FSQRT: { EVT VT = Op.getValueType(); if (VT == MVT::f32) return lowerFSQRTF32(Op, DAG); if (VT == MVT::f64) return lowerFSQRTF64(Op, DAG); return SDValue(); } case ISD::FSIN: case ISD::FCOS: return LowerTrig(Op, DAG); case ISD::SELECT: return LowerSELECT(Op, DAG); case ISD::FDIV: return LowerFDIV(Op, DAG); case ISD::FFREXP: return LowerFFREXP(Op, DAG); case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); case ISD::STORE: return LowerSTORE(Op, DAG); case ISD::GlobalAddress: { MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *MFI = MF.getInfo(); return LowerGlobalAddress(MFI, Op, DAG); } case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); case ISD::INSERT_SUBVECTOR: return lowerINSERT_SUBVECTOR(Op, DAG); case ISD::INSERT_VECTOR_ELT: return lowerINSERT_VECTOR_ELT(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::VECTOR_SHUFFLE: return lowerVECTOR_SHUFFLE(Op, DAG); case ISD::SCALAR_TO_VECTOR: return lowerSCALAR_TO_VECTOR(Op, DAG); case ISD::BUILD_VECTOR: return lowerBUILD_VECTOR(Op, DAG); case ISD::FP_ROUND: case ISD::STRICT_FP_ROUND: return lowerFP_ROUND(Op, DAG); case ISD::FPTRUNC_ROUND: { unsigned Opc; SDLoc DL(Op); if (Op.getOperand(0)->getValueType(0) != MVT::f32) return SDValue(); // Get the rounding mode from the last operand int RoundMode = Op.getConstantOperandVal(1); if (RoundMode == (int)RoundingMode::TowardPositive) Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD; else if (RoundMode == (int)RoundingMode::TowardNegative) Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD; else return SDValue(); return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0)); } case ISD::TRAP: return lowerTRAP(Op, DAG); case ISD::DEBUGTRAP: return lowerDEBUGTRAP(Op, DAG); case ISD::ABS: case ISD::FABS: case ISD::FNEG: case ISD::FCANONICALIZE: case ISD::BSWAP: return splitUnaryVectorOp(Op, DAG); case ISD::FMINNUM: case ISD::FMAXNUM: return lowerFMINNUM_FMAXNUM(Op, DAG); case ISD::FLDEXP: case ISD::STRICT_FLDEXP: return lowerFLDEXP(Op, DAG); case ISD::FMA: return splitTernaryVectorOp(Op, DAG); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); case ISD::SHL: case ISD::SRA: case ISD::SRL: case ISD::ADD: case ISD::SUB: case ISD::SMIN: case ISD::SMAX: case ISD::UMIN: case ISD::UMAX: case ISD::FADD: case ISD::FMUL: case ISD::FMINNUM_IEEE: case ISD::FMAXNUM_IEEE: case ISD::FMINIMUM: case ISD::FMAXIMUM: case ISD::UADDSAT: case ISD::USUBSAT: case ISD::SADDSAT: case ISD::SSUBSAT: return splitBinaryVectorOp(Op, DAG); case ISD::MUL: return lowerMUL(Op, DAG); case ISD::SMULO: case ISD::UMULO: return lowerXMULO(Op, DAG); case ISD::SMUL_LOHI: case ISD::UMUL_LOHI: return lowerXMUL_LOHI(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); case ISD::STACKSAVE: return LowerSTACKSAVE(Op, DAG); case ISD::GET_ROUNDING: return lowerGET_ROUNDING(Op, DAG); case ISD::SET_ROUNDING: return lowerSET_ROUNDING(Op, DAG); case ISD::PREFETCH: return lowerPREFETCH(Op, DAG); case ISD::FP_EXTEND: case ISD::STRICT_FP_EXTEND: return lowerFP_EXTEND(Op, DAG); case ISD::GET_FPENV: return lowerGET_FPENV(Op, DAG); case ISD::SET_FPENV: return lowerSET_FPENV(Op, DAG); } return SDValue(); } // Used for D16: Casts the result of an instruction into the right vector, // packs values if loads return unpacked values. static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, const SDLoc &DL, SelectionDAG &DAG, bool Unpacked) { if (!LoadVT.isVector()) return Result; // Cast back to the original packed type or to a larger type that is a // multiple of 32 bit for D16. Widening the return type is a required for // legalization. EVT FittingLoadVT = LoadVT; if ((LoadVT.getVectorNumElements() % 2) == 1) { FittingLoadVT = EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), LoadVT.getVectorNumElements() + 1); } if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. // Truncate to v2i16/v4i16. EVT IntLoadVT = FittingLoadVT.changeTypeToInteger(); // Workaround legalizer not scalarizing truncate after vector op // legalization but not creating intermediate vector trunc. SmallVector Elts; DAG.ExtractVectorElements(Result, Elts); for (SDValue &Elt : Elts) Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); // Pad illegal v1i16/v3fi6 to v4i16 if ((LoadVT.getVectorNumElements() % 2) == 1) Elts.push_back(DAG.getUNDEF(MVT::i16)); Result = DAG.getBuildVector(IntLoadVT, DL, Elts); // Bitcast to original type (v2f16/v4f16). return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); } // Cast back to the original packed type. return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); } SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, MemSDNode *M, SelectionDAG &DAG, ArrayRef Ops, bool IsIntrinsic) const { SDLoc DL(M); bool Unpacked = Subtarget->hasUnpackedD16VMem(); EVT LoadVT = M->getValueType(0); EVT EquivLoadVT = LoadVT; if (LoadVT.isVector()) { if (Unpacked) { EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, LoadVT.getVectorNumElements()); } else if ((LoadVT.getVectorNumElements() % 2) == 1) { // Widen v3f16 to legal type EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), LoadVT.getVectorNumElements() + 1); } } // Change from v4f16/v2f16 to EquivLoadVT. SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); SDValue Load = DAG.getMemIntrinsicNode( IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, VTList, Ops, M->getMemoryVT(), M->getMemOperand()); SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); } SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, SelectionDAG &DAG, ArrayRef Ops) const { SDLoc DL(M); EVT LoadVT = M->getValueType(0); EVT EltType = LoadVT.getScalarType(); EVT IntVT = LoadVT.changeTypeToInteger(); bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); assert(M->getNumValues() == 2 || M->getNumValues() == 3); bool IsTFE = M->getNumValues() == 3; unsigned Opc = IsFormat ? (IsTFE ? AMDGPUISD::BUFFER_LOAD_FORMAT_TFE : AMDGPUISD::BUFFER_LOAD_FORMAT) : IsTFE ? AMDGPUISD::BUFFER_LOAD_TFE : AMDGPUISD::BUFFER_LOAD; if (IsD16) { return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); } // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M->getMemOperand(), IsTFE); if (isTypeLegal(LoadVT)) { return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, M->getMemOperand(), DAG); } EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, M->getMemOperand(), DAG); return DAG.getMergeValues( {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, DL); } static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); unsigned CondCode = N->getConstantOperandVal(3); if (!ICmpInst::isIntPredicate(static_cast(CondCode))) return DAG.getUNDEF(VT); ICmpInst::Predicate IcInput = static_cast(CondCode); SDValue LHS = N->getOperand(1); SDValue RHS = N->getOperand(2); SDLoc DL(N); EVT CmpVT = LHS.getValueType(); if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); } ISD::CondCode CCOpcode = getICmpCondCode(IcInput); unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, DAG.getCondCode(CCOpcode)); if (VT.bitsEq(CCVT)) return SetCC; return DAG.getZExtOrTrunc(SetCC, DL, VT); } static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); unsigned CondCode = N->getConstantOperandVal(3); if (!FCmpInst::isFPPredicate(static_cast(CondCode))) return DAG.getUNDEF(VT); SDValue Src0 = N->getOperand(1); SDValue Src1 = N->getOperand(2); EVT CmpVT = Src0.getValueType(); SDLoc SL(N); if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); } FCmpInst::Predicate IcInput = static_cast(CondCode); ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, Src1, DAG.getCondCode(CCOpcode)); if (VT.bitsEq(CCVT)) return SetCC; return DAG.getZExtOrTrunc(SetCC, SL, VT); } static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); SDValue Src = N->getOperand(1); SDLoc SL(N); if (Src.getOpcode() == ISD::SETCC) { // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...) return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0), Src.getOperand(1), Src.getOperand(2)); } if (const ConstantSDNode *Arg = dyn_cast(Src)) { // (ballot 0) -> 0 if (Arg->isZero()) return DAG.getConstant(0, SL, VT); // (ballot 1) -> EXEC/EXEC_LO if (Arg->isOne()) { Register Exec; if (VT.getScalarSizeInBits() == 32) Exec = AMDGPU::EXEC_LO; else if (VT.getScalarSizeInBits() == 64) Exec = AMDGPU::EXEC; else return SDValue(); return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT); } } // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0) // ISD::SETNE) return DAG.getNode( AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32), DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE)); } static SDValue lowerLaneOp(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); unsigned ValSize = VT.getSizeInBits(); unsigned IID = N->getConstantOperandVal(0); bool IsPermLane16 = IID == Intrinsic::amdgcn_permlane16 || IID == Intrinsic::amdgcn_permlanex16; SDLoc SL(N); MVT IntVT = MVT::getIntegerVT(ValSize); auto createLaneOp = [&DAG, &SL, N, IID](SDValue Src0, SDValue Src1, SDValue Src2, MVT ValT) -> SDValue { SmallVector Operands; switch (IID) { case Intrinsic::amdgcn_permlane16: case Intrinsic::amdgcn_permlanex16: Operands.push_back(N->getOperand(6)); Operands.push_back(N->getOperand(5)); Operands.push_back(N->getOperand(4)); [[fallthrough]]; case Intrinsic::amdgcn_writelane: Operands.push_back(Src2); [[fallthrough]]; case Intrinsic::amdgcn_readlane: Operands.push_back(Src1); [[fallthrough]]; case Intrinsic::amdgcn_readfirstlane: case Intrinsic::amdgcn_permlane64: Operands.push_back(Src0); break; default: llvm_unreachable("unhandled lane op"); } Operands.push_back(DAG.getTargetConstant(IID, SL, MVT::i32)); std::reverse(Operands.begin(), Operands.end()); if (SDNode *GL = N->getGluedNode()) { assert(GL->getOpcode() == ISD::CONVERGENCECTRL_GLUE); GL = GL->getOperand(0).getNode(); Operands.push_back(DAG.getNode(ISD::CONVERGENCECTRL_GLUE, SL, MVT::Glue, SDValue(GL, 0))); } return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, ValT, Operands); }; SDValue Src0 = N->getOperand(1); SDValue Src1, Src2; if (IID == Intrinsic::amdgcn_readlane || IID == Intrinsic::amdgcn_writelane || IsPermLane16) { Src1 = N->getOperand(2); if (IID == Intrinsic::amdgcn_writelane || IsPermLane16) Src2 = N->getOperand(3); } if (ValSize == 32) { // Already legal return SDValue(); } if (ValSize < 32) { bool IsFloat = VT.isFloatingPoint(); Src0 = DAG.getAnyExtOrTrunc(IsFloat ? DAG.getBitcast(IntVT, Src0) : Src0, SL, MVT::i32); if (IsPermLane16) { Src1 = DAG.getAnyExtOrTrunc(IsFloat ? DAG.getBitcast(IntVT, Src1) : Src1, SL, MVT::i32); } if (IID == Intrinsic::amdgcn_writelane) { Src2 = DAG.getAnyExtOrTrunc(IsFloat ? DAG.getBitcast(IntVT, Src2) : Src2, SL, MVT::i32); } SDValue LaneOp = createLaneOp(Src0, Src1, Src2, MVT::i32); SDValue Trunc = DAG.getAnyExtOrTrunc(LaneOp, SL, IntVT); return IsFloat ? DAG.getBitcast(VT, Trunc) : Trunc; } if (ValSize % 32 != 0) return SDValue(); auto unrollLaneOp = [&DAG, &SL](SDNode *N) -> SDValue { EVT VT = N->getValueType(0); unsigned NE = VT.getVectorNumElements(); EVT EltVT = VT.getVectorElementType(); SmallVector Scalars; unsigned NumOperands = N->getNumOperands(); SmallVector Operands(NumOperands); SDNode *GL = N->getGluedNode(); // only handle convergencectrl_glue assert(!GL || GL->getOpcode() == ISD::CONVERGENCECTRL_GLUE); for (unsigned i = 0; i != NE; ++i) { for (unsigned j = 0, e = GL ? NumOperands - 1 : NumOperands; j != e; ++j) { SDValue Operand = N->getOperand(j); EVT OperandVT = Operand.getValueType(); if (OperandVT.isVector()) { // A vector operand; extract a single element. EVT OperandEltVT = OperandVT.getVectorElementType(); Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, OperandEltVT, Operand, DAG.getVectorIdxConstant(i, SL)); } else { // A scalar operand; just use it as is. Operands[j] = Operand; } } if (GL) Operands[NumOperands - 1] = DAG.getNode(ISD::CONVERGENCECTRL_GLUE, SL, MVT::Glue, SDValue(GL->getOperand(0).getNode(), 0)); Scalars.push_back(DAG.getNode(N->getOpcode(), SL, EltVT, Operands)); } EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NE); return DAG.getBuildVector(VecVT, SL, Scalars); }; if (VT.isVector()) { switch (MVT::SimpleValueType EltTy = VT.getVectorElementType().getSimpleVT().SimpleTy) { case MVT::i32: case MVT::f32: { SDValue LaneOp = createLaneOp(Src0, Src1, Src2, VT.getSimpleVT()); return unrollLaneOp(LaneOp.getNode()); } case MVT::i16: case MVT::f16: case MVT::bf16: { MVT SubVecVT = MVT::getVectorVT(EltTy, 2); SmallVector Pieces; SDValue Src0SubVec, Src1SubVec, Src2SubVec; for (unsigned i = 0, EltIdx = 0; i < ValSize / 32; i++) { Src0SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, SubVecVT, Src0, DAG.getConstant(EltIdx, SL, MVT::i32)); if (IsPermLane16) Src1SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, SubVecVT, Src1, DAG.getConstant(EltIdx, SL, MVT::i32)); if (IID == Intrinsic::amdgcn_writelane) Src2SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, SubVecVT, Src2, DAG.getConstant(EltIdx, SL, MVT::i32)); Pieces.push_back( IsPermLane16 ? createLaneOp(Src0SubVec, Src1SubVec, Src2, SubVecVT) : createLaneOp(Src0SubVec, Src1, Src2SubVec, SubVecVT)); EltIdx += 2; } return DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, Pieces); } default: // Handle all other cases by bitcasting to i32 vectors break; } } MVT VecVT = MVT::getVectorVT(MVT::i32, ValSize / 32); Src0 = DAG.getBitcast(VecVT, Src0); if (IsPermLane16) Src1 = DAG.getBitcast(VecVT, Src1); if (IID == Intrinsic::amdgcn_writelane) Src2 = DAG.getBitcast(VecVT, Src2); SDValue LaneOp = createLaneOp(Src0, Src1, Src2, VecVT); SDValue UnrolledLaneOp = unrollLaneOp(LaneOp.getNode()); return DAG.getBitcast(VT, UnrolledLaneOp); } void SITargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { switch (N->getOpcode()) { case ISD::INSERT_VECTOR_ELT: { if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) Results.push_back(Res); return; } case ISD::EXTRACT_VECTOR_ELT: { if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) Results.push_back(Res); return; } case ISD::INTRINSIC_WO_CHAIN: { unsigned IID = N->getConstantOperandVal(0); switch (IID) { case Intrinsic::amdgcn_make_buffer_rsrc: Results.push_back(lowerPointerAsRsrcIntrin(N, DAG)); return; case Intrinsic::amdgcn_cvt_pkrtz: { SDValue Src0 = N->getOperand(1); SDValue Src1 = N->getOperand(2); SDLoc SL(N); SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, Src0, Src1); Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); return; } case Intrinsic::amdgcn_cvt_pknorm_i16: case Intrinsic::amdgcn_cvt_pknorm_u16: case Intrinsic::amdgcn_cvt_pk_i16: case Intrinsic::amdgcn_cvt_pk_u16: { SDValue Src0 = N->getOperand(1); SDValue Src1 = N->getOperand(2); SDLoc SL(N); unsigned Opcode; if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; else if (IID == Intrinsic::amdgcn_cvt_pk_i16) Opcode = AMDGPUISD::CVT_PK_I16_I32; else Opcode = AMDGPUISD::CVT_PK_U16_U32; EVT VT = N->getValueType(0); if (isTypeLegal(VT)) Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); else { SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); } return; } case Intrinsic::amdgcn_s_buffer_load: { // Lower llvm.amdgcn.s.buffer.load.(i8, u8) intrinsics. First, we generate // s_buffer_load_u8 for signed and unsigned load instructions. Next, DAG // combiner tries to merge the s_buffer_load_u8 with a sext instruction // (performSignExtendInRegCombine()) and it replaces s_buffer_load_u8 with // s_buffer_load_i8. if (!Subtarget->hasScalarSubwordLoads()) return; SDValue Op = SDValue(N, 0); SDValue Rsrc = Op.getOperand(1); SDValue Offset = Op.getOperand(2); SDValue CachePolicy = Op.getOperand(3); EVT VT = Op.getValueType(); assert(VT == MVT::i8 && "Expected 8-bit s_buffer_load intrinsics.\n"); SDLoc DL(Op); MachineFunction &MF = DAG.getMachineFunction(); const DataLayout &DataLayout = DAG.getDataLayout(); Align Alignment = DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(), MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant, VT.getStoreSize(), Alignment); SDValue LoadVal; if (!Offset->isDivergent()) { SDValue Ops[] = {Rsrc, // source register Offset, CachePolicy}; SDValue BufferLoad = DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD_UBYTE, DL, DAG.getVTList(MVT::i32), Ops, VT, MMO); LoadVal = DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad); } else { SDValue Ops[] = { DAG.getEntryNode(), // Chain Rsrc, // rsrc DAG.getConstant(0, DL, MVT::i32), // vindex {}, // voffset {}, // soffset {}, // offset CachePolicy, // cachepolicy DAG.getTargetConstant(0, DL, MVT::i1), // idxen }; setBufferOffsets(Offset, DAG, &Ops[3], Align(4)); LoadVal = handleByteShortBufferLoads(DAG, VT, DL, Ops, MMO); } Results.push_back(LoadVal); return; } } break; } case ISD::INTRINSIC_W_CHAIN: { if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { if (Res.getOpcode() == ISD::MERGE_VALUES) { // FIXME: Hacky for (unsigned I = 0; I < Res.getNumOperands(); I++) { Results.push_back(Res.getOperand(I)); } } else { Results.push_back(Res); Results.push_back(Res.getValue(1)); } return; } break; } case ISD::SELECT: { SDLoc SL(N); EVT VT = N->getValueType(0); EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); EVT SelectVT = NewVT; if (NewVT.bitsLT(MVT::i32)) { LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); SelectVT = MVT::i32; } SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, N->getOperand(0), LHS, RHS); if (NewVT != SelectVT) NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); return; } case ISD::FNEG: { if (N->getValueType(0) != MVT::v2f16) break; SDLoc SL(N); SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, BC, DAG.getConstant(0x80008000, SL, MVT::i32)); Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); return; } case ISD::FABS: { if (N->getValueType(0) != MVT::v2f16) break; SDLoc SL(N); SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, BC, DAG.getConstant(0x7fff7fff, SL, MVT::i32)); Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); return; } case ISD::FSQRT: { if (N->getValueType(0) != MVT::f16) break; Results.push_back(lowerFSQRTF16(SDValue(N, 0), DAG)); break; } default: AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG); break; } } /// Helper function for LowerBRCOND static SDNode *findUser(SDValue Value, unsigned Opcode) { SDNode *Parent = Value.getNode(); for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); I != E; ++I) { if (I.getUse().get() != Value) continue; if (I->getOpcode() == Opcode) return *I; } return nullptr; } unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { switch (Intr->getConstantOperandVal(1)) { case Intrinsic::amdgcn_if: return AMDGPUISD::IF; case Intrinsic::amdgcn_else: return AMDGPUISD::ELSE; case Intrinsic::amdgcn_loop: return AMDGPUISD::LOOP; case Intrinsic::amdgcn_end_cf: llvm_unreachable("should not occur"); default: return 0; } } // break, if_break, else_break are all only used as inputs to loop, not // directly as branch conditions. return 0; } bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { const Triple &TT = getTargetMachine().getTargetTriple(); return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && AMDGPU::shouldEmitConstantsToTextSection(TT); } bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS()) return false; // FIXME: Either avoid relying on address space here or change the default // address space for functions to avoid the explicit check. return (GV->getValueType()->isFunctionTy() || !isNonGlobalAddrSpace(GV->getAddressSpace())) && !shouldEmitFixup(GV) && !getTargetMachine().shouldAssumeDSOLocal(GV); } bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); } bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const { if (!GV->hasExternalLinkage()) return true; const auto OS = getTargetMachine().getTargetTriple().getOS(); return OS == Triple::AMDHSA || OS == Triple::AMDPAL; } /// This transforms the control flow intrinsics to get the branch destination as /// last parameter, also switches branch target with BR if the need arise SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, SelectionDAG &DAG) const { SDLoc DL(BRCOND); SDNode *Intr = BRCOND.getOperand(1).getNode(); SDValue Target = BRCOND.getOperand(2); SDNode *BR = nullptr; SDNode *SetCC = nullptr; if (Intr->getOpcode() == ISD::SETCC) { // As long as we negate the condition everything is fine SetCC = Intr; Intr = SetCC->getOperand(0).getNode(); } else { // Get the target from BR if we don't negate the condition BR = findUser(BRCOND, ISD::BR); assert(BR && "brcond missing unconditional branch user"); Target = BR->getOperand(1); } unsigned CFNode = isCFIntrinsic(Intr); if (CFNode == 0) { // This is a uniform branch so we don't need to legalize. return BRCOND; } bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; assert(!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)); // operands of the new intrinsic call SmallVector Ops; if (HaveChain) Ops.push_back(BRCOND.getOperand(0)); Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); Ops.push_back(Target); ArrayRef Res(Intr->value_begin() + 1, Intr->value_end()); // build the new intrinsic call SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); if (!HaveChain) { SDValue Ops[] = { SDValue(Result, 0), BRCOND.getOperand(0) }; Result = DAG.getMergeValues(Ops, DL).getNode(); } if (BR) { // Give the branch instruction our target SDValue Ops[] = { BR->getOperand(0), BRCOND.getOperand(2) }; SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); } SDValue Chain = SDValue(Result, Result->getNumValues() - 1); // Copy the intrinsic results to registers for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); if (!CopyToReg) continue; Chain = DAG.getCopyToReg( Chain, DL, CopyToReg->getOperand(1), SDValue(Result, i - 1), SDValue()); DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); } // Remove the old intrinsic from the chain DAG.ReplaceAllUsesOfValueWith( SDValue(Intr, Intr->getNumValues() - 1), Intr->getOperand(0)); return Chain; } SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { MVT VT = Op.getSimpleValueType(); SDLoc DL(Op); // Checking the depth if (Op.getConstantOperandVal(0) != 0) return DAG.getConstant(0, DL, VT); MachineFunction &MF = DAG.getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo(); // Check for kernel and shader functions if (Info->isEntryFunction()) return DAG.getConstant(0, DL, VT); MachineFrameInfo &MFI = MF.getFrameInfo(); // There is a call to @llvm.returnaddress in this function MFI.setReturnAddressIsTaken(true); const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); // Get the return address reg and mark it as an implicit live-in Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); } SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, SDValue Op, const SDLoc &DL, EVT VT) const { return Op.getValueType().bitsLE(VT) ? DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : DAG.getNode(ISD::FP_ROUND, DL, VT, Op, DAG.getTargetConstant(0, DL, MVT::i32)); } SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType() == MVT::f16 && "Do not know how to custom lower FP_ROUND for non-f16 type"); SDValue Src = Op.getOperand(0); EVT SrcVT = Src.getValueType(); if (SrcVT != MVT::f64) return Op; // TODO: Handle strictfp if (Op.getOpcode() != ISD::FP_ROUND) return Op; SDLoc DL(Op); SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); } SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); const MachineFunction &MF = DAG.getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo(); bool IsIEEEMode = Info->getMode().IEEE; // FIXME: Assert during selection that this is only selected for // ieee_mode. Currently a combine can produce the ieee version for non-ieee // mode functions, but this happens to be OK since it's only done in cases // where there is known no sNaN. if (IsIEEEMode) return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16 || VT == MVT::v16bf16) return splitBinaryVectorOp(Op, DAG); return Op; } SDValue SITargetLowering::lowerFLDEXP(SDValue Op, SelectionDAG &DAG) const { bool IsStrict = Op.getOpcode() == ISD::STRICT_FLDEXP; EVT VT = Op.getValueType(); assert(VT == MVT::f16); SDValue Exp = Op.getOperand(IsStrict ? 2 : 1); EVT ExpVT = Exp.getValueType(); if (ExpVT == MVT::i16) return Op; SDLoc DL(Op); // Correct the exponent type for f16 to i16. // Clamp the range of the exponent to the instruction's range. // TODO: This should be a generic narrowing legalization, and can easily be // for GlobalISel. SDValue MinExp = DAG.getConstant(minIntN(16), DL, ExpVT); SDValue ClampMin = DAG.getNode(ISD::SMAX, DL, ExpVT, Exp, MinExp); SDValue MaxExp = DAG.getConstant(maxIntN(16), DL, ExpVT); SDValue Clamp = DAG.getNode(ISD::SMIN, DL, ExpVT, ClampMin, MaxExp); SDValue TruncExp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Clamp); if (IsStrict) { return DAG.getNode(ISD::STRICT_FLDEXP, DL, {VT, MVT::Other}, {Op.getOperand(0), Op.getOperand(1), TruncExp}); } return DAG.getNode(ISD::FLDEXP, DL, VT, Op.getOperand(0), TruncExp); } // Custom lowering for vector multiplications and s_mul_u64. SDValue SITargetLowering::lowerMUL(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); // Split vector operands. if (VT.isVector()) return splitBinaryVectorOp(Op, DAG); assert(VT == MVT::i64 && "The following code is a special for s_mul_u64"); // There are four ways to lower s_mul_u64: // // 1. If all the operands are uniform, then we lower it as it is. // // 2. If the operands are divergent, then we have to split s_mul_u64 in 32-bit // multiplications because there is not a vector equivalent of s_mul_u64. // // 3. If the cost model decides that it is more efficient to use vector // registers, then we have to split s_mul_u64 in 32-bit multiplications. // This happens in splitScalarSMULU64() in SIInstrInfo.cpp . // // 4. If the cost model decides to use vector registers and both of the // operands are zero-extended/sign-extended from 32-bits, then we split the // s_mul_u64 in two 32-bit multiplications. The problem is that it is not // possible to check if the operands are zero-extended or sign-extended in // SIInstrInfo.cpp. For this reason, here, we replace s_mul_u64 with // s_mul_u64_u32_pseudo if both operands are zero-extended and we replace // s_mul_u64 with s_mul_i64_i32_pseudo if both operands are sign-extended. // If the cost model decides that we have to use vector registers, then // splitScalarSMulPseudo() (in SIInstrInfo.cpp) split s_mul_u64_u32/ // s_mul_i64_i32_pseudo in two vector multiplications. If the cost model // decides that we should use scalar registers, then s_mul_u64_u32_pseudo/ // s_mul_i64_i32_pseudo is lowered as s_mul_u64 in expandPostRAPseudo() in // SIInstrInfo.cpp . if (Op->isDivergent()) return SDValue(); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); // If all the operands are zero-enteted to 32-bits, then we replace s_mul_u64 // with s_mul_u64_u32_pseudo. If all the operands are sign-extended to // 32-bits, then we replace s_mul_u64 with s_mul_i64_i32_pseudo. KnownBits Op0KnownBits = DAG.computeKnownBits(Op0); unsigned Op0LeadingZeros = Op0KnownBits.countMinLeadingZeros(); KnownBits Op1KnownBits = DAG.computeKnownBits(Op1); unsigned Op1LeadingZeros = Op1KnownBits.countMinLeadingZeros(); SDLoc SL(Op); if (Op0LeadingZeros >= 32 && Op1LeadingZeros >= 32) return SDValue( DAG.getMachineNode(AMDGPU::S_MUL_U64_U32_PSEUDO, SL, VT, Op0, Op1), 0); unsigned Op0SignBits = DAG.ComputeNumSignBits(Op0); unsigned Op1SignBits = DAG.ComputeNumSignBits(Op1); if (Op0SignBits >= 33 && Op1SignBits >= 33) return SDValue( DAG.getMachineNode(AMDGPU::S_MUL_I64_I32_PSEUDO, SL, VT, Op0, Op1), 0); // If all the operands are uniform, then we lower s_mul_u64 as it is. return Op; } SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc SL(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); bool isSigned = Op.getOpcode() == ISD::SMULO; if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { const APInt &C = RHSC->getAPIntValue(); // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } if (C.isPowerOf2()) { // smulo(x, signed_min) is same as umulo(x, signed_min). bool UseArithShift = isSigned && !C.isMinSignedValue(); SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32); SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt); SDValue Overflow = DAG.getSetCC(SL, MVT::i1, DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, SL, VT, Result, ShiftAmt), LHS, ISD::SETNE); return DAG.getMergeValues({ Result, Overflow }, SL); } } SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS); SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU, SL, VT, LHS, RHS); SDValue Sign = isSigned ? DAG.getNode(ISD::SRA, SL, VT, Result, DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32)) : DAG.getConstant(0, SL, VT); SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE); return DAG.getMergeValues({ Result, Overflow }, SL); } SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { if (Op->isDivergent()) { // Select to V_MAD_[IU]64_[IU]32. return Op; } if (Subtarget->hasSMulHi()) { // Expand to S_MUL_I32 + S_MUL_HI_[IU]32. return SDValue(); } // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to // calculate the high part, so we might as well do the whole thing with // V_MAD_[IU]64_[IU]32. return Op; } SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { if (!Subtarget->isTrapHandlerEnabled() || Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) return lowerTrapEndpgm(Op, DAG); return Subtarget->supportsGetDoorbellID() ? lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG); } SDValue SITargetLowering::lowerTrapEndpgm( SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Chain = Op.getOperand(0); return DAG.getNode(AMDGPUISD::ENDPGM_TRAP, SL, MVT::Other, Chain); } SDValue SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT, const SDLoc &DL, Align Alignment, ImplicitParameter Param) const { MachineFunction &MF = DAG.getMachineFunction(); uint64_t Offset = getImplicitParameterOffset(MF, Param); SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset); MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment, MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); } SDValue SITargetLowering::lowerTrapHsaQueuePtr( SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Chain = Op.getOperand(0); SDValue QueuePtr; // For code object version 5, QueuePtr is passed through implicit kernarg. const Module *M = DAG.getMachineFunction().getFunction().getParent(); if (AMDGPU::getAMDHSACodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) { QueuePtr = loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR); } else { MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *Info = MF.getInfo(); Register UserSGPR = Info->getQueuePtrUserSGPR(); if (UserSGPR == AMDGPU::NoRegister) { // We probably are in a function incorrectly marked with // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the // trap, so just use a null pointer. QueuePtr = DAG.getConstant(0, SL, MVT::i64); } else { QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); } } SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, QueuePtr, SDValue()); uint64_t TrapID = static_cast(GCNSubtarget::TrapID::LLVMAMDHSATrap); SDValue Ops[] = { ToReg, DAG.getTargetConstant(TrapID, SL, MVT::i16), SGPR01, ToReg.getValue(1) }; return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); } SDValue SITargetLowering::lowerTrapHsa( SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Chain = Op.getOperand(0); // We need to simulate the 's_trap 2' instruction on targets that run in // PRIV=1 (where it is treated as a nop). if (Subtarget->hasPrivEnabledTrap2NopBug()) return DAG.getNode(AMDGPUISD::SIMULATED_TRAP, SL, MVT::Other, Chain); uint64_t TrapID = static_cast(GCNSubtarget::TrapID::LLVMAMDHSATrap); SDValue Ops[] = { Chain, DAG.getTargetConstant(TrapID, SL, MVT::i16) }; return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); } SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Chain = Op.getOperand(0); MachineFunction &MF = DAG.getMachineFunction(); if (!Subtarget->isTrapHandlerEnabled() || Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) { DiagnosticInfoUnsupported NoTrap(MF.getFunction(), "debugtrap handler not supported", Op.getDebugLoc(), DS_Warning); LLVMContext &Ctx = MF.getFunction().getContext(); Ctx.diagnose(NoTrap); return Chain; } uint64_t TrapID = static_cast(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap); SDValue Ops[] = { Chain, DAG.getTargetConstant(TrapID, SL, MVT::i16) }; return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); } SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, SelectionDAG &DAG) const { if (Subtarget->hasApertureRegs()) { const unsigned ApertureRegNo = (AS == AMDGPUAS::LOCAL_ADDRESS) ? AMDGPU::SRC_SHARED_BASE : AMDGPU::SRC_PRIVATE_BASE; // Note: this feature (register) is broken. When used as a 32-bit operand, // it returns a wrong value (all zeroes?). The real value is in the upper 32 // bits. // // To work around the issue, directly emit a 64 bit mov from this register // then extract the high bits. Note that this shouldn't even result in a // shift being emitted and simply become a pair of registers (e.g.): // s_mov_b64 s[6:7], src_shared_base // v_mov_b32_e32 v1, s7 // // FIXME: It would be more natural to emit a CopyFromReg here, but then copy // coalescing would kick in and it would think it's okay to use the "HI" // subregister directly (instead of extracting the HI 32 bits) which is an // artificial (unusable) register. // Register TableGen definitions would need an overhaul to get rid of the // artificial "HI" aperture registers and prevent this kind of issue from // happening. SDNode *Mov = DAG.getMachineNode(AMDGPU::S_MOV_B64, DL, MVT::i64, DAG.getRegister(ApertureRegNo, MVT::i64)); return DAG.getNode( ISD::TRUNCATE, DL, MVT::i32, DAG.getNode(ISD::SRL, DL, MVT::i64, {SDValue(Mov, 0), DAG.getConstant(32, DL, MVT::i64)})); } // For code object version 5, private_base and shared_base are passed through // implicit kernargs. const Module *M = DAG.getMachineFunction().getFunction().getParent(); if (AMDGPU::getAMDHSACodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) { ImplicitParameter Param = (AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE; return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param); } MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *Info = MF.getInfo(); Register UserSGPR = Info->getQueuePtrUserSGPR(); if (UserSGPR == AMDGPU::NoRegister) { // We probably are in a function incorrectly marked with // amdgpu-no-queue-ptr. This is undefined. return DAG.getUNDEF(MVT::i32); } SDValue QueuePtr = CreateLiveInRegister( DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); // Offset into amd_queue_t for group_segment_aperture_base_hi / // private_segment_aperture_base_hi. uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::getFixed(StructOffset)); // TODO: Use custom target PseudoSourceValue. // TODO: We should use the value from the IR intrinsic call, but it might not // be available and how do we get it? MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, commonAlignment(Align(64), StructOffset), MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); } /// Return true if the value is a known valid address, such that a null check is /// not necessary. static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG, const AMDGPUTargetMachine &TM, unsigned AddrSpace) { if (isa(Val) || isa(Val) || isa(Val)) return true; if (auto *ConstVal = dyn_cast(Val)) return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace); // TODO: Search through arithmetic, handle arguments and loads // marked nonnull. return false; } SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); const AMDGPUTargetMachine &TM = static_cast(getTargetMachine()); unsigned DestAS, SrcAS; SDValue Src; bool IsNonNull = false; if (const auto *ASC = dyn_cast(Op)) { SrcAS = ASC->getSrcAddressSpace(); Src = ASC->getOperand(0); DestAS = ASC->getDestAddressSpace(); } else { assert(Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN && Op.getConstantOperandVal(0) == Intrinsic::amdgcn_addrspacecast_nonnull); Src = Op->getOperand(1); SrcAS = Op->getConstantOperandVal(2); DestAS = Op->getConstantOperandVal(3); IsNonNull = true; } SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); // flat -> local/private if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { if (DestAS == AMDGPUAS::LOCAL_ADDRESS || DestAS == AMDGPUAS::PRIVATE_ADDRESS) { SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); if (IsNonNull || isKnownNonNull(Op, DAG, TM, SrcAS)) return Ptr; unsigned NullVal = TM.getNullPointerValue(DestAS); SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr, SegmentNullPtr); } } // local/private -> flat if (DestAS == AMDGPUAS::FLAT_ADDRESS) { if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { SDValue Aperture = getSegmentAperture(SrcAS, SL, DAG); SDValue CvtPtr = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr); if (IsNonNull || isKnownNonNull(Op, DAG, TM, SrcAS)) return CvtPtr; unsigned NullVal = TM.getNullPointerValue(SrcAS); SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr, FlatNullPtr); } } if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT && Op.getValueType() == MVT::i64) { const SIMachineFunctionInfo *Info = DAG.getMachineFunction().getInfo(); SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32); SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); } if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT && Src.getValueType() == MVT::i64) return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); // global <-> flat are no-ops and never emitted. const MachineFunction &MF = DAG.getMachineFunction(); DiagnosticInfoUnsupported InvalidAddrSpaceCast( MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); DAG.getContext()->diagnose(InvalidAddrSpaceCast); return DAG.getUNDEF(Op->getValueType(0)); } // This lowers an INSERT_SUBVECTOR by extracting the individual elements from // the small vector and inserting them into the big vector. That is better than // the default expansion of doing it via a stack slot. Even though the use of // the stack slot would be optimized away afterwards, the stack slot itself // remains. SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { SDValue Vec = Op.getOperand(0); SDValue Ins = Op.getOperand(1); SDValue Idx = Op.getOperand(2); EVT VecVT = Vec.getValueType(); EVT InsVT = Ins.getValueType(); EVT EltVT = VecVT.getVectorElementType(); unsigned InsNumElts = InsVT.getVectorNumElements(); unsigned IdxVal = Idx->getAsZExtVal(); SDLoc SL(Op); if (EltVT.getScalarSizeInBits() == 16 && IdxVal % 2 == 0) { // Insert 32-bit registers at a time. assert(InsNumElts % 2 == 0 && "expect legal vector types"); unsigned VecNumElts = VecVT.getVectorNumElements(); EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, VecNumElts / 2); EVT NewInsVT = InsNumElts == 2 ? MVT::i32 : EVT::getVectorVT(*DAG.getContext(), MVT::i32, InsNumElts / 2); Vec = DAG.getNode(ISD::BITCAST, SL, NewVecVT, Vec); Ins = DAG.getNode(ISD::BITCAST, SL, NewInsVT, Ins); for (unsigned I = 0; I != InsNumElts / 2; ++I) { SDValue Elt; if (InsNumElts == 2) { Elt = Ins; } else { Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Ins, DAG.getConstant(I, SL, MVT::i32)); } Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NewVecVT, Vec, Elt, DAG.getConstant(IdxVal / 2 + I, SL, MVT::i32)); } return DAG.getNode(ISD::BITCAST, SL, VecVT, Vec); } for (unsigned I = 0; I != InsNumElts; ++I) { SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, DAG.getConstant(I, SL, MVT::i32)); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, DAG.getConstant(IdxVal + I, SL, MVT::i32)); } return Vec; } SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { SDValue Vec = Op.getOperand(0); SDValue InsVal = Op.getOperand(1); SDValue Idx = Op.getOperand(2); EVT VecVT = Vec.getValueType(); EVT EltVT = VecVT.getVectorElementType(); unsigned VecSize = VecVT.getSizeInBits(); unsigned EltSize = EltVT.getSizeInBits(); SDLoc SL(Op); // Specially handle the case of v4i16 with static indexing. unsigned NumElts = VecVT.getVectorNumElements(); auto KIdx = dyn_cast(Idx); if (NumElts == 4 && EltSize == 16 && KIdx) { SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, DAG.getConstant(0, SL, MVT::i32)); SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, DAG.getConstant(1, SL, MVT::i32)); SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); unsigned Idx = KIdx->getZExtValue(); bool InsertLo = Idx < 2; SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, InsertLo ? LoVec : HiVec, DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); SDValue Concat = InsertLo ? DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); } // Static indexing does not lower to stack access, and hence there is no need // for special custom lowering to avoid stack access. if (isa(Idx)) return SDValue(); // Avoid stack access for dynamic indexing by custom lowering to // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits"); MVT IntVT = MVT::getIntegerVT(VecSize); // Convert vector index to bit-index and get the required bit mask. assert(isPowerOf2_32(EltSize)); const auto EltMask = maskTrailingOnes(EltSize); SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, DAG.getConstant(EltMask, SL, IntVT), ScaledIdx); // 1. Create a congruent vector with the target value in each element. SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, DAG.getSplatBuildVector(VecVT, SL, InsVal)); // 2. Mask off all other indices except the required index within (1). SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); // 3. Mask off the required index within the target vector. SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, DAG.getNOT(SL, BFM, IntVT), BCVec); // 4. Get (2) and (3) ORed into the target vector. SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); } SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); EVT ResultVT = Op.getValueType(); SDValue Vec = Op.getOperand(0); SDValue Idx = Op.getOperand(1); EVT VecVT = Vec.getValueType(); unsigned VecSize = VecVT.getSizeInBits(); EVT EltVT = VecVT.getVectorElementType(); DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); // Make sure we do any optimizations that will make it easier to fold // source modifiers before obscuring it with bit operations. // XXX - Why doesn't this get called when vector_shuffle is expanded? if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) return Combined; if (VecSize == 128 || VecSize == 256 || VecSize == 512) { SDValue Lo, Hi; EVT LoVT, HiVT; std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); if (VecSize == 128) { SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec); Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, DAG.getConstant(0, SL, MVT::i32))); Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, DAG.getConstant(1, SL, MVT::i32))); } else if (VecSize == 256) { SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec); SDValue Parts[4]; for (unsigned P = 0; P < 4; ++P) { Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, DAG.getConstant(P, SL, MVT::i32)); } Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, Parts[0], Parts[1])); Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, Parts[2], Parts[3])); } else { assert(VecSize == 512); SDValue V2 = DAG.getBitcast(MVT::v8i64, Vec); SDValue Parts[8]; for (unsigned P = 0; P < 8; ++P) { Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, DAG.getConstant(P, SL, MVT::i32)); } Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v4i64, Parts[0], Parts[1], Parts[2], Parts[3])); Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v4i64, Parts[4], Parts[5],Parts[6], Parts[7])); } EVT IdxVT = Idx.getValueType(); unsigned NElem = VecVT.getVectorNumElements(); assert(isPowerOf2_32(NElem)); SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT); SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask); SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx); } assert(VecSize <= 64); MVT IntVT = MVT::getIntegerVT(VecSize); // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly. SDValue VecBC = peekThroughBitcasts(Vec); if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) { SDValue Src = VecBC.getOperand(0); Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src); Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT); } unsigned EltSize = EltVT.getSizeInBits(); assert(isPowerOf2_32(EltSize)); SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); // Convert vector index to bit-index (* EltSize) SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); if (ResultVT == MVT::f16 || ResultVT == MVT::bf16) { SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); } return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); } static bool elementPairIsContiguous(ArrayRef Mask, int Elt) { assert(Elt % 2 == 0); return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); } SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); EVT ResultVT = Op.getValueType(); ShuffleVectorSDNode *SVN = cast(Op); EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; EVT EltVT = PackVT.getVectorElementType(); int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); // vector_shuffle <0,1,6,7> lhs, rhs // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) // // vector_shuffle <6,7,2,3> lhs, rhs // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) // // vector_shuffle <6,7,0,1> lhs, rhs // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) // Avoid scalarizing when both halves are reading from consecutive elements. SmallVector Pieces; for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { if (elementPairIsContiguous(SVN->getMask(), I)) { const int Idx = SVN->getMaskElt(I); int VecIdx = Idx < SrcNumElts ? 0 : 1; int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, PackVT, SVN->getOperand(VecIdx), DAG.getConstant(EltIdx, SL, MVT::i32)); Pieces.push_back(SubVec); } else { const int Idx0 = SVN->getMaskElt(I); const int Idx1 = SVN->getMaskElt(I + 1); int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; SDValue Vec0 = SVN->getOperand(VecIdx0); SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); SDValue Vec1 = SVN->getOperand(VecIdx1); SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); } } return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); } SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const { SDValue SVal = Op.getOperand(0); EVT ResultVT = Op.getValueType(); EVT SValVT = SVal.getValueType(); SDValue UndefVal = DAG.getUNDEF(SValVT); SDLoc SL(Op); SmallVector VElts; VElts.push_back(SVal); for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I) VElts.push_back(UndefVal); return DAG.getBuildVector(ResultVT, SL, VElts); } SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); EVT VT = Op.getValueType(); if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) { EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), VT.getVectorNumElements() / 2); MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits()); // Turn into pair of packed build_vectors. // TODO: Special case for constants that can be materialized with s_mov_b64. SmallVector LoOps, HiOps; for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) { LoOps.push_back(Op.getOperand(I)); HiOps.push_back(Op.getOperand(I + E)); } SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps); SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps); SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo); SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi); SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL, { CastLo, CastHi }); return DAG.getNode(ISD::BITCAST, SL, VT, Blend); } if (VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v16bf16) { EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), VT.getVectorNumElements() / 4); MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits()); SmallVector Parts[4]; for (unsigned I = 0, E = VT.getVectorNumElements() / 4; I != E; ++I) { for (unsigned P = 0; P < 4; ++P) Parts[P].push_back(Op.getOperand(I + P * E)); } SDValue Casts[4]; for (unsigned P = 0; P < 4; ++P) { SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]); Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec); } SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 4), SL, Casts); return DAG.getNode(ISD::BITCAST, SL, VT, Blend); } if (VT == MVT::v32i16 || VT == MVT::v32f16 || VT == MVT::v32bf16) { EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), VT.getVectorNumElements() / 8); MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits()); SmallVector Parts[8]; for (unsigned I = 0, E = VT.getVectorNumElements() / 8; I != E; ++I) { for (unsigned P = 0; P < 8; ++P) Parts[P].push_back(Op.getOperand(I + P * E)); } SDValue Casts[8]; for (unsigned P = 0; P < 8; ++P) { SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]); Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec); } SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 8), SL, Casts); return DAG.getNode(ISD::BITCAST, SL, VT, Blend); } assert(VT == MVT::v2f16 || VT == MVT::v2i16 || VT == MVT::v2bf16); assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); SDValue Lo = Op.getOperand(0); SDValue Hi = Op.getOperand(1); // Avoid adding defined bits with the zero_extend. if (Hi.isUndef()) { Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); } Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, DAG.getConstant(16, SL, MVT::i32)); if (Lo.isUndef()) return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); return DAG.getNode(ISD::BITCAST, SL, VT, Or); } bool SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { // OSes that use ELF REL relocations (instead of RELA) can only store a // 32-bit addend in the instruction, so it is not safe to allow offset folding // which can create arbitrary 64-bit addends. (This is only a problem for // R_AMDGPU_*32_HI relocations since other relocation types are unaffected by // the high 32 bits of the addend.) // // This should be kept in sync with how HasRelocationAddend is initialized in // the constructor of ELFAMDGPUAsmBackend. if (!Subtarget->isAmdHsaOS()) return false; // We can fold offsets for anything that doesn't require a GOT relocation. return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && !shouldEmitGOTReloc(GA->getGlobal()); } static SDValue buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, const SDLoc &DL, int64_t Offset, EVT PtrVT, unsigned GAFlags = SIInstrInfo::MO_NONE) { assert(isInt<32>(Offset + 4) && "32-bit offset is expected!"); // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is // lowered to the following code sequence: // // For constant address space: // s_getpc_b64 s[0:1] // s_add_u32 s0, s0, $symbol // s_addc_u32 s1, s1, 0 // // s_getpc_b64 returns the address of the s_add_u32 instruction and then // a fixup or relocation is emitted to replace $symbol with a literal // constant, which is a pc-relative offset from the encoding of the $symbol // operand to the global variable. // // For global address space: // s_getpc_b64 s[0:1] // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi // // s_getpc_b64 returns the address of the s_add_u32 instruction and then // fixups or relocations are emitted to replace $symbol@*@lo and // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, // which is a 64-bit pc-relative offset from the encoding of the $symbol // operand to the global variable. SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset, GAFlags); SDValue PtrHi; if (GAFlags == SIInstrInfo::MO_NONE) PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); else PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset, GAFlags + 1); return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); } SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, SDValue Op, SelectionDAG &DAG) const { GlobalAddressSDNode *GSD = cast(Op); SDLoc DL(GSD); EVT PtrVT = Op.getValueType(); const GlobalValue *GV = GSD->getGlobal(); if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && shouldUseLDSConstAddress(GV)) || GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && GV->hasExternalLinkage()) { Type *Ty = GV->getValueType(); // HIP uses an unsized array `extern __shared__ T s[]` or similar // zero-sized type in other languages to declare the dynamic shared // memory which size is not known at the compile time. They will be // allocated by the runtime and placed directly after the static // allocated ones. They all share the same offset. if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) { assert(PtrVT == MVT::i32 && "32-bit pointer is expected."); // Adjust alignment for that dynamic shared memory array. Function &F = DAG.getMachineFunction().getFunction(); MFI->setDynLDSAlign(F, *cast(GV)); MFI->setUsesDynamicLDS(true); return SDValue( DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0); } } return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); } if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), SIInstrInfo::MO_ABS32_LO); return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); } if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS()) { SDValue AddrLo = DAG.getTargetGlobalAddress( GV, DL, MVT::i32, GSD->getOffset(), SIInstrInfo::MO_ABS32_LO); AddrLo = {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, AddrLo), 0}; SDValue AddrHi = DAG.getTargetGlobalAddress( GV, DL, MVT::i32, GSD->getOffset(), SIInstrInfo::MO_ABS32_HI); AddrHi = {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, AddrHi), 0}; return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, AddrLo, AddrHi); } if (shouldEmitFixup(GV)) return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); if (shouldEmitPCReloc(GV)) return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, SIInstrInfo::MO_REL32); SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, SIInstrInfo::MO_GOTPCREL32); Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); const DataLayout &DataLayout = DAG.getDataLayout(); Align Alignment = DataLayout.getABITypeAlign(PtrTy); MachinePointerInfo PtrInfo = MachinePointerInfo::getGOT(DAG.getMachineFunction()); return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment, MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); } SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, const SDLoc &DL, SDValue V) const { // We can't use S_MOV_B32 directly, because there is no way to specify m0 as // the destination register. // // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, // so we will end up with redundant moves to m0. // // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. // A Null SDValue creates a glue result. SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, V, Chain); return SDValue(M0, 0); } SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, SDValue Op, MVT VT, unsigned Offset) const { SDLoc SL(Op); SDValue Param = lowerKernargMemParameter( DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false); // The local size values will have the hi 16-bits as zero. return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, DAG.getValueType(VT)); } static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, EVT VT) { DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), "non-hsa intrinsic with hsa target", DL.getDebugLoc()); DAG.getContext()->diagnose(BadIntrin); return DAG.getUNDEF(VT); } static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, EVT VT) { DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), "intrinsic not supported on subtarget", DL.getDebugLoc()); DAG.getContext()->diagnose(BadIntrin); return DAG.getUNDEF(VT); } static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, ArrayRef Elts) { assert(!Elts.empty()); MVT Type; unsigned NumElts = Elts.size(); if (NumElts <= 12) { Type = MVT::getVectorVT(MVT::f32, NumElts); } else { assert(Elts.size() <= 16); Type = MVT::v16f32; NumElts = 16; } SmallVector VecElts(NumElts); for (unsigned i = 0; i < Elts.size(); ++i) { SDValue Elt = Elts[i]; if (Elt.getValueType() != MVT::f32) Elt = DAG.getBitcast(MVT::f32, Elt); VecElts[i] = Elt; } for (unsigned i = Elts.size(); i < NumElts; ++i) VecElts[i] = DAG.getUNDEF(MVT::f32); if (NumElts == 1) return VecElts[0]; return DAG.getBuildVector(Type, DL, VecElts); } static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, SDValue Src, int ExtraElts) { EVT SrcVT = Src.getValueType(); SmallVector Elts; if (SrcVT.isVector()) DAG.ExtractVectorElements(Src, Elts); else Elts.push_back(Src); SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType()); while (ExtraElts--) Elts.push_back(Undef); return DAG.getBuildVector(CastVT, DL, Elts); } // Re-construct the required return value for a image load intrinsic. // This is more complicated due to the optional use TexFailCtrl which means the required // return type is an aggregate static SDValue constructRetValue(SelectionDAG &DAG, MachineSDNode *Result, ArrayRef ResultTypes, bool IsTexFail, bool Unpacked, bool IsD16, int DMaskPop, int NumVDataDwords, bool IsAtomicPacked16Bit, const SDLoc &DL) { // Determine the required return type. This is the same regardless of IsTexFail flag EVT ReqRetVT = ResultTypes[0]; int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; int NumDataDwords = ((IsD16 && !Unpacked) || IsAtomicPacked16Bit) ? (ReqRetNumElts + 1) / 2 : ReqRetNumElts; int MaskPopDwords = (!IsD16 || Unpacked) ? DMaskPop : (DMaskPop + 1) / 2; MVT DataDwordVT = NumDataDwords == 1 ? MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords); MVT MaskPopVT = MaskPopDwords == 1 ? MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords); SDValue Data(Result, 0); SDValue TexFail; if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) { SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32); if (MaskPopVT.isVector()) { Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT, SDValue(Result, 0), ZeroIdx); } else { Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT, SDValue(Result, 0), ZeroIdx); } } if (DataDwordVT.isVector() && !IsAtomicPacked16Bit) Data = padEltsToUndef(DAG, DL, DataDwordVT, Data, NumDataDwords - MaskPopDwords); if (IsD16) Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked); EVT LegalReqRetVT = ReqRetVT; if (!ReqRetVT.isVector()) { if (!Data.getValueType().isInteger()) Data = DAG.getNode(ISD::BITCAST, DL, Data.getValueType().changeTypeToInteger(), Data); Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data); } else { // We need to widen the return vector to a legal type if ((ReqRetVT.getVectorNumElements() % 2) == 1 && ReqRetVT.getVectorElementType().getSizeInBits() == 16) { LegalReqRetVT = EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(), ReqRetVT.getVectorNumElements() + 1); } } Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data); if (IsTexFail) { TexFail = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0), DAG.getConstant(MaskPopDwords, DL, MVT::i32)); return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL); } if (Result->getNumValues() == 1) return Data; return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL); } static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, SDValue *LWE, bool &IsTexFail) { auto TexFailCtrlConst = cast(TexFailCtrl.getNode()); uint64_t Value = TexFailCtrlConst->getZExtValue(); if (Value) { IsTexFail = true; } SDLoc DL(TexFailCtrlConst); *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); Value &= ~(uint64_t)0x1; *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); Value &= ~(uint64_t)0x2; return Value == 0; } static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op, MVT PackVectorVT, SmallVectorImpl &PackedAddrs, unsigned DimIdx, unsigned EndIdx, unsigned NumGradients) { SDLoc DL(Op); for (unsigned I = DimIdx; I < EndIdx; I++) { SDValue Addr = Op.getOperand(I); // Gradients are packed with undef for each coordinate. // In , notation, the registers look like this: // 1D: undef,dx/dh; undef,dx/dv // 2D: dy/dh,dx/dh; dy/dv,dx/dv // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv if (((I + 1) >= EndIdx) || ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 || I == DimIdx + NumGradients - 1))) { if (Addr.getValueType() != MVT::i16) Addr = DAG.getBitcast(MVT::i16, Addr); Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr); } else { Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)}); I++; } Addr = DAG.getBitcast(MVT::f32, Addr); PackedAddrs.push_back(Addr); } } SDValue SITargetLowering::lowerImage(SDValue Op, const AMDGPU::ImageDimIntrinsicInfo *Intr, SelectionDAG &DAG, bool WithChain) const { SDLoc DL(Op); MachineFunction &MF = DAG.getMachineFunction(); const GCNSubtarget* ST = &MF.getSubtarget(); const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); unsigned IntrOpcode = Intr->BaseOpcode; bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget); bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); bool IsGFX12Plus = AMDGPU::isGFX12Plus(*Subtarget); SmallVector ResultTypes(Op->values()); SmallVector OrigResultTypes(Op->values()); bool IsD16 = false; bool IsG16 = false; bool IsA16 = false; SDValue VData; int NumVDataDwords = 0; bool AdjustRetType = false; bool IsAtomicPacked16Bit = false; // Offset of intrinsic arguments const unsigned ArgOffset = WithChain ? 2 : 1; unsigned DMask; unsigned DMaskLanes = 0; if (BaseOpcode->Atomic) { VData = Op.getOperand(2); IsAtomicPacked16Bit = (Intr->BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_F16 || Intr->BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_BF16); bool Is64Bit = VData.getValueSizeInBits() == 64; if (BaseOpcode->AtomicX2) { SDValue VData2 = Op.getOperand(3); VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, {VData, VData2}); if (Is64Bit) VData = DAG.getBitcast(MVT::v4i32, VData); ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; DMask = Is64Bit ? 0xf : 0x3; NumVDataDwords = Is64Bit ? 4 : 2; } else { DMask = Is64Bit ? 0x3 : 0x1; NumVDataDwords = Is64Bit ? 2 : 1; } } else { DMask = Op->getConstantOperandVal(ArgOffset + Intr->DMaskIndex); DMaskLanes = BaseOpcode->Gather4 ? 4 : llvm::popcount(DMask); if (BaseOpcode->Store) { VData = Op.getOperand(2); MVT StoreVT = VData.getSimpleValueType(); if (StoreVT.getScalarType() == MVT::f16) { if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) return Op; // D16 is unsupported for this instruction IsD16 = true; VData = handleD16VData(VData, DAG, true); } NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; } else if (!BaseOpcode->NoReturn) { // Work out the num dwords based on the dmask popcount and underlying type // and whether packing is supported. MVT LoadVT = ResultTypes[0].getSimpleVT(); if (LoadVT.getScalarType() == MVT::f16) { if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) return Op; // D16 is unsupported for this instruction IsD16 = true; } // Confirm that the return type is large enough for the dmask specified if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || (!LoadVT.isVector() && DMaskLanes > 1)) return Op; // The sq block of gfx8 and gfx9 do not estimate register use correctly // for d16 image_gather4, image_gather4_l, and image_gather4_lz // instructions. if (IsD16 && !Subtarget->hasUnpackedD16VMem() && !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug())) NumVDataDwords = (DMaskLanes + 1) / 2; else NumVDataDwords = DMaskLanes; AdjustRetType = true; } } unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd; SmallVector VAddrs; // Check for 16 bit addresses or derivatives and pack if true. MVT VAddrVT = Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType(); MVT VAddrScalarVT = VAddrVT.getScalarType(); MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType(); VAddrScalarVT = VAddrVT.getScalarType(); MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; // Push back extra arguments. for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) { if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) { assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument"); // Special handling of bias when A16 is on. Bias is of type half but // occupies full 32-bit. SDValue Bias = DAG.getBuildVector( MVT::v2f16, DL, {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)}); VAddrs.push_back(Bias); } else { assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) && "Bias needs to be converted to 16 bit in A16 mode"); VAddrs.push_back(Op.getOperand(ArgOffset + I)); } } if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) { // 16 bit gradients are supported, but are tied to the A16 control // so both gradients and addresses must be 16 bit LLVM_DEBUG( dbgs() << "Failed to lower image intrinsic: 16 bit addresses " "require 16 bit args for both gradients and addresses"); return Op; } if (IsA16) { if (!ST->hasA16()) { LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not " "support 16 bit addresses\n"); return Op; } } // We've dealt with incorrect input so we know that if IsA16, IsG16 // are set then we have to compress/pack operands (either address, // gradient or both) // In the case where a16 and gradients are tied (no G16 support) then we // have already verified that both IsA16 and IsG16 are true if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) { // Activate g16 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo = AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode); IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16 } // Add gradients (packed or unpacked) if (IsG16) { // Pack the gradients // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart); packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs, ArgOffset + Intr->GradientStart, ArgOffset + Intr->CoordStart, Intr->NumGradients); } else { for (unsigned I = ArgOffset + Intr->GradientStart; I < ArgOffset + Intr->CoordStart; I++) VAddrs.push_back(Op.getOperand(I)); } // Add addresses (packed or unpacked) if (IsA16) { packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs, ArgOffset + Intr->CoordStart, VAddrEnd, 0 /* No gradients */); } else { // Add uncompressed address for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++) VAddrs.push_back(Op.getOperand(I)); } // If the register allocator cannot place the address registers contiguously // without introducing moves, then using the non-sequential address encoding // is always preferable, since it saves VALU instructions and is usually a // wash in terms of code size or even better. // // However, we currently have no way of hinting to the register allocator that // MIMG addresses should be placed contiguously when it is possible to do so, // so force non-NSA for the common 2-address case as a heuristic. // // SIShrinkInstructions will convert NSA encodings to non-NSA after register // allocation when possible. // // Partial NSA is allowed on GFX11+ where the final register is a contiguous // set of the remaining addresses. const unsigned NSAMaxSize = ST->getNSAMaxSize(BaseOpcode->Sampler); const bool HasPartialNSAEncoding = ST->hasPartialNSAEncoding(); const bool UseNSA = ST->hasNSAEncoding() && VAddrs.size() >= ST->getNSAThreshold(MF) && (VAddrs.size() <= NSAMaxSize || HasPartialNSAEncoding); const bool UsePartialNSA = UseNSA && HasPartialNSAEncoding && VAddrs.size() > NSAMaxSize; SDValue VAddr; if (UsePartialNSA) { VAddr = getBuildDwordsVector(DAG, DL, ArrayRef(VAddrs).drop_front(NSAMaxSize - 1)); } else if (!UseNSA) { VAddr = getBuildDwordsVector(DAG, DL, VAddrs); } SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); SDValue Unorm; if (!BaseOpcode->Sampler) { Unorm = True; } else { uint64_t UnormConst = Op.getConstantOperandVal(ArgOffset + Intr->UnormIndex); Unorm = UnormConst ? True : False; } SDValue TFE; SDValue LWE; SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex); bool IsTexFail = false; if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) return Op; if (IsTexFail) { if (!DMaskLanes) { // Expecting to get an error flag since TFC is on - and dmask is 0 // Force dmask to be at least 1 otherwise the instruction will fail DMask = 0x1; DMaskLanes = 1; NumVDataDwords = 1; } NumVDataDwords += 1; AdjustRetType = true; } // Has something earlier tagged that the return type needs adjusting // This happens if the instruction is a load or has set TexFailCtrl flags if (AdjustRetType) { // NumVDataDwords reflects the true number of dwords required in the return type if (DMaskLanes == 0 && !BaseOpcode->Store) { // This is a no-op load. This can be eliminated SDValue Undef = DAG.getUNDEF(Op.getValueType()); if (isa(Op)) return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); return Undef; } EVT NewVT = NumVDataDwords > 1 ? EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords) : MVT::i32; ResultTypes[0] = NewVT; if (ResultTypes.size() == 3) { // Original result was aggregate type used for TexFailCtrl results // The actual instruction returns as a vector type which has now been // created. Remove the aggregate result. ResultTypes.erase(&ResultTypes[1]); } } unsigned CPol = Op.getConstantOperandVal(ArgOffset + Intr->CachePolicyIndex); if (BaseOpcode->Atomic) CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization if (CPol & ~((IsGFX12Plus ? AMDGPU::CPol::ALL : AMDGPU::CPol::ALL_pregfx12) | AMDGPU::CPol::VOLATILE)) return Op; SmallVector Ops; if (BaseOpcode->Store || BaseOpcode->Atomic) Ops.push_back(VData); // vdata if (UsePartialNSA) { append_range(Ops, ArrayRef(VAddrs).take_front(NSAMaxSize - 1)); Ops.push_back(VAddr); } else if (UseNSA) append_range(Ops, VAddrs); else Ops.push_back(VAddr); Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex)); if (BaseOpcode->Sampler) Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex)); Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); if (IsGFX10Plus) Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA) Ops.push_back(Unorm); Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32)); Ops.push_back(IsA16 && // r128, a16 for gfx9 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); if (IsGFX10Plus) Ops.push_back(IsA16 ? True : False); if (!Subtarget->hasGFX90AInsts()) { Ops.push_back(TFE); //tfe } else if (TFE->getAsZExtVal()) { report_fatal_error("TFE is not supported on this GPU"); } if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA) Ops.push_back(LWE); // lwe if (!IsGFX10Plus) Ops.push_back(DimInfo->DA ? True : False); if (BaseOpcode->HasD16) Ops.push_back(IsD16 ? True : False); if (isa(Op)) Ops.push_back(Op.getOperand(0)); // chain int NumVAddrDwords = UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; int Opcode = -1; if (IsGFX12Plus) { Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx12, NumVDataDwords, NumVAddrDwords); } else if (IsGFX11Plus) { Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, UseNSA ? AMDGPU::MIMGEncGfx11NSA : AMDGPU::MIMGEncGfx11Default, NumVDataDwords, NumVAddrDwords); } else if (IsGFX10Plus) { Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, UseNSA ? AMDGPU::MIMGEncGfx10NSA : AMDGPU::MIMGEncGfx10Default, NumVDataDwords, NumVAddrDwords); } else { if (Subtarget->hasGFX90AInsts()) { Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a, NumVDataDwords, NumVAddrDwords); if (Opcode == -1) report_fatal_error( "requested image instruction is not supported on this GPU"); } if (Opcode == -1 && Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, NumVDataDwords, NumVAddrDwords); if (Opcode == -1) Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, NumVDataDwords, NumVAddrDwords); } if (Opcode == -1) return Op; MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); if (auto MemOp = dyn_cast(Op)) { MachineMemOperand *MemRef = MemOp->getMemOperand(); DAG.setNodeMemRefs(NewNode, {MemRef}); } if (BaseOpcode->AtomicX2) { SmallVector Elt; DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); } if (BaseOpcode->NoReturn) return SDValue(NewNode, 0); return constructRetValue(DAG, NewNode, OrigResultTypes, IsTexFail, Subtarget->hasUnpackedD16VMem(), IsD16, DMaskLanes, NumVDataDwords, IsAtomicPacked16Bit, DL); } SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, SDValue Offset, SDValue CachePolicy, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); const DataLayout &DataLayout = DAG.getDataLayout(); Align Alignment = DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(), MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant, VT.getStoreSize(), Alignment); if (!Offset->isDivergent()) { SDValue Ops[] = {Rsrc, Offset, CachePolicy}; // Lower llvm.amdgcn.s.buffer.load.{i16, u16} intrinsics. Initially, the // s_buffer_load_u16 instruction is emitted for both signed and unsigned // loads. Later, DAG combiner tries to combine s_buffer_load_u16 with sext // and generates s_buffer_load_i16 (performSignExtendInRegCombine). if (VT == MVT::i16 && Subtarget->hasScalarSubwordLoads()) { SDValue BufferLoad = DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD_USHORT, DL, DAG.getVTList(MVT::i32), Ops, VT, MMO); return DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad); } // Widen vec3 load to vec4. if (VT.isVector() && VT.getVectorNumElements() == 3 && !Subtarget->hasScalarDwordx3Loads()) { EVT WidenedVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); auto WidenedOp = DAG.getMemIntrinsicNode( AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT, MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize())); auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp, DAG.getVectorIdxConstant(0, DL)); return Subvector; } return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(VT), Ops, VT, MMO); } // We have a divergent offset. Emit a MUBUF buffer load instead. We can // assume that the buffer is unswizzled. SDValue Ops[] = { DAG.getEntryNode(), // Chain Rsrc, // rsrc DAG.getConstant(0, DL, MVT::i32), // vindex {}, // voffset {}, // soffset {}, // offset CachePolicy, // cachepolicy DAG.getTargetConstant(0, DL, MVT::i1), // idxen }; if (VT == MVT::i16 && Subtarget->hasScalarSubwordLoads()) { setBufferOffsets(Offset, DAG, &Ops[3], Align(4)); return handleByteShortBufferLoads(DAG, VT, DL, Ops, MMO); } SmallVector Loads; unsigned NumLoads = 1; MVT LoadVT = VT.getSimpleVT(); unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; assert((LoadVT.getScalarType() == MVT::i32 || LoadVT.getScalarType() == MVT::f32)); if (NumElts == 8 || NumElts == 16) { NumLoads = NumElts / 4; LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4); } SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); // Use the alignment to ensure that the required offsets will fit into the // immediate offsets. setBufferOffsets(Offset, DAG, &Ops[3], NumLoads > 1 ? Align(16 * NumLoads) : Align(4)); uint64_t InstOffset = Ops[5]->getAsZExtVal(); for (unsigned i = 0; i < NumLoads; ++i) { Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32); Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops, LoadVT, MMO, DAG)); } if (NumElts == 8 || NumElts == 16) return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); return Loads[0]; } SDValue SITargetLowering::lowerWaveID(SelectionDAG &DAG, SDValue Op) const { // With architected SGPRs, waveIDinGroup is in TTMP8[29:25]. if (!Subtarget->hasArchitectedSGPRs()) return {}; SDLoc SL(Op); MVT VT = MVT::i32; SDValue TTMP8 = DAG.getCopyFromReg(DAG.getEntryNode(), SL, AMDGPU::TTMP8, VT); return DAG.getNode(AMDGPUISD::BFE_U32, SL, VT, TTMP8, DAG.getConstant(25, SL, VT), DAG.getConstant(5, SL, VT)); } SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op, unsigned Dim, const ArgDescriptor &Arg) const { SDLoc SL(Op); MachineFunction &MF = DAG.getMachineFunction(); unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim); if (MaxID == 0) return DAG.getConstant(0, SL, MVT::i32); SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, SDLoc(DAG.getEntryNode()), Arg); // Don't bother inserting AssertZext for packed IDs since we're emitting the // masking operations anyway. // // TODO: We could assert the top bit is 0 for the source copy. if (Arg.isMasked()) return Val; // Preserve the known bits after expansion to a copy. EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_width(MaxID)); return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val, DAG.getValueType(SmallVT)); } SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); auto MFI = MF.getInfo(); EVT VT = Op.getValueType(); SDLoc DL(Op); unsigned IntrinsicID = Op.getConstantOperandVal(0); // TODO: Should this propagate fast-math-flags? switch (IntrinsicID) { case Intrinsic::amdgcn_implicit_buffer_ptr: { if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) return emitNonHSAIntrinsicError(DAG, DL, VT); return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); } case Intrinsic::amdgcn_dispatch_ptr: case Intrinsic::amdgcn_queue_ptr: { if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { DiagnosticInfoUnsupported BadIntrin( MF.getFunction(), "unsupported hsa intrinsic without hsa target", DL.getDebugLoc()); DAG.getContext()->diagnose(BadIntrin); return DAG.getUNDEF(VT); } auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; return getPreloadedValue(DAG, *MFI, VT, RegID); } case Intrinsic::amdgcn_implicitarg_ptr: { if (MFI->isEntryFunction()) return getImplicitArgPtr(DAG, DL); return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); } case Intrinsic::amdgcn_kernarg_segment_ptr: { if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) { // This only makes sense to call in a kernel, so just lower to null. return DAG.getConstant(0, DL, VT); } return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); } case Intrinsic::amdgcn_dispatch_id: { return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); } case Intrinsic::amdgcn_rcp: return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_rsq: return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_rsq_legacy: if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) return emitRemovedIntrinsicError(DAG, DL, VT); return SDValue(); case Intrinsic::amdgcn_rcp_legacy: if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) return emitRemovedIntrinsicError(DAG, DL, VT); return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_rsq_clamp: { if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); Type *Type = VT.getTypeForEVT(*DAG.getContext()); APFloat Max = APFloat::getLargest(Type->getFltSemantics()); APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, DAG.getConstantFP(Max, DL, VT)); return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, DAG.getConstantFP(Min, DL, VT)); } case Intrinsic::r600_read_ngroups_x: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::NGROUPS_X, Align(4), false); case Intrinsic::r600_read_ngroups_y: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::NGROUPS_Y, Align(4), false); case Intrinsic::r600_read_ngroups_z: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::NGROUPS_Z, Align(4), false); case Intrinsic::r600_read_global_size_x: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::GLOBAL_SIZE_X, Align(4), false); case Intrinsic::r600_read_global_size_y: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::GLOBAL_SIZE_Y, Align(4), false); case Intrinsic::r600_read_global_size_z: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::GLOBAL_SIZE_Z, Align(4), false); case Intrinsic::r600_read_local_size_x: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerImplicitZextParam(DAG, Op, MVT::i16, SI::KernelInputOffsets::LOCAL_SIZE_X); case Intrinsic::r600_read_local_size_y: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerImplicitZextParam(DAG, Op, MVT::i16, SI::KernelInputOffsets::LOCAL_SIZE_Y); case Intrinsic::r600_read_local_size_z: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerImplicitZextParam(DAG, Op, MVT::i16, SI::KernelInputOffsets::LOCAL_SIZE_Z); case Intrinsic::amdgcn_workgroup_id_x: return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::WORKGROUP_ID_X); case Intrinsic::amdgcn_workgroup_id_y: return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); case Intrinsic::amdgcn_workgroup_id_z: return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); case Intrinsic::amdgcn_wave_id: return lowerWaveID(DAG, Op); case Intrinsic::amdgcn_lds_kernel_id: { if (MFI->isEntryFunction()) return getLDSKernelId(DAG, DL); return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::LDS_KERNEL_ID); } case Intrinsic::amdgcn_workitem_id_x: return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX); case Intrinsic::amdgcn_workitem_id_y: return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY); case Intrinsic::amdgcn_workitem_id_z: return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ); case Intrinsic::amdgcn_wavefrontsize: return DAG.getConstant(MF.getSubtarget().getWavefrontSize(), SDLoc(Op), MVT::i32); case Intrinsic::amdgcn_s_buffer_load: { unsigned CPol = Op.getConstantOperandVal(3); // s_buffer_load, because of how it's optimized, can't be volatile // so reject ones with the volatile bit set. if (CPol & ~((Subtarget->getGeneration() >= AMDGPUSubtarget::GFX12) ? AMDGPU::CPol::ALL : AMDGPU::CPol::ALL_pregfx12)) return Op; return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), DAG); } case Intrinsic::amdgcn_fdiv_fast: return lowerFDIV_FAST(Op, DAG); case Intrinsic::amdgcn_sin: return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_cos: return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_mul_u24: return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); case Intrinsic::amdgcn_mul_i24: return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); case Intrinsic::amdgcn_log_clamp: { if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) return SDValue(); return emitRemovedIntrinsicError(DAG, DL, VT); } case Intrinsic::amdgcn_fract: return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_class: return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, Op.getOperand(1), Op.getOperand(2)); case Intrinsic::amdgcn_div_fmas: return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), Op.getOperand(4)); case Intrinsic::amdgcn_div_fixup: return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::amdgcn_div_scale: { const ConstantSDNode *Param = cast(Op.getOperand(3)); // Translate to the operands expected by the machine instruction. The // first parameter must be the same as the first instruction. SDValue Numerator = Op.getOperand(1); SDValue Denominator = Op.getOperand(2); // Note this order is opposite of the machine instruction's operations, // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The // intrinsic has the numerator as the first operand to match a normal // division operation. SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator; return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, Denominator, Numerator); } case Intrinsic::amdgcn_icmp: { // There is a Pat that handles this variant, so return it as-is. if (Op.getOperand(1).getValueType() == MVT::i1 && Op.getConstantOperandVal(2) == 0 && Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) return Op; return lowerICMPIntrinsic(*this, Op.getNode(), DAG); } case Intrinsic::amdgcn_fcmp: { return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); } case Intrinsic::amdgcn_ballot: return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG); case Intrinsic::amdgcn_fmed3: return DAG.getNode(AMDGPUISD::FMED3, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::amdgcn_fdot2: return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), Op.getOperand(4)); case Intrinsic::amdgcn_fmul_legacy: return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, Op.getOperand(1), Op.getOperand(2)); case Intrinsic::amdgcn_sffbh: return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_sbfe: return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::amdgcn_ubfe: return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::amdgcn_cvt_pkrtz: case Intrinsic::amdgcn_cvt_pknorm_i16: case Intrinsic::amdgcn_cvt_pknorm_u16: case Intrinsic::amdgcn_cvt_pk_i16: case Intrinsic::amdgcn_cvt_pk_u16: { // FIXME: Stop adding cast if v2f16/v2i16 are legal. EVT VT = Op.getValueType(); unsigned Opcode; if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) Opcode = AMDGPUISD::CVT_PK_I16_I32; else Opcode = AMDGPUISD::CVT_PK_U16_U32; if (isTypeLegal(VT)) return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, Op.getOperand(1), Op.getOperand(2)); return DAG.getNode(ISD::BITCAST, DL, VT, Node); } case Intrinsic::amdgcn_fmad_ftz: return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::amdgcn_if_break: return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, Op->getOperand(1), Op->getOperand(2)), 0); case Intrinsic::amdgcn_groupstaticsize: { Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) return Op; const Module *M = MF.getFunction().getParent(); const GlobalValue *GV = M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, SIInstrInfo::MO_ABS32_LO); return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; } case Intrinsic::amdgcn_is_shared: case Intrinsic::amdgcn_is_private: { SDLoc SL(Op); unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ? AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; SDValue Aperture = getSegmentAperture(AS, SL, DAG); SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec, DAG.getConstant(1, SL, MVT::i32)); return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ); } case Intrinsic::amdgcn_perm: return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::amdgcn_reloc_constant: { Module *M = const_cast(MF.getFunction().getParent()); const MDNode *Metadata = cast(Op.getOperand(1))->getMD(); auto SymbolName = cast(Metadata->getOperand(0))->getString(); auto RelocSymbol = cast( M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext()))); SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0, SIInstrInfo::MO_ABS32_LO); return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; } case Intrinsic::amdgcn_swmmac_f16_16x16x32_f16: case Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16: case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16: case Intrinsic::amdgcn_swmmac_f32_16x16x32_f16: case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8: case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8: case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8: case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8: { if (Op.getOperand(4).getValueType() == MVT::i32) return SDValue(); SDLoc SL(Op); auto IndexKeyi32 = DAG.getAnyExtOrTrunc(Op.getOperand(4), SL, MVT::i32); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, Op.getValueType(), Op.getOperand(0), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), IndexKeyi32); } case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4: case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8: case Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4: { if (Op.getOperand(6).getValueType() == MVT::i32) return SDValue(); SDLoc SL(Op); auto IndexKeyi32 = DAG.getAnyExtOrTrunc(Op.getOperand(6), SL, MVT::i32); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, Op.getValueType(), {Op.getOperand(0), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), Op.getOperand(4), Op.getOperand(5), IndexKeyi32, Op.getOperand(7)}); } case Intrinsic::amdgcn_addrspacecast_nonnull: return lowerADDRSPACECAST(Op, DAG); case Intrinsic::amdgcn_readlane: case Intrinsic::amdgcn_readfirstlane: case Intrinsic::amdgcn_writelane: case Intrinsic::amdgcn_permlane16: case Intrinsic::amdgcn_permlanex16: case Intrinsic::amdgcn_permlane64: return lowerLaneOp(*this, Op.getNode(), DAG); default: if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) return lowerImage(Op, ImageDimIntr, DAG, false); return Op; } } // On targets not supporting constant in soffset field, turn zero to // SGPR_NULL to avoid generating an extra s_mov with zero. static SDValue selectSOffset(SDValue SOffset, SelectionDAG &DAG, const GCNSubtarget *Subtarget) { if (Subtarget->hasRestrictedSOffset() && isNullConstant(SOffset)) return DAG.getRegister(AMDGPU::SGPR_NULL, MVT::i32); return SOffset; } SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG, unsigned NewOpcode) const { SDLoc DL(Op); SDValue VData = Op.getOperand(2); SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); SDValue Ops[] = { Op.getOperand(0), // Chain VData, // vdata Rsrc, // rsrc DAG.getConstant(0, DL, MVT::i32), // vindex Offsets.first, // voffset SOffset, // soffset Offsets.second, // offset Op.getOperand(6), // cachepolicy DAG.getTargetConstant(0, DL, MVT::i1), // idxen }; auto *M = cast(Op); EVT MemVT = VData.getValueType(); return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, M->getMemOperand()); } SDValue SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG, unsigned NewOpcode) const { SDLoc DL(Op); SDValue VData = Op.getOperand(2); SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget); SDValue Ops[] = { Op.getOperand(0), // Chain VData, // vdata Rsrc, // rsrc Op.getOperand(4), // vindex Offsets.first, // voffset SOffset, // soffset Offsets.second, // offset Op.getOperand(7), // cachepolicy DAG.getTargetConstant(1, DL, MVT::i1), // idxen }; auto *M = cast(Op); EVT MemVT = VData.getValueType(); return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, M->getMemOperand()); } SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const { unsigned IntrID = Op.getConstantOperandVal(1); SDLoc DL(Op); switch (IntrID) { case Intrinsic::amdgcn_ds_ordered_add: case Intrinsic::amdgcn_ds_ordered_swap: { MemSDNode *M = cast(Op); SDValue Chain = M->getOperand(0); SDValue M0 = M->getOperand(2); SDValue Value = M->getOperand(3); unsigned IndexOperand = M->getConstantOperandVal(7); unsigned WaveRelease = M->getConstantOperandVal(8); unsigned WaveDone = M->getConstantOperandVal(9); unsigned OrderedCountIndex = IndexOperand & 0x3f; IndexOperand &= ~0x3f; unsigned CountDw = 0; if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { CountDw = (IndexOperand >> 24) & 0xf; IndexOperand &= ~(0xf << 24); if (CountDw < 1 || CountDw > 4) { report_fatal_error( "ds_ordered_count: dword count must be between 1 and 4"); } } if (IndexOperand) report_fatal_error("ds_ordered_count: bad index operand"); if (WaveDone && !WaveRelease) report_fatal_error("ds_ordered_count: wave_done requires wave_release"); unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1; unsigned ShaderType = SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction()); unsigned Offset0 = OrderedCountIndex << 2; unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4); if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) Offset1 |= (CountDw - 1) << 6; if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11) Offset1 |= ShaderType << 2; unsigned Offset = Offset0 | (Offset1 << 8); SDValue Ops[] = { Chain, Value, DAG.getTargetConstant(Offset, DL, MVT::i16), copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue }; return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, M->getVTList(), Ops, M->getMemoryVT(), M->getMemOperand()); } case Intrinsic::amdgcn_raw_buffer_load: case Intrinsic::amdgcn_raw_ptr_buffer_load: case Intrinsic::amdgcn_raw_atomic_buffer_load: case Intrinsic::amdgcn_raw_ptr_atomic_buffer_load: case Intrinsic::amdgcn_raw_buffer_load_format: case Intrinsic::amdgcn_raw_ptr_buffer_load_format: { const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format || IntrID == Intrinsic::amdgcn_raw_ptr_buffer_load_format; SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); auto SOffset = selectSOffset(Op.getOperand(4), DAG, Subtarget); SDValue Ops[] = { Op.getOperand(0), // Chain Rsrc, // rsrc DAG.getConstant(0, DL, MVT::i32), // vindex Offsets.first, // voffset SOffset, // soffset Offsets.second, // offset Op.getOperand(5), // cachepolicy, swizzled buffer DAG.getTargetConstant(0, DL, MVT::i1), // idxen }; auto *M = cast(Op); return lowerIntrinsicLoad(M, IsFormat, DAG, Ops); } case Intrinsic::amdgcn_struct_buffer_load: case Intrinsic::amdgcn_struct_ptr_buffer_load: case Intrinsic::amdgcn_struct_buffer_load_format: case Intrinsic::amdgcn_struct_ptr_buffer_load_format: { const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format || IntrID == Intrinsic::amdgcn_struct_ptr_buffer_load_format; SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); SDValue Ops[] = { Op.getOperand(0), // Chain Rsrc, // rsrc Op.getOperand(3), // vindex Offsets.first, // voffset SOffset, // soffset Offsets.second, // offset Op.getOperand(6), // cachepolicy, swizzled buffer DAG.getTargetConstant(1, DL, MVT::i1), // idxen }; return lowerIntrinsicLoad(cast(Op), IsFormat, DAG, Ops); } case Intrinsic::amdgcn_raw_tbuffer_load: case Intrinsic::amdgcn_raw_ptr_tbuffer_load: { MemSDNode *M = cast(Op); EVT LoadVT = Op.getValueType(); SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); auto SOffset = selectSOffset(Op.getOperand(4), DAG, Subtarget); SDValue Ops[] = { Op.getOperand(0), // Chain Rsrc, // rsrc DAG.getConstant(0, DL, MVT::i32), // vindex Offsets.first, // voffset SOffset, // soffset Offsets.second, // offset Op.getOperand(5), // format Op.getOperand(6), // cachepolicy, swizzled buffer DAG.getTargetConstant(0, DL, MVT::i1), // idxen }; if (LoadVT.getScalarType() == MVT::f16) return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, M, DAG, Ops); return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, Op->getVTList(), Ops, LoadVT, M->getMemOperand(), DAG); } case Intrinsic::amdgcn_struct_tbuffer_load: case Intrinsic::amdgcn_struct_ptr_tbuffer_load: { MemSDNode *M = cast(Op); EVT LoadVT = Op.getValueType(); SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); SDValue Ops[] = { Op.getOperand(0), // Chain Rsrc, // rsrc Op.getOperand(3), // vindex Offsets.first, // voffset SOffset, // soffset Offsets.second, // offset Op.getOperand(6), // format Op.getOperand(7), // cachepolicy, swizzled buffer DAG.getTargetConstant(1, DL, MVT::i1), // idxen }; if (LoadVT.getScalarType() == MVT::f16) return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, M, DAG, Ops); return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, Op->getVTList(), Ops, LoadVT, M->getMemOperand(), DAG); } case Intrinsic::amdgcn_raw_buffer_atomic_fadd: case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); case Intrinsic::amdgcn_struct_buffer_atomic_fadd: case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); case Intrinsic::amdgcn_raw_buffer_atomic_fmin: case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); case Intrinsic::amdgcn_struct_buffer_atomic_fmin: case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); case Intrinsic::amdgcn_raw_buffer_atomic_fmax: case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); case Intrinsic::amdgcn_struct_buffer_atomic_fmax: case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); case Intrinsic::amdgcn_raw_buffer_atomic_swap: case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP); case Intrinsic::amdgcn_raw_buffer_atomic_add: case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); case Intrinsic::amdgcn_raw_buffer_atomic_sub: case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); case Intrinsic::amdgcn_raw_buffer_atomic_smin: case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN); case Intrinsic::amdgcn_raw_buffer_atomic_umin: case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN); case Intrinsic::amdgcn_raw_buffer_atomic_smax: case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX); case Intrinsic::amdgcn_raw_buffer_atomic_umax: case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX); case Intrinsic::amdgcn_raw_buffer_atomic_and: case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); case Intrinsic::amdgcn_raw_buffer_atomic_or: case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); case Intrinsic::amdgcn_raw_buffer_atomic_xor: case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); case Intrinsic::amdgcn_raw_buffer_atomic_inc: case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); case Intrinsic::amdgcn_raw_buffer_atomic_dec: case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); case Intrinsic::amdgcn_raw_buffer_atomic_cond_sub_u32: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_COND_SUB_U32); case Intrinsic::amdgcn_struct_buffer_atomic_swap: case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP); case Intrinsic::amdgcn_struct_buffer_atomic_add: case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); case Intrinsic::amdgcn_struct_buffer_atomic_sub: case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); case Intrinsic::amdgcn_struct_buffer_atomic_smin: case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN); case Intrinsic::amdgcn_struct_buffer_atomic_umin: case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN); case Intrinsic::amdgcn_struct_buffer_atomic_smax: case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX); case Intrinsic::amdgcn_struct_buffer_atomic_umax: case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX); case Intrinsic::amdgcn_struct_buffer_atomic_and: case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); case Intrinsic::amdgcn_struct_buffer_atomic_or: case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); case Intrinsic::amdgcn_struct_buffer_atomic_xor: case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); case Intrinsic::amdgcn_struct_buffer_atomic_inc: case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); case Intrinsic::amdgcn_struct_buffer_atomic_dec: case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); case Intrinsic::amdgcn_struct_buffer_atomic_cond_sub_u32: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_COND_SUB_U32); case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap: { SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(4), DAG); auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget); SDValue Ops[] = { Op.getOperand(0), // Chain Op.getOperand(2), // src Op.getOperand(3), // cmp Rsrc, // rsrc DAG.getConstant(0, DL, MVT::i32), // vindex Offsets.first, // voffset SOffset, // soffset Offsets.second, // offset Op.getOperand(7), // cachepolicy DAG.getTargetConstant(0, DL, MVT::i1), // idxen }; EVT VT = Op.getValueType(); auto *M = cast(Op); return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, Op->getVTList(), Ops, VT, M->getMemOperand()); } case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap: { SDValue Rsrc = bufferRsrcPtrToVector(Op->getOperand(4), DAG); auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); auto SOffset = selectSOffset(Op.getOperand(7), DAG, Subtarget); SDValue Ops[] = { Op.getOperand(0), // Chain Op.getOperand(2), // src Op.getOperand(3), // cmp Rsrc, // rsrc Op.getOperand(5), // vindex Offsets.first, // voffset SOffset, // soffset Offsets.second, // offset Op.getOperand(8), // cachepolicy DAG.getTargetConstant(1, DL, MVT::i1), // idxen }; EVT VT = Op.getValueType(); auto *M = cast(Op); return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, Op->getVTList(), Ops, VT, M->getMemOperand()); } case Intrinsic::amdgcn_image_bvh_intersect_ray: { MemSDNode *M = cast(Op); SDValue NodePtr = M->getOperand(2); SDValue RayExtent = M->getOperand(3); SDValue RayOrigin = M->getOperand(4); SDValue RayDir = M->getOperand(5); SDValue RayInvDir = M->getOperand(6); SDValue TDescr = M->getOperand(7); assert(NodePtr.getValueType() == MVT::i32 || NodePtr.getValueType() == MVT::i64); assert(RayDir.getValueType() == MVT::v3f16 || RayDir.getValueType() == MVT::v3f32); if (!Subtarget->hasGFX10_AEncoding()) { emitRemovedIntrinsicError(DAG, DL, Op.getValueType()); return SDValue(); } const bool IsGFX11 = AMDGPU::isGFX11(*Subtarget); const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); const bool IsGFX12Plus = AMDGPU::isGFX12Plus(*Subtarget); const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16; const bool Is64 = NodePtr.getValueType() == MVT::i64; const unsigned NumVDataDwords = 4; const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11); const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords; const bool UseNSA = (Subtarget->hasNSAEncoding() && NumVAddrs <= Subtarget->getNSAMaxSize()) || IsGFX12Plus; const unsigned BaseOpcodes[2][2] = { {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16}, {AMDGPU::IMAGE_BVH64_INTERSECT_RAY, AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}}; int Opcode; if (UseNSA) { Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], IsGFX12Plus ? AMDGPU::MIMGEncGfx12 : IsGFX11 ? AMDGPU::MIMGEncGfx11NSA : AMDGPU::MIMGEncGfx10NSA, NumVDataDwords, NumVAddrDwords); } else { assert(!IsGFX12Plus); Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], IsGFX11 ? AMDGPU::MIMGEncGfx11Default : AMDGPU::MIMGEncGfx10Default, NumVDataDwords, NumVAddrDwords); } assert(Opcode != -1); SmallVector Ops; auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) { SmallVector Lanes; DAG.ExtractVectorElements(Op, Lanes, 0, 3); if (Lanes[0].getValueSizeInBits() == 32) { for (unsigned I = 0; I < 3; ++I) Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I])); } else { if (IsAligned) { Ops.push_back( DAG.getBitcast(MVT::i32, DAG.getBuildVector(MVT::v2f16, DL, { Lanes[0], Lanes[1] }))); Ops.push_back(Lanes[2]); } else { SDValue Elt0 = Ops.pop_back_val(); Ops.push_back( DAG.getBitcast(MVT::i32, DAG.getBuildVector(MVT::v2f16, DL, { Elt0, Lanes[0] }))); Ops.push_back( DAG.getBitcast(MVT::i32, DAG.getBuildVector(MVT::v2f16, DL, { Lanes[1], Lanes[2] }))); } } }; if (UseNSA && IsGFX11Plus) { Ops.push_back(NodePtr); Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); Ops.push_back(RayOrigin); if (IsA16) { SmallVector DirLanes, InvDirLanes, MergedLanes; DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3); DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3); for (unsigned I = 0; I < 3; ++I) { MergedLanes.push_back(DAG.getBitcast( MVT::i32, DAG.getBuildVector(MVT::v2f16, DL, {DirLanes[I], InvDirLanes[I]}))); } Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes)); } else { Ops.push_back(RayDir); Ops.push_back(RayInvDir); } } else { if (Is64) DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2); else Ops.push_back(NodePtr); Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); packLanes(RayOrigin, true); packLanes(RayDir, true); packLanes(RayInvDir, false); } if (!UseNSA) { // Build a single vector containing all the operands so far prepared. if (NumVAddrDwords > 12) { SDValue Undef = DAG.getUNDEF(MVT::i32); Ops.append(16 - Ops.size(), Undef); } assert(Ops.size() >= 8 && Ops.size() <= 12); SDValue MergedOps = DAG.getBuildVector( MVT::getVectorVT(MVT::i32, Ops.size()), DL, Ops); Ops.clear(); Ops.push_back(MergedOps); } Ops.push_back(TDescr); Ops.push_back(DAG.getTargetConstant(IsA16, DL, MVT::i1)); Ops.push_back(M->getChain()); auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops); MachineMemOperand *MemRef = M->getMemOperand(); DAG.setNodeMemRefs(NewNode, {MemRef}); return SDValue(NewNode, 0); } case Intrinsic::amdgcn_global_atomic_fmin: case Intrinsic::amdgcn_global_atomic_fmax: case Intrinsic::amdgcn_global_atomic_fmin_num: case Intrinsic::amdgcn_global_atomic_fmax_num: case Intrinsic::amdgcn_flat_atomic_fmin: case Intrinsic::amdgcn_flat_atomic_fmax: case Intrinsic::amdgcn_flat_atomic_fmin_num: case Intrinsic::amdgcn_flat_atomic_fmax_num: { MemSDNode *M = cast(Op); SDValue Ops[] = { M->getOperand(0), // Chain M->getOperand(2), // Ptr M->getOperand(3) // Value }; unsigned Opcode = 0; switch (IntrID) { case Intrinsic::amdgcn_global_atomic_fmin: case Intrinsic::amdgcn_global_atomic_fmin_num: case Intrinsic::amdgcn_flat_atomic_fmin: case Intrinsic::amdgcn_flat_atomic_fmin_num: { Opcode = ISD::ATOMIC_LOAD_FMIN; break; } case Intrinsic::amdgcn_global_atomic_fmax: case Intrinsic::amdgcn_global_atomic_fmax_num: case Intrinsic::amdgcn_flat_atomic_fmax: case Intrinsic::amdgcn_flat_atomic_fmax_num: { Opcode = ISD::ATOMIC_LOAD_FMAX; break; } default: llvm_unreachable("unhandled atomic opcode"); } return DAG.getAtomic(Opcode, SDLoc(Op), M->getMemoryVT(), M->getVTList(), Ops, M->getMemOperand()); } case Intrinsic::amdgcn_s_get_barrier_state: { SDValue Chain = Op->getOperand(0); SmallVector Ops; unsigned Opc; bool IsInlinableBarID = false; int64_t BarID; if (isa(Op->getOperand(2))) { BarID = cast(Op->getOperand(2))->getSExtValue(); IsInlinableBarID = AMDGPU::isInlinableIntLiteral(BarID); } if (IsInlinableBarID) { Opc = AMDGPU::S_GET_BARRIER_STATE_IMM; SDValue K = DAG.getTargetConstant(BarID, DL, MVT::i32); Ops.push_back(K); } else { Opc = AMDGPU::S_GET_BARRIER_STATE_M0; SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(2)); Ops.push_back(M0Val.getValue(0)); } auto NewMI = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops); return SDValue(NewMI, 0); } default: if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = AMDGPU::getImageDimIntrinsicInfo(IntrID)) return lowerImage(Op, ImageDimIntr, DAG, true); return SDValue(); } } // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to // dwordx4 if on SI and handle TFE loads. SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, ArrayRef Ops, EVT MemVT, MachineMemOperand *MMO, SelectionDAG &DAG) const { LLVMContext &C = *DAG.getContext(); MachineFunction &MF = DAG.getMachineFunction(); EVT VT = VTList.VTs[0]; assert(VTList.NumVTs == 2 || VTList.NumVTs == 3); bool IsTFE = VTList.NumVTs == 3; if (IsTFE) { unsigned NumValueDWords = divideCeil(VT.getSizeInBits(), 32); unsigned NumOpDWords = NumValueDWords + 1; EVT OpDWordsVT = EVT::getVectorVT(C, MVT::i32, NumOpDWords); SDVTList OpDWordsVTList = DAG.getVTList(OpDWordsVT, VTList.VTs[2]); MachineMemOperand *OpDWordsMMO = MF.getMachineMemOperand(MMO, 0, NumOpDWords * 4); SDValue Op = getMemIntrinsicNode(Opcode, DL, OpDWordsVTList, Ops, OpDWordsVT, OpDWordsMMO, DAG); SDValue Status = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, DAG.getVectorIdxConstant(NumValueDWords, DL)); SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); SDValue ValueDWords = NumValueDWords == 1 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, ZeroIdx) : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, EVT::getVectorVT(C, MVT::i32, NumValueDWords), Op, ZeroIdx); SDValue Value = DAG.getNode(ISD::BITCAST, DL, VT, ValueDWords); return DAG.getMergeValues({Value, Status, SDValue(Op.getNode(), 1)}, DL); } if (!Subtarget->hasDwordx3LoadStores() && (VT == MVT::v3i32 || VT == MVT::v3f32)) { EVT WidenedVT = EVT::getVectorVT(C, VT.getVectorElementType(), 4); EVT WidenedMemVT = EVT::getVectorVT(C, MemVT.getVectorElementType(), 4); MachineMemOperand *WidenedMMO = MF.getMachineMemOperand(MMO, 0, 16); SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); SDValue Op = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, WidenedMemVT, WidenedMMO); SDValue Value = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Op, DAG.getVectorIdxConstant(0, DL)); return DAG.getMergeValues({Value, SDValue(Op.getNode(), 1)}, DL); } return DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, MemVT, MMO); } SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG, bool ImageStore) const { EVT StoreVT = VData.getValueType(); // No change for f16 and legal vector D16 types. if (!StoreVT.isVector()) return VData; SDLoc DL(VData); unsigned NumElements = StoreVT.getVectorNumElements(); if (Subtarget->hasUnpackedD16VMem()) { // We need to unpack the packed data to store. EVT IntStoreVT = StoreVT.changeTypeToInteger(); SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements); SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); return DAG.UnrollVectorOp(ZExt.getNode()); } // The sq block of gfx8.1 does not estimate register use correctly for d16 // image store instructions. The data operand is computed as if it were not a // d16 image instruction. if (ImageStore && Subtarget->hasImageStoreD16Bug()) { // Bitcast to i16 EVT IntStoreVT = StoreVT.changeTypeToInteger(); SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); // Decompose into scalars SmallVector Elts; DAG.ExtractVectorElements(IntVData, Elts); // Group pairs of i16 into v2i16 and bitcast to i32 SmallVector PackedElts; for (unsigned I = 0; I < Elts.size() / 2; I += 1) { SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]}); SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); PackedElts.push_back(IntPair); } if ((NumElements % 2) == 1) { // Handle v3i16 unsigned I = Elts.size() / 2; SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], DAG.getUNDEF(MVT::i16)}); SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); PackedElts.push_back(IntPair); } // Pad using UNDEF PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32)); // Build final vector EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size()); return DAG.getBuildVector(VecVT, DL, PackedElts); } if (NumElements == 3) { EVT IntStoreVT = EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits()); SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); EVT WidenedStoreVT = EVT::getVectorVT( *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1); EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(), WidenedStoreVT.getStoreSizeInBits()); SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData); return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt); } assert(isTypeLegal(StoreVT)); return VData; } SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue Chain = Op.getOperand(0); unsigned IntrinsicID = Op.getConstantOperandVal(1); MachineFunction &MF = DAG.getMachineFunction(); switch (IntrinsicID) { case Intrinsic::amdgcn_exp_compr: { if (!Subtarget->hasCompressedExport()) { DiagnosticInfoUnsupported BadIntrin( DAG.getMachineFunction().getFunction(), "intrinsic not supported on subtarget", DL.getDebugLoc()); DAG.getContext()->diagnose(BadIntrin); } SDValue Src0 = Op.getOperand(4); SDValue Src1 = Op.getOperand(5); // Hack around illegal type on SI by directly selecting it. if (isTypeLegal(Src0.getValueType())) return SDValue(); const ConstantSDNode *Done = cast(Op.getOperand(6)); SDValue Undef = DAG.getUNDEF(MVT::f32); const SDValue Ops[] = { Op.getOperand(2), // tgt DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1 Undef, // src2 Undef, // src3 Op.getOperand(7), // vm DAG.getTargetConstant(1, DL, MVT::i1), // compr Op.getOperand(3), // en Op.getOperand(0) // Chain }; unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE; return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0); } case Intrinsic::amdgcn_s_barrier: { const GCNSubtarget &ST = MF.getSubtarget(); if (getTargetMachine().getOptLevel() > CodeGenOptLevel::None) { unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; if (WGSize <= ST.getWavefrontSize()) return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, Op.getOperand(0)), 0); } // On GFX12 lower s_barrier into s_barrier_signal_imm and s_barrier_wait if (ST.hasSplitBarriers()) { SDValue K = DAG.getTargetConstant(AMDGPU::Barrier::WORKGROUP, DL, MVT::i32); SDValue BarSignal = SDValue(DAG.getMachineNode(AMDGPU::S_BARRIER_SIGNAL_IMM, DL, MVT::Other, K, Op.getOperand(0)), 0); SDValue BarWait = SDValue(DAG.getMachineNode(AMDGPU::S_BARRIER_WAIT, DL, MVT::Other, K, BarSignal.getValue(0)), 0); return BarWait; } return SDValue(); }; case Intrinsic::amdgcn_struct_tbuffer_store: case Intrinsic::amdgcn_struct_ptr_tbuffer_store: { SDValue VData = Op.getOperand(2); bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); if (IsD16) VData = handleD16VData(VData, DAG); SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget); SDValue Ops[] = { Chain, VData, // vdata Rsrc, // rsrc Op.getOperand(4), // vindex Offsets.first, // voffset SOffset, // soffset Offsets.second, // offset Op.getOperand(7), // format Op.getOperand(8), // cachepolicy, swizzled buffer DAG.getTargetConstant(1, DL, MVT::i1), // idxen }; unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : AMDGPUISD::TBUFFER_STORE_FORMAT; MemSDNode *M = cast(Op); return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, M->getMemoryVT(), M->getMemOperand()); } case Intrinsic::amdgcn_raw_tbuffer_store: case Intrinsic::amdgcn_raw_ptr_tbuffer_store: { SDValue VData = Op.getOperand(2); bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); if (IsD16) VData = handleD16VData(VData, DAG); SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); SDValue Ops[] = { Chain, VData, // vdata Rsrc, // rsrc DAG.getConstant(0, DL, MVT::i32), // vindex Offsets.first, // voffset SOffset, // soffset Offsets.second, // offset Op.getOperand(6), // format Op.getOperand(7), // cachepolicy, swizzled buffer DAG.getTargetConstant(0, DL, MVT::i1), // idxen }; unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : AMDGPUISD::TBUFFER_STORE_FORMAT; MemSDNode *M = cast(Op); return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, M->getMemoryVT(), M->getMemOperand()); } case Intrinsic::amdgcn_raw_buffer_store: case Intrinsic::amdgcn_raw_ptr_buffer_store: case Intrinsic::amdgcn_raw_buffer_store_format: case Intrinsic::amdgcn_raw_ptr_buffer_store_format: { const bool IsFormat = IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format || IntrinsicID == Intrinsic::amdgcn_raw_ptr_buffer_store_format; SDValue VData = Op.getOperand(2); EVT VDataVT = VData.getValueType(); EVT EltType = VDataVT.getScalarType(); bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); if (IsD16) { VData = handleD16VData(VData, DAG); VDataVT = VData.getValueType(); } if (!isTypeLegal(VDataVT)) { VData = DAG.getNode(ISD::BITCAST, DL, getEquivalentMemType(*DAG.getContext(), VDataVT), VData); } SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); SDValue Ops[] = { Chain, VData, Rsrc, DAG.getConstant(0, DL, MVT::i32), // vindex Offsets.first, // voffset SOffset, // soffset Offsets.second, // offset Op.getOperand(6), // cachepolicy, swizzled buffer DAG.getTargetConstant(0, DL, MVT::i1), // idxen }; unsigned Opc = IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE; Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; MemSDNode *M = cast(Op); // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M); return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, M->getMemoryVT(), M->getMemOperand()); } case Intrinsic::amdgcn_struct_buffer_store: case Intrinsic::amdgcn_struct_ptr_buffer_store: case Intrinsic::amdgcn_struct_buffer_store_format: case Intrinsic::amdgcn_struct_ptr_buffer_store_format: { const bool IsFormat = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format || IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_store_format; SDValue VData = Op.getOperand(2); EVT VDataVT = VData.getValueType(); EVT EltType = VDataVT.getScalarType(); bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); if (IsD16) { VData = handleD16VData(VData, DAG); VDataVT = VData.getValueType(); } if (!isTypeLegal(VDataVT)) { VData = DAG.getNode(ISD::BITCAST, DL, getEquivalentMemType(*DAG.getContext(), VDataVT), VData); } auto Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget); SDValue Ops[] = { Chain, VData, Rsrc, Op.getOperand(4), // vindex Offsets.first, // voffset SOffset, // soffset Offsets.second, // offset Op.getOperand(7), // cachepolicy, swizzled buffer DAG.getTargetConstant(1, DL, MVT::i1), // idxen }; unsigned Opc = !IsFormat ? AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; MemSDNode *M = cast(Op); // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics EVT VDataType = VData.getValueType().getScalarType(); if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, M->getMemoryVT(), M->getMemOperand()); } case Intrinsic::amdgcn_raw_buffer_load_lds: case Intrinsic::amdgcn_raw_ptr_buffer_load_lds: case Intrinsic::amdgcn_struct_buffer_load_lds: case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: { assert(!AMDGPU::isGFX12Plus(*Subtarget)); unsigned Opc; bool HasVIndex = IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds || IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_load_lds; unsigned OpOffset = HasVIndex ? 1 : 0; SDValue VOffset = Op.getOperand(5 + OpOffset); bool HasVOffset = !isNullConstant(VOffset); unsigned Size = Op->getConstantOperandVal(4); switch (Size) { default: return SDValue(); case 1: Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET; break; case 2: Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET; break; case 4: Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET; break; } SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); SmallVector Ops; if (HasVIndex && HasVOffset) Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL, { Op.getOperand(5), // VIndex VOffset })); else if (HasVIndex) Ops.push_back(Op.getOperand(5)); else if (HasVOffset) Ops.push_back(VOffset); SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); Ops.push_back(Rsrc); Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset unsigned Aux = Op.getConstantOperandVal(8 + OpOffset); Ops.push_back( DAG.getTargetConstant(Aux & AMDGPU::CPol::ALL, DL, MVT::i8)); // cpol Ops.push_back(DAG.getTargetConstant( Aux & AMDGPU::CPol::SWZ_pregfx12 ? 1 : 0, DL, MVT::i8)); // swz Ops.push_back(M0Val.getValue(0)); // Chain Ops.push_back(M0Val.getValue(1)); // Glue auto *M = cast(Op); MachineMemOperand *LoadMMO = M->getMemOperand(); // Don't set the offset value here because the pointer points to the base of // the buffer. MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); MachinePointerInfo StorePtrI = LoadPtrI; LoadPtrI.V = PoisonValue::get( PointerType::get(*DAG.getContext(), AMDGPUAS::GLOBAL_ADDRESS)); LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS; StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; auto F = LoadMMO->getFlags() & ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, Size, LoadMMO->getBaseAlign(), LoadMMO->getAAInfo()); MachineMemOperand *StoreMMO = MF.getMachineMemOperand( StorePtrI, F | MachineMemOperand::MOStore, sizeof(int32_t), LoadMMO->getBaseAlign(), LoadMMO->getAAInfo()); auto Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops); DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); return SDValue(Load, 0); } case Intrinsic::amdgcn_global_load_lds: { unsigned Opc; unsigned Size = Op->getConstantOperandVal(4); switch (Size) { default: return SDValue(); case 1: Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE; break; case 2: Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT; break; case 4: Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD; break; } auto *M = cast(Op); SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); SmallVector Ops; SDValue Addr = Op.getOperand(2); // Global ptr SDValue VOffset; // Try to split SAddr and VOffset. Global and LDS pointers share the same // immediate offset, so we cannot use a regular SelectGlobalSAddr(). if (Addr->isDivergent() && Addr.getOpcode() == ISD::ADD) { SDValue LHS = Addr.getOperand(0); SDValue RHS = Addr.getOperand(1); if (LHS->isDivergent()) std::swap(LHS, RHS); if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND && RHS.getOperand(0).getValueType() == MVT::i32) { // add (i64 sgpr), (zero_extend (i32 vgpr)) Addr = LHS; VOffset = RHS.getOperand(0); } } Ops.push_back(Addr); if (!Addr->isDivergent()) { Opc = AMDGPU::getGlobalSaddrOp(Opc); if (!VOffset) VOffset = SDValue( DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, DAG.getTargetConstant(0, DL, MVT::i32)), 0); Ops.push_back(VOffset); } Ops.push_back(Op.getOperand(5)); // Offset Ops.push_back(Op.getOperand(6)); // CPol Ops.push_back(M0Val.getValue(0)); // Chain Ops.push_back(M0Val.getValue(1)); // Glue MachineMemOperand *LoadMMO = M->getMemOperand(); MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); LoadPtrI.Offset = Op->getConstantOperandVal(5); MachinePointerInfo StorePtrI = LoadPtrI; LoadPtrI.V = PoisonValue::get( PointerType::get(*DAG.getContext(), AMDGPUAS::GLOBAL_ADDRESS)); LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS; StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; auto F = LoadMMO->getFlags() & ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, Size, LoadMMO->getBaseAlign(), LoadMMO->getAAInfo()); MachineMemOperand *StoreMMO = MF.getMachineMemOperand( StorePtrI, F | MachineMemOperand::MOStore, sizeof(int32_t), Align(4), LoadMMO->getAAInfo()); auto Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops); DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); return SDValue(Load, 0); } case Intrinsic::amdgcn_end_cf: return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, Op->getOperand(2), Chain), 0); case Intrinsic::amdgcn_s_barrier_init: case Intrinsic::amdgcn_s_barrier_join: case Intrinsic::amdgcn_s_wakeup_barrier: { SDValue Chain = Op->getOperand(0); SmallVector Ops; SDValue BarOp = Op->getOperand(2); unsigned Opc; bool IsInlinableBarID = false; int64_t BarVal; if (isa(BarOp)) { BarVal = cast(BarOp)->getSExtValue(); IsInlinableBarID = AMDGPU::isInlinableIntLiteral(BarVal); } if (IsInlinableBarID) { switch (IntrinsicID) { default: return SDValue(); case Intrinsic::amdgcn_s_barrier_init: Opc = AMDGPU::S_BARRIER_INIT_IMM; break; case Intrinsic::amdgcn_s_barrier_join: Opc = AMDGPU::S_BARRIER_JOIN_IMM; break; case Intrinsic::amdgcn_s_wakeup_barrier: Opc = AMDGPU::S_WAKEUP_BARRIER_IMM; break; } SDValue K = DAG.getTargetConstant(BarVal, DL, MVT::i32); Ops.push_back(K); } else { switch (IntrinsicID) { default: return SDValue(); case Intrinsic::amdgcn_s_barrier_init: Opc = AMDGPU::S_BARRIER_INIT_M0; break; case Intrinsic::amdgcn_s_barrier_join: Opc = AMDGPU::S_BARRIER_JOIN_M0; break; case Intrinsic::amdgcn_s_wakeup_barrier: Opc = AMDGPU::S_WAKEUP_BARRIER_M0; break; } } if (IntrinsicID == Intrinsic::amdgcn_s_barrier_init) { SDValue M0Val; // Member count will be read from M0[16:22] M0Val = DAG.getNode(ISD::SHL, DL, MVT::i32, Op.getOperand(3), DAG.getShiftAmountConstant(16, MVT::i32, DL)); if (!IsInlinableBarID) { // If reference to barrier id is not an inline constant then it must be // referenced with M0[4:0]. Perform an OR with the member count to // include it in M0. M0Val = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, Op.getOperand(2), M0Val), 0); } Ops.push_back(copyToM0(DAG, Chain, DL, M0Val).getValue(0)); } else if (!IsInlinableBarID) { Ops.push_back(copyToM0(DAG, Chain, DL, BarOp).getValue(0)); } auto NewMI = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops); return SDValue(NewMI, 0); } default: { if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) return lowerImage(Op, ImageDimIntr, DAG, true); return Op; } } } // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: // offset (the offset that is included in bounds checking and swizzling, to be // split between the instruction's voffset and immoffset fields) and soffset // (the offset that is excluded from bounds checking and swizzling, to go in // the instruction's soffset field). This function takes the first kind of // offset and figures out how to split it between voffset and immoffset. std::pair SITargetLowering::splitBufferOffsets( SDValue Offset, SelectionDAG &DAG) const { SDLoc DL(Offset); const unsigned MaxImm = SIInstrInfo::getMaxMUBUFImmOffset(*Subtarget); SDValue N0 = Offset; ConstantSDNode *C1 = nullptr; if ((C1 = dyn_cast(N0))) N0 = SDValue(); else if (DAG.isBaseWithConstantOffset(N0)) { C1 = cast(N0.getOperand(1)); N0 = N0.getOperand(0); } if (C1) { unsigned ImmOffset = C1->getZExtValue(); // If the immediate value is too big for the immoffset field, put only bits // that would normally fit in the immoffset field. The remaining value that // is copied/added for the voffset field is a large power of 2, and it // stands more chance of being CSEd with the copy/add for another similar // load/store. // However, do not do that rounding down if that is a negative // number, as it appears to be illegal to have a negative offset in the // vgpr, even if adding the immediate offset makes it positive. unsigned Overflow = ImmOffset & ~MaxImm; ImmOffset -= Overflow; if ((int32_t)Overflow < 0) { Overflow += ImmOffset; ImmOffset = 0; } C1 = cast(DAG.getTargetConstant(ImmOffset, DL, MVT::i32)); if (Overflow) { auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); if (!N0) N0 = OverflowVal; else { SDValue Ops[] = { N0, OverflowVal }; N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); } } } if (!N0) N0 = DAG.getConstant(0, DL, MVT::i32); if (!C1) C1 = cast(DAG.getTargetConstant(0, DL, MVT::i32)); return {N0, SDValue(C1, 0)}; } // Analyze a combined offset from an amdgcn_s_buffer_load intrinsic and store // the three offsets (voffset, soffset and instoffset) into the SDValue[3] array // pointed to by Offsets. void SITargetLowering::setBufferOffsets(SDValue CombinedOffset, SelectionDAG &DAG, SDValue *Offsets, Align Alignment) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); SDLoc DL(CombinedOffset); if (auto *C = dyn_cast(CombinedOffset)) { uint32_t Imm = C->getZExtValue(); uint32_t SOffset, ImmOffset; if (TII->splitMUBUFOffset(Imm, SOffset, ImmOffset, Alignment)) { Offsets[0] = DAG.getConstant(0, DL, MVT::i32); Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); return; } } if (DAG.isBaseWithConstantOffset(CombinedOffset)) { SDValue N0 = CombinedOffset.getOperand(0); SDValue N1 = CombinedOffset.getOperand(1); uint32_t SOffset, ImmOffset; int Offset = cast(N1)->getSExtValue(); if (Offset >= 0 && TII->splitMUBUFOffset(Offset, SOffset, ImmOffset, Alignment)) { Offsets[0] = N0; Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); return; } } SDValue SOffsetZero = Subtarget->hasRestrictedSOffset() ? DAG.getRegister(AMDGPU::SGPR_NULL, MVT::i32) : DAG.getConstant(0, DL, MVT::i32); Offsets[0] = CombinedOffset; Offsets[1] = SOffsetZero; Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32); } SDValue SITargetLowering::bufferRsrcPtrToVector(SDValue MaybePointer, SelectionDAG &DAG) const { if (!MaybePointer.getValueType().isScalarInteger()) return MaybePointer; SDLoc DL(MaybePointer); SDValue Rsrc = DAG.getBitcast(MVT::v4i32, MaybePointer); return Rsrc; } // Wrap a global or flat pointer into a buffer intrinsic using the flags // specified in the intrinsic. SDValue SITargetLowering::lowerPointerAsRsrcIntrin(SDNode *Op, SelectionDAG &DAG) const { SDLoc Loc(Op); SDValue Pointer = Op->getOperand(1); SDValue Stride = Op->getOperand(2); SDValue NumRecords = Op->getOperand(3); SDValue Flags = Op->getOperand(4); auto [LowHalf, HighHalf] = DAG.SplitScalar(Pointer, Loc, MVT::i32, MVT::i32); SDValue Mask = DAG.getConstant(0x0000ffff, Loc, MVT::i32); SDValue Masked = DAG.getNode(ISD::AND, Loc, MVT::i32, HighHalf, Mask); std::optional ConstStride = std::nullopt; if (auto *ConstNode = dyn_cast(Stride)) ConstStride = ConstNode->getZExtValue(); SDValue NewHighHalf = Masked; if (!ConstStride || *ConstStride != 0) { SDValue ShiftedStride; if (ConstStride) { ShiftedStride = DAG.getConstant(*ConstStride << 16, Loc, MVT::i32); } else { SDValue ExtStride = DAG.getAnyExtOrTrunc(Stride, Loc, MVT::i32); ShiftedStride = DAG.getNode(ISD::SHL, Loc, MVT::i32, ExtStride, DAG.getShiftAmountConstant(16, MVT::i32, Loc)); } NewHighHalf = DAG.getNode(ISD::OR, Loc, MVT::i32, Masked, ShiftedStride); } SDValue Rsrc = DAG.getNode(ISD::BUILD_VECTOR, Loc, MVT::v4i32, LowHalf, NewHighHalf, NumRecords, Flags); SDValue RsrcPtr = DAG.getNode(ISD::BITCAST, Loc, MVT::i128, Rsrc); return RsrcPtr; } // Handle 8 bit and 16 bit buffer loads SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, EVT LoadVT, SDLoc DL, ArrayRef Ops, MachineMemOperand *MMO, bool IsTFE) const { EVT IntVT = LoadVT.changeTypeToInteger(); if (IsTFE) { unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? AMDGPUISD::BUFFER_LOAD_UBYTE_TFE : AMDGPUISD::BUFFER_LOAD_USHORT_TFE; MachineFunction &MF = DAG.getMachineFunction(); MachineMemOperand *OpMMO = MF.getMachineMemOperand(MMO, 0, 8); SDVTList VTs = DAG.getVTList(MVT::v2i32, MVT::Other); SDValue Op = getMemIntrinsicNode(Opc, DL, VTs, Ops, MVT::v2i32, OpMMO, DAG); SDValue Status = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, DAG.getConstant(1, DL, MVT::i32)); SDValue Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, DAG.getConstant(0, DL, MVT::i32)); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, IntVT, Data); SDValue Value = DAG.getNode(ISD::BITCAST, DL, LoadVT, Trunc); return DAG.getMergeValues({Value, Status, SDValue(Op.getNode(), 1)}, DL); } unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList, Ops, IntVT, MMO); SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad); LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal); return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL); } // Handle 8 bit and 16 bit buffer stores SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, EVT VDataType, SDLoc DL, SDValue Ops[], MemSDNode *M) const { if (VDataType == MVT::f16 || VDataType == MVT::bf16) Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]); SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); Ops[1] = BufferStoreExt; unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : AMDGPUISD::BUFFER_STORE_SHORT; ArrayRef OpsRef = ArrayRef(&Ops[0], 9); return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, M->getMemOperand()); } static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, ISD::LoadExtType ExtType, SDValue Op, const SDLoc &SL, EVT VT) { if (VT.bitsLT(Op.getValueType())) return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); switch (ExtType) { case ISD::SEXTLOAD: return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); case ISD::ZEXTLOAD: return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); case ISD::EXTLOAD: return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); case ISD::NON_EXTLOAD: return Op; } llvm_unreachable("invalid ext type"); } // Try to turn 8 and 16-bit scalar loads into SMEM eligible 32-bit loads. // TODO: Skip this on GFX12 which does have scalar sub-dword loads. SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; if (Ld->getAlign() < Align(4) || Ld->isDivergent()) return SDValue(); // FIXME: Constant loads should all be marked invariant. unsigned AS = Ld->getAddressSpace(); if (AS != AMDGPUAS::CONSTANT_ADDRESS && AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) return SDValue(); // Don't do this early, since it may interfere with adjacent load merging for // illegal types. We can avoid losing alignment information for exotic types // pre-legalize. EVT MemVT = Ld->getMemoryVT(); if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || MemVT.getSizeInBits() >= 32) return SDValue(); SDLoc SL(Ld); assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && "unexpected vector extload"); // TODO: Drop only high part of range. SDValue Ptr = Ld->getBasePtr(); SDValue NewLoad = DAG.getLoad( ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr, Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(), Ld->getMemOperand()->getFlags(), Ld->getAAInfo(), nullptr); // Drop ranges EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); if (MemVT.isFloatingPoint()) { assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && "unexpected fp extload"); TruncVT = MemVT.changeTypeToInteger(); } SDValue Cvt = NewLoad; if (Ld->getExtensionType() == ISD::SEXTLOAD) { Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, DAG.getValueType(TruncVT)); } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || Ld->getExtensionType() == ISD::NON_EXTLOAD) { Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); } else { assert(Ld->getExtensionType() == ISD::EXTLOAD); } EVT VT = Ld->getValueType(0); EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); DCI.AddToWorklist(Cvt.getNode()); // We may need to handle exotic cases, such as i16->i64 extloads, so insert // the appropriate extension from the 32-bit load. Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); DCI.AddToWorklist(Cvt.getNode()); // Handle conversion back to floating point if necessary. Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); } static bool addressMayBeAccessedAsPrivate(const MachineMemOperand *MMO, const SIMachineFunctionInfo &Info) { // TODO: Should check if the address can definitely not access stack. if (Info.isEntryFunction()) return Info.getUserSGPRInfo().hasFlatScratchInit(); return true; } SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); LoadSDNode *Load = cast(Op); ISD::LoadExtType ExtType = Load->getExtensionType(); EVT MemVT = Load->getMemoryVT(); if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) return SDValue(); // FIXME: Copied from PPC // First, load into 32 bits, then truncate to 1 bit. SDValue Chain = Load->getChain(); SDValue BasePtr = Load->getBasePtr(); MachineMemOperand *MMO = Load->getMemOperand(); EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, BasePtr, RealMemVT, MMO); if (!MemVT.isVector()) { SDValue Ops[] = { DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), NewLD.getValue(1) }; return DAG.getMergeValues(Ops, DL); } SmallVector Elts; for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, DAG.getConstant(I, DL, MVT::i32)); Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); } SDValue Ops[] = { DAG.getBuildVector(MemVT, DL, Elts), NewLD.getValue(1) }; return DAG.getMergeValues(Ops, DL); } if (!MemVT.isVector()) return SDValue(); assert(Op.getValueType().getVectorElementType() == MVT::i32 && "Custom lowering for non-i32 vectors hasn't been implemented."); Align Alignment = Load->getAlign(); unsigned AS = Load->getAddressSpace(); if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS && Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { return SplitVectorLoad(Op, DAG); } MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *MFI = MF.getInfo(); // If there is a possibility that flat instruction access scratch memory // then we need to use the same legalization rules we use for private. if (AS == AMDGPUAS::FLAT_ADDRESS && !Subtarget->hasMultiDwordFlatScratchAddressing()) AS = addressMayBeAccessedAsPrivate(Load->getMemOperand(), *MFI) ? AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; unsigned NumElements = MemVT.getVectorNumElements(); if (AS == AMDGPUAS::CONSTANT_ADDRESS || AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { if (!Op->isDivergent() && Alignment >= Align(4) && NumElements < 32) { if (MemVT.isPow2VectorType() || (Subtarget->hasScalarDwordx3Loads() && NumElements == 3)) return SDValue(); return WidenOrSplitVectorLoad(Op, DAG); } // Non-uniform loads will be selected to MUBUF instructions, so they // have the same legalization requirements as global and private // loads. // } if (AS == AMDGPUAS::CONSTANT_ADDRESS || AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || AS == AMDGPUAS::GLOBAL_ADDRESS) { if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) && Alignment >= Align(4) && NumElements < 32) { if (MemVT.isPow2VectorType() || (Subtarget->hasScalarDwordx3Loads() && NumElements == 3)) return SDValue(); return WidenOrSplitVectorLoad(Op, DAG); } // Non-uniform loads will be selected to MUBUF instructions, so they // have the same legalization requirements as global and private // loads. // } if (AS == AMDGPUAS::CONSTANT_ADDRESS || AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { if (NumElements > 4) return SplitVectorLoad(Op, DAG); // v3 loads not supported on SI. if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) return WidenOrSplitVectorLoad(Op, DAG); // v3 and v4 loads are supported for private and global memory. return SDValue(); } if (AS == AMDGPUAS::PRIVATE_ADDRESS) { // Depending on the setting of the private_element_size field in the // resource descriptor, we can only make private accesses up to a certain // size. switch (Subtarget->getMaxPrivateElementSize()) { case 4: { SDValue Ops[2]; std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); return DAG.getMergeValues(Ops, DL); } case 8: if (NumElements > 2) return SplitVectorLoad(Op, DAG); return SDValue(); case 16: // Same as global/flat if (NumElements > 4) return SplitVectorLoad(Op, DAG); // v3 loads not supported on SI. if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) return WidenOrSplitVectorLoad(Op, DAG); return SDValue(); default: llvm_unreachable("unsupported private_element_size"); } } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { unsigned Fast = 0; auto Flags = Load->getMemOperand()->getFlags(); if (allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS, Load->getAlign(), Flags, &Fast) && Fast > 1) return SDValue(); if (MemVT.isVector()) return SplitVectorLoad(Op, DAG); } if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), MemVT, *Load->getMemOperand())) { SDValue Ops[2]; std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); return DAG.getMergeValues(Ops, DL); } return SDValue(); } SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256 || VT.getSizeInBits() == 512) return splitTernaryVectorOp(Op, DAG); assert(VT.getSizeInBits() == 64); SDLoc DL(Op); SDValue Cond = Op.getOperand(0); SDValue Zero = DAG.getConstant(0, DL, MVT::i32); SDValue One = DAG.getConstant(1, DL, MVT::i32); SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); return DAG.getNode(ISD::BITCAST, DL, VT, Res); } // Catch division cases where we can use shortcuts with rcp and rsq // instructions. SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); EVT VT = Op.getValueType(); const SDNodeFlags Flags = Op->getFlags(); bool AllowInaccurateRcp = Flags.hasApproximateFuncs() || DAG.getTarget().Options.UnsafeFPMath; if (const ConstantFPSDNode *CLHS = dyn_cast(LHS)) { // Without !fpmath accuracy information, we can't do more because we don't // know exactly whether rcp is accurate enough to meet !fpmath requirement. // f16 is always accurate enough if (!AllowInaccurateRcp && VT != MVT::f16) return SDValue(); if (CLHS->isExactlyValue(1.0)) { // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to // the CI documentation has a worst case error of 1 ulp. // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to // use it as long as we aren't trying to use denormals. // // v_rcp_f16 and v_rsq_f16 DO support denormals and 0.51ulp. // 1.0 / sqrt(x) -> rsq(x) // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP // error seems really high at 2^29 ULP. // 1.0 / x -> rcp(x) return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); } // Same as for 1.0, but expand the sign out of the constant. if (CLHS->isExactlyValue(-1.0)) { // -1.0 / x -> rcp (fneg x) SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); } } // For f16 require afn or arcp. // For f32 require afn. if (!AllowInaccurateRcp && (VT != MVT::f16 || !Flags.hasAllowReciprocal())) return SDValue(); // Turn into multiply by the reciprocal. // x / y -> x * (1.0 / y) SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); } SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue X = Op.getOperand(0); SDValue Y = Op.getOperand(1); EVT VT = Op.getValueType(); const SDNodeFlags Flags = Op->getFlags(); bool AllowInaccurateDiv = Flags.hasApproximateFuncs() || DAG.getTarget().Options.UnsafeFPMath; if (!AllowInaccurateDiv) return SDValue(); SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y); SDValue One = DAG.getConstantFP(1.0, SL, VT); SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y); SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R); SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R); SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R); SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X); return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret); } static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, EVT VT, SDValue A, SDValue B, SDValue GlueChain, SDNodeFlags Flags) { if (GlueChain->getNumValues() <= 1) { return DAG.getNode(Opcode, SL, VT, A, B, Flags); } assert(GlueChain->getNumValues() == 3); SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); switch (Opcode) { default: llvm_unreachable("no chain equivalent for opcode"); case ISD::FMUL: Opcode = AMDGPUISD::FMUL_W_CHAIN; break; } return DAG.getNode(Opcode, SL, VTList, {GlueChain.getValue(1), A, B, GlueChain.getValue(2)}, Flags); } static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, EVT VT, SDValue A, SDValue B, SDValue C, SDValue GlueChain, SDNodeFlags Flags) { if (GlueChain->getNumValues() <= 1) { return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags); } assert(GlueChain->getNumValues() == 3); SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); switch (Opcode) { default: llvm_unreachable("no chain equivalent for opcode"); case ISD::FMA: Opcode = AMDGPUISD::FMA_W_CHAIN; break; } return DAG.getNode(Opcode, SL, VTList, {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)}, Flags); } SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) return FastLowered; SDLoc SL(Op); SDValue Src0 = Op.getOperand(0); SDValue Src1 = Op.getOperand(1); SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); } // Faster 2.5 ULP division that does not support denormals. SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { SDNodeFlags Flags = Op->getFlags(); SDLoc SL(Op); SDValue LHS = Op.getOperand(1); SDValue RHS = Op.getOperand(2); SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS, Flags); const APFloat K0Val(0x1p+96f); const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); const APFloat K1Val(0x1p-32f); const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One, Flags); r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3, Flags); // rcp does not support denormals. SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1, Flags); SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0, Flags); return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul, Flags); } // Returns immediate value for setting the F32 denorm mode when using the // S_DENORM_MODE instruction. static SDValue getSPDenormModeValue(uint32_t SPDenormMode, SelectionDAG &DAG, const SIMachineFunctionInfo *Info, const GCNSubtarget *ST) { assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE"); uint32_t DPDenormModeDefault = Info->getMode().fpDenormModeDPValue(); uint32_t Mode = SPDenormMode | (DPDenormModeDefault << 2); return DAG.getTargetConstant(Mode, SDLoc(), MVT::i32); } SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) return FastLowered; // The selection matcher assumes anything with a chain selecting to a // mayRaiseFPException machine instruction. Since we're introducing a chain // here, we need to explicitly report nofpexcept for the regular fdiv // lowering. SDNodeFlags Flags = Op->getFlags(); Flags.setNoFPExcept(true); SDLoc SL(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, {RHS, RHS, LHS}, Flags); SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, {LHS, RHS, LHS}, Flags); // Denominator is scaled to not be denormal, so using rcp is ok. SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, DenominatorScaled, Flags); SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, DenominatorScaled, Flags); using namespace AMDGPU::Hwreg; const unsigned Denorm32Reg = HwregEncoding::encode(ID_MODE, 4, 2); const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32); const MachineFunction &MF = DAG.getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo(); const DenormalMode DenormMode = Info->getMode().FP32Denormals; const bool PreservesDenormals = DenormMode == DenormalMode::getIEEE(); const bool HasDynamicDenormals = (DenormMode.Input == DenormalMode::Dynamic) || (DenormMode.Output == DenormalMode::Dynamic); SDValue SavedDenormMode; if (!PreservesDenormals) { // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV // lowering. The chain dependence is insufficient, and we need glue. We do // not need the glue variants in a strictfp function. SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Glue = DAG.getEntryNode(); if (HasDynamicDenormals) { SDNode *GetReg = DAG.getMachineNode(AMDGPU::S_GETREG_B32, SL, DAG.getVTList(MVT::i32, MVT::Glue), {BitField, Glue}); SavedDenormMode = SDValue(GetReg, 0); Glue = DAG.getMergeValues( {DAG.getEntryNode(), SDValue(GetReg, 0), SDValue(GetReg, 1)}, SL); } SDNode *EnableDenorm; if (Subtarget->hasDenormModeInst()) { const SDValue EnableDenormValue = getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, Info, Subtarget); EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, Glue, EnableDenormValue) .getNode(); } else { const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, SL, MVT::i32); EnableDenorm = DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs, {EnableDenormValue, BitField, Glue}); } SDValue Ops[3] = { NegDivScale0, SDValue(EnableDenorm, 0), SDValue(EnableDenorm, 1) }; NegDivScale0 = DAG.getMergeValues(Ops, SL); } SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, ApproxRcp, One, NegDivScale0, Flags); SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, ApproxRcp, Fma0, Flags); SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, Fma1, Fma1, Flags); SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, NumeratorScaled, Mul, Flags); SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma2, Fma1, Mul, Fma2, Flags); SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, NumeratorScaled, Fma3, Flags); if (!PreservesDenormals) { SDNode *DisableDenorm; if (!HasDynamicDenormals && Subtarget->hasDenormModeInst()) { const SDValue DisableDenormValue = getSPDenormModeValue( FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, Info, Subtarget); DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, Fma4.getValue(1), DisableDenormValue, Fma4.getValue(2)).getNode(); } else { assert(HasDynamicDenormals == (bool)SavedDenormMode); const SDValue DisableDenormValue = HasDynamicDenormals ? SavedDenormMode : DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); DisableDenorm = DAG.getMachineNode( AMDGPU::S_SETREG_B32, SL, MVT::Other, {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)}); } SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, SDValue(DisableDenorm, 0), DAG.getRoot()); DAG.setRoot(OutputChain); } SDValue Scale = NumeratorScaled.getValue(1); SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, {Fma4, Fma1, Fma3, Scale}, Flags); return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags); } SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG)) return FastLowered; SDLoc SL(Op); SDValue X = Op.getOperand(0); SDValue Y = Op.getOperand(1); const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Mul, DivScale1); SDValue Scale; if (!Subtarget->hasUsableDivScaleConditionOutput()) { // Workaround a hardware bug on SI where the condition output from div_scale // is not usable. const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); // Figure out if the scale to use for div_fmas. SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); SDValue Scale0Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); SDValue Scale1Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); } else { Scale = DivScale1.getValue(1); } SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, Fma4, Fma3, Mul, Scale); return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); } SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT == MVT::f32) return LowerFDIV32(Op, DAG); if (VT == MVT::f64) return LowerFDIV64(Op, DAG); if (VT == MVT::f16) return LowerFDIV16(Op, DAG); llvm_unreachable("Unexpected type for fdiv"); } SDValue SITargetLowering::LowerFFREXP(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); SDValue Val = Op.getOperand(0); EVT VT = Val.getValueType(); EVT ResultExpVT = Op->getValueType(1); EVT InstrExpVT = VT == MVT::f16 ? MVT::i16 : MVT::i32; SDValue Mant = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, dl, VT, DAG.getTargetConstant(Intrinsic::amdgcn_frexp_mant, dl, MVT::i32), Val); SDValue Exp = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, dl, InstrExpVT, DAG.getTargetConstant(Intrinsic::amdgcn_frexp_exp, dl, MVT::i32), Val); if (Subtarget->hasFractBug()) { SDValue Fabs = DAG.getNode(ISD::FABS, dl, VT, Val); SDValue Inf = DAG.getConstantFP( APFloat::getInf(SelectionDAG::EVTToAPFloatSemantics(VT)), dl, VT); SDValue IsFinite = DAG.getSetCC(dl, MVT::i1, Fabs, Inf, ISD::SETOLT); SDValue Zero = DAG.getConstant(0, dl, InstrExpVT); Exp = DAG.getNode(ISD::SELECT, dl, InstrExpVT, IsFinite, Exp, Zero); Mant = DAG.getNode(ISD::SELECT, dl, VT, IsFinite, Mant, Val); } SDValue CastExp = DAG.getSExtOrTrunc(Exp, dl, ResultExpVT); return DAG.getMergeValues({Mant, CastExp}, dl); } SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); StoreSDNode *Store = cast(Op); EVT VT = Store->getMemoryVT(); if (VT == MVT::i1) { return DAG.getTruncStore(Store->getChain(), DL, DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), Store->getBasePtr(), MVT::i1, Store->getMemOperand()); } assert(VT.isVector() && Store->getValue().getValueType().getScalarType() == MVT::i32); unsigned AS = Store->getAddressSpace(); if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS && Store->getAlign().value() < VT.getStoreSize() && VT.getSizeInBits() > 32) { return SplitVectorStore(Op, DAG); } MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *MFI = MF.getInfo(); // If there is a possibility that flat instruction access scratch memory // then we need to use the same legalization rules we use for private. if (AS == AMDGPUAS::FLAT_ADDRESS && !Subtarget->hasMultiDwordFlatScratchAddressing()) AS = addressMayBeAccessedAsPrivate(Store->getMemOperand(), *MFI) ? AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; unsigned NumElements = VT.getVectorNumElements(); if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { if (NumElements > 4) return SplitVectorStore(Op, DAG); // v3 stores not supported on SI. if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) return SplitVectorStore(Op, DAG); if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), VT, *Store->getMemOperand())) return expandUnalignedStore(Store, DAG); return SDValue(); } if (AS == AMDGPUAS::PRIVATE_ADDRESS) { switch (Subtarget->getMaxPrivateElementSize()) { case 4: return scalarizeVectorStore(Store, DAG); case 8: if (NumElements > 2) return SplitVectorStore(Op, DAG); return SDValue(); case 16: if (NumElements > 4 || (NumElements == 3 && !Subtarget->enableFlatScratch())) return SplitVectorStore(Op, DAG); return SDValue(); default: llvm_unreachable("unsupported private_element_size"); } } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { unsigned Fast = 0; auto Flags = Store->getMemOperand()->getFlags(); if (allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS, Store->getAlign(), Flags, &Fast) && Fast > 1) return SDValue(); if (VT.isVector()) return SplitVectorStore(Op, DAG); return expandUnalignedStore(Store, DAG); } // Probably an invalid store. If so we'll end up emitting a selection error. return SDValue(); } // Avoid the full correct expansion for f32 sqrt when promoting from f16. SDValue SITargetLowering::lowerFSQRTF16(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); assert(!Subtarget->has16BitInsts()); SDNodeFlags Flags = Op->getFlags(); SDValue Ext = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Op.getOperand(0), Flags); SDValue SqrtID = DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, SL, MVT::i32); SDValue Sqrt = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::f32, SqrtID, Ext, Flags); return DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Sqrt, DAG.getTargetConstant(0, SL, MVT::i32), Flags); } SDValue SITargetLowering::lowerFSQRTF32(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDNodeFlags Flags = Op->getFlags(); MVT VT = Op.getValueType().getSimpleVT(); const SDValue X = Op.getOperand(0); if (allowApproxFunc(DAG, Flags)) { // Instruction is 1ulp but ignores denormals. return DAG.getNode( ISD::INTRINSIC_WO_CHAIN, DL, VT, DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, DL, MVT::i32), X, Flags); } SDValue ScaleThreshold = DAG.getConstantFP(0x1.0p-96f, DL, VT); SDValue NeedScale = DAG.getSetCC(DL, MVT::i1, X, ScaleThreshold, ISD::SETOLT); SDValue ScaleUpFactor = DAG.getConstantFP(0x1.0p+32f, DL, VT); SDValue ScaledX = DAG.getNode(ISD::FMUL, DL, VT, X, ScaleUpFactor, Flags); SDValue SqrtX = DAG.getNode(ISD::SELECT, DL, VT, NeedScale, ScaledX, X, Flags); SDValue SqrtS; if (needsDenormHandlingF32(DAG, X, Flags)) { SDValue SqrtID = DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, DL, MVT::i32); SqrtS = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, SqrtID, SqrtX, Flags); SDValue SqrtSAsInt = DAG.getNode(ISD::BITCAST, DL, MVT::i32, SqrtS); SDValue SqrtSNextDownInt = DAG.getNode(ISD::ADD, DL, MVT::i32, SqrtSAsInt, DAG.getConstant(-1, DL, MVT::i32)); SDValue SqrtSNextDown = DAG.getNode(ISD::BITCAST, DL, VT, SqrtSNextDownInt); SDValue NegSqrtSNextDown = DAG.getNode(ISD::FNEG, DL, VT, SqrtSNextDown, Flags); SDValue SqrtVP = DAG.getNode(ISD::FMA, DL, VT, NegSqrtSNextDown, SqrtS, SqrtX, Flags); SDValue SqrtSNextUpInt = DAG.getNode(ISD::ADD, DL, MVT::i32, SqrtSAsInt, DAG.getConstant(1, DL, MVT::i32)); SDValue SqrtSNextUp = DAG.getNode(ISD::BITCAST, DL, VT, SqrtSNextUpInt); SDValue NegSqrtSNextUp = DAG.getNode(ISD::FNEG, DL, VT, SqrtSNextUp, Flags); SDValue SqrtVS = DAG.getNode(ISD::FMA, DL, VT, NegSqrtSNextUp, SqrtS, SqrtX, Flags); SDValue Zero = DAG.getConstantFP(0.0f, DL, VT); SDValue SqrtVPLE0 = DAG.getSetCC(DL, MVT::i1, SqrtVP, Zero, ISD::SETOLE); SqrtS = DAG.getNode(ISD::SELECT, DL, VT, SqrtVPLE0, SqrtSNextDown, SqrtS, Flags); SDValue SqrtVPVSGT0 = DAG.getSetCC(DL, MVT::i1, SqrtVS, Zero, ISD::SETOGT); SqrtS = DAG.getNode(ISD::SELECT, DL, VT, SqrtVPVSGT0, SqrtSNextUp, SqrtS, Flags); } else { SDValue SqrtR = DAG.getNode(AMDGPUISD::RSQ, DL, VT, SqrtX, Flags); SqrtS = DAG.getNode(ISD::FMUL, DL, VT, SqrtX, SqrtR, Flags); SDValue Half = DAG.getConstantFP(0.5f, DL, VT); SDValue SqrtH = DAG.getNode(ISD::FMUL, DL, VT, SqrtR, Half, Flags); SDValue NegSqrtH = DAG.getNode(ISD::FNEG, DL, VT, SqrtH, Flags); SDValue SqrtE = DAG.getNode(ISD::FMA, DL, VT, NegSqrtH, SqrtS, Half, Flags); SqrtH = DAG.getNode(ISD::FMA, DL, VT, SqrtH, SqrtE, SqrtH, Flags); SqrtS = DAG.getNode(ISD::FMA, DL, VT, SqrtS, SqrtE, SqrtS, Flags); SDValue NegSqrtS = DAG.getNode(ISD::FNEG, DL, VT, SqrtS, Flags); SDValue SqrtD = DAG.getNode(ISD::FMA, DL, VT, NegSqrtS, SqrtS, SqrtX, Flags); SqrtS = DAG.getNode(ISD::FMA, DL, VT, SqrtD, SqrtH, SqrtS, Flags); } SDValue ScaleDownFactor = DAG.getConstantFP(0x1.0p-16f, DL, VT); SDValue ScaledDown = DAG.getNode(ISD::FMUL, DL, VT, SqrtS, ScaleDownFactor, Flags); SqrtS = DAG.getNode(ISD::SELECT, DL, VT, NeedScale, ScaledDown, SqrtS, Flags); SDValue IsZeroOrInf = DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, SqrtX, DAG.getTargetConstant(fcZero | fcPosInf, DL, MVT::i32)); return DAG.getNode(ISD::SELECT, DL, VT, IsZeroOrInf, SqrtX, SqrtS, Flags); } SDValue SITargetLowering::lowerFSQRTF64(SDValue Op, SelectionDAG &DAG) const { // For double type, the SQRT and RSQ instructions don't have required // precision, we apply Goldschmidt's algorithm to improve the result: // // y0 = rsq(x) // g0 = x * y0 // h0 = 0.5 * y0 // // r0 = 0.5 - h0 * g0 // g1 = g0 * r0 + g0 // h1 = h0 * r0 + h0 // // r1 = 0.5 - h1 * g1 => d0 = x - g1 * g1 // g2 = g1 * r1 + g1 g2 = d0 * h1 + g1 // h2 = h1 * r1 + h1 // // r2 = 0.5 - h2 * g2 => d1 = x - g2 * g2 // g3 = g2 * r2 + g2 g3 = d1 * h1 + g2 // // sqrt(x) = g3 SDNodeFlags Flags = Op->getFlags(); SDLoc DL(Op); SDValue X = Op.getOperand(0); SDValue ScaleConstant = DAG.getConstantFP(0x1.0p-767, DL, MVT::f64); SDValue Scaling = DAG.getSetCC(DL, MVT::i1, X, ScaleConstant, ISD::SETOLT); SDValue ZeroInt = DAG.getConstant(0, DL, MVT::i32); // Scale up input if it is too small. SDValue ScaleUpFactor = DAG.getConstant(256, DL, MVT::i32); SDValue ScaleUp = DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleUpFactor, ZeroInt); SDValue SqrtX = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, X, ScaleUp, Flags); SDValue SqrtY = DAG.getNode(AMDGPUISD::RSQ, DL, MVT::f64, SqrtX); SDValue SqrtS0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtX, SqrtY); SDValue Half = DAG.getConstantFP(0.5, DL, MVT::f64); SDValue SqrtH0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtY, Half); SDValue NegSqrtH0 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtH0); SDValue SqrtR0 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtH0, SqrtS0, Half); SDValue SqrtH1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtH0, SqrtR0, SqrtH0); SDValue SqrtS1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtS0, SqrtR0, SqrtS0); SDValue NegSqrtS1 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS1); SDValue SqrtD0 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS1, SqrtS1, SqrtX); SDValue SqrtS2 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD0, SqrtH1, SqrtS1); SDValue NegSqrtS2 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS2); SDValue SqrtD1 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS2, SqrtS2, SqrtX); SDValue SqrtRet = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD1, SqrtH1, SqrtS2); SDValue ScaleDownFactor = DAG.getConstant(-128, DL, MVT::i32); SDValue ScaleDown = DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleDownFactor, ZeroInt); SqrtRet = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, SqrtRet, ScaleDown, Flags); // TODO: Switch to fcmp oeq 0 for finite only. Can't fully remove this check // with finite only or nsz because rsq(+/-0) = +/-inf // TODO: Check for DAZ and expand to subnormals SDValue IsZeroOrInf = DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, SqrtX, DAG.getTargetConstant(fcZero | fcPosInf, DL, MVT::i32)); // If x is +INF, +0, or -0, use its original value return DAG.getNode(ISD::SELECT, DL, MVT::f64, IsZeroOrInf, SqrtX, SqrtRet, Flags); } SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue Arg = Op.getOperand(0); SDValue TrigVal; // Propagate fast-math flags so that the multiply we introduce can be folded // if Arg is already the result of a multiply by constant. auto Flags = Op->getFlags(); SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT); if (Subtarget->hasTrigReducedRange()) { SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags); } else { TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); } switch (Op.getOpcode()) { case ISD::FCOS: return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags); case ISD::FSIN: return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags); default: llvm_unreachable("Wrong trig opcode"); } } SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { AtomicSDNode *AtomicNode = cast(Op); assert(AtomicNode->isCompareAndSwap()); unsigned AS = AtomicNode->getAddressSpace(); // No custom lowering required for local address space if (!AMDGPU::isFlatGlobalAddrSpace(AS)) return Op; // Non-local address space requires custom lowering for atomic compare // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 SDLoc DL(Op); SDValue ChainIn = Op.getOperand(0); SDValue Addr = Op.getOperand(1); SDValue Old = Op.getOperand(2); SDValue New = Op.getOperand(3); EVT VT = Op.getValueType(); MVT SimpleVT = VT.getSimpleVT(); MVT VecType = MVT::getVectorVT(SimpleVT, 2); SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); SDValue Ops[] = { ChainIn, Addr, NewOld }; return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), Ops, VT, AtomicNode->getMemOperand()); } //===----------------------------------------------------------------------===// // Custom DAG optimizations //===----------------------------------------------------------------------===// SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, DAGCombinerInfo &DCI) const { EVT VT = N->getValueType(0); EVT ScalarVT = VT.getScalarType(); if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); SDValue Src = N->getOperand(0); EVT SrcVT = Src.getValueType(); // TODO: We could try to match extracting the higher bytes, which would be // easier if i8 vectors weren't promoted to i32 vectors, particularly after // types are legalized. v4i8 -> v4f32 is probably the only case to worry // about in practice. if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src); DCI.AddToWorklist(Cvt.getNode()); // For the f16 case, fold to a cast to f32 and then cast back to f16. if (ScalarVT != MVT::f32) { Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt, DAG.getTargetConstant(0, DL, MVT::i32)); } return Cvt; } } return SDValue(); } SDValue SITargetLowering::performFCopySignCombine(SDNode *N, DAGCombinerInfo &DCI) const { SDValue MagnitudeOp = N->getOperand(0); SDValue SignOp = N->getOperand(1); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); // f64 fcopysign is really an f32 copysign on the high bits, so replace the // lower half with a copy. // fcopysign f64:x, _:y -> x.lo32, (fcopysign (f32 x.hi32), _:y) if (MagnitudeOp.getValueType() == MVT::f64) { SDValue MagAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, MagnitudeOp); SDValue MagLo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector, DAG.getConstant(0, DL, MVT::i32)); SDValue MagHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector, DAG.getConstant(1, DL, MVT::i32)); SDValue HiOp = DAG.getNode(ISD::FCOPYSIGN, DL, MVT::f32, MagHi, SignOp); SDValue Vector = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f32, MagLo, HiOp); return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Vector); } if (SignOp.getValueType() != MVT::f64) return SDValue(); // Reduce width of sign operand, we only need the highest bit. // // fcopysign f64:x, f64:y -> // fcopysign f64:x, (extract_vector_elt (bitcast f64:y to v2f32), 1) // TODO: In some cases it might make sense to go all the way to f16. SDValue SignAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, SignOp); SDValue SignAsF32 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, SignAsVector, DAG.getConstant(1, DL, MVT::i32)); return DAG.getNode(ISD::FCOPYSIGN, DL, N->getValueType(0), N->getOperand(0), SignAsF32); } // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) // (shl (or x, c1), c2) -> add (shl x, c2), (shl c1, c2) iff x and c1 share no // bits // This is a variant of // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), // // The normal DAG combiner will do this, but only if the add has one use since // that would increase the number of instructions. // // This prevents us from seeing a constant offset that can be folded into a // memory instruction's addressing mode. If we know the resulting add offset of // a pointer can be folded into an addressing offset, we can replace the pointer // operand with the add of new constant offset. This eliminates one of the uses, // and may allow the remaining use to also be simplified. // SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, unsigned AddrSpace, EVT MemVT, DAGCombinerInfo &DCI) const { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // We only do this to handle cases where it's profitable when there are // multiple uses of the add, so defer to the standard combine. if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || N0->hasOneUse()) return SDValue(); const ConstantSDNode *CN1 = dyn_cast(N1); if (!CN1) return SDValue(); const ConstantSDNode *CAdd = dyn_cast(N0.getOperand(1)); if (!CAdd) return SDValue(); SelectionDAG &DAG = DCI.DAG; if (N0->getOpcode() == ISD::OR && !DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) return SDValue(); // If the resulting offset is too large, we can't fold it into the // addressing mode offset. APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); AddrMode AM; AM.HasBaseReg = true; AM.BaseOffs = Offset.getSExtValue(); if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) return SDValue(); SDLoc SL(N); EVT VT = N->getValueType(0); SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); SDValue COffset = DAG.getConstant(Offset, SL, VT); SDNodeFlags Flags; Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && (N0.getOpcode() == ISD::OR || N0->getFlags().hasNoUnsignedWrap())); return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); } /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset /// by the chain and intrinsic ID. Theoretically we would also need to check the /// specific intrinsic, but they all place the pointer operand first. static unsigned getBasePtrIndex(const MemSDNode *N) { switch (N->getOpcode()) { case ISD::STORE: case ISD::INTRINSIC_W_CHAIN: case ISD::INTRINSIC_VOID: return 2; default: return 1; } } SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); unsigned PtrIdx = getBasePtrIndex(N); SDValue Ptr = N->getOperand(PtrIdx); // TODO: We could also do this for multiplies. if (Ptr.getOpcode() == ISD::SHL) { SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), N->getMemoryVT(), DCI); if (NewPtr) { SmallVector NewOps(N->op_begin(), N->op_end()); NewOps[PtrIdx] = NewPtr; return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); } } return SDValue(); } static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || (Opc == ISD::XOR && Val == 0); } // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit // integer combine opportunities since most 64-bit operations are decomposed // this way. TODO: We won't want this for SALU especially if it is an inline // immediate. SDValue SITargetLowering::splitBinaryBitConstantOp( DAGCombinerInfo &DCI, const SDLoc &SL, unsigned Opc, SDValue LHS, const ConstantSDNode *CRHS) const { uint64_t Val = CRHS->getZExtValue(); uint32_t ValLo = Lo_32(Val); uint32_t ValHi = Hi_32(Val); const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); if ((bitOpWithConstantIsReducible(Opc, ValLo) || bitOpWithConstantIsReducible(Opc, ValHi)) || (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { // If we need to materialize a 64-bit immediate, it will be split up later // anyway. Avoid creating the harder to understand 64-bit immediate // materialization. return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); } return SDValue(); } bool llvm::isBoolSGPR(SDValue V) { if (V.getValueType() != MVT::i1) return false; switch (V.getOpcode()) { default: break; case ISD::SETCC: case AMDGPUISD::FP_CLASS: return true; case ISD::AND: case ISD::OR: case ISD::XOR: return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1)); } return false; } // If a constant has all zeroes or all ones within each byte return it. // Otherwise return 0. static uint32_t getConstantPermuteMask(uint32_t C) { // 0xff for any zero byte in the mask uint32_t ZeroByteMask = 0; if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte if ((NonZeroByteMask & C) != NonZeroByteMask) return 0; // Partial bytes selected. return C; } // Check if a node selects whole bytes from its operand 0 starting at a byte // boundary while masking the rest. Returns select mask as in the v_perm_b32 // or -1 if not succeeded. // Note byte select encoding: // value 0-3 selects corresponding source byte; // value 0xc selects zero; // value 0xff selects 0xff. static uint32_t getPermuteMask(SDValue V) { assert(V.getValueSizeInBits() == 32); if (V.getNumOperands() != 2) return ~0; ConstantSDNode *N1 = dyn_cast(V.getOperand(1)); if (!N1) return ~0; uint32_t C = N1->getZExtValue(); switch (V.getOpcode()) { default: break; case ISD::AND: if (uint32_t ConstMask = getConstantPermuteMask(C)) return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); break; case ISD::OR: if (uint32_t ConstMask = getConstantPermuteMask(C)) return (0x03020100 & ~ConstMask) | ConstMask; break; case ISD::SHL: if (C % 8) return ~0; return uint32_t((0x030201000c0c0c0cull << C) >> 32); case ISD::SRL: if (C % 8) return ~0; return uint32_t(0x0c0c0c0c03020100ull >> C); } return ~0; } SDValue SITargetLowering::performAndCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (DCI.isBeforeLegalize()) return SDValue(); SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); const ConstantSDNode *CRHS = dyn_cast(RHS); if (VT == MVT::i64 && CRHS) { if (SDValue Split = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) return Split; } if (CRHS && VT == MVT::i32) { // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb // nb = number of trailing zeroes in mask // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, // given that we are selecting 8 or 16 bit fields starting at byte boundary. uint64_t Mask = CRHS->getZExtValue(); unsigned Bits = llvm::popcount(Mask); if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { if (auto *CShift = dyn_cast(LHS->getOperand(1))) { unsigned Shift = CShift->getZExtValue(); unsigned NB = CRHS->getAPIntValue().countr_zero(); unsigned Offset = NB + Shift; if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. SDLoc SL(N); SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, LHS->getOperand(0), DAG.getConstant(Offset, SL, MVT::i32), DAG.getConstant(Bits, SL, MVT::i32)); EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, DAG.getValueType(NarrowVT)); SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); return Shl; } } } // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && isa(LHS.getOperand(2))) { uint32_t Sel = getConstantPermuteMask(Mask); if (!Sel) return SDValue(); // Select 0xc for all zero bytes Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); SDLoc DL(N); return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); } } // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { ISD::CondCode LCC = cast(LHS.getOperand(2))->get(); ISD::CondCode RCC = cast(RHS.getOperand(2))->get(); SDValue X = LHS.getOperand(0); SDValue Y = RHS.getOperand(0); if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X || !isTypeLegal(X.getValueType())) return SDValue(); if (LCC == ISD::SETO) { if (X != LHS.getOperand(1)) return SDValue(); if (RCC == ISD::SETUNE) { const ConstantFPSDNode *C1 = dyn_cast(RHS.getOperand(1)); if (!C1 || !C1->isInfinity() || C1->isNegative()) return SDValue(); const uint32_t Mask = SIInstrFlags::N_NORMAL | SIInstrFlags::N_SUBNORMAL | SIInstrFlags::N_ZERO | SIInstrFlags::P_ZERO | SIInstrFlags::P_SUBNORMAL | SIInstrFlags::P_NORMAL; static_assert(((~(SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN | SIInstrFlags::N_INFINITY | SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, "mask not equal"); SDLoc DL(N); return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, X, DAG.getConstant(Mask, DL, MVT::i32)); } } } if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) std::swap(LHS, RHS); if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && RHS.hasOneUse()) { ISD::CondCode LCC = cast(LHS.getOperand(2))->get(); // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) const ConstantSDNode *Mask = dyn_cast(RHS.getOperand(1)); if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && (RHS.getOperand(0) == LHS.getOperand(0) && LHS.getOperand(0) == LHS.getOperand(1))) { const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; unsigned NewMask = LCC == ISD::SETO ? Mask->getZExtValue() & ~OrdMask : Mask->getZExtValue() & OrdMask; SDLoc DL(N); return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), DAG.getConstant(NewMask, DL, MVT::i32)); } } if (VT == MVT::i32 && (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { // and x, (sext cc from i1) => select cc, x, 0 if (RHS.getOpcode() != ISD::SIGN_EXTEND) std::swap(LHS, RHS); if (isBoolSGPR(RHS.getOperand(0))) return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); } // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { uint32_t LHSMask = getPermuteMask(LHS); uint32_t RHSMask = getPermuteMask(RHS); if (LHSMask != ~0u && RHSMask != ~0u) { // Canonicalize the expression in an attempt to have fewer unique masks // and therefore fewer registers used to hold the masks. if (LHSMask > RHSMask) { std::swap(LHSMask, RHSMask); std::swap(LHS, RHS); } // Select 0xc for each lane used from source operand. Zero has 0xc mask // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; // Check of we need to combine values from two sources within a byte. if (!(LHSUsedLanes & RHSUsedLanes) && // If we select high and lower word keep it for SDWA. // TODO: teach SDWA to work with v_perm_b32 and remove the check. !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { // Each byte in each mask is either selector mask 0-3, or has higher // bits set in either of masks, which can be 0xff for 0xff or 0x0c for // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise // mask which is not 0xff wins. By anding both masks we have a correct // result except that 0x0c shall be corrected to give 0x0c only. uint32_t Mask = LHSMask & RHSMask; for (unsigned I = 0; I < 32; I += 8) { uint32_t ByteSel = 0xff << I; if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) Mask &= (0x0c << I) & 0xffffffff; } // Add 4 to each active LHS lane. It will not affect any existing 0xff // or 0x0c. uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); SDLoc DL(N); return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), RHS.getOperand(0), DAG.getConstant(Sel, DL, MVT::i32)); } } } return SDValue(); } // A key component of v_perm is a mapping between byte position of the src // operands, and the byte position of the dest. To provide such, we need: 1. the // node that provides x byte of the dest of the OR, and 2. the byte of the node // used to provide that x byte. calculateByteProvider finds which node provides // a certain byte of the dest of the OR, and calculateSrcByte takes that node, // and finds an ultimate src and byte position For example: The supported // LoadCombine pattern for vector loads is as follows // t1 // or // / \ // t2 t3 // zext shl // | | \ // t4 t5 16 // or anyext // / \ | // t6 t7 t8 // srl shl or // / | / \ / \ // t9 t10 t11 t12 t13 t14 // trunc* 8 trunc* 8 and and // | | / | | \ // t15 t16 t17 t18 t19 t20 // trunc* 255 srl -256 // | / \ // t15 t15 16 // // *In this example, the truncs are from i32->i16 // // calculateByteProvider would find t6, t7, t13, and t14 for bytes 0-3 // respectively. calculateSrcByte would find (given node) -> ultimate src & // byteposition: t6 -> t15 & 1, t7 -> t16 & 0, t13 -> t15 & 0, t14 -> t15 & 3. // After finding the mapping, we can combine the tree into vperm t15, t16, // 0x05000407 // Find the source and byte position from a node. // \p DestByte is the byte position of the dest of the or that the src // ultimately provides. \p SrcIndex is the byte of the src that maps to this // dest of the or byte. \p Depth tracks how many recursive iterations we have // performed. static const std::optional> calculateSrcByte(const SDValue Op, uint64_t DestByte, uint64_t SrcIndex = 0, unsigned Depth = 0) { // We may need to recursively traverse a series of SRLs if (Depth >= 6) return std::nullopt; if (Op.getValueSizeInBits() < 8) return std::nullopt; if (Op.getValueType().isVector()) return ByteProvider::getSrc(Op, DestByte, SrcIndex); switch (Op->getOpcode()) { case ISD::TRUNCATE: { return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1); } case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND_INREG: { SDValue NarrowOp = Op->getOperand(0); auto NarrowVT = NarrowOp.getValueType(); if (Op->getOpcode() == ISD::SIGN_EXTEND_INREG) { auto *VTSign = cast(Op->getOperand(1)); NarrowVT = VTSign->getVT(); } if (!NarrowVT.isByteSized()) return std::nullopt; uint64_t NarrowByteWidth = NarrowVT.getStoreSize(); if (SrcIndex >= NarrowByteWidth) return std::nullopt; return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1); } case ISD::SRA: case ISD::SRL: { auto ShiftOp = dyn_cast(Op->getOperand(1)); if (!ShiftOp) return std::nullopt; uint64_t BitShift = ShiftOp->getZExtValue(); if (BitShift % 8 != 0) return std::nullopt; SrcIndex += BitShift / 8; return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1); } default: { return ByteProvider::getSrc(Op, DestByte, SrcIndex); } } llvm_unreachable("fully handled switch"); } // For a byte position in the result of an Or, traverse the tree and find the // node (and the byte of the node) which ultimately provides this {Or, // BytePosition}. \p Op is the operand we are currently examining. \p Index is // the byte position of the Op that corresponds with the originally requested // byte of the Or \p Depth tracks how many recursive iterations we have // performed. \p StartingIndex is the originally requested byte of the Or static const std::optional> calculateByteProvider(const SDValue &Op, unsigned Index, unsigned Depth, unsigned StartingIndex = 0) { // Finding Src tree of RHS of or typically requires at least 1 additional // depth if (Depth > 6) return std::nullopt; unsigned BitWidth = Op.getScalarValueSizeInBits(); if (BitWidth % 8 != 0) return std::nullopt; if (Index > BitWidth / 8 - 1) return std::nullopt; bool IsVec = Op.getValueType().isVector(); switch (Op.getOpcode()) { case ISD::OR: { if (IsVec) return std::nullopt; auto RHS = calculateByteProvider(Op.getOperand(1), Index, Depth + 1, StartingIndex); if (!RHS) return std::nullopt; auto LHS = calculateByteProvider(Op.getOperand(0), Index, Depth + 1, StartingIndex); if (!LHS) return std::nullopt; // A well formed Or will have two ByteProviders for each byte, one of which // is constant zero if (!LHS->isConstantZero() && !RHS->isConstantZero()) return std::nullopt; if (!LHS || LHS->isConstantZero()) return RHS; if (!RHS || RHS->isConstantZero()) return LHS; return std::nullopt; } case ISD::AND: { if (IsVec) return std::nullopt; auto BitMaskOp = dyn_cast(Op->getOperand(1)); if (!BitMaskOp) return std::nullopt; uint32_t BitMask = BitMaskOp->getZExtValue(); // Bits we expect for our StartingIndex uint32_t IndexMask = 0xFF << (Index * 8); if ((IndexMask & BitMask) != IndexMask) { // If the result of the and partially provides the byte, then it // is not well formatted if (IndexMask & BitMask) return std::nullopt; return ByteProvider::getConstantZero(); } return calculateSrcByte(Op->getOperand(0), StartingIndex, Index); } case ISD::FSHR: { if (IsVec) return std::nullopt; // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) auto ShiftOp = dyn_cast(Op->getOperand(2)); if (!ShiftOp || Op.getValueType().isVector()) return std::nullopt; uint64_t BitsProvided = Op.getValueSizeInBits(); if (BitsProvided % 8 != 0) return std::nullopt; uint64_t BitShift = ShiftOp->getAPIntValue().urem(BitsProvided); if (BitShift % 8) return std::nullopt; uint64_t ConcatSizeInBytes = BitsProvided / 4; uint64_t ByteShift = BitShift / 8; uint64_t NewIndex = (Index + ByteShift) % ConcatSizeInBytes; uint64_t BytesProvided = BitsProvided / 8; SDValue NextOp = Op.getOperand(NewIndex >= BytesProvided ? 0 : 1); NewIndex %= BytesProvided; return calculateByteProvider(NextOp, NewIndex, Depth + 1, StartingIndex); } case ISD::SRA: case ISD::SRL: { if (IsVec) return std::nullopt; auto ShiftOp = dyn_cast(Op->getOperand(1)); if (!ShiftOp) return std::nullopt; uint64_t BitShift = ShiftOp->getZExtValue(); if (BitShift % 8) return std::nullopt; auto BitsProvided = Op.getScalarValueSizeInBits(); if (BitsProvided % 8 != 0) return std::nullopt; uint64_t BytesProvided = BitsProvided / 8; uint64_t ByteShift = BitShift / 8; // The dest of shift will have good [0 : (BytesProvided - ByteShift)] bytes. // If the byte we are trying to provide (as tracked by index) falls in this // range, then the SRL provides the byte. The byte of interest of the src of // the SRL is Index + ByteShift return BytesProvided - ByteShift > Index ? calculateSrcByte(Op->getOperand(0), StartingIndex, Index + ByteShift) : ByteProvider::getConstantZero(); } case ISD::SHL: { if (IsVec) return std::nullopt; auto ShiftOp = dyn_cast(Op->getOperand(1)); if (!ShiftOp) return std::nullopt; uint64_t BitShift = ShiftOp->getZExtValue(); if (BitShift % 8 != 0) return std::nullopt; uint64_t ByteShift = BitShift / 8; // If we are shifting by an amount greater than (or equal to) // the index we are trying to provide, then it provides 0s. If not, // then this bytes are not definitively 0s, and the corresponding byte // of interest is Index - ByteShift of the src return Index < ByteShift ? ByteProvider::getConstantZero() : calculateByteProvider(Op.getOperand(0), Index - ByteShift, Depth + 1, StartingIndex); } case ISD::ANY_EXTEND: case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND_INREG: case ISD::AssertZext: case ISD::AssertSext: { if (IsVec) return std::nullopt; SDValue NarrowOp = Op->getOperand(0); unsigned NarrowBitWidth = NarrowOp.getValueSizeInBits(); if (Op->getOpcode() == ISD::SIGN_EXTEND_INREG || Op->getOpcode() == ISD::AssertZext || Op->getOpcode() == ISD::AssertSext) { auto *VTSign = cast(Op->getOperand(1)); NarrowBitWidth = VTSign->getVT().getSizeInBits(); } if (NarrowBitWidth % 8 != 0) return std::nullopt; uint64_t NarrowByteWidth = NarrowBitWidth / 8; if (Index >= NarrowByteWidth) return Op.getOpcode() == ISD::ZERO_EXTEND ? std::optional>( ByteProvider::getConstantZero()) : std::nullopt; return calculateByteProvider(NarrowOp, Index, Depth + 1, StartingIndex); } case ISD::TRUNCATE: { if (IsVec) return std::nullopt; uint64_t NarrowByteWidth = BitWidth / 8; if (NarrowByteWidth >= Index) { return calculateByteProvider(Op.getOperand(0), Index, Depth + 1, StartingIndex); } return std::nullopt; } case ISD::CopyFromReg: { if (BitWidth / 8 > Index) return calculateSrcByte(Op, StartingIndex, Index); return std::nullopt; } case ISD::LOAD: { auto L = cast(Op.getNode()); unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); if (NarrowBitWidth % 8 != 0) return std::nullopt; uint64_t NarrowByteWidth = NarrowBitWidth / 8; // If the width of the load does not reach byte we are trying to provide for // and it is not a ZEXTLOAD, then the load does not provide for the byte in // question if (Index >= NarrowByteWidth) { return L->getExtensionType() == ISD::ZEXTLOAD ? std::optional>( ByteProvider::getConstantZero()) : std::nullopt; } if (NarrowByteWidth > Index) { return calculateSrcByte(Op, StartingIndex, Index); } return std::nullopt; } case ISD::BSWAP: { if (IsVec) return std::nullopt; return calculateByteProvider(Op->getOperand(0), BitWidth / 8 - Index - 1, Depth + 1, StartingIndex); } case ISD::EXTRACT_VECTOR_ELT: { auto IdxOp = dyn_cast(Op->getOperand(1)); if (!IdxOp) return std::nullopt; auto VecIdx = IdxOp->getZExtValue(); auto ScalarSize = Op.getScalarValueSizeInBits(); if (ScalarSize < 32) Index = ScalarSize == 8 ? VecIdx : VecIdx * 2 + Index; return calculateSrcByte(ScalarSize >= 32 ? Op : Op.getOperand(0), StartingIndex, Index); } case AMDGPUISD::PERM: { if (IsVec) return std::nullopt; auto PermMask = dyn_cast(Op->getOperand(2)); if (!PermMask) return std::nullopt; auto IdxMask = (PermMask->getZExtValue() & (0xFF << (Index * 8))) >> (Index * 8); if (IdxMask > 0x07 && IdxMask != 0x0c) return std::nullopt; auto NextOp = Op.getOperand(IdxMask > 0x03 ? 0 : 1); auto NextIndex = IdxMask > 0x03 ? IdxMask % 4 : IdxMask; return IdxMask != 0x0c ? calculateSrcByte(NextOp, StartingIndex, NextIndex) : ByteProvider( ByteProvider::getConstantZero()); } default: { return std::nullopt; } } llvm_unreachable("fully handled switch"); } // Returns true if the Operand is a scalar and is 16 bits static bool isExtendedFrom16Bits(SDValue &Operand) { switch (Operand.getOpcode()) { case ISD::ANY_EXTEND: case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: { auto OpVT = Operand.getOperand(0).getValueType(); return !OpVT.isVector() && OpVT.getSizeInBits() == 16; } case ISD::LOAD: { LoadSDNode *L = cast(Operand.getNode()); auto ExtType = cast(L)->getExtensionType(); if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::SEXTLOAD || ExtType == ISD::EXTLOAD) { auto MemVT = L->getMemoryVT(); return !MemVT.isVector() && MemVT.getSizeInBits() == 16; } return L->getMemoryVT().getSizeInBits() == 16; } default: return false; } } // Returns true if the mask matches consecutive bytes, and the first byte // begins at a power of 2 byte offset from 0th byte static bool addresses16Bits(int Mask) { int Low8 = Mask & 0xff; int Hi8 = (Mask & 0xff00) >> 8; assert(Low8 < 8 && Hi8 < 8); // Are the bytes contiguous in the order of increasing addresses. bool IsConsecutive = (Hi8 - Low8 == 1); // Is the first byte at location that is aligned for 16 bit instructions. // A counter example is taking 2 consecutive bytes starting at the 8th bit. // In this case, we still need code to extract the 16 bit operand, so it // is better to use i8 v_perm bool Is16Aligned = !(Low8 % 2); return IsConsecutive && Is16Aligned; } // Do not lower into v_perm if the operands are actually 16 bit // and the selected bits (based on PermMask) correspond with two // easily addressable 16 bit operands. static bool hasNon16BitAccesses(uint64_t PermMask, SDValue &Op, SDValue &OtherOp) { int Low16 = PermMask & 0xffff; int Hi16 = (PermMask & 0xffff0000) >> 16; auto TempOp = peekThroughBitcasts(Op); auto TempOtherOp = peekThroughBitcasts(OtherOp); auto OpIs16Bit = TempOtherOp.getValueSizeInBits() == 16 || isExtendedFrom16Bits(TempOp); if (!OpIs16Bit) return true; auto OtherOpIs16Bit = TempOtherOp.getValueSizeInBits() == 16 || isExtendedFrom16Bits(TempOtherOp); if (!OtherOpIs16Bit) return true; // Do we cleanly address both return !addresses16Bits(Low16) || !addresses16Bits(Hi16); } static SDValue getDWordFromOffset(SelectionDAG &DAG, SDLoc SL, SDValue Src, unsigned DWordOffset) { SDValue Ret; auto TypeSize = Src.getValueSizeInBits().getFixedValue(); // ByteProvider must be at least 8 bits assert(Src.getValueSizeInBits().isKnownMultipleOf(8)); if (TypeSize <= 32) return DAG.getBitcastedAnyExtOrTrunc(Src, SL, MVT::i32); if (Src.getValueType().isVector()) { auto ScalarTySize = Src.getScalarValueSizeInBits(); auto ScalarTy = Src.getValueType().getScalarType(); if (ScalarTySize == 32) { return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Src, DAG.getConstant(DWordOffset, SL, MVT::i32)); } if (ScalarTySize > 32) { Ret = DAG.getNode( ISD::EXTRACT_VECTOR_ELT, SL, ScalarTy, Src, DAG.getConstant(DWordOffset / (ScalarTySize / 32), SL, MVT::i32)); auto ShiftVal = 32 * (DWordOffset % (ScalarTySize / 32)); if (ShiftVal) Ret = DAG.getNode(ISD::SRL, SL, Ret.getValueType(), Ret, DAG.getConstant(ShiftVal, SL, MVT::i32)); return DAG.getBitcastedAnyExtOrTrunc(Ret, SL, MVT::i32); } assert(ScalarTySize < 32); auto NumElements = TypeSize / ScalarTySize; auto Trunc32Elements = (ScalarTySize * NumElements) / 32; auto NormalizedTrunc = Trunc32Elements * 32 / ScalarTySize; auto NumElementsIn32 = 32 / ScalarTySize; auto NumAvailElements = DWordOffset < Trunc32Elements ? NumElementsIn32 : NumElements - NormalizedTrunc; SmallVector VecSrcs; DAG.ExtractVectorElements(Src, VecSrcs, DWordOffset * NumElementsIn32, NumAvailElements); Ret = DAG.getBuildVector( MVT::getVectorVT(MVT::getIntegerVT(ScalarTySize), NumAvailElements), SL, VecSrcs); return Ret = DAG.getBitcastedAnyExtOrTrunc(Ret, SL, MVT::i32); } /// Scalar Type auto ShiftVal = 32 * DWordOffset; Ret = DAG.getNode(ISD::SRL, SL, Src.getValueType(), Src, DAG.getConstant(ShiftVal, SL, MVT::i32)); return DAG.getBitcastedAnyExtOrTrunc(Ret, SL, MVT::i32); } static SDValue matchPERM(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; [[maybe_unused]] EVT VT = N->getValueType(0); SmallVector, 8> PermNodes; // VT is known to be MVT::i32, so we need to provide 4 bytes. assert(VT == MVT::i32); for (int i = 0; i < 4; i++) { // Find the ByteProvider that provides the ith byte of the result of OR std::optional> P = calculateByteProvider(SDValue(N, 0), i, 0, /*StartingIndex = */ i); // TODO support constantZero if (!P || P->isConstantZero()) return SDValue(); PermNodes.push_back(*P); } if (PermNodes.size() != 4) return SDValue(); std::pair FirstSrc(0, PermNodes[0].SrcOffset / 4); std::optional> SecondSrc; uint64_t PermMask = 0x00000000; for (size_t i = 0; i < PermNodes.size(); i++) { auto PermOp = PermNodes[i]; // Since the mask is applied to Src1:Src2, Src1 bytes must be offset // by sizeof(Src2) = 4 int SrcByteAdjust = 4; // If the Src uses a byte from a different DWORD, then it corresponds // with a difference source if (!PermOp.hasSameSrc(PermNodes[FirstSrc.first]) || ((PermOp.SrcOffset / 4) != FirstSrc.second)) { if (SecondSrc) if (!PermOp.hasSameSrc(PermNodes[SecondSrc->first]) || ((PermOp.SrcOffset / 4) != SecondSrc->second)) return SDValue(); // Set the index of the second distinct Src node SecondSrc = {i, PermNodes[i].SrcOffset / 4}; assert(!(PermNodes[SecondSrc->first].Src->getValueSizeInBits() % 8)); SrcByteAdjust = 0; } assert((PermOp.SrcOffset % 4) + SrcByteAdjust < 8); assert(!DAG.getDataLayout().isBigEndian()); PermMask |= ((PermOp.SrcOffset % 4) + SrcByteAdjust) << (i * 8); } SDLoc DL(N); SDValue Op = *PermNodes[FirstSrc.first].Src; Op = getDWordFromOffset(DAG, DL, Op, FirstSrc.second); assert(Op.getValueSizeInBits() == 32); // Check that we are not just extracting the bytes in order from an op if (!SecondSrc) { int Low16 = PermMask & 0xffff; int Hi16 = (PermMask & 0xffff0000) >> 16; bool WellFormedLow = (Low16 == 0x0504) || (Low16 == 0x0100); bool WellFormedHi = (Hi16 == 0x0706) || (Hi16 == 0x0302); // The perm op would really just produce Op. So combine into Op if (WellFormedLow && WellFormedHi) return DAG.getBitcast(MVT::getIntegerVT(32), Op); } SDValue OtherOp = SecondSrc ? *PermNodes[SecondSrc->first].Src : Op; if (SecondSrc) { OtherOp = getDWordFromOffset(DAG, DL, OtherOp, SecondSrc->second); assert(OtherOp.getValueSizeInBits() == 32); } if (hasNon16BitAccesses(PermMask, Op, OtherOp)) { assert(Op.getValueType().isByteSized() && OtherOp.getValueType().isByteSized()); // If the ultimate src is less than 32 bits, then we will only be // using bytes 0: Op.getValueSizeInBytes() - 1 in the or. // CalculateByteProvider would not have returned Op as source if we // used a byte that is outside its ValueType. Thus, we are free to // ANY_EXTEND as the extended bits are dont-cares. Op = DAG.getBitcastedAnyExtOrTrunc(Op, DL, MVT::i32); OtherOp = DAG.getBitcastedAnyExtOrTrunc(OtherOp, DL, MVT::i32); return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op, OtherOp, DAG.getConstant(PermMask, DL, MVT::i32)); } return SDValue(); } SDValue SITargetLowering::performOrCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); EVT VT = N->getValueType(0); if (VT == MVT::i1) { // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && RHS.getOpcode() == AMDGPUISD::FP_CLASS) { SDValue Src = LHS.getOperand(0); if (Src != RHS.getOperand(0)) return SDValue(); const ConstantSDNode *CLHS = dyn_cast(LHS.getOperand(1)); const ConstantSDNode *CRHS = dyn_cast(RHS.getOperand(1)); if (!CLHS || !CRHS) return SDValue(); // Only 10 bits are used. static const uint32_t MaxMask = 0x3ff; uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; SDLoc DL(N); return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, Src, DAG.getConstant(NewMask, DL, MVT::i32)); } return SDValue(); } // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) if (isa(RHS) && LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && isa(LHS.getOperand(2))) { uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); if (!Sel) return SDValue(); Sel |= LHS.getConstantOperandVal(2); SDLoc DL(N); return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); } // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { // If all the uses of an or need to extract the individual elements, do not // attempt to lower into v_perm auto usesCombinedOperand = [](SDNode *OrUse) { // If we have any non-vectorized use, then it is a candidate for v_perm if (OrUse->getOpcode() != ISD::BITCAST || !OrUse->getValueType(0).isVector()) return true; // If we have any non-vectorized use, then it is a candidate for v_perm for (auto VUse : OrUse->uses()) { if (!VUse->getValueType(0).isVector()) return true; // If the use of a vector is a store, then combining via a v_perm // is beneficial. // TODO -- whitelist more uses for (auto VectorwiseOp : {ISD::STORE, ISD::CopyToReg, ISD::CopyFromReg}) if (VUse->getOpcode() == VectorwiseOp) return true; } return false; }; if (!any_of(N->uses(), usesCombinedOperand)) return SDValue(); uint32_t LHSMask = getPermuteMask(LHS); uint32_t RHSMask = getPermuteMask(RHS); if (LHSMask != ~0u && RHSMask != ~0u) { // Canonicalize the expression in an attempt to have fewer unique masks // and therefore fewer registers used to hold the masks. if (LHSMask > RHSMask) { std::swap(LHSMask, RHSMask); std::swap(LHS, RHS); } // Select 0xc for each lane used from source operand. Zero has 0xc mask // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; // Check of we need to combine values from two sources within a byte. if (!(LHSUsedLanes & RHSUsedLanes) && // If we select high and lower word keep it for SDWA. // TODO: teach SDWA to work with v_perm_b32 and remove the check. !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { // Kill zero bytes selected by other mask. Zero value is 0xc. LHSMask &= ~RHSUsedLanes; RHSMask &= ~LHSUsedLanes; // Add 4 to each active LHS lane LHSMask |= LHSUsedLanes & 0x04040404; // Combine masks uint32_t Sel = LHSMask | RHSMask; SDLoc DL(N); return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), RHS.getOperand(0), DAG.getConstant(Sel, DL, MVT::i32)); } } if (LHSMask == ~0u || RHSMask == ~0u) { if (SDValue Perm = matchPERM(N, DCI)) return Perm; } } if (VT != MVT::i64 || DCI.isBeforeLegalizeOps()) return SDValue(); // TODO: This could be a generic combine with a predicate for extracting the // high half of an integer being free. // (or i64:x, (zero_extend i32:y)) -> // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) if (LHS.getOpcode() == ISD::ZERO_EXTEND && RHS.getOpcode() != ISD::ZERO_EXTEND) std::swap(LHS, RHS); if (RHS.getOpcode() == ISD::ZERO_EXTEND) { SDValue ExtSrc = RHS.getOperand(0); EVT SrcVT = ExtSrc.getValueType(); if (SrcVT == MVT::i32) { SDLoc SL(N); SDValue LowLHS, HiBits; std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); DCI.AddToWorklist(LowOr.getNode()); DCI.AddToWorklist(HiBits.getNode()); SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, LowOr, HiBits); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); } } const ConstantSDNode *CRHS = dyn_cast(N->getOperand(1)); if (CRHS) { if (SDValue Split = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, N->getOperand(0), CRHS)) return Split; } return SDValue(); } SDValue SITargetLowering::performXorCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (SDValue RV = reassociateScalarOps(N, DCI.DAG)) return RV; SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); const ConstantSDNode *CRHS = dyn_cast(RHS); SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); if (CRHS && VT == MVT::i64) { if (SDValue Split = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) return Split; } // Make sure to apply the 64-bit constant splitting fold before trying to fold // fneg-like xors into 64-bit select. if (LHS.getOpcode() == ISD::SELECT && VT == MVT::i32) { // This looks like an fneg, try to fold as a source modifier. if (CRHS && CRHS->getAPIntValue().isSignMask() && shouldFoldFNegIntoSrc(N, LHS)) { // xor (select c, a, b), 0x80000000 -> // bitcast (select c, (fneg (bitcast a)), (fneg (bitcast b))) SDLoc DL(N); SDValue CastLHS = DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(1)); SDValue CastRHS = DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(2)); SDValue FNegLHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastLHS); SDValue FNegRHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastRHS); SDValue NewSelect = DAG.getNode(ISD::SELECT, DL, MVT::f32, LHS->getOperand(0), FNegLHS, FNegRHS); return DAG.getNode(ISD::BITCAST, DL, VT, NewSelect); } } return SDValue(); } SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (!Subtarget->has16BitInsts() || DCI.getDAGCombineLevel() < AfterLegalizeDAG) return SDValue(); EVT VT = N->getValueType(0); if (VT != MVT::i32) return SDValue(); SDValue Src = N->getOperand(0); if (Src.getValueType() != MVT::i16) return SDValue(); return SDValue(); } SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N, DAGCombinerInfo &DCI) const { SDValue Src = N->getOperand(0); auto *VTSign = cast(N->getOperand(1)); // Combine s_buffer_load_u8 or s_buffer_load_u16 with sext and replace them // with s_buffer_load_i8 and s_buffer_load_i16 respectively. if (((Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_UBYTE && VTSign->getVT() == MVT::i8) || (Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_USHORT && VTSign->getVT() == MVT::i16))) { assert(Subtarget->hasScalarSubwordLoads() && "s_buffer_load_{u8, i8} are supported " "in GFX12 (or newer) architectures."); EVT VT = Src.getValueType(); unsigned Opc = (Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_UBYTE) ? AMDGPUISD::SBUFFER_LOAD_BYTE : AMDGPUISD::SBUFFER_LOAD_SHORT; SDLoc DL(N); SDVTList ResList = DCI.DAG.getVTList(MVT::i32); SDValue Ops[] = { Src.getOperand(0), // source register Src.getOperand(1), // offset Src.getOperand(2) // cachePolicy }; auto *M = cast(Src); SDValue BufferLoad = DCI.DAG.getMemIntrinsicNode( Opc, DL, ResList, Ops, M->getMemoryVT(), M->getMemOperand()); SDValue LoadVal = DCI.DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad); return LoadVal; } if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && VTSign->getVT() == MVT::i8) || (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && VTSign->getVT() == MVT::i16)) && Src.hasOneUse()) { auto *M = cast(Src); SDValue Ops[] = { Src.getOperand(0), // Chain Src.getOperand(1), // rsrc Src.getOperand(2), // vindex Src.getOperand(3), // voffset Src.getOperand(4), // soffset Src.getOperand(5), // offset Src.getOperand(6), Src.getOperand(7) }; // replace with BUFFER_LOAD_BYTE/SHORT SDVTList ResList = DCI.DAG.getVTList(MVT::i32, Src.getOperand(0).getValueType()); unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), ResList, Ops, M->getMemoryVT(), M->getMemOperand()); return DCI.DAG.getMergeValues({BufferLoadSignExt, BufferLoadSignExt.getValue(1)}, SDLoc(N)); } return SDValue(); } SDValue SITargetLowering::performClassCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDValue Mask = N->getOperand(1); // fp_class x, 0 -> false if (isNullConstant(Mask)) return DAG.getConstant(0, SDLoc(N), MVT::i1); if (N->getOperand(0).isUndef()) return DAG.getUNDEF(MVT::i1); return SDValue(); } SDValue SITargetLowering::performRcpCombine(SDNode *N, DAGCombinerInfo &DCI) const { EVT VT = N->getValueType(0); SDValue N0 = N->getOperand(0); if (N0.isUndef()) { return DCI.DAG.getConstantFP( APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)), SDLoc(N), VT); } if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || N0.getOpcode() == ISD::SINT_TO_FP)) { return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, N->getFlags()); } // TODO: Could handle f32 + amdgcn.sqrt but probably never reaches here. if ((VT == MVT::f16 && N0.getOpcode() == ISD::FSQRT) && N->getFlags().hasAllowContract() && N0->getFlags().hasAllowContract()) { return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT, N0.getOperand(0), N->getFlags()); } return AMDGPUTargetLowering::performRcpCombine(N, DCI); } bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, unsigned MaxDepth) const { unsigned Opcode = Op.getOpcode(); if (Opcode == ISD::FCANONICALIZE) return true; if (auto *CFP = dyn_cast(Op)) { const auto &F = CFP->getValueAPF(); if (F.isNaN() && F.isSignaling()) return false; if (!F.isDenormal()) return true; DenormalMode Mode = DAG.getMachineFunction().getDenormalMode(F.getSemantics()); return Mode == DenormalMode::getIEEE(); } // If source is a result of another standard FP operation it is already in // canonical form. if (MaxDepth == 0) return false; switch (Opcode) { // These will flush denorms if required. case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FCEIL: case ISD::FFLOOR: case ISD::FMA: case ISD::FMAD: case ISD::FSQRT: case ISD::FDIV: case ISD::FREM: case ISD::FP_ROUND: case ISD::FP_EXTEND: case ISD::FP16_TO_FP: case ISD::FP_TO_FP16: case ISD::BF16_TO_FP: case ISD::FP_TO_BF16: case ISD::FLDEXP: case AMDGPUISD::FMUL_LEGACY: case AMDGPUISD::FMAD_FTZ: case AMDGPUISD::RCP: case AMDGPUISD::RSQ: case AMDGPUISD::RSQ_CLAMP: case AMDGPUISD::RCP_LEGACY: case AMDGPUISD::RCP_IFLAG: case AMDGPUISD::LOG: case AMDGPUISD::EXP: case AMDGPUISD::DIV_SCALE: case AMDGPUISD::DIV_FMAS: case AMDGPUISD::DIV_FIXUP: case AMDGPUISD::FRACT: case AMDGPUISD::CVT_PKRTZ_F16_F32: case AMDGPUISD::CVT_F32_UBYTE0: case AMDGPUISD::CVT_F32_UBYTE1: case AMDGPUISD::CVT_F32_UBYTE2: case AMDGPUISD::CVT_F32_UBYTE3: case AMDGPUISD::FP_TO_FP16: case AMDGPUISD::SIN_HW: case AMDGPUISD::COS_HW: return true; // It can/will be lowered or combined as a bit operation. // Need to check their input recursively to handle. case ISD::FNEG: case ISD::FABS: case ISD::FCOPYSIGN: return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); case ISD::AND: if (Op.getValueType() == MVT::i32) { // Be careful as we only know it is a bitcast floating point type. It // could be f32, v2f16, we have no way of knowing. Luckily the constant // value that we optimize for, which comes up in fp32 to bf16 conversions, // is valid to optimize for all types. if (auto *RHS = dyn_cast(Op.getOperand(1))) { if (RHS->getZExtValue() == 0xffff0000) { return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); } } } break; case ISD::FSIN: case ISD::FCOS: case ISD::FSINCOS: return Op.getValueType().getScalarType() != MVT::f16; case ISD::FMINNUM: case ISD::FMAXNUM: case ISD::FMINNUM_IEEE: case ISD::FMAXNUM_IEEE: case ISD::FMINIMUM: case ISD::FMAXIMUM: case AMDGPUISD::CLAMP: case AMDGPUISD::FMED3: case AMDGPUISD::FMAX3: case AMDGPUISD::FMIN3: case AMDGPUISD::FMAXIMUM3: case AMDGPUISD::FMINIMUM3: { // FIXME: Shouldn't treat the generic operations different based these. // However, we aren't really required to flush the result from // minnum/maxnum.. // snans will be quieted, so we only need to worry about denormals. if (Subtarget->supportsMinMaxDenormModes() || // FIXME: denormalsEnabledForType is broken for dynamic denormalsEnabledForType(DAG, Op.getValueType())) return true; // Flushing may be required. // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such // targets need to check their input recursively. // FIXME: Does this apply with clamp? It's implemented with max. for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) return false; } return true; } case ISD::SELECT: { return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); } case ISD::BUILD_VECTOR: { for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { SDValue SrcOp = Op.getOperand(i); if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) return false; } return true; } case ISD::EXTRACT_VECTOR_ELT: case ISD::EXTRACT_SUBVECTOR: { return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); } case ISD::INSERT_VECTOR_ELT: { return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); } case ISD::UNDEF: // Could be anything. return false; case ISD::BITCAST: // TODO: This is incorrect as it loses track of the operand's type. We may // end up effectively bitcasting from f32 to v2f16 or vice versa, and the // same bits that are canonicalized in one type need not be in the other. return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); case ISD::TRUNCATE: { // Hack round the mess we make when legalizing extract_vector_elt if (Op.getValueType() == MVT::i16) { SDValue TruncSrc = Op.getOperand(0); if (TruncSrc.getValueType() == MVT::i32 && TruncSrc.getOpcode() == ISD::BITCAST && TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); } } return false; } case ISD::INTRINSIC_WO_CHAIN: { unsigned IntrinsicID = Op.getConstantOperandVal(0); // TODO: Handle more intrinsics switch (IntrinsicID) { case Intrinsic::amdgcn_cvt_pkrtz: case Intrinsic::amdgcn_cubeid: case Intrinsic::amdgcn_frexp_mant: case Intrinsic::amdgcn_fdot2: case Intrinsic::amdgcn_rcp: case Intrinsic::amdgcn_rsq: case Intrinsic::amdgcn_rsq_clamp: case Intrinsic::amdgcn_rcp_legacy: case Intrinsic::amdgcn_rsq_legacy: case Intrinsic::amdgcn_trig_preop: case Intrinsic::amdgcn_log: case Intrinsic::amdgcn_exp2: case Intrinsic::amdgcn_sqrt: return true; default: break; } break; } default: break; } // FIXME: denormalsEnabledForType is broken for dynamic return denormalsEnabledForType(DAG, Op.getValueType()) && DAG.isKnownNeverSNaN(Op); } bool SITargetLowering::isCanonicalized(Register Reg, const MachineFunction &MF, unsigned MaxDepth) const { const MachineRegisterInfo &MRI = MF.getRegInfo(); MachineInstr *MI = MRI.getVRegDef(Reg); unsigned Opcode = MI->getOpcode(); if (Opcode == AMDGPU::G_FCANONICALIZE) return true; std::optional FCR; // Constant splat (can be padded with undef) or scalar constant. if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) { if (FCR->Value.isSignaling()) return false; if (!FCR->Value.isDenormal()) return true; DenormalMode Mode = MF.getDenormalMode(FCR->Value.getSemantics()); return Mode == DenormalMode::getIEEE(); } if (MaxDepth == 0) return false; switch (Opcode) { case AMDGPU::G_FADD: case AMDGPU::G_FSUB: case AMDGPU::G_FMUL: case AMDGPU::G_FCEIL: case AMDGPU::G_FFLOOR: case AMDGPU::G_FRINT: case AMDGPU::G_FNEARBYINT: case AMDGPU::G_INTRINSIC_FPTRUNC_ROUND: case AMDGPU::G_INTRINSIC_TRUNC: case AMDGPU::G_INTRINSIC_ROUNDEVEN: case AMDGPU::G_FMA: case AMDGPU::G_FMAD: case AMDGPU::G_FSQRT: case AMDGPU::G_FDIV: case AMDGPU::G_FREM: case AMDGPU::G_FPOW: case AMDGPU::G_FPEXT: case AMDGPU::G_FLOG: case AMDGPU::G_FLOG2: case AMDGPU::G_FLOG10: case AMDGPU::G_FPTRUNC: case AMDGPU::G_AMDGPU_RCP_IFLAG: case AMDGPU::G_AMDGPU_CVT_F32_UBYTE0: case AMDGPU::G_AMDGPU_CVT_F32_UBYTE1: case AMDGPU::G_AMDGPU_CVT_F32_UBYTE2: case AMDGPU::G_AMDGPU_CVT_F32_UBYTE3: return true; case AMDGPU::G_FNEG: case AMDGPU::G_FABS: case AMDGPU::G_FCOPYSIGN: return isCanonicalized(MI->getOperand(1).getReg(), MF, MaxDepth - 1); case AMDGPU::G_FMINNUM: case AMDGPU::G_FMAXNUM: case AMDGPU::G_FMINNUM_IEEE: case AMDGPU::G_FMAXNUM_IEEE: case AMDGPU::G_FMINIMUM: case AMDGPU::G_FMAXIMUM: { if (Subtarget->supportsMinMaxDenormModes() || // FIXME: denormalsEnabledForType is broken for dynamic denormalsEnabledForType(MRI.getType(Reg), MF)) return true; [[fallthrough]]; } case AMDGPU::G_BUILD_VECTOR: for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1)) return false; return true; case AMDGPU::G_INTRINSIC: case AMDGPU::G_INTRINSIC_CONVERGENT: switch (cast(MI)->getIntrinsicID()) { case Intrinsic::amdgcn_fmul_legacy: case Intrinsic::amdgcn_fmad_ftz: case Intrinsic::amdgcn_sqrt: case Intrinsic::amdgcn_fmed3: case Intrinsic::amdgcn_sin: case Intrinsic::amdgcn_cos: case Intrinsic::amdgcn_log: case Intrinsic::amdgcn_exp2: case Intrinsic::amdgcn_log_clamp: case Intrinsic::amdgcn_rcp: case Intrinsic::amdgcn_rcp_legacy: case Intrinsic::amdgcn_rsq: case Intrinsic::amdgcn_rsq_clamp: case Intrinsic::amdgcn_rsq_legacy: case Intrinsic::amdgcn_div_scale: case Intrinsic::amdgcn_div_fmas: case Intrinsic::amdgcn_div_fixup: case Intrinsic::amdgcn_fract: case Intrinsic::amdgcn_cvt_pkrtz: case Intrinsic::amdgcn_cubeid: case Intrinsic::amdgcn_cubema: case Intrinsic::amdgcn_cubesc: case Intrinsic::amdgcn_cubetc: case Intrinsic::amdgcn_frexp_mant: case Intrinsic::amdgcn_fdot2: case Intrinsic::amdgcn_trig_preop: return true; default: break; } [[fallthrough]]; default: return false; } llvm_unreachable("invalid operation"); } // Constant fold canonicalize. SDValue SITargetLowering::getCanonicalConstantFP( SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { // Flush denormals to 0 if not enabled. if (C.isDenormal()) { DenormalMode Mode = DAG.getMachineFunction().getDenormalMode(C.getSemantics()); if (Mode == DenormalMode::getPreserveSign()) { return DAG.getConstantFP( APFloat::getZero(C.getSemantics(), C.isNegative()), SL, VT); } if (Mode != DenormalMode::getIEEE()) return SDValue(); } if (C.isNaN()) { APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); if (C.isSignaling()) { // Quiet a signaling NaN. // FIXME: Is this supposed to preserve payload bits? return DAG.getConstantFP(CanonicalQNaN, SL, VT); } // Make sure it is the canonical NaN bitpattern. // // TODO: Can we use -1 as the canonical NaN value since it's an inline // immediate? if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) return DAG.getConstantFP(CanonicalQNaN, SL, VT); } // Already canonical. return DAG.getConstantFP(C, SL, VT); } static bool vectorEltWillFoldAway(SDValue Op) { return Op.isUndef() || isa(Op); } SDValue SITargetLowering::performFCanonicalizeCombine( SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fcanonicalize undef -> qnan if (N0.isUndef()) { APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); return DAG.getConstantFP(QNaN, SDLoc(N), VT); } if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { EVT VT = N->getValueType(0); return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); } // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), // (fcanonicalize k) // // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 // TODO: This could be better with wider vectors that will be split to v2f16, // and to consider uses since there aren't that many packed operations. if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && isTypeLegal(MVT::v2f16)) { SDLoc SL(N); SDValue NewElts[2]; SDValue Lo = N0.getOperand(0); SDValue Hi = N0.getOperand(1); EVT EltVT = Lo.getValueType(); if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { for (unsigned I = 0; I != 2; ++I) { SDValue Op = N0.getOperand(I); if (ConstantFPSDNode *CFP = dyn_cast(Op)) { NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, CFP->getValueAPF()); } else if (Op.isUndef()) { // Handled below based on what the other operand is. NewElts[I] = Op; } else { NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); } } // If one half is undef, and one is constant, prefer a splat vector rather // than the normal qNaN. If it's a register, prefer 0.0 since that's // cheaper to use and may be free with a packed operation. if (NewElts[0].isUndef()) { if (isa(NewElts[1])) NewElts[0] = isa(NewElts[1]) ? NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); } if (NewElts[1].isUndef()) { NewElts[1] = isa(NewElts[0]) ? NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); } return DAG.getBuildVector(VT, SL, NewElts); } } return SDValue(); } static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { switch (Opc) { case ISD::FMAXNUM: case ISD::FMAXNUM_IEEE: return AMDGPUISD::FMAX3; case ISD::FMAXIMUM: return AMDGPUISD::FMAXIMUM3; case ISD::SMAX: return AMDGPUISD::SMAX3; case ISD::UMAX: return AMDGPUISD::UMAX3; case ISD::FMINNUM: case ISD::FMINNUM_IEEE: return AMDGPUISD::FMIN3; case ISD::FMINIMUM: return AMDGPUISD::FMINIMUM3; case ISD::SMIN: return AMDGPUISD::SMIN3; case ISD::UMIN: return AMDGPUISD::UMIN3; default: llvm_unreachable("Not a min/max opcode"); } } SDValue SITargetLowering::performIntMed3ImmCombine(SelectionDAG &DAG, const SDLoc &SL, SDValue Src, SDValue MinVal, SDValue MaxVal, bool Signed) const { // med3 comes from // min(max(x, K0), K1), K0 < K1 // max(min(x, K0), K1), K1 < K0 // // "MinVal" and "MaxVal" respectively refer to the rhs of the // min/max op. ConstantSDNode *MinK = dyn_cast(MinVal); ConstantSDNode *MaxK = dyn_cast(MaxVal); if (!MinK || !MaxK) return SDValue(); if (Signed) { if (MaxK->getAPIntValue().sge(MinK->getAPIntValue())) return SDValue(); } else { if (MaxK->getAPIntValue().uge(MinK->getAPIntValue())) return SDValue(); } EVT VT = MinK->getValueType(0); unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) return DAG.getNode(Med3Opc, SL, VT, Src, MaxVal, MinVal); // Note: we could also extend to i32 and use i32 med3 if i16 med3 is // not available, but this is unlikely to be profitable as constants // will often need to be materialized & extended, especially on // pre-GFX10 where VOP3 instructions couldn't take literal operands. return SDValue(); } static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { if (ConstantFPSDNode *C = dyn_cast(Op)) return C; if (BuildVectorSDNode *BV = dyn_cast(Op)) { if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) return C; } return nullptr; } SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, const SDLoc &SL, SDValue Op0, SDValue Op1) const { ConstantFPSDNode *K1 = getSplatConstantFP(Op1); if (!K1) return SDValue(); ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); if (!K0) return SDValue(); // Ordered >= (although NaN inputs should have folded away by now). if (K0->getValueAPF() > K1->getValueAPF()) return SDValue(); const MachineFunction &MF = DAG.getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo(); // TODO: Check IEEE bit enabled? EVT VT = Op0.getValueType(); if (Info->getMode().DX10Clamp) { // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the // hardware fmed3 behavior converting to a min. // FIXME: Should this be allowing -0.0? if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); } // med3 for f16 is only available on gfx9+, and not available for v2f16. if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { // This isn't safe with signaling NaNs because in IEEE mode, min/max on a // signaling NaN gives a quiet NaN. The quiet NaN input to the min would // then give the other result, which is different from med3 with a NaN // input. SDValue Var = Op0.getOperand(0); if (!DAG.isKnownNeverSNaN(Var)) return SDValue(); const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); if ((!K0->hasOneUse() || TII->isInlineConstant(K0->getValueAPF())) && (!K1->hasOneUse() || TII->isInlineConstant(K1->getValueAPF()))) { return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), Var, SDValue(K0, 0), SDValue(K1, 0)); } } return SDValue(); } /// \return true if the subtarget supports minimum3 and maximum3 with the given /// base min/max opcode \p Opc for type \p VT. static bool supportsMin3Max3(const GCNSubtarget &Subtarget, unsigned Opc, EVT VT) { switch (Opc) { case ISD::FMINNUM: case ISD::FMAXNUM: case ISD::FMINNUM_IEEE: case ISD::FMAXNUM_IEEE: case AMDGPUISD::FMIN_LEGACY: case AMDGPUISD::FMAX_LEGACY: return (VT == MVT::f32) || (VT == MVT::f16 && Subtarget.hasMin3Max3_16()); case ISD::FMINIMUM: case ISD::FMAXIMUM: return (VT == MVT::f32 || VT == MVT::f16) && Subtarget.hasIEEEMinMax3(); case ISD::SMAX: case ISD::SMIN: case ISD::UMAX: case ISD::UMIN: return (VT == MVT::i32) || (VT == MVT::i16 && Subtarget.hasMin3Max3_16()); default: return false; } llvm_unreachable("not a min/max opcode"); } SDValue SITargetLowering::performMinMaxCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); unsigned Opc = N->getOpcode(); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); // Only do this if the inner op has one use since this will just increases // register pressure for no benefit. if (supportsMin3Max3(*Subtarget, Opc, VT)) { // max(max(a, b), c) -> max3(a, b, c) // min(min(a, b), c) -> min3(a, b, c) if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { SDLoc DL(N); return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), DL, N->getValueType(0), Op0.getOperand(0), Op0.getOperand(1), Op1); } // Try commuted. // max(a, max(b, c)) -> max3(a, b, c) // min(a, min(b, c)) -> min3(a, b, c) if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { SDLoc DL(N); return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), DL, N->getValueType(0), Op0, Op1.getOperand(0), Op1.getOperand(1)); } } // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) // max(min(x, K0), K1), K1 < K0 -> med3(x, K1, K0) if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { if (SDValue Med3 = performIntMed3ImmCombine( DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), true)) return Med3; } if (Opc == ISD::SMAX && Op0.getOpcode() == ISD::SMIN && Op0.hasOneUse()) { if (SDValue Med3 = performIntMed3ImmCombine( DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, true)) return Med3; } if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { if (SDValue Med3 = performIntMed3ImmCombine( DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), false)) return Med3; } if (Opc == ISD::UMAX && Op0.getOpcode() == ISD::UMIN && Op0.hasOneUse()) { if (SDValue Med3 = performIntMed3ImmCombine( DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, false)) return Med3; } // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || (Opc == AMDGPUISD::FMIN_LEGACY && Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && (VT == MVT::f32 || VT == MVT::f64 || (VT == MVT::f16 && Subtarget->has16BitInsts()) || (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && Op0.hasOneUse()) { if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) return Res; } return SDValue(); } static bool isClampZeroToOne(SDValue A, SDValue B) { if (ConstantFPSDNode *CA = dyn_cast(A)) { if (ConstantFPSDNode *CB = dyn_cast(B)) { // FIXME: Should this be allowing -0.0? return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); } } return false; } // FIXME: Should only worry about snans for version with chain. SDValue SITargetLowering::performFMed3Combine(SDNode *N, DAGCombinerInfo &DCI) const { EVT VT = N->getValueType(0); // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and // NaNs. With a NaN input, the order of the operands may change the result. SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); SDValue Src0 = N->getOperand(0); SDValue Src1 = N->getOperand(1); SDValue Src2 = N->getOperand(2); if (isClampZeroToOne(Src0, Src1)) { // const_a, const_b, x -> clamp is safe in all cases including signaling // nans. // FIXME: Should this be allowing -0.0? return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); } const MachineFunction &MF = DAG.getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo(); // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother // handling no dx10-clamp? if (Info->getMode().DX10Clamp) { // If NaNs is clamped to 0, we are free to reorder the inputs. if (isa(Src0) && !isa(Src1)) std::swap(Src0, Src1); if (isa(Src1) && !isa(Src2)) std::swap(Src1, Src2); if (isa(Src0) && !isa(Src1)) std::swap(Src0, Src1); if (isClampZeroToOne(Src1, Src2)) return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); } return SDValue(); } SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, DAGCombinerInfo &DCI) const { SDValue Src0 = N->getOperand(0); SDValue Src1 = N->getOperand(1); if (Src0.isUndef() && Src1.isUndef()) return DCI.DAG.getUNDEF(N->getValueType(0)); return SDValue(); } // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (, var-idx) should be // expanded into a set of cmp/select instructions. bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize, unsigned NumElem, bool IsDivergentIdx, const GCNSubtarget *Subtarget) { if (UseDivergentRegisterIndexing) return false; unsigned VecSize = EltSize * NumElem; // Sub-dword vectors of size 2 dword or less have better implementation. if (VecSize <= 64 && EltSize < 32) return false; // Always expand the rest of sub-dword instructions, otherwise it will be // lowered via memory. if (EltSize < 32) return true; // Always do this if var-idx is divergent, otherwise it will become a loop. if (IsDivergentIdx) return true; // Large vectors would yield too many compares and v_cndmask_b32 instructions. unsigned NumInsts = NumElem /* Number of compares */ + ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */; // On some architectures (GFX9) movrel is not available and it's better // to expand. if (!Subtarget->hasMovrel()) return NumInsts <= 16; // If movrel is available, use it instead of expanding for vector of 8 // elements. return NumInsts <= 15; } bool SITargetLowering::shouldExpandVectorDynExt(SDNode *N) const { SDValue Idx = N->getOperand(N->getNumOperands() - 1); if (isa(Idx)) return false; SDValue Vec = N->getOperand(0); EVT VecVT = Vec.getValueType(); EVT EltVT = VecVT.getVectorElementType(); unsigned EltSize = EltVT.getSizeInBits(); unsigned NumElem = VecVT.getVectorNumElements(); return SITargetLowering::shouldExpandVectorDynExt( EltSize, NumElem, Idx->isDivergent(), getSubtarget()); } SDValue SITargetLowering::performExtractVectorEltCombine( SDNode *N, DAGCombinerInfo &DCI) const { SDValue Vec = N->getOperand(0); SelectionDAG &DAG = DCI.DAG; EVT VecVT = Vec.getValueType(); EVT VecEltVT = VecVT.getVectorElementType(); EVT ResVT = N->getValueType(0); unsigned VecSize = VecVT.getSizeInBits(); unsigned VecEltSize = VecEltVT.getSizeInBits(); if ((Vec.getOpcode() == ISD::FNEG || Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { SDLoc SL(N); SDValue Idx = N->getOperand(1); SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec.getOperand(0), Idx); return DAG.getNode(Vec.getOpcode(), SL, ResVT, Elt); } // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) // => // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt if (Vec.hasOneUse() && DCI.isBeforeLegalize() && VecEltVT == ResVT) { SDLoc SL(N); SDValue Idx = N->getOperand(1); unsigned Opc = Vec.getOpcode(); switch(Opc) { default: break; // TODO: Support other binary operations. case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::ADD: case ISD::UMIN: case ISD::UMAX: case ISD::SMIN: case ISD::SMAX: case ISD::FMAXNUM: case ISD::FMINNUM: case ISD::FMAXNUM_IEEE: case ISD::FMINNUM_IEEE: case ISD::FMAXIMUM: case ISD::FMINIMUM: { SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec.getOperand(0), Idx); SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec.getOperand(1), Idx); DCI.AddToWorklist(Elt0.getNode()); DCI.AddToWorklist(Elt1.getNode()); return DAG.getNode(Opc, SL, ResVT, Elt0, Elt1, Vec->getFlags()); } } } // EXTRACT_VECTOR_ELT (, var-idx) => n x select (e, const-idx) if (shouldExpandVectorDynExt(N)) { SDLoc SL(N); SDValue Idx = N->getOperand(1); SDValue V; for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { SDValue IC = DAG.getVectorIdxConstant(I, SL); SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec, IC); if (I == 0) V = Elt; else V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); } return V; } if (!DCI.isBeforeLegalize()) return SDValue(); // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit // elements. This exposes more load reduction opportunities by replacing // multiple small extract_vector_elements with a single 32-bit extract. auto *Idx = dyn_cast(N->getOperand(1)); if (isa(Vec) && VecEltSize <= 16 && VecEltVT.isByteSized() && VecSize > 32 && VecSize % 32 == 0 && Idx) { EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); unsigned BitIndex = Idx->getZExtValue() * VecEltSize; unsigned EltIdx = BitIndex / 32; unsigned LeftoverBitIdx = BitIndex % 32; SDLoc SL(N); SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); DCI.AddToWorklist(Cast.getNode()); SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, DAG.getConstant(EltIdx, SL, MVT::i32)); DCI.AddToWorklist(Elt.getNode()); SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); DCI.AddToWorklist(Srl.getNode()); EVT VecEltAsIntVT = VecEltVT.changeTypeToInteger(); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VecEltAsIntVT, Srl); DCI.AddToWorklist(Trunc.getNode()); if (VecEltVT == ResVT) { return DAG.getNode(ISD::BITCAST, SL, VecEltVT, Trunc); } assert(ResVT.isScalarInteger()); return DAG.getAnyExtOrTrunc(Trunc, SL, ResVT); } return SDValue(); } SDValue SITargetLowering::performInsertVectorEltCombine(SDNode *N, DAGCombinerInfo &DCI) const { SDValue Vec = N->getOperand(0); SDValue Idx = N->getOperand(2); EVT VecVT = Vec.getValueType(); EVT EltVT = VecVT.getVectorElementType(); // INSERT_VECTOR_ELT (, var-idx) // => BUILD_VECTOR n x select (e, const-idx) if (!shouldExpandVectorDynExt(N)) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); SDValue Ins = N->getOperand(1); EVT IdxVT = Idx.getValueType(); SmallVector Ops; for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { SDValue IC = DAG.getConstant(I, SL, IdxVT); SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); Ops.push_back(V); } return DAG.getBuildVector(VecVT, SL, Ops); } /// Return the source of an fp_extend from f16 to f32, or a converted FP /// constant. static SDValue strictFPExtFromF16(SelectionDAG &DAG, SDValue Src) { if (Src.getOpcode() == ISD::FP_EXTEND && Src.getOperand(0).getValueType() == MVT::f16) { return Src.getOperand(0); } if (auto *CFP = dyn_cast(Src)) { APFloat Val = CFP->getValueAPF(); bool LosesInfo = true; Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo); if (!LosesInfo) return DAG.getConstantFP(Val, SDLoc(Src), MVT::f16); } return SDValue(); } SDValue SITargetLowering::performFPRoundCombine(SDNode *N, DAGCombinerInfo &DCI) const { assert(Subtarget->has16BitInsts() && !Subtarget->hasMed3_16() && "combine only useful on gfx8"); SDValue TruncSrc = N->getOperand(0); EVT VT = N->getValueType(0); if (VT != MVT::f16) return SDValue(); if (TruncSrc.getOpcode() != AMDGPUISD::FMED3 || TruncSrc.getValueType() != MVT::f32 || !TruncSrc.hasOneUse()) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); // Optimize f16 fmed3 pattern performed on f32. On gfx8 there is no f16 fmed3, // and expanding it with min/max saves 1 instruction vs. casting to f32 and // casting back. // fptrunc (f32 (fmed3 (fpext f16:a, fpext f16:b, fpext f16:c))) => // fmin(fmax(a, b), fmax(fmin(a, b), c)) SDValue A = strictFPExtFromF16(DAG, TruncSrc.getOperand(0)); if (!A) return SDValue(); SDValue B = strictFPExtFromF16(DAG, TruncSrc.getOperand(1)); if (!B) return SDValue(); SDValue C = strictFPExtFromF16(DAG, TruncSrc.getOperand(2)); if (!C) return SDValue(); // This changes signaling nan behavior. If an input is a signaling nan, it // would have been quieted by the fpext originally. We don't care because // these are unconstrained ops. If we needed to insert quieting canonicalizes // we would be worse off than just doing the promotion. SDValue A1 = DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, A, B); SDValue B1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A, B); SDValue C1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A1, C); return DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, B1, C1); } unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, const SDNode *N0, const SDNode *N1) const { EVT VT = N0->getValueType(0); // Only do this if we are not trying to support denormals. v_mad_f32 does not // support denormals ever. if (((VT == MVT::f32 && denormalModeIsFlushAllF32(DAG.getMachineFunction())) || (VT == MVT::f16 && Subtarget->hasMadF16() && denormalModeIsFlushAllF64F16(DAG.getMachineFunction()))) && isOperationLegal(ISD::FMAD, VT)) return ISD::FMAD; const TargetOptions &Options = DAG.getTarget().Options; if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || (N0->getFlags().hasAllowContract() && N1->getFlags().hasAllowContract())) && isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { return ISD::FMA; } return 0; } // For a reassociatable opcode perform: // op x, (op y, z) -> op (op x, z), y, if x and z are uniform SDValue SITargetLowering::reassociateScalarOps(SDNode *N, SelectionDAG &DAG) const { EVT VT = N->getValueType(0); if (VT != MVT::i32 && VT != MVT::i64) return SDValue(); if (DAG.isBaseWithConstantOffset(SDValue(N, 0))) return SDValue(); unsigned Opc = N->getOpcode(); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); if (!(Op0->isDivergent() ^ Op1->isDivergent())) return SDValue(); if (Op0->isDivergent()) std::swap(Op0, Op1); if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) return SDValue(); SDValue Op2 = Op1.getOperand(1); Op1 = Op1.getOperand(0); if (!(Op1->isDivergent() ^ Op2->isDivergent())) return SDValue(); if (Op1->isDivergent()) std::swap(Op1, Op2); SDLoc SL(N); SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); return DAG.getNode(Opc, SL, VT, Add1, Op2); } static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, EVT VT, SDValue N0, SDValue N1, SDValue N2, bool Signed) { unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); } // Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high // multiplies, if any. // // Full 64-bit multiplies that feed into an addition are lowered here instead // of using the generic expansion. The generic expansion ends up with // a tree of ADD nodes that prevents us from using the "add" part of the // MAD instruction. The expansion produced here results in a chain of ADDs // instead of a tree. SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N, DAGCombinerInfo &DCI) const { assert(N->getOpcode() == ISD::ADD); SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); SDLoc SL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if (VT.isVector()) return SDValue(); // S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall // result in scalar registers for uniform values. if (!N->isDivergent() && Subtarget->hasSMulHi()) return SDValue(); unsigned NumBits = VT.getScalarSizeInBits(); if (NumBits <= 32 || NumBits > 64) return SDValue(); if (LHS.getOpcode() != ISD::MUL) { assert(RHS.getOpcode() == ISD::MUL); std::swap(LHS, RHS); } // Avoid the fold if it would unduly increase the number of multiplies due to // multiple uses, except on hardware with full-rate multiply-add (which is // part of full-rate 64-bit ops). if (!Subtarget->hasFullRate64Ops()) { unsigned NumUsers = 0; for (SDNode *Use : LHS->uses()) { // There is a use that does not feed into addition, so the multiply can't // be removed. We prefer MUL + ADD + ADDC over MAD + MUL. if (Use->getOpcode() != ISD::ADD) return SDValue(); // We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer // MUL + 3xADD + 3xADDC over 3xMAD. ++NumUsers; if (NumUsers >= 3) return SDValue(); } } SDValue MulLHS = LHS.getOperand(0); SDValue MulRHS = LHS.getOperand(1); SDValue AddRHS = RHS; // Always check whether operands are small unsigned values, since that // knowledge is useful in more cases. Check for small signed values only if // doing so can unlock a shorter code sequence. bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32; bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32; bool MulSignedLo = false; if (!MulLHSUnsigned32 || !MulRHSUnsigned32) { MulSignedLo = numBitsSigned(MulLHS, DAG) <= 32 && numBitsSigned(MulRHS, DAG) <= 32; } // The operands and final result all have the same number of bits. If // operands need to be extended, they can be extended with garbage. The // resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is // truncated away in the end. if (VT != MVT::i64) { MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS); MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS); AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS); } // The basic code generated is conceptually straightforward. Pseudo code: // // accum = mad_64_32 lhs.lo, rhs.lo, accum // accum.hi = add (mul lhs.hi, rhs.lo), accum.hi // accum.hi = add (mul lhs.lo, rhs.hi), accum.hi // // The second and third lines are optional, depending on whether the factors // are {sign,zero}-extended or not. // // The actual DAG is noisier than the pseudo code, but only due to // instructions that disassemble values into low and high parts, and // assemble the final result. SDValue One = DAG.getConstant(1, SL, MVT::i32); auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS); auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS); SDValue Accum = getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo); if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) { SDValue AccumLo, AccumHi; std::tie(AccumLo, AccumHi) = DAG.SplitScalar(Accum, SL, MVT::i32, MVT::i32); if (!MulLHSUnsigned32) { auto MulLHSHi = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One); SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo); AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); } if (!MulRHSUnsigned32) { auto MulRHSHi = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One); SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi); AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); } Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi}); Accum = DAG.getBitcast(MVT::i64, Accum); } if (VT != MVT::i64) Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum); return Accum; } // Collect the ultimate src of each of the mul node's operands, and confirm // each operand is 8 bytes. static std::optional> handleMulOperand(const SDValue &MulOperand) { auto Byte0 = calculateByteProvider(MulOperand, 0, 0); if (!Byte0 || Byte0->isConstantZero()) { return std::nullopt; } auto Byte1 = calculateByteProvider(MulOperand, 1, 0); if (Byte1 && !Byte1->isConstantZero()) { return std::nullopt; } return Byte0; } static unsigned addPermMasks(unsigned First, unsigned Second) { unsigned FirstCs = First & 0x0c0c0c0c; unsigned SecondCs = Second & 0x0c0c0c0c; unsigned FirstNoCs = First & ~0x0c0c0c0c; unsigned SecondNoCs = Second & ~0x0c0c0c0c; assert((FirstCs & 0xFF) | (SecondCs & 0xFF)); assert((FirstCs & 0xFF00) | (SecondCs & 0xFF00)); assert((FirstCs & 0xFF0000) | (SecondCs & 0xFF0000)); assert((FirstCs & 0xFF000000) | (SecondCs & 0xFF000000)); return (FirstNoCs | SecondNoCs) | (FirstCs & SecondCs); } struct DotSrc { SDValue SrcOp; int64_t PermMask; int64_t DWordOffset; }; static void placeSources(ByteProvider &Src0, ByteProvider &Src1, SmallVectorImpl &Src0s, SmallVectorImpl &Src1s, int Step) { assert(Src0.Src.has_value() && Src1.Src.has_value()); // Src0s and Src1s are empty, just place arbitrarily. if (Step == 0) { Src0s.push_back({*Src0.Src, ((Src0.SrcOffset % 4) << 24) + 0x0c0c0c, Src0.SrcOffset / 4}); Src1s.push_back({*Src1.Src, ((Src1.SrcOffset % 4) << 24) + 0x0c0c0c, Src1.SrcOffset / 4}); return; } for (int BPI = 0; BPI < 2; BPI++) { std::pair, ByteProvider> BPP = {Src0, Src1}; if (BPI == 1) { BPP = {Src1, Src0}; } unsigned ZeroMask = 0x0c0c0c0c; unsigned FMask = 0xFF << (8 * (3 - Step)); unsigned FirstMask = (BPP.first.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask); unsigned SecondMask = (BPP.second.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask); // Attempt to find Src vector which contains our SDValue, if so, add our // perm mask to the existing one. If we are unable to find a match for the // first SDValue, attempt to find match for the second. int FirstGroup = -1; for (int I = 0; I < 2; I++) { SmallVectorImpl &Srcs = I == 0 ? Src0s : Src1s; auto MatchesFirst = [&BPP](DotSrc &IterElt) { return IterElt.SrcOp == *BPP.first.Src && (IterElt.DWordOffset == (BPP.first.SrcOffset / 4)); }; auto Match = llvm::find_if(Srcs, MatchesFirst); if (Match != Srcs.end()) { Match->PermMask = addPermMasks(FirstMask, Match->PermMask); FirstGroup = I; break; } } if (FirstGroup != -1) { SmallVectorImpl &Srcs = FirstGroup == 1 ? Src0s : Src1s; auto MatchesSecond = [&BPP](DotSrc &IterElt) { return IterElt.SrcOp == *BPP.second.Src && (IterElt.DWordOffset == (BPP.second.SrcOffset / 4)); }; auto Match = llvm::find_if(Srcs, MatchesSecond); if (Match != Srcs.end()) { Match->PermMask = addPermMasks(SecondMask, Match->PermMask); } else Srcs.push_back({*BPP.second.Src, SecondMask, BPP.second.SrcOffset / 4}); return; } } // If we have made it here, then we could not find a match in Src0s or Src1s // for either Src0 or Src1, so just place them arbitrarily. unsigned ZeroMask = 0x0c0c0c0c; unsigned FMask = 0xFF << (8 * (3 - Step)); Src0s.push_back( {*Src0.Src, ((Src0.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask)), Src1.SrcOffset / 4}); Src1s.push_back( {*Src1.Src, ((Src1.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask)), Src1.SrcOffset / 4}); return; } static SDValue resolveSources(SelectionDAG &DAG, SDLoc SL, SmallVectorImpl &Srcs, bool IsSigned, bool IsAny) { // If we just have one source, just permute it accordingly. if (Srcs.size() == 1) { auto Elt = Srcs.begin(); auto EltOp = getDWordFromOffset(DAG, SL, Elt->SrcOp, Elt->DWordOffset); // v_perm will produce the original value if (Elt->PermMask == 0x3020100) return EltOp; return DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, EltOp, EltOp, DAG.getConstant(Elt->PermMask, SL, MVT::i32)); } auto FirstElt = Srcs.begin(); auto SecondElt = std::next(FirstElt); SmallVector Perms; // If we have multiple sources in the chain, combine them via perms (using // calculated perm mask) and Ors. while (true) { auto FirstMask = FirstElt->PermMask; auto SecondMask = SecondElt->PermMask; unsigned FirstCs = FirstMask & 0x0c0c0c0c; unsigned FirstPlusFour = FirstMask | 0x04040404; // 0x0c + 0x04 = 0x10, so anding with 0x0F will produced 0x00 for any // original 0x0C. FirstMask = (FirstPlusFour & 0x0F0F0F0F) | FirstCs; auto PermMask = addPermMasks(FirstMask, SecondMask); auto FirstVal = getDWordFromOffset(DAG, SL, FirstElt->SrcOp, FirstElt->DWordOffset); auto SecondVal = getDWordFromOffset(DAG, SL, SecondElt->SrcOp, SecondElt->DWordOffset); Perms.push_back(DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, FirstVal, SecondVal, DAG.getConstant(PermMask, SL, MVT::i32))); FirstElt = std::next(SecondElt); if (FirstElt == Srcs.end()) break; SecondElt = std::next(FirstElt); // If we only have a FirstElt, then just combine that into the cumulative // source node. if (SecondElt == Srcs.end()) { auto EltOp = getDWordFromOffset(DAG, SL, FirstElt->SrcOp, FirstElt->DWordOffset); Perms.push_back( DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, EltOp, EltOp, DAG.getConstant(FirstElt->PermMask, SL, MVT::i32))); break; } } assert(Perms.size() == 1 || Perms.size() == 2); return Perms.size() == 2 ? DAG.getNode(ISD::OR, SL, MVT::i32, Perms[0], Perms[1]) : Perms[0]; } static void fixMasks(SmallVectorImpl &Srcs, unsigned ChainLength) { for (auto &[EntryVal, EntryMask, EntryOffset] : Srcs) { EntryMask = EntryMask >> ((4 - ChainLength) * 8); auto ZeroMask = ChainLength == 2 ? 0x0c0c0000 : 0x0c000000; EntryMask += ZeroMask; } } static bool isMul(const SDValue Op) { auto Opcode = Op.getOpcode(); return (Opcode == ISD::MUL || Opcode == AMDGPUISD::MUL_U24 || Opcode == AMDGPUISD::MUL_I24); } static std::optional checkDot4MulSignedness(const SDValue &N, ByteProvider &Src0, ByteProvider &Src1, const SDValue &S0Op, const SDValue &S1Op, const SelectionDAG &DAG) { // If we both ops are i8s (pre legalize-dag), then the signedness semantics // of the dot4 is irrelevant. if (S0Op.getValueSizeInBits() == 8 && S1Op.getValueSizeInBits() == 8) return false; auto Known0 = DAG.computeKnownBits(S0Op, 0); bool S0IsUnsigned = Known0.countMinLeadingZeros() > 0; bool S0IsSigned = Known0.countMinLeadingOnes() > 0; auto Known1 = DAG.computeKnownBits(S1Op, 0); bool S1IsUnsigned = Known1.countMinLeadingZeros() > 0; bool S1IsSigned = Known1.countMinLeadingOnes() > 0; assert(!(S0IsUnsigned && S0IsSigned)); assert(!(S1IsUnsigned && S1IsSigned)); // There are 9 possible permutations of // {S0IsUnsigned, S0IsSigned, S1IsUnsigned, S1IsSigned} // In two permutations, the sign bits are known to be the same for both Ops, // so simply return Signed / Unsigned corresponding to the MSB if ((S0IsUnsigned && S1IsUnsigned) || (S0IsSigned && S1IsSigned)) return S0IsSigned; // In another two permutations, the sign bits are known to be opposite. In // this case return std::nullopt to indicate a bad match. if ((S0IsUnsigned && S1IsSigned) || (S0IsSigned && S1IsUnsigned)) return std::nullopt; // In the remaining five permutations, we don't know the value of the sign // bit for at least one Op. Since we have a valid ByteProvider, we know that // the upper bits must be extension bits. Thus, the only ways for the sign // bit to be unknown is if it was sign extended from unknown value, or if it // was any extended. In either case, it is correct to use the signed // version of the signedness semantics of dot4 // In two of such permutations, we known the sign bit is set for // one op, and the other is unknown. It is okay to used signed version of // dot4. if ((S0IsSigned && !(S1IsSigned || S1IsUnsigned)) || ((S1IsSigned && !(S0IsSigned || S0IsUnsigned)))) return true; // In one such permutation, we don't know either of the sign bits. It is okay // to used the signed version of dot4. if ((!(S1IsSigned || S1IsUnsigned) && !(S0IsSigned || S0IsUnsigned))) return true; // In two of such permutations, we known the sign bit is unset for // one op, and the other is unknown. Return std::nullopt to indicate a // bad match. if ((S0IsUnsigned && !(S1IsSigned || S1IsUnsigned)) || ((S1IsUnsigned && !(S0IsSigned || S0IsUnsigned)))) return std::nullopt; llvm_unreachable("Fully covered condition"); } SDValue SITargetLowering::performAddCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); SDLoc SL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) { if (Subtarget->hasMad64_32()) { if (SDValue Folded = tryFoldToMad64_32(N, DCI)) return Folded; } } if (SDValue V = reassociateScalarOps(N, DAG)) { return V; } if ((isMul(LHS) || isMul(RHS)) && Subtarget->hasDot7Insts() && (Subtarget->hasDot1Insts() || Subtarget->hasDot8Insts())) { SDValue TempNode(N, 0); std::optional IsSigned; SmallVector Src0s; SmallVector Src1s; SmallVector Src2s; // Match the v_dot4 tree, while collecting src nodes. int ChainLength = 0; for (int I = 0; I < 4; I++) { auto MulIdx = isMul(LHS) ? 0 : isMul(RHS) ? 1 : -1; if (MulIdx == -1) break; auto Src0 = handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(0)); if (!Src0) break; auto Src1 = handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(1)); if (!Src1) break; auto IterIsSigned = checkDot4MulSignedness( TempNode->getOperand(MulIdx), *Src0, *Src1, TempNode->getOperand(MulIdx)->getOperand(0), TempNode->getOperand(MulIdx)->getOperand(1), DAG); if (!IterIsSigned) break; if (!IsSigned) IsSigned = *IterIsSigned; if (*IterIsSigned != *IsSigned) break; placeSources(*Src0, *Src1, Src0s, Src1s, I); auto AddIdx = 1 - MulIdx; // Allow the special case where add (add (mul24, 0), mul24) became -> // add (mul24, mul24). if (I == 2 && isMul(TempNode->getOperand(AddIdx))) { Src2s.push_back(TempNode->getOperand(AddIdx)); auto Src0 = handleMulOperand(TempNode->getOperand(AddIdx)->getOperand(0)); if (!Src0) break; auto Src1 = handleMulOperand(TempNode->getOperand(AddIdx)->getOperand(1)); if (!Src1) break; auto IterIsSigned = checkDot4MulSignedness( TempNode->getOperand(AddIdx), *Src0, *Src1, TempNode->getOperand(AddIdx)->getOperand(0), TempNode->getOperand(AddIdx)->getOperand(1), DAG); if (!IterIsSigned) break; assert(IsSigned); if (*IterIsSigned != *IsSigned) break; placeSources(*Src0, *Src1, Src0s, Src1s, I + 1); Src2s.push_back(DAG.getConstant(0, SL, MVT::i32)); ChainLength = I + 2; break; } TempNode = TempNode->getOperand(AddIdx); Src2s.push_back(TempNode); ChainLength = I + 1; if (TempNode->getNumOperands() < 2) break; LHS = TempNode->getOperand(0); RHS = TempNode->getOperand(1); } if (ChainLength < 2) return SDValue(); // Masks were constructed with assumption that we would find a chain of // length 4. If not, then we need to 0 out the MSB bits (via perm mask of // 0x0c) so they do not affect dot calculation. if (ChainLength < 4) { fixMasks(Src0s, ChainLength); fixMasks(Src1s, ChainLength); } SDValue Src0, Src1; // If we are just using a single source for both, and have permuted the // bytes consistently, we can just use the sources without permuting // (commutation). bool UseOriginalSrc = false; if (ChainLength == 4 && Src0s.size() == 1 && Src1s.size() == 1 && Src0s.begin()->PermMask == Src1s.begin()->PermMask && Src0s.begin()->SrcOp.getValueSizeInBits() >= 32 && Src1s.begin()->SrcOp.getValueSizeInBits() >= 32) { SmallVector SrcBytes; auto Src0Mask = Src0s.begin()->PermMask; SrcBytes.push_back(Src0Mask & 0xFF000000); bool UniqueEntries = true; for (auto I = 1; I < 4; I++) { auto NextByte = Src0Mask & (0xFF << ((3 - I) * 8)); if (is_contained(SrcBytes, NextByte)) { UniqueEntries = false; break; } SrcBytes.push_back(NextByte); } if (UniqueEntries) { UseOriginalSrc = true; auto FirstElt = Src0s.begin(); auto FirstEltOp = getDWordFromOffset(DAG, SL, FirstElt->SrcOp, FirstElt->DWordOffset); auto SecondElt = Src1s.begin(); auto SecondEltOp = getDWordFromOffset(DAG, SL, SecondElt->SrcOp, SecondElt->DWordOffset); Src0 = DAG.getBitcastedAnyExtOrTrunc(FirstEltOp, SL, MVT::getIntegerVT(32)); Src1 = DAG.getBitcastedAnyExtOrTrunc(SecondEltOp, SL, MVT::getIntegerVT(32)); } } if (!UseOriginalSrc) { Src0 = resolveSources(DAG, SL, Src0s, false, true); Src1 = resolveSources(DAG, SL, Src1s, false, true); } assert(IsSigned); SDValue Src2 = DAG.getExtOrTrunc(*IsSigned, Src2s[ChainLength - 1], SL, MVT::i32); SDValue IID = DAG.getTargetConstant(*IsSigned ? Intrinsic::amdgcn_sdot4 : Intrinsic::amdgcn_udot4, SL, MVT::i64); assert(!VT.isVector()); auto Dot = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32, IID, Src0, Src1, Src2, DAG.getTargetConstant(0, SL, MVT::i1)); return DAG.getExtOrTrunc(*IsSigned, Dot, SL, VT); } if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) return SDValue(); // add x, zext (setcc) => uaddo_carry x, 0, setcc // add x, sext (setcc) => usubo_carry x, 0, setcc unsigned Opc = LHS.getOpcode(); if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || Opc == ISD::ANY_EXTEND || Opc == ISD::UADDO_CARRY) std::swap(RHS, LHS); Opc = RHS.getOpcode(); switch (Opc) { default: break; case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND: case ISD::ANY_EXTEND: { auto Cond = RHS.getOperand(0); // If this won't be a real VOPC output, we would still need to insert an // extra instruction anyway. if (!isBoolSGPR(Cond)) break; SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::USUBO_CARRY : ISD::UADDO_CARRY; return DAG.getNode(Opc, SL, VTList, Args); } case ISD::UADDO_CARRY: { // add x, (uaddo_carry y, 0, cc) => uaddo_carry x, y, cc if (!isNullConstant(RHS.getOperand(1))) break; SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), RHS->getVTList(), Args); } } return SDValue(); } SDValue SITargetLowering::performSubCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); if (VT != MVT::i32) return SDValue(); SDLoc SL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // sub x, zext (setcc) => usubo_carry x, 0, setcc // sub x, sext (setcc) => uaddo_carry x, 0, setcc unsigned Opc = RHS.getOpcode(); switch (Opc) { default: break; case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND: case ISD::ANY_EXTEND: { auto Cond = RHS.getOperand(0); // If this won't be a real VOPC output, we would still need to insert an // extra instruction anyway. if (!isBoolSGPR(Cond)) break; SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; return DAG.getNode(Opc, SL, VTList, Args); } } if (LHS.getOpcode() == ISD::USUBO_CARRY) { // sub (usubo_carry x, 0, cc), y => usubo_carry x, y, cc if (!isNullConstant(LHS.getOperand(1))) return SDValue(); SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; return DAG.getNode(ISD::USUBO_CARRY, SDLoc(N), LHS->getVTList(), Args); } return SDValue(); } SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (N->getValueType(0) != MVT::i32) return SDValue(); if (!isNullConstant(N->getOperand(1))) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDValue LHS = N->getOperand(0); // uaddo_carry (add x, y), 0, cc => uaddo_carry x, y, cc // usubo_carry (sub x, y), 0, cc => usubo_carry x, y, cc unsigned LHSOpc = LHS.getOpcode(); unsigned Opc = N->getOpcode(); if ((LHSOpc == ISD::ADD && Opc == ISD::UADDO_CARRY) || (LHSOpc == ISD::SUB && Opc == ISD::USUBO_CARRY)) { SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); } return SDValue(); } SDValue SITargetLowering::performFAddCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) return SDValue(); SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); SDLoc SL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // These should really be instruction patterns, but writing patterns with // source modifiers is a pain. // fadd (fadd (a, a), b) -> mad 2.0, a, b if (LHS.getOpcode() == ISD::FADD) { SDValue A = LHS.getOperand(0); if (A == LHS.getOperand(1)) { unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); if (FusedOp != 0) { const SDValue Two = DAG.getConstantFP(2.0, SL, VT); return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); } } } // fadd (b, fadd (a, a)) -> mad 2.0, a, b if (RHS.getOpcode() == ISD::FADD) { SDValue A = RHS.getOperand(0); if (A == RHS.getOperand(1)) { unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); if (FusedOp != 0) { const SDValue Two = DAG.getConstantFP(2.0, SL, VT); return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); } } } return SDValue(); } SDValue SITargetLowering::performFSubCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); EVT VT = N->getValueType(0); assert(!VT.isVector()); // Try to get the fneg to fold into the source modifier. This undoes generic // DAG combines and folds them into the mad. // // Only do this if we are not trying to support denormals. v_mad_f32 does // not support denormals ever. SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if (LHS.getOpcode() == ISD::FADD) { // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) SDValue A = LHS.getOperand(0); if (A == LHS.getOperand(1)) { unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); if (FusedOp != 0){ const SDValue Two = DAG.getConstantFP(2.0, SL, VT); SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); } } } if (RHS.getOpcode() == ISD::FADD) { // (fsub c, (fadd a, a)) -> mad -2.0, a, c SDValue A = RHS.getOperand(0); if (A == RHS.getOperand(1)) { unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); if (FusedOp != 0){ const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); } } } return SDValue(); } SDValue SITargetLowering::performFDivCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); EVT VT = N->getValueType(0); if (VT != MVT::f16 || !Subtarget->has16BitInsts()) return SDValue(); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); SDNodeFlags Flags = N->getFlags(); SDNodeFlags RHSFlags = RHS->getFlags(); if (!Flags.hasAllowContract() || !RHSFlags.hasAllowContract() || !RHS->hasOneUse()) return SDValue(); if (const ConstantFPSDNode *CLHS = dyn_cast(LHS)) { bool IsNegative = false; if (CLHS->isExactlyValue(1.0) || (IsNegative = CLHS->isExactlyValue(-1.0))) { // fdiv contract 1.0, (sqrt contract x) -> rsq for f16 // fdiv contract -1.0, (sqrt contract x) -> fneg(rsq) for f16 if (RHS.getOpcode() == ISD::FSQRT) { // TODO: Or in RHS flags, somehow missing from SDNodeFlags SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0), Flags); return IsNegative ? DAG.getNode(ISD::FNEG, SL, VT, Rsq, Flags) : Rsq; } } } return SDValue(); } SDValue SITargetLowering::performFMACombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); SDLoc SL(N); if (!Subtarget->hasDot7Insts() || VT != MVT::f32) return SDValue(); // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) SDValue Op1 = N->getOperand(0); SDValue Op2 = N->getOperand(1); SDValue FMA = N->getOperand(2); if (FMA.getOpcode() != ISD::FMA || Op1.getOpcode() != ISD::FP_EXTEND || Op2.getOpcode() != ISD::FP_EXTEND) return SDValue(); // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, // regardless of the denorm mode setting. Therefore, // unsafe-fp-math/fp-contract is sufficient to allow generating fdot2. const TargetOptions &Options = DAG.getTarget().Options; if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || (N->getFlags().hasAllowContract() && FMA->getFlags().hasAllowContract())) { Op1 = Op1.getOperand(0); Op2 = Op2.getOperand(0); if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); SDValue Vec1 = Op1.getOperand(0); SDValue Idx1 = Op1.getOperand(1); SDValue Vec2 = Op2.getOperand(0); SDValue FMAOp1 = FMA.getOperand(0); SDValue FMAOp2 = FMA.getOperand(1); SDValue FMAAcc = FMA.getOperand(2); if (FMAOp1.getOpcode() != ISD::FP_EXTEND || FMAOp2.getOpcode() != ISD::FP_EXTEND) return SDValue(); FMAOp1 = FMAOp1.getOperand(0); FMAOp2 = FMAOp2.getOperand(0); if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); SDValue Vec3 = FMAOp1.getOperand(0); SDValue Vec4 = FMAOp2.getOperand(0); SDValue Idx2 = FMAOp1.getOperand(1); if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || // Idx1 and Idx2 cannot be the same. Idx1 == Idx2) return SDValue(); if (Vec1 == Vec2 || Vec3 == Vec4) return SDValue(); if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) return SDValue(); if ((Vec1 == Vec3 && Vec2 == Vec4) || (Vec1 == Vec4 && Vec2 == Vec3)) { return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, DAG.getTargetConstant(0, SL, MVT::i1)); } } return SDValue(); } SDValue SITargetLowering::performSetCCCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); EVT VT = LHS.getValueType(); ISD::CondCode CC = cast(N->getOperand(2))->get(); auto CRHS = dyn_cast(RHS); if (!CRHS) { CRHS = dyn_cast(LHS); if (CRHS) { std::swap(LHS, RHS); CC = getSetCCSwappedOperands(CC); } } if (CRHS) { if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && isBoolSGPR(LHS.getOperand(0))) { // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc if ((CRHS->isAllOnes() && (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || (CRHS->isZero() && (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), DAG.getConstant(-1, SL, MVT::i1)); if ((CRHS->isAllOnes() && (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || (CRHS->isZero() && (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) return LHS.getOperand(0); } const APInt &CRHSVal = CRHS->getAPIntValue(); if ((CC == ISD::SETEQ || CC == ISD::SETNE) && LHS.getOpcode() == ISD::SELECT && isa(LHS.getOperand(1)) && isa(LHS.getOperand(2)) && LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && isBoolSGPR(LHS.getOperand(0))) { // Given CT != FT: // setcc (select cc, CT, CF), CF, eq => xor cc, -1 // setcc (select cc, CT, CF), CF, ne => cc // setcc (select cc, CT, CF), CT, ne => xor cc, -1 // setcc (select cc, CT, CF), CT, eq => cc const APInt &CT = LHS.getConstantOperandAPInt(1); const APInt &CF = LHS.getConstantOperandAPInt(2); if ((CF == CRHSVal && CC == ISD::SETEQ) || (CT == CRHSVal && CC == ISD::SETNE)) return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), DAG.getConstant(-1, SL, MVT::i1)); if ((CF == CRHSVal && CC == ISD::SETNE) || (CT == CRHSVal && CC == ISD::SETEQ)) return LHS.getOperand(0); } } if (VT != MVT::f32 && VT != MVT::f64 && (!Subtarget->has16BitInsts() || VT != MVT::f16)) return SDValue(); // Match isinf/isfinite pattern // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) // (fcmp one (fabs x), inf) -> (fp_class x, // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { const ConstantFPSDNode *CRHS = dyn_cast(RHS); if (!CRHS) return SDValue(); const APFloat &APF = CRHS->getValueAPF(); if (APF.isInfinity() && !APF.isNegative()) { const unsigned IsInfMask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY; const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | SIInstrFlags::P_ZERO | SIInstrFlags::N_NORMAL | SIInstrFlags::P_NORMAL | SIInstrFlags::N_SUBNORMAL | SIInstrFlags::P_SUBNORMAL; unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), DAG.getConstant(Mask, SL, MVT::i32)); } } return SDValue(); } SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; SDValue Src = N->getOperand(0); SDValue Shift = N->getOperand(0); // TODO: Extend type shouldn't matter (assuming legal types). if (Shift.getOpcode() == ISD::ZERO_EXTEND) Shift = Shift.getOperand(0); if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) { // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x if (auto *C = dyn_cast(Shift.getOperand(1))) { SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0), SDLoc(Shift.getOperand(0)), MVT::i32); unsigned ShiftOffset = 8 * Offset; if (Shift.getOpcode() == ISD::SHL) ShiftOffset -= C->getZExtValue(); else ShiftOffset += C->getZExtValue(); if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) { return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL, MVT::f32, Shifted); } } } const TargetLowering &TLI = DAG.getTargetLoweringInfo(); APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) { // We simplified Src. If this node is not dead, visit it again so it is // folded properly. if (N->getOpcode() != ISD::DELETED_NODE) DCI.AddToWorklist(N); return SDValue(N, 0); } // Handle (or x, (srl y, 8)) pattern when known bits are zero. if (SDValue DemandedSrc = TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG)) return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc); return SDValue(); } SDValue SITargetLowering::performClampCombine(SDNode *N, DAGCombinerInfo &DCI) const { ConstantFPSDNode *CSrc = dyn_cast(N->getOperand(0)); if (!CSrc) return SDValue(); const MachineFunction &MF = DCI.DAG.getMachineFunction(); const APFloat &F = CSrc->getValueAPF(); APFloat Zero = APFloat::getZero(F.getSemantics()); if (F < Zero || (F.isNaN() && MF.getInfo()->getMode().DX10Clamp)) { return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); } APFloat One(F.getSemantics(), "1.0"); if (F > One) return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); return SDValue(CSrc, 0); } SDValue SITargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None) return SDValue(); switch (N->getOpcode()) { case ISD::ADD: return performAddCombine(N, DCI); case ISD::SUB: return performSubCombine(N, DCI); case ISD::UADDO_CARRY: case ISD::USUBO_CARRY: return performAddCarrySubCarryCombine(N, DCI); case ISD::FADD: return performFAddCombine(N, DCI); case ISD::FSUB: return performFSubCombine(N, DCI); case ISD::FDIV: return performFDivCombine(N, DCI); case ISD::SETCC: return performSetCCCombine(N, DCI); case ISD::FMAXNUM: case ISD::FMINNUM: case ISD::FMAXNUM_IEEE: case ISD::FMINNUM_IEEE: case ISD::FMAXIMUM: case ISD::FMINIMUM: case ISD::SMAX: case ISD::SMIN: case ISD::UMAX: case ISD::UMIN: case AMDGPUISD::FMIN_LEGACY: case AMDGPUISD::FMAX_LEGACY: return performMinMaxCombine(N, DCI); case ISD::FMA: return performFMACombine(N, DCI); case ISD::AND: return performAndCombine(N, DCI); case ISD::OR: return performOrCombine(N, DCI); case ISD::FSHR: { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); if (N->getValueType(0) == MVT::i32 && N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { return matchPERM(N, DCI); } break; } case ISD::XOR: return performXorCombine(N, DCI); case ISD::ZERO_EXTEND: return performZeroExtendCombine(N, DCI); case ISD::SIGN_EXTEND_INREG: return performSignExtendInRegCombine(N , DCI); case AMDGPUISD::FP_CLASS: return performClassCombine(N, DCI); case ISD::FCANONICALIZE: return performFCanonicalizeCombine(N, DCI); case AMDGPUISD::RCP: return performRcpCombine(N, DCI); case ISD::FLDEXP: case AMDGPUISD::FRACT: case AMDGPUISD::RSQ: case AMDGPUISD::RCP_LEGACY: case AMDGPUISD::RCP_IFLAG: case AMDGPUISD::RSQ_CLAMP: { // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted SDValue Src = N->getOperand(0); if (Src.isUndef()) return Src; break; } case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: return performUCharToFloatCombine(N, DCI); case ISD::FCOPYSIGN: return performFCopySignCombine(N, DCI); case AMDGPUISD::CVT_F32_UBYTE0: case AMDGPUISD::CVT_F32_UBYTE1: case AMDGPUISD::CVT_F32_UBYTE2: case AMDGPUISD::CVT_F32_UBYTE3: return performCvtF32UByteNCombine(N, DCI); case AMDGPUISD::FMED3: return performFMed3Combine(N, DCI); case AMDGPUISD::CVT_PKRTZ_F16_F32: return performCvtPkRTZCombine(N, DCI); case AMDGPUISD::CLAMP: return performClampCombine(N, DCI); case ISD::SCALAR_TO_VECTOR: { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) if (VT == MVT::v2i16 || VT == MVT::v2f16 || VT == MVT::v2bf16) { SDLoc SL(N); SDValue Src = N->getOperand(0); EVT EltVT = Src.getValueType(); if (EltVT != MVT::i16) Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); return DAG.getNode(ISD::BITCAST, SL, VT, Ext); } break; } case ISD::EXTRACT_VECTOR_ELT: return performExtractVectorEltCombine(N, DCI); case ISD::INSERT_VECTOR_ELT: return performInsertVectorEltCombine(N, DCI); case ISD::FP_ROUND: return performFPRoundCombine(N, DCI); case ISD::LOAD: { if (SDValue Widened = widenLoad(cast(N), DCI)) return Widened; [[fallthrough]]; } default: { if (!DCI.isBeforeLegalize()) { if (MemSDNode *MemNode = dyn_cast(N)) return performMemSDNodeCombine(MemNode, DCI); } break; } } return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); } /// Helper function for adjustWritemask static unsigned SubIdx2Lane(unsigned Idx) { switch (Idx) { default: return ~0u; case AMDGPU::sub0: return 0; case AMDGPU::sub1: return 1; case AMDGPU::sub2: return 2; case AMDGPU::sub3: return 3; case AMDGPU::sub4: return 4; // Possible with TFE/LWE } } /// Adjust the writemask of MIMG, VIMAGE or VSAMPLE instructions SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, SelectionDAG &DAG) const { unsigned Opcode = Node->getMachineOpcode(); // Subtract 1 because the vdata output is not a MachineSDNode operand. int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) return Node; // not implemented for D16 SDNode *Users[5] = { nullptr }; unsigned Lane = 0; unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); unsigned NewDmask = 0; unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) || (int(LWEIdx) >= 0 && Node->getConstantOperandVal(LWEIdx))) ? true : false; unsigned TFCLane = 0; bool HasChain = Node->getNumValues() > 1; if (OldDmask == 0) { // These are folded out, but on the chance it happens don't assert. return Node; } unsigned OldBitsSet = llvm::popcount(OldDmask); // Work out which is the TFE/LWE lane if that is enabled. if (UsesTFC) { TFCLane = OldBitsSet; } // Try to figure out the used register components for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); I != E; ++I) { // Don't look at users of the chain. if (I.getUse().getResNo() != 0) continue; // Abort if we can't understand the usage if (!I->isMachineOpcode() || I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) return Node; // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. // Note that subregs are packed, i.e. Lane==0 is the first bit set // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit // set, etc. Lane = SubIdx2Lane(I->getConstantOperandVal(1)); if (Lane == ~0u) return Node; // Check if the use is for the TFE/LWE generated result at VGPRn+1. if (UsesTFC && Lane == TFCLane) { Users[Lane] = *I; } else { // Set which texture component corresponds to the lane. unsigned Comp; for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { Comp = llvm::countr_zero(Dmask); Dmask &= ~(1 << Comp); } // Abort if we have more than one user per component. if (Users[Lane]) return Node; Users[Lane] = *I; NewDmask |= 1 << Comp; } } // Don't allow 0 dmask, as hardware assumes one channel enabled. bool NoChannels = !NewDmask; if (NoChannels) { if (!UsesTFC) { // No uses of the result and not using TFC. Then do nothing. return Node; } // If the original dmask has one channel - then nothing to do if (OldBitsSet == 1) return Node; // Use an arbitrary dmask - required for the instruction to work NewDmask = 1; } // Abort if there's no change if (NewDmask == OldDmask) return Node; unsigned BitsSet = llvm::popcount(NewDmask); // Check for TFE or LWE - increase the number of channels by one to account // for the extra return value // This will need adjustment for D16 if this is also included in // adjustWriteMask (this function) but at present D16 are excluded. unsigned NewChannels = BitsSet + UsesTFC; int NewOpcode = AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); assert(NewOpcode != -1 && NewOpcode != static_cast(Node->getMachineOpcode()) && "failed to find equivalent MIMG op"); // Adjust the writemask in the node SmallVector Ops; Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); MVT ResultVT = NewChannels == 1 ? SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : NewChannels == 5 ? 8 : NewChannels); SDVTList NewVTList = HasChain ? DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), NewVTList, Ops); if (HasChain) { // Update chain. DAG.setNodeMemRefs(NewNode, Node->memoperands()); DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); } if (NewChannels == 1) { assert(Node->hasNUsesOfValue(1, 0)); SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, SDLoc(Node), Users[Lane]->getValueType(0), SDValue(NewNode, 0)); DAG.ReplaceAllUsesWith(Users[Lane], Copy); return nullptr; } // Update the users of the node with the new indices for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { SDNode *User = Users[i]; if (!User) { // Handle the special case of NoChannels. We set NewDmask to 1 above, but // Users[0] is still nullptr because channel 0 doesn't really have a use. if (i || !NoChannels) continue; } else { SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); SDNode *NewUser = DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); if (NewUser != User) { DAG.ReplaceAllUsesWith(SDValue(User, 0), SDValue(NewUser, 0)); DAG.RemoveDeadNode(User); } } switch (Idx) { default: break; case AMDGPU::sub0: Idx = AMDGPU::sub1; break; case AMDGPU::sub1: Idx = AMDGPU::sub2; break; case AMDGPU::sub2: Idx = AMDGPU::sub3; break; case AMDGPU::sub3: Idx = AMDGPU::sub4; break; } } DAG.RemoveDeadNode(Node); return nullptr; } static bool isFrameIndexOp(SDValue Op) { if (Op.getOpcode() == ISD::AssertZext) Op = Op.getOperand(0); return isa(Op); } /// Legalize target independent instructions (e.g. INSERT_SUBREG) /// with frame index operands. /// LLVM assumes that inputs are to these instructions are registers. SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, SelectionDAG &DAG) const { if (Node->getOpcode() == ISD::CopyToReg) { RegisterSDNode *DestReg = cast(Node->getOperand(1)); SDValue SrcVal = Node->getOperand(2); // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have // to try understanding copies to physical registers. if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) { SDLoc SL(Node); MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); SDValue VReg = DAG.getRegister( MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); SDNode *Glued = Node->getGluedNode(); SDValue ToVReg = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); SDValue ToResultReg = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), VReg, ToVReg.getValue(1)); DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); DAG.RemoveDeadNode(Node); return ToResultReg.getNode(); } } SmallVector Ops; for (unsigned i = 0; i < Node->getNumOperands(); ++i) { if (!isFrameIndexOp(Node->getOperand(i))) { Ops.push_back(Node->getOperand(i)); continue; } SDLoc DL(Node); Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, Node->getOperand(i).getValueType(), Node->getOperand(i)), 0)); } return DAG.UpdateNodeOperands(Node, Ops); } /// Fold the instructions after selecting them. /// Returns null if users were already updated. SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, SelectionDAG &DAG) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); unsigned Opcode = Node->getMachineOpcode(); if (TII->isImage(Opcode) && !TII->get(Opcode).mayStore() && !TII->isGather4(Opcode) && AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::dmask)) { return adjustWritemask(Node, DAG); } if (Opcode == AMDGPU::INSERT_SUBREG || Opcode == AMDGPU::REG_SEQUENCE) { legalizeTargetIndependentNode(Node, DAG); return Node; } switch (Opcode) { case AMDGPU::V_DIV_SCALE_F32_e64: case AMDGPU::V_DIV_SCALE_F64_e64: { // Satisfy the operand register constraint when one of the inputs is // undefined. Ordinarily each undef value will have its own implicit_def of // a vreg, so force these to use a single register. SDValue Src0 = Node->getOperand(1); SDValue Src1 = Node->getOperand(3); SDValue Src2 = Node->getOperand(5); if ((Src0.isMachineOpcode() && Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && (Src0 == Src1 || Src0 == Src2)) break; MVT VT = Src0.getValueType().getSimpleVT(); const TargetRegisterClass *RC = getRegClassFor(VT, Src0.getNode()->isDivergent()); MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), UndefReg, Src0, SDValue()); // src0 must be the same register as src1 or src2, even if the value is // undefined, so make sure we don't violate this constraint. if (Src0.isMachineOpcode() && Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { if (Src1.isMachineOpcode() && Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) Src0 = Src1; else if (Src2.isMachineOpcode() && Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) Src0 = Src2; else { assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); Src0 = UndefReg; Src1 = UndefReg; } } else break; SmallVector Ops(Node->op_begin(), Node->op_end()); Ops[1] = Src0; Ops[3] = Src1; Ops[5] = Src2; Ops.push_back(ImpDef.getValue(1)); return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); } default: break; } return Node; } // Any MIMG instructions that use tfe or lwe require an initialization of the // result register that will be written in the case of a memory access failure. // The required code is also added to tie this init code to the result of the // img instruction. void SITargetLowering::AddMemOpInit(MachineInstr &MI) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); const SIRegisterInfo &TRI = TII->getRegisterInfo(); MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); MachineBasicBlock &MBB = *MI.getParent(); int DstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); unsigned InitIdx = 0; if (TII->isImage(MI)) { MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe); MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe); MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16); if (!TFE && !LWE) // intersect_ray return; unsigned TFEVal = TFE ? TFE->getImm() : 0; unsigned LWEVal = LWE ? LWE->getImm() : 0; unsigned D16Val = D16 ? D16->getImm() : 0; if (!TFEVal && !LWEVal) return; // At least one of TFE or LWE are non-zero // We have to insert a suitable initialization of the result value and // tie this to the dest of the image instruction. // Calculate which dword we have to initialize to 0. MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask); // check that dmask operand is found. assert(MO_Dmask && "Expected dmask operand in instruction"); unsigned dmask = MO_Dmask->getImm(); // Determine the number of active lanes taking into account the // Gather4 special case unsigned ActiveLanes = TII->isGather4(MI) ? 4 : llvm::popcount(dmask); bool Packed = !Subtarget->hasUnpackedD16VMem(); InitIdx = D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1; // Abandon attempt if the dst size isn't large enough // - this is in fact an error but this is picked up elsewhere and // reported correctly. uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32; if (DstSize < InitIdx) return; } else if (TII->isMUBUF(MI) && AMDGPU::getMUBUFTfe(MI.getOpcode())) { InitIdx = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32; } else { return; } const DebugLoc &DL = MI.getDebugLoc(); // Create a register for the initialization value. Register PrevDst = MRI.cloneVirtualRegister(MI.getOperand(DstIdx).getReg()); unsigned NewDst = 0; // Final initialized value will be in here // If PRTStrictNull feature is enabled (the default) then initialize // all the result registers to 0, otherwise just the error indication // register (VGPRn+1) unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1; unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1); BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst); for (; SizeLeft; SizeLeft--, CurrIdx++) { NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); // Initialize dword Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg) .addImm(0); // Insert into the super-reg BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst) .addReg(PrevDst) .addReg(SubReg) .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx)); PrevDst = NewDst; } // Add as an implicit operand MI.addOperand(MachineOperand::CreateReg(NewDst, false, true)); // Tie the just added implicit operand to the dst MI.tieOperands(DstIdx, MI.getNumOperands() - 1); } /// Assign the register class depending on the number of /// bits set in the writemask void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); MachineFunction *MF = MI.getParent()->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); SIMachineFunctionInfo *Info = MF->getInfo(); if (TII->isVOP3(MI.getOpcode())) { // Make sure constant bus requirements are respected. TII->legalizeOperandsVOP3(MRI, MI); // Prefer VGPRs over AGPRs in mAI instructions where possible. // This saves a chain-copy of registers and better balance register // use between vgpr and agpr as agpr tuples tend to be big. if (!MI.getDesc().operands().empty()) { unsigned Opc = MI.getOpcode(); bool HasAGPRs = Info->mayNeedAGPRs(); const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); int16_t Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); for (auto I : {AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1), Src2Idx}) { if (I == -1) break; if ((I == Src2Idx) && (HasAGPRs)) break; MachineOperand &Op = MI.getOperand(I); if (!Op.isReg() || !Op.getReg().isVirtual()) continue; auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); if (!TRI->hasAGPRs(RC)) continue; auto *Src = MRI.getUniqueVRegDef(Op.getReg()); if (!Src || !Src->isCopy() || !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) continue; auto *NewRC = TRI->getEquivalentVGPRClass(RC); // All uses of agpr64 and agpr32 can also accept vgpr except for // v_accvgpr_read, but we do not produce agpr reads during selection, // so no use checks are needed. MRI.setRegClass(Op.getReg(), NewRC); } if (!HasAGPRs) return; // Resolve the rest of AV operands to AGPRs. if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) { if (Src2->isReg() && Src2->getReg().isVirtual()) { auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg()); if (TRI->isVectorSuperClass(RC)) { auto *NewRC = TRI->getEquivalentAGPRClass(RC); MRI.setRegClass(Src2->getReg(), NewRC); if (Src2->isTied()) MRI.setRegClass(MI.getOperand(0).getReg(), NewRC); } } } } return; } if (TII->isImage(MI)) TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr); } static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, uint64_t Val) { SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); } MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, const SDLoc &DL, SDValue Ptr) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); // Build the half of the subregister with the constants before building the // full 128-bit register. If we are building multiple resource descriptors, // this will allow CSEing of the 2-component register. const SDValue Ops0[] = { DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), buildSMovImm32(DAG, DL, 0), DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) }; SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v2i32, Ops0), 0); // Combine the constants and the pointer. const SDValue Ops1[] = { DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), Ptr, DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), SubRegHi, DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) }; return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); } /// Return a resource descriptor with the 'Add TID' bit enabled /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] /// of the resource descriptor) to create an offset, which is added to /// the resource pointer. MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, SDValue Ptr, uint32_t RsrcDword1, uint64_t RsrcDword2And3) const { SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); if (RsrcDword1) { PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, DAG.getConstant(RsrcDword1, DL, MVT::i32)), 0); } SDValue DataLo = buildSMovImm32(DAG, DL, RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); const SDValue Ops[] = { DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), PtrLo, DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), PtrHi, DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), DataLo, DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), DataHi, DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) }; return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); } //===----------------------------------------------------------------------===// // SI Inline Assembly Support //===----------------------------------------------------------------------===// std::pair SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_, StringRef Constraint, MVT VT) const { const SIRegisterInfo *TRI = static_cast(TRI_); const TargetRegisterClass *RC = nullptr; if (Constraint.size() == 1) { const unsigned BitWidth = VT.getSizeInBits(); switch (Constraint[0]) { default: return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); case 's': case 'r': switch (BitWidth) { case 16: RC = &AMDGPU::SReg_32RegClass; break; case 64: RC = &AMDGPU::SGPR_64RegClass; break; default: RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth); if (!RC) return std::pair(0U, nullptr); break; } break; case 'v': switch (BitWidth) { case 16: RC = &AMDGPU::VGPR_32RegClass; break; default: RC = TRI->getVGPRClassForBitWidth(BitWidth); if (!RC) return std::pair(0U, nullptr); break; } break; case 'a': if (!Subtarget->hasMAIInsts()) break; switch (BitWidth) { case 16: RC = &AMDGPU::AGPR_32RegClass; break; default: RC = TRI->getAGPRClassForBitWidth(BitWidth); if (!RC) return std::pair(0U, nullptr); break; } break; } // We actually support i128, i16 and f16 as inline parameters // even if they are not reported as legal if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) return std::pair(0U, RC); } if (Constraint.starts_with("{") && Constraint.ends_with("}")) { StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); if (RegName.consume_front("v")) { RC = &AMDGPU::VGPR_32RegClass; } else if (RegName.consume_front("s")) { RC = &AMDGPU::SGPR_32RegClass; } else if (RegName.consume_front("a")) { RC = &AMDGPU::AGPR_32RegClass; } if (RC) { uint32_t Idx; if (RegName.consume_front("[")) { uint32_t End; bool Failed = RegName.consumeInteger(10, Idx); Failed |= !RegName.consume_front(":"); Failed |= RegName.consumeInteger(10, End); Failed |= !RegName.consume_back("]"); if (!Failed) { uint32_t Width = (End - Idx + 1) * 32; MCRegister Reg = RC->getRegister(Idx); if (SIRegisterInfo::isVGPRClass(RC)) RC = TRI->getVGPRClassForBitWidth(Width); else if (SIRegisterInfo::isSGPRClass(RC)) RC = TRI->getSGPRClassForBitWidth(Width); else if (SIRegisterInfo::isAGPRClass(RC)) RC = TRI->getAGPRClassForBitWidth(Width); if (RC) { Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC); return std::pair(Reg, RC); } } } else { bool Failed = RegName.getAsInteger(10, Idx); if (!Failed && Idx < RC->getNumRegs()) return std::pair(RC->getRegister(Idx), RC); } } } auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); if (Ret.first) Ret.second = TRI->getPhysRegBaseClass(Ret.first); return Ret; } static bool isImmConstraint(StringRef Constraint) { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'I': case 'J': case 'A': case 'B': case 'C': return true; } } else if (Constraint == "DA" || Constraint == "DB") { return true; } return false; } SITargetLowering::ConstraintType SITargetLowering::getConstraintType(StringRef Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 's': case 'v': case 'a': return C_RegisterClass; } } if (isImmConstraint(Constraint)) { return C_Other; } return TargetLowering::getConstraintType(Constraint); } static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) { if (!AMDGPU::isInlinableIntLiteral(Val)) { Val = Val & maskTrailingOnes(Size); } return Val; } void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector &Ops, SelectionDAG &DAG) const { if (isImmConstraint(Constraint)) { uint64_t Val; if (getAsmOperandConstVal(Op, Val) && checkAsmConstraintVal(Op, Constraint, Val)) { Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits()); Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64)); } } else { TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } } bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const { unsigned Size = Op.getScalarValueSizeInBits(); if (Size > 64) return false; if (Size == 16 && !Subtarget->has16BitInsts()) return false; if (ConstantSDNode *C = dyn_cast(Op)) { Val = C->getSExtValue(); return true; } if (ConstantFPSDNode *C = dyn_cast(Op)) { Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); return true; } if (BuildVectorSDNode *V = dyn_cast(Op)) { if (Size != 16 || Op.getNumOperands() != 2) return false; if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef()) return false; if (ConstantSDNode *C = V->getConstantSplatNode()) { Val = C->getSExtValue(); return true; } if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) { Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); return true; } } return false; } bool SITargetLowering::checkAsmConstraintVal(SDValue Op, StringRef Constraint, uint64_t Val) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'I': return AMDGPU::isInlinableIntLiteral(Val); case 'J': return isInt<16>(Val); case 'A': return checkAsmConstraintValA(Op, Val); case 'B': return isInt<32>(Val); case 'C': return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) || AMDGPU::isInlinableIntLiteral(Val); default: break; } } else if (Constraint.size() == 2) { if (Constraint == "DA") { int64_t HiBits = static_cast(Val >> 32); int64_t LoBits = static_cast(Val); return checkAsmConstraintValA(Op, HiBits, 32) && checkAsmConstraintValA(Op, LoBits, 32); } if (Constraint == "DB") { return true; } } llvm_unreachable("Invalid asm constraint"); } bool SITargetLowering::checkAsmConstraintValA(SDValue Op, uint64_t Val, unsigned MaxSize) const { unsigned Size = std::min(Op.getScalarValueSizeInBits(), MaxSize); bool HasInv2Pi = Subtarget->hasInv2PiInlineImm(); if (Size == 16) { MVT VT = Op.getSimpleValueType(); switch (VT.SimpleTy) { default: return false; case MVT::i16: return AMDGPU::isInlinableLiteralI16(Val, HasInv2Pi); case MVT::f16: return AMDGPU::isInlinableLiteralFP16(Val, HasInv2Pi); case MVT::bf16: return AMDGPU::isInlinableLiteralBF16(Val, HasInv2Pi); case MVT::v2i16: return AMDGPU::getInlineEncodingV2I16(Val).has_value(); case MVT::v2f16: return AMDGPU::getInlineEncodingV2F16(Val).has_value(); case MVT::v2bf16: return AMDGPU::getInlineEncodingV2BF16(Val).has_value(); } } if ((Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) || (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) return true; return false; } static int getAlignedAGPRClassID(unsigned UnalignedClassID) { switch (UnalignedClassID) { case AMDGPU::VReg_64RegClassID: return AMDGPU::VReg_64_Align2RegClassID; case AMDGPU::VReg_96RegClassID: return AMDGPU::VReg_96_Align2RegClassID; case AMDGPU::VReg_128RegClassID: return AMDGPU::VReg_128_Align2RegClassID; case AMDGPU::VReg_160RegClassID: return AMDGPU::VReg_160_Align2RegClassID; case AMDGPU::VReg_192RegClassID: return AMDGPU::VReg_192_Align2RegClassID; case AMDGPU::VReg_224RegClassID: return AMDGPU::VReg_224_Align2RegClassID; case AMDGPU::VReg_256RegClassID: return AMDGPU::VReg_256_Align2RegClassID; case AMDGPU::VReg_288RegClassID: return AMDGPU::VReg_288_Align2RegClassID; case AMDGPU::VReg_320RegClassID: return AMDGPU::VReg_320_Align2RegClassID; case AMDGPU::VReg_352RegClassID: return AMDGPU::VReg_352_Align2RegClassID; case AMDGPU::VReg_384RegClassID: return AMDGPU::VReg_384_Align2RegClassID; case AMDGPU::VReg_512RegClassID: return AMDGPU::VReg_512_Align2RegClassID; case AMDGPU::VReg_1024RegClassID: return AMDGPU::VReg_1024_Align2RegClassID; case AMDGPU::AReg_64RegClassID: return AMDGPU::AReg_64_Align2RegClassID; case AMDGPU::AReg_96RegClassID: return AMDGPU::AReg_96_Align2RegClassID; case AMDGPU::AReg_128RegClassID: return AMDGPU::AReg_128_Align2RegClassID; case AMDGPU::AReg_160RegClassID: return AMDGPU::AReg_160_Align2RegClassID; case AMDGPU::AReg_192RegClassID: return AMDGPU::AReg_192_Align2RegClassID; case AMDGPU::AReg_256RegClassID: return AMDGPU::AReg_256_Align2RegClassID; case AMDGPU::AReg_512RegClassID: return AMDGPU::AReg_512_Align2RegClassID; case AMDGPU::AReg_1024RegClassID: return AMDGPU::AReg_1024_Align2RegClassID; default: return -1; } } // Figure out which registers should be reserved for stack access. Only after // the function is legalized do we know all of the non-spill stack objects or if // calls are present. void SITargetLowering::finalizeLowering(MachineFunction &MF) const { MachineRegisterInfo &MRI = MF.getRegInfo(); SIMachineFunctionInfo *Info = MF.getInfo(); const GCNSubtarget &ST = MF.getSubtarget(); const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); const SIInstrInfo *TII = ST.getInstrInfo(); if (Info->isEntryFunction()) { // Callable functions have fixed registers used for stack access. reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); } // TODO: Move this logic to getReservedRegs() // Reserve the SGPR(s) to save/restore EXEC for WWM spill/copy handling. unsigned MaxNumSGPRs = ST.getMaxNumSGPRs(MF); Register SReg = ST.isWave32() ? AMDGPU::SGPR_32RegClass.getRegister(MaxNumSGPRs - 1) : TRI->getAlignedHighSGPRForRC(MF, /*Align=*/2, &AMDGPU::SGPR_64RegClass); Info->setSGPRForEXECCopy(SReg); assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), Info->getStackPtrOffsetReg())); if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); // We need to worry about replacing the default register with itself in case // of MIR testcases missing the MFI. if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); Info->limitOccupancy(MF); if (ST.isWave32() && !MF.empty()) { for (auto &MBB : MF) { for (auto &MI : MBB) { TII->fixImplicitOperands(MI); } } } // FIXME: This is a hack to fixup AGPR classes to use the properly aligned // classes if required. Ideally the register class constraints would differ // per-subtarget, but there's no easy way to achieve that right now. This is // not a problem for VGPRs because the correctly aligned VGPR class is implied // from using them as the register class for legal types. if (ST.needsAlignedVGPRs()) { for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { const Register Reg = Register::index2VirtReg(I); const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg); if (!RC) continue; int NewClassID = getAlignedAGPRClassID(RC->getID()); if (NewClassID != -1) MRI.setRegClass(Reg, TRI->getRegClass(NewClassID)); } } TargetLoweringBase::finalizeLowering(MF); } void SITargetLowering::computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { Known.resetAll(); unsigned Opc = Op.getOpcode(); switch (Opc) { case ISD::INTRINSIC_WO_CHAIN: { unsigned IID = Op.getConstantOperandVal(0); switch (IID) { case Intrinsic::amdgcn_mbcnt_lo: case Intrinsic::amdgcn_mbcnt_hi: { const GCNSubtarget &ST = DAG.getMachineFunction().getSubtarget(); // These return at most the (wavefront size - 1) + src1 // As long as src1 is an immediate we can calc known bits KnownBits Src1Known = DAG.computeKnownBits(Op.getOperand(2), Depth + 1); unsigned Src1ValBits = Src1Known.countMaxActiveBits(); unsigned MaxActiveBits = std::max(Src1ValBits, ST.getWavefrontSizeLog2()); // Cater for potential carry MaxActiveBits += Src1ValBits ? 1 : 0; unsigned Size = Op.getValueType().getSizeInBits(); if (MaxActiveBits < Size) Known.Zero.setHighBits(Size - MaxActiveBits); return; } } break; } } return AMDGPUTargetLowering::computeKnownBitsForTargetNode( Op, Known, DemandedElts, DAG, Depth); } void SITargetLowering::computeKnownBitsForFrameIndex( const int FI, KnownBits &Known, const MachineFunction &MF) const { TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF); // Set the high bits to zero based on the maximum allowed scratch size per // wave. We can't use vaddr in MUBUF instructions if we don't know the address // calculation won't overflow, so assume the sign bit is never set. Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); } static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB, KnownBits &Known, unsigned Dim) { unsigned MaxValue = ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim); Known.Zero.setHighBits(llvm::countl_zero(MaxValue)); } void SITargetLowering::computeKnownBitsForTargetInstr( GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth) const { const MachineInstr *MI = MRI.getVRegDef(R); switch (MI->getOpcode()) { case AMDGPU::G_INTRINSIC: case AMDGPU::G_INTRINSIC_CONVERGENT: { switch (cast(MI)->getIntrinsicID()) { case Intrinsic::amdgcn_workitem_id_x: knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0); break; case Intrinsic::amdgcn_workitem_id_y: knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1); break; case Intrinsic::amdgcn_workitem_id_z: knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2); break; case Intrinsic::amdgcn_mbcnt_lo: case Intrinsic::amdgcn_mbcnt_hi: { // These return at most the wavefront size - 1. unsigned Size = MRI.getType(R).getSizeInBits(); Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2()); break; } case Intrinsic::amdgcn_groupstaticsize: { // We can report everything over the maximum size as 0. We can't report // based on the actual size because we don't know if it's accurate or not // at any given point. Known.Zero.setHighBits( llvm::countl_zero(getSubtarget()->getAddressableLocalMemorySize())); break; } } break; } case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: Known.Zero.setHighBits(24); break; case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: Known.Zero.setHighBits(16); break; case AMDGPU::G_AMDGPU_SMED3: case AMDGPU::G_AMDGPU_UMED3: { auto [Dst, Src0, Src1, Src2] = MI->getFirst4Regs(); KnownBits Known2; KB.computeKnownBitsImpl(Src2, Known2, DemandedElts, Depth + 1); if (Known2.isUnknown()) break; KnownBits Known1; KB.computeKnownBitsImpl(Src1, Known1, DemandedElts, Depth + 1); if (Known1.isUnknown()) break; KnownBits Known0; KB.computeKnownBitsImpl(Src0, Known0, DemandedElts, Depth + 1); if (Known0.isUnknown()) break; // TODO: Handle LeadZero/LeadOne from UMIN/UMAX handling. Known.Zero = Known0.Zero & Known1.Zero & Known2.Zero; Known.One = Known0.One & Known1.One & Known2.One; break; } } } Align SITargetLowering::computeKnownAlignForTargetInstr( GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI, unsigned Depth) const { const MachineInstr *MI = MRI.getVRegDef(R); if (auto *GI = dyn_cast(MI)) { // FIXME: Can this move to generic code? What about the case where the call // site specifies a lower alignment? Intrinsic::ID IID = GI->getIntrinsicID(); LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext(); AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID); if (MaybeAlign RetAlign = Attrs.getRetAlignment()) return *RetAlign; } return Align(1); } Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML); const Align CacheLineAlign = Align(64); // Pre-GFX10 target did not benefit from loop alignment if (!ML || DisableLoopAlignment || !getSubtarget()->hasInstPrefetch() || getSubtarget()->hasInstFwdPrefetchBug()) return PrefAlign; // On GFX10 I$ is 4 x 64 bytes cache lines. // By default prefetcher keeps one cache line behind and reads two ahead. // We can modify it with S_INST_PREFETCH for larger loops to have two lines // behind and one ahead. // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. // If loop fits 64 bytes it always spans no more than two cache lines and // does not need an alignment. // Else if loop is less or equal 128 bytes we do not need to modify prefetch, // Else if loop is less or equal 192 bytes we need two lines behind. const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); const MachineBasicBlock *Header = ML->getHeader(); if (Header->getAlignment() != PrefAlign) return Header->getAlignment(); // Already processed. unsigned LoopSize = 0; for (const MachineBasicBlock *MBB : ML->blocks()) { // If inner loop block is aligned assume in average half of the alignment // size to be added as nops. if (MBB != Header) LoopSize += MBB->getAlignment().value() / 2; for (const MachineInstr &MI : *MBB) { LoopSize += TII->getInstSizeInBytes(MI); if (LoopSize > 192) return PrefAlign; } } if (LoopSize <= 64) return PrefAlign; if (LoopSize <= 128) return CacheLineAlign; // If any of parent loops is surrounded by prefetch instructions do not // insert new for inner loop, which would reset parent's settings. for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { if (MachineBasicBlock *Exit = P->getExitBlock()) { auto I = Exit->getFirstNonDebugInstr(); if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) return CacheLineAlign; } } MachineBasicBlock *Pre = ML->getLoopPreheader(); MachineBasicBlock *Exit = ML->getExitBlock(); if (Pre && Exit) { auto PreTerm = Pre->getFirstTerminator(); if (PreTerm == Pre->begin() || std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH) BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) .addImm(1); // prefetch 2 lines behind PC auto ExitHead = Exit->getFirstNonDebugInstr(); if (ExitHead == Exit->end() || ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH) BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) .addImm(2); // prefetch 1 line behind PC } return CacheLineAlign; } LLVM_ATTRIBUTE_UNUSED static bool isCopyFromRegOfInlineAsm(const SDNode *N) { assert(N->getOpcode() == ISD::CopyFromReg); do { // Follow the chain until we find an INLINEASM node. N = N->getOperand(0).getNode(); if (N->getOpcode() == ISD::INLINEASM || N->getOpcode() == ISD::INLINEASM_BR) return true; } while (N->getOpcode() == ISD::CopyFromReg); return false; } bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode *N, FunctionLoweringInfo *FLI, UniformityInfo *UA) const { switch (N->getOpcode()) { case ISD::CopyFromReg: { const RegisterSDNode *R = cast(N->getOperand(1)); const MachineRegisterInfo &MRI = FLI->MF->getRegInfo(); const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); Register Reg = R->getReg(); // FIXME: Why does this need to consider isLiveIn? if (Reg.isPhysical() || MRI.isLiveIn(Reg)) return !TRI->isSGPRReg(MRI, Reg); if (const Value *V = FLI->getValueFromVirtualReg(R->getReg())) return UA->isDivergent(V); assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); return !TRI->isSGPRReg(MRI, Reg); } case ISD::LOAD: { const LoadSDNode *L = cast(N); unsigned AS = L->getAddressSpace(); // A flat load may access private memory. return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; } case ISD::CALLSEQ_END: return true; case ISD::INTRINSIC_WO_CHAIN: return AMDGPU::isIntrinsicSourceOfDivergence(N->getConstantOperandVal(0)); case ISD::INTRINSIC_W_CHAIN: return AMDGPU::isIntrinsicSourceOfDivergence(N->getConstantOperandVal(1)); case AMDGPUISD::ATOMIC_CMP_SWAP: case AMDGPUISD::BUFFER_ATOMIC_SWAP: case AMDGPUISD::BUFFER_ATOMIC_ADD: case AMDGPUISD::BUFFER_ATOMIC_SUB: case AMDGPUISD::BUFFER_ATOMIC_SMIN: case AMDGPUISD::BUFFER_ATOMIC_UMIN: case AMDGPUISD::BUFFER_ATOMIC_SMAX: case AMDGPUISD::BUFFER_ATOMIC_UMAX: case AMDGPUISD::BUFFER_ATOMIC_AND: case AMDGPUISD::BUFFER_ATOMIC_OR: case AMDGPUISD::BUFFER_ATOMIC_XOR: case AMDGPUISD::BUFFER_ATOMIC_INC: case AMDGPUISD::BUFFER_ATOMIC_DEC: case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP: case AMDGPUISD::BUFFER_ATOMIC_CSUB: case AMDGPUISD::BUFFER_ATOMIC_FADD: case AMDGPUISD::BUFFER_ATOMIC_FMIN: case AMDGPUISD::BUFFER_ATOMIC_FMAX: // Target-specific read-modify-write atomics are sources of divergence. return true; default: if (auto *A = dyn_cast(N)) { // Generic read-modify-write atomics are sources of divergence. return A->readMem() && A->writeMem(); } return false; } } bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG, EVT VT) const { switch (VT.getScalarType().getSimpleVT().SimpleTy) { case MVT::f32: return !denormalModeIsFlushAllF32(DAG.getMachineFunction()); case MVT::f64: case MVT::f16: return !denormalModeIsFlushAllF64F16(DAG.getMachineFunction()); default: return false; } } bool SITargetLowering::denormalsEnabledForType( LLT Ty, const MachineFunction &MF) const { switch (Ty.getScalarSizeInBits()) { case 32: return !denormalModeIsFlushAllF32(MF); case 64: case 16: return !denormalModeIsFlushAllF64F16(MF); default: return false; } } bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, const SelectionDAG &DAG, bool SNaN, unsigned Depth) const { if (Op.getOpcode() == AMDGPUISD::CLAMP) { const MachineFunction &MF = DAG.getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo(); if (Info->getMode().DX10Clamp) return true; // Clamped to 0. return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); } return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, SNaN, Depth); } #if 0 // FIXME: This should be checked before unsafe fp atomics are enabled // Global FP atomic instructions have a hardcoded FP mode and do not support // FP32 denormals, and only support v2f16 denormals. static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) { const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics(); auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt); if (&Flt == &APFloat::IEEEsingle()) return DenormMode == DenormalMode::getPreserveSign(); return DenormMode == DenormalMode::getIEEE(); } #endif // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe // floating point atomic instructions. May generate more efficient code, // but may not respect rounding and denormal modes, and may give incorrect // results for certain memory destinations. bool unsafeFPAtomicsDisabled(Function *F) { return F->getFnAttribute("amdgpu-unsafe-fp-atomics").getValueAsString() != "true"; } static OptimizationRemark emitAtomicRMWLegalRemark(const AtomicRMWInst *RMW) { LLVMContext &Ctx = RMW->getContext(); SmallVector SSNs; Ctx.getSyncScopeNames(SSNs); StringRef MemScope = SSNs[RMW->getSyncScopeID()].empty() ? "system" : SSNs[RMW->getSyncScopeID()]; return OptimizationRemark(DEBUG_TYPE, "Passed", RMW) << "Hardware instruction generated for atomic " << RMW->getOperationName(RMW->getOperation()) << " operation at memory scope " << MemScope; } static bool isHalf2OrBFloat2(Type *Ty) { if (auto *VT = dyn_cast(Ty)) { Type *EltTy = VT->getElementType(); return VT->getNumElements() == 2 && (EltTy->isHalfTy() || EltTy->isBFloatTy()); } return false; } static bool isHalf2(Type *Ty) { FixedVectorType *VT = dyn_cast(Ty); return VT && VT->getNumElements() == 2 && VT->getElementType()->isHalfTy(); } static bool isBFloat2(Type *Ty) { FixedVectorType *VT = dyn_cast(Ty); return VT && VT->getNumElements() == 2 && VT->getElementType()->isBFloatTy(); } TargetLowering::AtomicExpansionKind SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { unsigned AS = RMW->getPointerAddressSpace(); if (AS == AMDGPUAS::PRIVATE_ADDRESS) return AtomicExpansionKind::NotAtomic; auto ReportUnsafeHWInst = [=](TargetLowering::AtomicExpansionKind Kind) { OptimizationRemarkEmitter ORE(RMW->getFunction()); ORE.emit([=]() { return emitAtomicRMWLegalRemark(RMW) << " due to an unsafe request."; }); return Kind; }; auto SSID = RMW->getSyncScopeID(); bool HasSystemScope = SSID == SyncScope::System || SSID == RMW->getContext().getOrInsertSyncScopeID("one-as"); switch (RMW->getOperation()) { case AtomicRMWInst::Sub: case AtomicRMWInst::Or: case AtomicRMWInst::Xor: { // Atomic sub/or/xor do not work over PCI express, but atomic add // does. InstCombine transforms these with 0 to or, so undo that. if (HasSystemScope && AMDGPU::isFlatGlobalAddrSpace(AS)) { if (Constant *ConstVal = dyn_cast(RMW->getValOperand()); ConstVal && ConstVal->isNullValue()) return AtomicExpansionKind::Expand; } break; } case AtomicRMWInst::FAdd: { Type *Ty = RMW->getType(); // TODO: Handle REGION_ADDRESS if (AS == AMDGPUAS::LOCAL_ADDRESS) { // DS F32 FP atomics do respect the denormal mode, but the rounding mode // is fixed to round-to-nearest-even. // // F64 / PK_F16 / PK_BF16 never flush and are also fixed to // round-to-nearest-even. // // We ignore the rounding mode problem, even in strictfp. The C++ standard // suggests it is OK if the floating-point mode may not match the calling // thread. if (Ty->isFloatTy()) { return Subtarget->hasLDSFPAtomicAddF32() ? AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg; } if (Ty->isDoubleTy()) { // Ignores denormal mode, but we don't consider flushing mandatory. return Subtarget->hasLDSFPAtomicAddF64() ? AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg; } if (Subtarget->hasAtomicDsPkAdd16Insts() && isHalf2OrBFloat2(Ty)) return AtomicExpansionKind::None; return AtomicExpansionKind::CmpXChg; } if (!AMDGPU::isFlatGlobalAddrSpace(AS) && AS != AMDGPUAS::BUFFER_FAT_POINTER) return AtomicExpansionKind::CmpXChg; if (Subtarget->hasGFX940Insts() && (Ty->isFloatTy() || Ty->isDoubleTy())) return AtomicExpansionKind::None; if (AS == AMDGPUAS::FLAT_ADDRESS) { // gfx940, gfx12 // FIXME: Needs to account for no fine-grained memory if (Subtarget->hasAtomicFlatPkAdd16Insts() && isHalf2OrBFloat2(Ty)) return AtomicExpansionKind::None; } else if (AMDGPU::isExtendedGlobalAddrSpace(AS)) { // gfx90a, gfx940, gfx12 // FIXME: Needs to account for no fine-grained memory if (Subtarget->hasAtomicBufferGlobalPkAddF16Insts() && isHalf2(Ty)) return AtomicExpansionKind::None; // gfx940, gfx12 // FIXME: Needs to account for no fine-grained memory if (Subtarget->hasAtomicGlobalPkAddBF16Inst() && isBFloat2(Ty)) return AtomicExpansionKind::None; } else if (AS == AMDGPUAS::BUFFER_FAT_POINTER) { // gfx90a, gfx940, gfx12 // FIXME: Needs to account for no fine-grained memory if (Subtarget->hasAtomicBufferGlobalPkAddF16Insts() && isHalf2(Ty)) return AtomicExpansionKind::None; // While gfx90a/gfx940 supports v2bf16 for global/flat, it does not for // buffer. gfx12 does have the buffer version. if (Subtarget->hasAtomicBufferPkAddBF16Inst() && isBFloat2(Ty)) return AtomicExpansionKind::None; } if (unsafeFPAtomicsDisabled(RMW->getFunction())) return AtomicExpansionKind::CmpXChg; // Always expand system scope fp atomics. if (HasSystemScope) return AtomicExpansionKind::CmpXChg; // global and flat atomic fadd f64: gfx90a, gfx940. if (Subtarget->hasFlatBufferGlobalAtomicFaddF64Inst() && Ty->isDoubleTy()) return ReportUnsafeHWInst(AtomicExpansionKind::None); if (AS != AMDGPUAS::FLAT_ADDRESS) { if (Ty->isFloatTy()) { // global/buffer atomic fadd f32 no-rtn: gfx908, gfx90a, gfx940, gfx11+. if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts()) return ReportUnsafeHWInst(AtomicExpansionKind::None); // global/buffer atomic fadd f32 rtn: gfx90a, gfx940, gfx11+. if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts()) return ReportUnsafeHWInst(AtomicExpansionKind::None); } else { // gfx908 if (RMW->use_empty() && Subtarget->hasAtomicBufferGlobalPkAddF16NoRtnInsts() && isHalf2(Ty)) return ReportUnsafeHWInst(AtomicExpansionKind::None); } } // flat atomic fadd f32: gfx940, gfx11+. if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy()) { if (Subtarget->hasFlatAtomicFaddF32Inst()) return ReportUnsafeHWInst(AtomicExpansionKind::None); // If it is in flat address space, and the type is float, we will try to // expand it, if the target supports global and lds atomic fadd. The // reason we need that is, in the expansion, we emit the check of address // space. If it is in global address space, we emit the global atomic // fadd; if it is in shared address space, we emit the LDS atomic fadd. if (Subtarget->hasLDSFPAtomicAddF32()) { if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts()) return AtomicExpansionKind::Expand; if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts()) return AtomicExpansionKind::Expand; } } return AtomicExpansionKind::CmpXChg; } case AtomicRMWInst::FMin: case AtomicRMWInst::FMax: { Type *Ty = RMW->getType(); // LDS float and double fmin/fmax were always supported. if (AS == AMDGPUAS::LOCAL_ADDRESS && (Ty->isFloatTy() || Ty->isDoubleTy())) return AtomicExpansionKind::None; if (unsafeFPAtomicsDisabled(RMW->getFunction())) return AtomicExpansionKind::CmpXChg; // Always expand system scope fp atomics. if (HasSystemScope) return AtomicExpansionKind::CmpXChg; // For flat and global cases: // float, double in gfx7. Manual claims denormal support. // Removed in gfx8. // float, double restored in gfx10. // double removed again in gfx11, so only f32 for gfx11/gfx12. // // For gfx9, gfx90a and gfx940 support f64 for global (same as fadd), but no // f32. // // FIXME: Check scope and fine grained memory if (AS == AMDGPUAS::FLAT_ADDRESS) { if (Subtarget->hasAtomicFMinFMaxF32FlatInsts() && Ty->isFloatTy()) return ReportUnsafeHWInst(AtomicExpansionKind::None); if (Subtarget->hasAtomicFMinFMaxF64FlatInsts() && Ty->isDoubleTy()) return ReportUnsafeHWInst(AtomicExpansionKind::None); } else if (AMDGPU::isExtendedGlobalAddrSpace(AS) || AS == AMDGPUAS::BUFFER_FAT_POINTER) { if (Subtarget->hasAtomicFMinFMaxF32GlobalInsts() && Ty->isFloatTy()) return ReportUnsafeHWInst(AtomicExpansionKind::None); if (Subtarget->hasAtomicFMinFMaxF64GlobalInsts() && Ty->isDoubleTy()) return ReportUnsafeHWInst(AtomicExpansionKind::None); } return AtomicExpansionKind::CmpXChg; } case AtomicRMWInst::Min: case AtomicRMWInst::Max: case AtomicRMWInst::UMin: case AtomicRMWInst::UMax: { if (AMDGPU::isFlatGlobalAddrSpace(AS) || AS == AMDGPUAS::BUFFER_FAT_POINTER) { // Always expand system scope min/max atomics. if (HasSystemScope) return AtomicExpansionKind::CmpXChg; } break; } default: break; } return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); } TargetLowering::AtomicExpansionKind SITargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { return LI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ? AtomicExpansionKind::NotAtomic : AtomicExpansionKind::None; } TargetLowering::AtomicExpansionKind SITargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { return SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ? AtomicExpansionKind::NotAtomic : AtomicExpansionKind::None; } TargetLowering::AtomicExpansionKind SITargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CmpX) const { return CmpX->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ? AtomicExpansionKind::NotAtomic : AtomicExpansionKind::None; } const TargetRegisterClass * SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false); const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); if (RC == &AMDGPU::VReg_1RegClass && !isDivergent) return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass : &AMDGPU::SReg_32RegClass; if (!TRI->isSGPRClass(RC) && !isDivergent) return TRI->getEquivalentSGPRClass(RC); if (TRI->isSGPRClass(RC) && isDivergent) return TRI->getEquivalentVGPRClass(RC); return RC; } // FIXME: This is a workaround for DivergenceAnalysis not understanding always // uniform values (as produced by the mask results of control flow intrinsics) // used outside of divergent blocks. The phi users need to also be treated as // always uniform. // // FIXME: DA is no longer in-use. Does this still apply to UniformityAnalysis? static bool hasCFUser(const Value *V, SmallPtrSet &Visited, unsigned WaveSize) { // FIXME: We assume we never cast the mask results of a control flow // intrinsic. // Early exit if the type won't be consistent as a compile time hack. IntegerType *IT = dyn_cast(V->getType()); if (!IT || IT->getBitWidth() != WaveSize) return false; if (!isa(V)) return false; if (!Visited.insert(V).second) return false; bool Result = false; for (const auto *U : V->users()) { if (const IntrinsicInst *Intrinsic = dyn_cast(U)) { if (V == U->getOperand(1)) { switch (Intrinsic->getIntrinsicID()) { default: Result = false; break; case Intrinsic::amdgcn_if_break: case Intrinsic::amdgcn_if: case Intrinsic::amdgcn_else: Result = true; break; } } if (V == U->getOperand(0)) { switch (Intrinsic->getIntrinsicID()) { default: Result = false; break; case Intrinsic::amdgcn_end_cf: case Intrinsic::amdgcn_loop: Result = true; break; } } } else { Result = hasCFUser(U, Visited, WaveSize); } if (Result) break; } return Result; } bool SITargetLowering::requiresUniformRegister(MachineFunction &MF, const Value *V) const { if (const CallInst *CI = dyn_cast(V)) { if (CI->isInlineAsm()) { // FIXME: This cannot give a correct answer. This should only trigger in // the case where inline asm returns mixed SGPR and VGPR results, used // outside the defining block. We don't have a specific result to // consider, so this assumes if any value is SGPR, the overall register // also needs to be SGPR. const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo(); TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints( MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI); for (auto &TC : TargetConstraints) { if (TC.Type == InlineAsm::isOutput) { ComputeConstraintToUse(TC, SDValue()); const TargetRegisterClass *RC = getRegForInlineAsmConstraint( SIRI, TC.ConstraintCode, TC.ConstraintVT).second; if (RC && SIRI->isSGPRClass(RC)) return true; } } } } SmallPtrSet Visited; return hasCFUser(V, Visited, Subtarget->getWavefrontSize()); } bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const { SDNode::use_iterator I = N->use_begin(), E = N->use_end(); for (; I != E; ++I) { if (MemSDNode *M = dyn_cast(*I)) { if (getBasePtrIndex(M) == I.getOperandNo()) return true; } } return false; } bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0, SDValue N1) const { if (!N0.hasOneUse()) return false; // Take care of the opportunity to keep N0 uniform if (N0->isDivergent() || !N1->isDivergent()) return true; // Check if we have a good chance to form the memory access pattern with the // base and offset return (DAG.isBaseWithConstantOffset(N0) && hasMemSDNodeUser(*N0->use_begin())); } bool SITargetLowering::isReassocProfitable(MachineRegisterInfo &MRI, Register N0, Register N1) const { return MRI.hasOneNonDBGUse(N0); // FIXME: handle regbanks } MachineMemOperand::Flags SITargetLowering::getTargetMMOFlags(const Instruction &I) const { // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load. MachineMemOperand::Flags Flags = MachineMemOperand::MONone; if (I.getMetadata("amdgpu.noclobber")) Flags |= MONoClobber; if (I.getMetadata("amdgpu.last.use")) Flags |= MOLastUse; return Flags; } bool SITargetLowering::checkForPhysRegDependency( SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) const { if (User->getOpcode() != ISD::CopyToReg) return false; if (!Def->isMachineOpcode()) return false; MachineSDNode *MDef = dyn_cast(Def); if (!MDef) return false; unsigned ResNo = User->getOperand(Op).getResNo(); if (User->getOperand(Op)->getValueType(ResNo) != MVT::i1) return false; const MCInstrDesc &II = TII->get(MDef->getMachineOpcode()); if (II.isCompare() && II.hasImplicitDefOfPhysReg(AMDGPU::SCC)) { PhysReg = AMDGPU::SCC; const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysReg, Def->getSimpleValueType(ResNo)); Cost = RC->getCopyCost(); return true; } return false; } void SITargetLowering::emitExpandAtomicRMW(AtomicRMWInst *AI) const { AtomicRMWInst::BinOp Op = AI->getOperation(); if (Op == AtomicRMWInst::Sub || Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor) { // atomicrmw or %ptr, 0 -> atomicrmw add %ptr, 0 assert(cast(AI->getValOperand())->isNullValue() && "this cannot be replaced with add"); AI->setOperation(AtomicRMWInst::Add); return; } assert(Subtarget->hasAtomicFaddInsts() && "target should have atomic fadd instructions"); assert(AI->getType()->isFloatTy() && AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS && "generic atomicrmw expansion only supports FP32 operand in flat " "address space"); assert(Op == AtomicRMWInst::FAdd && "only fadd is supported for now"); // Given: atomicrmw fadd ptr %addr, float %val ordering // // With this expansion we produce the following code: // [...] // br label %atomicrmw.check.shared // // atomicrmw.check.shared: // %is.shared = call i1 @llvm.amdgcn.is.shared(ptr %addr) // br i1 %is.shared, label %atomicrmw.shared, label %atomicrmw.check.private // // atomicrmw.shared: // %cast.shared = addrspacecast ptr %addr to ptr addrspace(3) // %loaded.shared = atomicrmw fadd ptr addrspace(3) %cast.shared, // float %val ordering // br label %atomicrmw.phi // // atomicrmw.check.private: // %is.private = call i1 @llvm.amdgcn.is.private(ptr %int8ptr) // br i1 %is.private, label %atomicrmw.private, label %atomicrmw.global // // atomicrmw.private: // %cast.private = addrspacecast ptr %addr to ptr addrspace(5) // %loaded.private = load float, ptr addrspace(5) %cast.private // %val.new = fadd float %loaded.private, %val // store float %val.new, ptr addrspace(5) %cast.private // br label %atomicrmw.phi // // atomicrmw.global: // %cast.global = addrspacecast ptr %addr to ptr addrspace(1) // %loaded.global = atomicrmw fadd ptr addrspace(1) %cast.global, // float %val ordering // br label %atomicrmw.phi // // atomicrmw.phi: // %loaded.phi = phi float [ %loaded.shared, %atomicrmw.shared ], // [ %loaded.private, %atomicrmw.private ], // [ %loaded.global, %atomicrmw.global ] // br label %atomicrmw.end // // atomicrmw.end: // [...] IRBuilder<> Builder(AI); LLVMContext &Ctx = Builder.getContext(); BasicBlock *BB = Builder.GetInsertBlock(); Function *F = BB->getParent(); BasicBlock *ExitBB = BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); BasicBlock *CheckSharedBB = BasicBlock::Create(Ctx, "atomicrmw.check.shared", F, ExitBB); BasicBlock *SharedBB = BasicBlock::Create(Ctx, "atomicrmw.shared", F, ExitBB); BasicBlock *CheckPrivateBB = BasicBlock::Create(Ctx, "atomicrmw.check.private", F, ExitBB); BasicBlock *PrivateBB = BasicBlock::Create(Ctx, "atomicrmw.private", F, ExitBB); BasicBlock *GlobalBB = BasicBlock::Create(Ctx, "atomicrmw.global", F, ExitBB); BasicBlock *PhiBB = BasicBlock::Create(Ctx, "atomicrmw.phi", F, ExitBB); Value *Val = AI->getValOperand(); Type *ValTy = Val->getType(); Value *Addr = AI->getPointerOperand(); auto CreateNewAtomicRMW = [AI](IRBuilder<> &Builder, Value *Addr, Value *Val) -> Value * { AtomicRMWInst *OldVal = Builder.CreateAtomicRMW(AI->getOperation(), Addr, Val, AI->getAlign(), AI->getOrdering(), AI->getSyncScopeID()); SmallVector> MDs; AI->getAllMetadata(MDs); for (auto &P : MDs) OldVal->setMetadata(P.first, P.second); return OldVal; }; std::prev(BB->end())->eraseFromParent(); Builder.SetInsertPoint(BB); Builder.CreateBr(CheckSharedBB); Builder.SetInsertPoint(CheckSharedBB); CallInst *IsShared = Builder.CreateIntrinsic(Intrinsic::amdgcn_is_shared, {}, {Addr}, nullptr, "is.shared"); Builder.CreateCondBr(IsShared, SharedBB, CheckPrivateBB); Builder.SetInsertPoint(SharedBB); Value *CastToLocal = Builder.CreateAddrSpaceCast( Addr, PointerType::get(Ctx, AMDGPUAS::LOCAL_ADDRESS)); Value *LoadedShared = CreateNewAtomicRMW(Builder, CastToLocal, Val); Builder.CreateBr(PhiBB); Builder.SetInsertPoint(CheckPrivateBB); CallInst *IsPrivate = Builder.CreateIntrinsic( Intrinsic::amdgcn_is_private, {}, {Addr}, nullptr, "is.private"); Builder.CreateCondBr(IsPrivate, PrivateBB, GlobalBB); Builder.SetInsertPoint(PrivateBB); Value *CastToPrivate = Builder.CreateAddrSpaceCast( Addr, PointerType::get(Ctx, AMDGPUAS::PRIVATE_ADDRESS)); Value *LoadedPrivate = Builder.CreateLoad(ValTy, CastToPrivate, "loaded.private"); Value *NewVal = Builder.CreateFAdd(LoadedPrivate, Val, "val.new"); Builder.CreateStore(NewVal, CastToPrivate); Builder.CreateBr(PhiBB); Builder.SetInsertPoint(GlobalBB); Value *CastToGlobal = Builder.CreateAddrSpaceCast( Addr, PointerType::get(Ctx, AMDGPUAS::GLOBAL_ADDRESS)); Value *LoadedGlobal = CreateNewAtomicRMW(Builder, CastToGlobal, Val); Builder.CreateBr(PhiBB); Builder.SetInsertPoint(PhiBB); PHINode *Loaded = Builder.CreatePHI(ValTy, 3, "loaded.phi"); Loaded->addIncoming(LoadedShared, SharedBB); Loaded->addIncoming(LoadedPrivate, PrivateBB); Loaded->addIncoming(LoadedGlobal, GlobalBB); Builder.CreateBr(ExitBB); AI->replaceAllUsesWith(Loaded); AI->eraseFromParent(); } LoadInst * SITargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const { IRBuilder<> Builder(AI); auto Order = AI->getOrdering(); // The optimization removes store aspect of the atomicrmw. Therefore, cache // must be flushed if the atomic ordering had a release semantics. This is // not necessary a fence, a release fence just coincides to do that flush. // Avoid replacing of an atomicrmw with a release semantics. if (isReleaseOrStronger(Order)) return nullptr; LoadInst *LI = Builder.CreateAlignedLoad( AI->getType(), AI->getPointerOperand(), AI->getAlign()); LI->setAtomic(Order, AI->getSyncScopeID()); LI->copyMetadata(*AI); LI->takeName(AI); AI->replaceAllUsesWith(LI); AI->eraseFromParent(); return LI; }